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Abstract − This paper presents a localization algorithm for indoor 
environments. The environmental model is topological and the 
approach describes how a multimodal perception increases the 
reliability for the topological localization problem for mobile 
robots, by using the Bayesian Programming formalism. For the 
topological framework the fingerprint concept is used. This type of 
representation permits a reliable and distinctive environment 
modeling. Experimental results of a mobile robot equipped with a 
multi sensor system composed of two 180° laser range finders and 
an omni-directional camera are reported. 

I. INTRODUCTION 

Research in mobile robot navigation has to focus on various 
issues. Environmental modeling, perception, localization and 
mapping are all needed in order to build a coherent working 
framework for navigation. Many methods have been proposed 
to represent an environment in the framework of autonomous 
navigation, from precise geometric maps based on raw data or 
lines up to purely topological maps using symbolic 
descriptions. Even though research has recently leaded to 
successful solutions, reliable and accurate perceptions of the 
environment, which is an important task for the localization of a 
robot, are rarely presented.  

In this paper we will concentrate on the perception and 
environmental modeling within a topological context by using a 
probabilistic modeling, named Bayesian Programming. The 
robot has to recognize the objects that surround it in the 
environment in order to determine its own position. These 
objects must be modeled and recognized by means of the sensor 
data. Thus, a robust perception can be achieved by using 
redundancy, i.e. by combining the information obtained by 
several sensors. 

Early works in topological localization [7] presented 
experiments in simulations, which avoided the perception 
problem. Following works [13] were concerned with controlled 
environments, where the perception with sonars was enough for 
the navigation purpose. Only recent works within the 
topological community address the perception problem in its 
whole complexity in the real world. Successful vision-based 
navigations are currently limited to indoor navigation because 
of its dependence on ceiling features [16], room geometry, or 
artificial landmark placement [14]. Other means for visual 
localization are applicable both indoors and outdoors, however 

they are designed to collect image statistics while foregoing 
recognition of specific scene features, or landmarks [15, 18]. In 
this context [8] introduced the fingerprint concept, but its 
perception was restricted to the CCD camera. In [9] the 
extension to laser scanner and an omni-directional camera in a 
topological framework is presented. In the current paper it is 
shown how the fingerprint concept and Bayesian formalism can 
be closed in within the same framework. 

The rest of the paper is structured as follows. We present in 
Section II the fingerprint concept, the way it is encoded and 
generated. In Section III we define the Bayesian Programming 
formalism. Section IV is dedicated to the probabilistic method 
used for the fingerprint matching. Experimental results are 
presented in Section V. The system will use both a laser 
scanner and an omni-directional camera for feature extraction. 
The experiments will focus on some important characteristics 
needed by a topological approach, like uniqueness and 
distinctiveness. To conclude, Section VI contains a discussion 
of the proposed approach and further research directions.  

II. THE FINGERPRINT CONCEPT IN A TOPOLOGICAL 
FRAMEWORK 

The topological approach gives a compact representation 
and allows high-level symbolic reasoning for map building and 
navigation. With this method we try to eliminate the perceptual 
aliasing (i.e. observations at multiple locations are similar) and 
to improve the distinctiveness of places in the environment. To 
maximize the reliability in navigation, the information from all 
sensors available to the robot must be used. For this, the notion 
of fingerprint as described in [8, 9] is used. This 
characterization of the environment is especially interesting 
when used within a topological localization and multiple 
modality framework. 

A. Fingerprint encoding 

A fingerprint is a circular list of features, where the ordering 
of the set matches the relative ordering of the features around 
the robot. We denote the fingerprint sequence using a list of 
characters, where each character represents the instance of a 
specific feature type. In our case we choose to extract color 
patches and vertical edges from visual information and 
corners and beacons from laser scanner. We decided to use the 
letter ‘v’ to characterize an edge, the letters A,B,C,...,P to 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

represent hue bins, the letter ‘c’ to characterize a corner feature 
and the letter ‘b’ to characterize a beacon feature. Details about 
the visual features extraction can be found in [8, 11] and laser 
scanner features extraction can be found in [1].  

B. Fingerprint generation 

The fingerprint generation is performed in three steps (see 
Figure 1). The extraction of the different features (e.g. vertical 
edges, corners, color patches, beacons) from the sensors is the 
first phase of the fingerprint generation. The order of the 
features, given by their angular positions (0..359°) is kept in an 
array. At this stage a new type of feature, the virtual feature ‘f’ 
is introduced. It reflects a correspondence between a corner and 
an edge. The ordering of the features in a fingerprint sequence 
is highly informative and for that reason the notion of angular 
distance between two consecutive features will be added. This 
adds geometric information and increases once again the 
distinctiveness between fingerprints. Therefore, we introduced 
an additional type of feature, the empty space feature ’n’, for 
reflecting angular distance. Each ’n’ covers the same angle of 
the scene (20°). This insertion is the last step of the fingerprint 
generation. More details can be found in [9]. 

III. BAYESIAN PROGRAMMING FORMALISM 

The approach presented in this paper is based on the 
Bayesian Programming (BP) formalism. It is briefly described 
here, but more details can be found in [2, 4, 10]. 

The BP formalism allows using a unique notation and 
structure to describe probabilistic knowledge and its use. The 
elements of a Bayesian Program are illustrated in Figure 2. 

A BP is divided in two parts: a description and a question. 
The first corresponds of the declarative component. The 
purpose of a description is to specify a method to compute a 
joint distribution over a set of relevant variables {X1,X2,…,Xn}, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

given a set of experimental data δ and a preliminary knowledge 
π. This joint distribution is given by P(X1,X2,…,Xn │ δ π) and is 
defined by three components: the set of relevant variables (and 
their domains), the decomposition of the joint distribution as a 
product of simpler terms (these terms describes dependant 
relationship between variables), and finally by the parametric 
forms assigned to each of the terms appearing in the 
decomposition. The second part is of a procedural nature, and 
consists of using the previously defined description with a 
question, i.e. computing a probability distribution of the form 
P(Searched │ Known). Answering a question is an inference 
process, which computes a value for the variable Searched 
according to P(Searched │ Known). It is well known that 
general Bayesian inference is a very difficult problem, which 
may be practically intractable. In the following we will assume 
that the inference problems are solved and implemented in an 
efficient manner by an inference engine. 

IV. FINGERPRINT MATCHING 

The string-matching problem is not easy. Usually strings do 
not match exactly because the robot may not be exactly located 
on a map point and/or some changes in the environment or 
perception errors occurred. The standard algorithms are quite 
sensitive to insertion and deletion errors, which cause the string 
lengths to vary significantly. The method adopted previously in 
the fingerprint approach for sequence matching is inspired by 

 
Figure 2: Structure of a Bayesian Program 
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Figure 1.  Fingerprint generation. (a) panoramic image with the vertical edges and color patches detection ‘v’ 
and color; (b) laser scan with extracted corners ‘c’ and beacons ‘b’; (c) the first four images depict the position 
(0 to 360°) of the vertical edges, the corners, the beacons and the colors (G-green, E-light green, and A-red)  
respectively. The fifth image describes the correspondence between the vertical edges features and the corner 
features. By regrouping all this results together and by adding the empty space features, the final fingerprint is:  
cbccbnfGcnEnvccncbcvncnnfvvvnccAcb 
 



the minimum energy algorithm used in stereovision for finding 
pixels in two images that correspond to the same point of a 
scene [6]. More details can be found in [8] and [9]. Our current 
approach is a combination of the global alignment algorithm 
and the Bayesian formalism and it is described below.  

A. Probabilistic fingerprint matching 
The new approach presented here is constructed in two 

steps. The first step is the phase of supervised learning where 
the robot inspects several locations, denoted by Loc. From 
each location loc∈Loc the robot extracts the fingerprint data, 
as explained in Section II B and stores it along with the name 
of the location in a database, denoted by the symbol π. The 
second step is the phase of application, when we want the 
robot to localize itself in the environment. To answer the 
question “Where am I?” the robot will extract the fingerprint 
fp of its current surroundings and solve the basic formula of 
probabilistic localization 

                

This means that if fingerprints are associated to each 
location, then the actual location of the robot may be recovered 
by comparing the fingerprint fp with the database of known 
locations and choosing the location loc* which has the highest 
probability. In the following we show how P(loc|fpπ) can be 
solved by the Bayesian Programming technique. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3 illustrates the Bayesian Program used for the 

fingerprint matching. The features are denoted by: VE the set 
of vertical edges and CP the set of color patches extracted by 
the omni-directional camera; Ex the set of line extremities and 
B the set of beacons extracted from the data given by the laser 
scanner. For the fingerprint of a location, which is encoded as 
a circular string the notation Fp is used, and for the set of 
known (learned) locations the notation Loc is employed. 
Although the fingerprint string Fp, constructed over all the 

features (see [11]), adds some redundancy to the system, it 
introduces at the same time valuable information about the 
relative order of the features, which will improve the results. 
We assume that the variables VE, CP, Ex, B and Fp are 
independent from one another. We consider that the features 
(VE, CP, Ex, B) are dependent on the location and these 
dependencies lead to the decomposition described in the 
Bayesian Program (Figure 3).  

From the result of the decomposition formula (see Figure 3) 
we can distinguish three different kinds of probability 
distributions.  

• Since we have no a priori information about locations, 
we consider each location to be equally probable and 
consequently we express the probability of a location 
given all the prior knowledge as a uniform 
distribution.  

• To determine the probability of one feature f, where  
f ∈ {VE, CP, Ex, B}, given the location and all the a 
priori knowledge, we suggest to express this 
probability as the likelihood of the new feature data f 
with respect to the distribution of the same feature as 
encountered at the given location during the learning 
phase. We calculate the distribution as a mixture of 
Gaussians (MOG) in angle space, optimizing the 
mixture parameters by making use of the Expectation 
Maximization (EM) algorithm. More details about 
these two concepts are described in the next three sub-
sections.  

•  To calculate the probability of the fingerprint 
sequence given the location and all the prior 
knowledge, we will use the global alignment algorithm 
[12] used usually for the alignment of DNA sequences 
and so let GlobalAlignment(Fp, fploc) be a function 
yielding the minimal cost of the global alignment 
algorithm of two fingerprint strings.  

Obviously, the three equations from the Parametric Forms 
will solve the basic question described in the Bayesian Program 
(see Figure 3). 

As stated above, the probability of a feature knowing the 
location and all the prior knowledge is computed using Mixture 
of Gaussians and Expectation Maximization (EM) algorithm. 
These two concepts will be described briefly in the next two 
sections. 
B. Mixture of Gaussians 

Mixture of Gaussians (MOG) is a widely used approach 
when estimating the distribution of data. A MOG in the 
parameters θ is a probability density function, which results 
from combining k Gaussian probability density functions in a 
weighted sum: 

 

   

 
where wi is the weight,  µi and σi the mean and the standard 
deviation of the ith mixture component, which itself is a 
Gaussian probability density function given by the formula 

Pertinent Variables 
   VE : vertical edges                        CP: color patches                          
   Ex  : extremities                             B  : beacons          
   Fp : a fingerprint of a location     Loc: set of locations 
 
Decomposition 
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Figure 3: The fingerprint matching formalism written in BP 
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The normalization factor η turns the Gaussian function in 
an actual probability distribution function, guaranteeing that the 
integral over the function evaluates to 1: 
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In angle space, η is the inverse of the integral from -π to π 

over the un-normalized Gaussian function, resulting into 
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where erf(x) is the error function  
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Since we want also pMOG to be a probability density 
function, the weights wi must sum to 1, such that the integral 
over the distribution is 1: 

  

   

The parameters of the complete MOG are then 

 }...,...,...{}...{ 1111 nnnnMOG ww σσµµθθθ ==   

The MOG is a compromise between the efficient but 
parametric models on one side, and the flexible but expensive 
non-parametric methods like histograms or kernel methods on 
the other side. 

C. Expectation Maximization 

Finding the optimal parameters θMOG of a Mixture of 
Gaussians (MOG) over a set of data points X is not trivial. A 
widely used approach to solve this problem is the Expectation 
Maximization (EM) algorithm [3].  

This algorithm starts with some initial estimation of the 
parameters θ, improving them with each iteration. The 
‘improvement’ is defined in the sense that the log-likelihood of 
the data X increases with respect to the new parameters θnew. In 
the case of mixtures of Gaussians, it is possible to derive the 
new parameters θ new analytically: 
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where N is the number of data points: N = |X| and distAS(a, b) 
the distance function in angle space. It takes two angles a, b and 
returns the shortest way to go from a to b. The sign of the 
distance is positive if going clockwise, and negative if going 
counter clockwise. The iteration is typically terminated when 
the increase of the log-likelihood falls below some threshold 
value ε.  

D. An example 

Let us illustrate the P(f=VE│loc π) with an example. We 
start with a set of 13 occurrences of vertical edges and we 
calculate the MOG for it. We then generate a second set, this 
time with 18 occurrences, and evaluate the probability 
P(f=VE│loc π) for both data sets with the same MOG 
parameters (see Figure 4 and Figure 5). As expected, the 
resulting value is for the first data set significantly higher than  

 

for the second, since the parameters of the MOG were chosen 
to maximize the first set.  
 

 

 

 

Figure5: Evaluation of P(f=VE│loc π) for the some other data set, resulting in a 
smaller value above, since the MOG is not optimal for this data. 

Note how flexible this method is with respect to the number of 
features per set: A MOG can be generated from a set of any 
number of features, and it can be evaluated later for samples of 
arbitrary length. 

V. EXPERIMENTAL RESULTS 

We first tested this approach in simulation on a variety of 
synthetic office environments, where it is easier to run 
extensive experiments. We then confirmed these results by 
running experiments in our real office environment with a 
robot.  
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A. Simulation Experiments 

For ten synthetic office environments, four observations of 
a feature f∈{VE, CP, Ex, B} were generated, such as the four 
generations were similar but not identical. The four 
observations of a feature in a certain place were disturbed by 
the addition of a small random distance, with a standard 
deviation of five degrees. After the generation of the dataset, a 
MOG of k component was calculated for the combination of the 
four observations of each place. With these ten MOGs we have 
classified the 40 observations, by calculating the likelihood of 
the angular feature according to the MOG. For a given 
observation, the classification is successful, if the highest value 
of the MOG corresponds to the correct place.  

The simulation results for all the combination of k, with     k 
∈{3, 4, 5} and N (the number of occurrences of a feature f, in 
our case f = VE) with N∈{5, 10, 15, 20, 25, 30, 35}, is 
described in the following table (see Table 1). 

TABLE I. The table shows the results of simulation with different parameters 
for the number of k MOG components and N the number of observations of a 

feature.  

 N = 5 = 10 = 15 = 20 = 25 = 30 = 35 

k = 3 55.5% 81.5% 93.0% 93.5% 96.0% 97.5% 99.5%

k = 4 66.5% 93.0% 98.0% 95.0% 98.0% 99.5% 99.0%

k = 5 80.0% 98.5% 98.0% 99.5% 100% 99.5% 100% 

 

For the f∈{CP, Ex, B} the process was similar to the shown 
one. The simulation results are significant and after the 
combination of all elements it was noted that: 

a. with the increase of the MOG components one sees an 
improvement of the results  

b. with the increase of the number of observations N of a 
feature one sees an improvement of the results  

 
B. Robot Experiments 

In order to verify the simulation results, we repeated the 
experiments on a real robot. Thus, the approach has been tested 
in a 50 x 25 m2 portion of our institute shown in figure 6. 

 
 

 

 

 

 

 
Figure 6: The test environment. The arrows indicate the rooms in which the 
experimentation has been done. The tenth room is not represented on the 
image. 

For the experiments, Donald Duck (see Fig. 7), a fully 
autonomous mobile robot, has been used.  

 

 
  

 

 

 

Its controller consists of a VME standard backplane with a 
Motorola PowerPC 604 microprocessor clocked at 300 MHz 
running XO/2, a hard real-time operating system. Among its 
peripheral devices, the most important are the wheel encoders, 
two 180° laser range finders and an omnidirectional camera. 
The panoramic vision system depicted in figure 8 uses a mirror-
camera system to image 360° in azimuth and up to 110° in 
elevation.  

 

 

 

 

 

 Figure 8: The panoramic vision system. The camera has a 640x480 pixels 
resolution and an equiangular mirror is used so that each pixel in the image 
covers the same view angle. 

The use of an omnidirectional camera combines the 
advantages of the SICK laser range finders (e.g. an angle of 
view of 360°) and the capability of detecting verticals. This will 
bring considerable information to the system. 

The test setup was the following: The robot extracted the 
four features in ten offices ten times. Eight times it was placed 
on a circle of 40 cm to 70 cm of radius, yielding the training 
data, and two times inside the same circle, yielding the test data. 
The mean number of feature occurrences in each measurement 
is summarized in the following table: 

TABLE II. The table shows the mean number of occurrences of instances of the 
same feature type during the measurements. 

 

 

 

 

During all measurements, the orientation of the robot was 
approximately the same. This simplification could be omitted 
by letting the robot estimate his orientation by considering all 
rotations of the fingerprint string.  

In order to complete the training, for each location and each 
feature type the mixture of Gaussian and the resulting 
fingerprint string, considering all the features, were calculated.  

 mean occurrences 
vertical  edge 5.6 

extremity 5.6 
color patch 2.7 

beacon 3.9 

Figure 7: The fully autonomous 
robot Donald Duck. The 
panoramic vision system has been 
mounted right above the wheels. 
So, for a given position, the 
fingerprint extraction does not 
depend on the robot’s orientation.



In the application phase, the classification of the 20 test 
samples was used to answer the following questions: 

1. How does the fingerprint string matching using global 
alignment compare to the former matching using the minimum 
energy algorithm? 

2. What is the significance of each feature type using the 
MOG approach? 

3. How does the combination of several feature types 
improve the MOG approach? 

4. What is the overall classification capability of the system 
using both string matching and MOG approach combined in a 
Bayesian program? 

The results are summarized in the following tables: 

TABLE III. Classification using string matching only, comparing global alignment and 
minimum energy algorithms. 

 
In Table III, one can see the improvement from using global 

alignment instead of the minimum energy algorithm.  Since the 
number of occurrences of the beacon and the color patch 
feature was too small to give significant results, they were 
omitted for the MOG calculations. Nevertheless they were used 
for the fingerprint strings.  kMOG signifies the number of mixture 
components used for the mixture (Table IV). 

TABLE IV. Results using single features only (vertical edge, extremity), the 
combination of these features, and finally classification using all the features 

and the fingerprint string matching. 

 
The success of a room classification is defined as the detection 
of the highest probability. The results have given a percentage 
of successful matches of 82.4% (see Table IV). However, false-
classified rooms delivering high probability (second or third 
highest probability), which are typical results in the 
experiments, entail important information, which can be used in 
combination with a localization approach such as a Partial 
Observable Markov Decision Process (POMDP) [5, 17]. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents a method for topological localization by 

using the Bayesian Programming methodology with the 
fingerprint concept. This kind of representation permits a very 
compact and computationally efficient representation of the 
environment for mobile robot navigation. Using different 
features from multiple sensors allows the improvement of the 
distinctiveness of the fingerprints as it has been proven in 
section V.  Even if the correct room does not always have the 
highest probability, this information can be still used for 
localization e.g. by employing a localization approach like a 
POMDP. Future works will concentrate on the introduction of 
an average fingerprint for each node, on an automatic 
generation of nodes by using a distance between the 

fingerprints and on the introduction of this concept in a multi-
resolution Simultaneous Localization and Mapping (SLAM). 
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 right classifications mean rank 
minimum energy 62.4% 1.87 
global alignment 87.1% 1.21 

 kMOG = 3 kMOG = 4 kMOG = 5 
vertical  edge 42.1% 2.58 47.1% 2.47 55.6% 1.82
extremity 55.6% 1.65 51.1% 1.71 47.1% 1.71
ve & ex 58.8% 2.00 66.7% 1.82 66.7% 1.67
ve, ex & fps 61.1% 1.78 70.6% 1.58 82.4% 1.23


