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Abstract— This paper presents a method for probabilistic plane
fitting and an application to robotic 3D mapping. The plane is
fitted in an orthogonal least-square sense and the output complies
with the conventions of the Symmetries and Perturbation model
(SPmodel). In the second part of the paper, the presented plane
fitting method is used within a 3D mapping application. It is
shown that by using probabilistic information, high precision 3D
maps can be generated.

I. INTRODUCTION

One main goal within the research area of mobile robotics is
to reach the highest possible grade of robustness and precision.
In localization and mapping applications, this depends directly
on the quality of the used perceptive sensors, the odometry,
the computer hardware and the software implementing the
underlying models and algorithms. With the appearance of
accurate and affordable 2D laser scanners on the market some
years ago, a prerequisite for big progress was set resulting in
robots that can safely navigate and interact in highly dynamic
and populated environments like museums or exhibitions (see
Arras et. al [9] or Thrun et al. [5]).

A. Related Work

Recent work from Héhnel et al. [3], Liu et al. [4], Moravec
et al. [14] or Surmann et al. [15] shows that extending
localization and mapping methods to 3D is very promising. On
the one hand, automatically generated 3D models are useful
as a visualization for architects, fire-fighters or virtual reality
applications. On the other hand, the dense three-dimensional
information could help the robot itself improve its navigation
capabilities. Up to now, the used sensor systems for 3D are
either based on 2D laser scanners (see Thrun et al. [7], [3], [4],
[15]) or stereo vision cameras (see Iocchi et al. [16] or [14])
still limiting the associated applications to stop-and-go motion
navigation or pure 3D mapping. Cameras producing three-
dimensional data in real-time have recently become available
(see Lange et al. [17]) ensuring further progress.

B. Motivation

Current navigation approaches using 2D information can
fail due to limitations of the perceptive sensors. When using a
standard horizontal laser scanner for example, people standing
around the robot can make the robot go blind and objects like
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table tops or staircases can lead to severe crashes. Using 3D
information is therefore a logical next step in order to develop
more robust and powerful robots with various new applications
for example within the areas of virtual reality and flying robots
(e.g. Thrun et. al [19]).

In comparison to two-dimensional data, the denser 3D data
requires more memory and computer power. Feature-based
approaches provide means of overcoming this problem by
representing hundreds of raw data points as a single feature.

The crucial part of feature-based approaches is the feature
extraction itself, more precisely the segmentation and fitting
procedure. Due to sensor limitations, it can be very hard to
find and extract features reliably especially in dynamic and
complex environments. Nevertheless, a good feature extraction
rewards with very robust and precise results.

State-of-the-art feature extraction algorithms use probabilis-
tic information and have proven to be superior to classical
approaches. The goal of this work is to create the basic
framework for probabilistic plane fitting and to show its
usefulness in a typical application for robotic 3D mapping.

The paper is composed of two main parts. The first part
deals with probabilistic plane-fitting using the SPmodel frame-
work and the second presents a 3D mapping application using
the presented plane fitting method. The next section covers the
prerequisites.

II. PREREQUISITES
A. SPmodel

The Symmetries and Perturbations Model (SPmodel) is a
framework for representing and processing erroneous geo-
metrical data (Castellanos et al. [2] and Smith et al. [1]).
Within this framework, the location Lyyr of a geometrical
object F' is defined by four parameters: The transformation
xwr = (v,y,2,¢,0,¢)T ! from the world coordinate frame
W into the local object coordinate frame F', the binding matrix
BFr accounting for symmetries, the locally defined pertur-
bation vector’ pr representing the error with its associated
covariance matrix Cy containing the uncertainty information.

IThe angles ¢, 0, 1 represent the RPY-rotations (roll, pitch, yaw) around
the z-axis, the y-axis and the x-axis, respectively

2The perturbation vector pz is formed by multiplying the binding matrix
B with the full rank differential vector dp = (ds, dy, dz,dg, do, dy) T



It is important to mention, that the SPmodel is generally
defined for geometrical objects with six parameters (6 degrees
of freedom), which typically is a location in 3D, using the
concept of a row selection matrix or binding matrix B to
adapt the dimension to the actual case. A point in 3D space
for example has no orientation and hence can be described by
three translations. An infinite plane can also be described by
three parameters, two angles and the perpendicular distance to
the origin (see Castellanos et al. [2] for details).

The SP-framework provides several operations to transform
geometrical objects defined by so-called locations: the most
important are the composition & of two locations and the in-
version & of a location. In visual terms, the composition of two
locations is their concatenation considering the propagation of
associated errors. Within the scope of this work, the SPmodel
is used wherever uncertain information appears and has to be
transformed.

B. Hardware

A mobile robot equipped with two opposing horizontal
SICK Laser Range Scanners (LMS 200) sensors (for a field of
view of 360 degrees) is used. It includes an Extended Kalman
Filter-based 2D localization system using linear features and
assuming Gaussian error distributions developed by Arras et al.
[8]. In this case, it requires an a priori map of the environment.
This feature-based localization method reaches subcentimeter
precision. An additional, vertically mounted laser scanner is
used to generate the three-dimensional data (see Figure 1) like
it is done by Liu et al. [4] or Héhnel et al. [3] for example.

Fig. 1. Pygmalion robot with two hor-
izontal SICK LMS 200 scanners with a
total field of view of 360 degrees for two-
dimensional localization and a vertical scan-
ner of the same type for 3D data generation.

C. Data Registration Process

Associating the data of the vertical SICK sensor with
the chronologically correct robot position® estimate yields a
registered point cloud P = {p; = (4, v:,2;)7|i = 1...N} in
3D. More precisely, the transformation* Xy r from the world
coordinate frame W into the robot coordinate frame R defined
by XWR = (xrobota Yrobot s 07¢7‘0b0ta Oa O)T is Compounded

3The vertical sick scans are synchronized with the robot localization system
through linear interpolation

“In the context of the SPmodel, transformation is used as a synonym of
location

with the transformation x RS, from the robot coordinate frame
R into the frame of a single sensor value S, defined by
XRS,, = (0, Ysensor, » Zsensor;» 0, 0,0)T, yielding the transfor-
mation from the world frame W into the sensor value frame
Spi defined by xws = xwr ® XRS,, -

The error sources of the generated N points P are two-
fold and have to be combined appropriately. Firstly, the
robot position error describing how precisely the robot pose
(x,9,0)T on the floorplane is known has to be considered:

02 Ozy Oz
€robot N(07 Erobot)) Yrobot = Ozy Oy2  Oyo
Oz0 Oyo Og2

Secondly the sensor error €seysor, Which in turn is two-fold,
composed of the angular error and the distance error, has to
be taken into account. As the distance error is much greater
than the angular error, the latter is omitted (see e.g. Wang
et al. [18]). Assuming a normal distribution can be justified
by the central limit theorem of statistics, yielding €sensor
N(O, Usensor)5~

the position-of the vertical taser o
“~scanner of the robot with associated
95% error covariance ellipse-(magnified by 10)

Fig. 2. A single scan composed of 361 data points with associated uncertainty
information. The uncertainty resulting from the composition of the robot
estimate error and the sensor error is visualized for every tenth data point
and depicted by 95% error ellipsoids magnified by 10.

The overall error of a single three-dimensional point p;
is found automatically by the SPmodel framework which
relies on the standard laws of error propagation calculus [1].
Figure 2 shows a single laser scan with associated uncertainty
ellipsoids.

ITI. PROBABILISTIC PLANE FITTING IN 3D

This section describes a way of fitting infinite planes to
uncertain three-dimensional data. It is adapted to the repre-
sentation conventions of the SPmodel in the way that it firstly
finds a transform to a local coordinate frame lying within the
plane and then analyzes the error locally.

The range data is given as a set of three-dimensional points
{pi = (%i,9i,2:)T|i = 1..N} with associated covariance
matrices {C;|C; € R3¥3}. To find the best-fitting (infinite)
plane in a weighted least-square sense, a representation has

3¢ = (0.015)2 [m] throughout this work



[ #] Equation

| Plane Parameters

| nx—d=0 n= ng,ny,n.)°,d
2| zcosfcosp+ycosfsinp+zsinfd— | 6, ¢, p
p=0
3| Z=aX +bY +d a, b, d
4 ax+by+cz+1=0 a, b, c

TABLE I. Representations of a plane in 3D

to be chosen and weights w; have to be defined. The weights
w; = 1/trace(C;)? have proven to be an adequate choice. A
more thorough investigation of weighting factors will be faced
in the future.

A. Representations

Different plane models can be found in the literature (see
Table II). Not all of them are well-suited for least-square fitting
problems and error analysis. The Hesse notation (Model 1 of
table I) is the most general model that can be converted into
all the other models:

np; —d =ngx; +nyY; +n.z; —d=0 (1)

All data points p; = (7;,%;,2;)" that lie on the plane defined
by the normal n = (ng,ny,n.)7 and the perpendicular
distance to the origin d satisfy the above equation. In reality
however, only very few data points lie exactly on the plane,
hence the value € is introduced on the right of (1) standing for
the fitting error, which corresponds to a perpendicular distance
to the plane:

NeXi +NyY; + 1.2 —d = ¢ @)

Taking the sum over all squared distances yields the regression
problem R(ng,ny,n.,d) = S0 (¢ = SN (nga; +nyy; +
n,z; — d)? solved in the next section. Dividing (2) by (—d)
and substituting accordingly yields model 4:

ar; +by; +cz +1 =54

The associated regression problem does not minimize the sum
of the squared distances but Zf\io (;/(—d))>.
Model 3 is found dividing (2) by n, and substituting again.
Z—aX —-bY —d ==

—n,

Again it can be seen, that the sum to be minimized
sz‘V:() (¢;/(—n.))? corresponds to the orthogonal least-square
distance only when n, = +£1.

Model 2 leads to a nonlinear regression problem which is
difficult to tackle analytically.

From the comparison above, it can be seized that the Hesse
notation (Model 1) of a plane is the most flexible as it has
the least number of constraints. In this work, it is used in
combination with Model 3 (see next section).

B. Plane Fitting

Plane fitting is done in three steps:

1. Plane Fitting With Principal Component Analysis
(PCA)

2. Transformation of the input data points into the
global xy-plane
3. Uncertainty analysis using standard regression
methods
These steps are described in more detail in the following.
1) Plane Fitting With PCA: Choosing the Hesse-model
yields the function
N
R(naz,ny,nz,d) = > wi(nga] + nyyl +n.2) —d)*  (3)
i=0
which has to be minimized. ”r” stands for raw data. Deriving
(3) with respect to d and setting it equal to O yields

OaR(ng,ny,n,,d) = 0
N
=0y Zwt(nle + nyy; +nyz — d)? = 0
i=0
N
= 2Zwi(nzxf +nyy; +n.z) —d)(=1) = 0
i=0
N
N
— Z wi(nax] +nyy] +n.zl) = >, wid
i=0
] N
= o Y wilneal £yl +nez) = d
> im0 Wi ig
1 Z%O Wit Mg
= oN > im0 Wil Ny | = d
Zi:O wi ZZI\;O Wi Zi n
<= cog-n= d

This means that the best-fitting plane passes through the center
of gravity represented by cog. Translating the data points into
the origin yields S(ng,ny,n,) = Zﬁio wi(ngx; + nyy; +
n.z;)?. The plane normal n = (ng,n,,n.)’ can be found
by calculating the eigenvector corresponding to the smallest
eigenvalue of

N N N
Zﬁzo wix] ZiTVO WiZiYi Zzﬁo WiT4 25
A= Zz:o Wi TiY; Zz:o wiyi2 Zizo W;Yizi
N N N
Ez:O W;TiZ; Zi:o W;YiZi Zi:O wizz‘Q

2) Transformation of the data: With the aid of the per-
pendicular distance d = ||cog - n|| from the plane to the
origin a transformation s, piane,, can be defined in order
to transform the raw data Sp into the global xy-plane®.

3) Uncertainty Analysis: After having transformed the data
into the global xy-plane this point cloud P! = {p! =
(zt,yt, 25)T|i = 1...N} and the covariance matrices {C|i =
1..N'} will again be fitted to a plane model, but this time using
the Model 3 of Table II. This allows to find an analytical
expression for the first and second moments of the plane, the
latter corresponding to the covariance matrices. As the best

Transforming data into a plane means rotating and translating the point
cloud in a way that its principal axes (found through PCA) correspond to the
world coordinate system



fitting plane now has to lie within the global zy-plane and
therefore (n,,ny,n.) = (0,0,1)T, the regression equation
T(ng,ny,n,,d) = Zi\io wi(naxt + nyyt + n.zl — d)? can
be divided by n, and with the substitutions n,/n, = b,
ny/n, = by and (—d)/n, = by simplified into:

N

T(bo,br,bo) = Y wilzf +bo + buaf + bay})”

i=0
After taking partial derivatives with respect to by, b; and bo,
the parameters for the best-fitting plane are:

N t

bo - ZA%-:O Wiz
_ A1 t ot
by | =A - Zi]\?o Wik 2
tot
b - Zizo wiY; Z;

N N + N +
Z&:o w;l ZJ:VZ-:() w;T; Z]:\%-:o w;Y;
t t\2 t,,t
le‘\’:o Wix; Ziﬁo w;(x;) Z]ivzo WiZ;Y;
¢ tt )2
dimo Wil DimoWiTiy;p Do wily;)
The covariance matrix of the parameter vector b =

(bo,b1,b2)T can be found with the standard law of error
propagation:

A:

Cif 0O --- 0
t
Cprane = F | 0 ©2 FT
: .0
0o - 0 Cf

with F' = V(bg,b1,b2)T. A second Taylor approximation
leads to the final result for the plane parameters (z,6,v)7 =
(arctan by, arctan by, arctan by)” and corresponding covari-
ance matrix Cgppiane, Which can directly be input into the
SPmodel.

O0z22 0z Ozy -
CSPplane = 020 092 Ogy = FCplaneF

Oz TG 0¢2

1 0 0

1
1
0 0 1+b32
C. Remark

Singularities of the Jacobian matrices exist in the rotational
part (¢, 0,1) of a transform L [1]. They have not been taken
into account here because 3D points are only represented by
a translation transform (z,y, 2).

IV. ROBOTIC MAPPING APPLICATION
A. Introduction

A typical application for plane-fitting can be found within
the area of robotic 3D mapping. There, the goal is to convert
a generally vast set of raw data into a compact representa-
tion, overcoming problems due to noise and low rendering
capability (see Figure 3). Furthermore, extracted features like
planes have a richer semantical value than points and can
be used for higher level machine learning tasks like robot

navigation. Using specific features obviously narrows the area
of application of the mapping system. But as this work focuses
on mapping indoor or structured environments which mainly
consist of planar structures like walls, ceilings, closets, doors,
etc., it is assumed that representing the environment by means
of planar features is an appropriate choice. Thrun et al. [6]
call this the ”structured environment assumption”.

notice—boérd

“door

—closet

Fig. 3. This image shows 100 consecutively taken SICK scans (3610 points)
representing a part of a corridor at the Autonomous Systems Lab. Note that
doors, lockers, closets, neon lamps and even notice-boards can be recognized.

B. Applications of 3D representations

Up to now feature-based three-dimensional mapping was
used purely for visualization, which can be interesting for
different applications, like in architecture, quality control,
virtual reality, etc. In the future, 3D mapping will become
increasingly important for mobile robot navigation, namely
for localization and SLAM(Simultaneous Localization and
Mapping).

This section presents some steps into the above mentioned
direction, as the presented 3D mapping algorithm works on
local data and outputs probabilistic features which are neces-
sary for feature-based localization and mapping approaches.
It shows that by incorporating probabilistic data through
standard error propagation techniques the mapping process
can be improved and a 3D model with associated uncertainty
information can be obtained.

C. Algorithm

The algorithm presented in this section can be divided into
three stages. The first stage filters the data to get rid of outliers
and detect holes, the second stage performs the initial data
segmentation using a specialized agglomerative hierarchical
clustering approach, and the final stage consists of a simple
probabilistic merging operation fusing planar regions with



similar model parameters. Furthermore, an outer loop to this
algorithm enables incremental map building (see Figure 4).
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As a single scan of a laser scanner is a two-dimensional
manifold, two consecutive non-collocated scans are regarded
as a 3D scan in the following. Note that the presented
algorithm does not require a special laser range scanner but
works with every kind of 3D sensor.

1) Data Filtering: Outliers are filtered and a representation
based on planar regions (a list of vertices lying approximately
in a plane) is generated which is necessary for step 2.

If p;; and p;j41 are three-dimensional data points of
the scan ¢, and p;41; and p;1q;41 are data points of
the scan i + 1, Q := {pij,Pij+1,Pit1j+1,Pitr1;} forms
an initial planar region with the edges E := {e; =
(0475)|€1 = (pijapi+1j>7€2 = (pi+1j,pi+1j+1),€3 =
(pi+1j+17pij+1),€4 = (pij+17pij)} which in this case is a
quad patch. To filter outliers and detect holes that may occur
due to hallways or surfaces parallel to the laser beam, the quad
Q is discarded under certain conditions. This can be achieved
by defining constraints all edges e, (k = 1...4) have to match
by means of a x? hypothesis test in order to accept quad
@ for further processing. The Mahalanobis distance from an
edge point ey, with associated covariance matrix X, to the
multivariate weighted mean (also known as the information
filter) ., of the edge ey is a possible choice and yields the
following expressions (see Arras [10]):

6% = (eka - N%)Tzek_
e, =

1(eka - :uek)
(e, 25,7
Heyp = Sew (E;}a €k, + E;}ﬂ ek,;)
The 6., ’s can be interpreted as y>2-variables with 3 degrees
of freedom each. If any of the d.,’s (k = 1..4) is larger
than a selected maximum threshold value 6,,,, = X2, the
quad () is discarded with significance level a [11]. The
resulting array @@ of quads, for example, would look like
q1,92y s @G Gj+25 - Gk Qh+25 - qrr (gi+1 and gg41 have
been discarded as they did not fulfill the above constraints).
2) AHC-Segmentation: Agglomerative Hierarchical Clus-
tering (AHC) also called nearest neighbor filter is a standard
clustering method used within the field of computer vision
for a long time [13]. A specialized version taking into ac-
count the structure of the underlying data is used. All initial
planar regions () that passed the data filter constitute the

starting set of clusters SC = {scs|s = 1...T'} defined as
follows: Series of clusters scg, containing a contiguous array
of initial regions are processed one after another. The first
series to be processed is in this case sc; = {ciulcia €
{(q1,92), (92, 43) (g3, q4); -y (gj-1, Qj)}}’ the second one
SCy = {02u|c2u S {(q]‘+1,q]‘+2), . (qk_l,qk)}}, and the last
sc3 = {caulczu € {(qr+1,qrs2),s - (@rr—1,qnr)}}- It can be
seen that the gaps detected in the filtering step delimit the
series of clusters.

Every region ¢; within a cluster ¢y, being part of a
series of clusters sc; has a maximum of two neighbors. This
corresponds to the inherent topology of the input scan data in
which every scan point has two direct neighbors’. In a standard
AHC method on the other hand, all clusters are interconnected.

After having defined the initial clusters a best-fitting plane
is found for every cluster. The average distance between the
data points included in the regions of the cluster and the plane
found is evaluated. The regions within the cluster with the
smallest associated average distance are fused®. After updating
the series of clusters, the next smallest distance is searched
and the process repeats until a predefined minimum number
of allowed regions is achieved. In this work this predefined
minimum number of clusters is proportional to the size of the
input series of clusters sc;.

3) Region Growing: The clustering process ends when
the minimal number of allowed clusters is reached. Since
this number is set to be larger than the optimal value, an
ensuing cleaning operation merges neighboring regions that
meet certain criteria defined again by means of a y? hypothesis
test.

4) Outer Loop: When the planar regions approximating
the data of two consecutive scans are found, another region
growing mechanism converts the loose regions into global
regions describing ceilings, walls, doors, etc.

D. Experimental Results

The office environment of the Autonomous Systems Lab
was used for testing purposes. It is a highly structured envi-
ronment with many planar objects like walls, closets, lockers
and doors but it also contains many cylindrical steel beams
close to the ceiling.

Several measurement missions were performed with the
mobile robot generating 3D models (see for example Figure
6) of various sizes in different parts of the environment (see
Table II). During the last mission which took place in the most
complex part of the testing environment, 1083 scans where
taken and still over 95% of the input points were represented
by planes. All other missions took place in a less cluttered area
which explains their higher percentage of represented points.

Concerning the quality of the extracted planes, a part of
the environment was measured by hand and modelled in 3D
to provide ground truth information. Figure 5 shows a visual
comparison of the ground truth (left) and the reconstructed

"Neighboring scan points of a single measurement are scanned consecu-
tively
8This can be implemented efficiently by using binary trees (heap sort)



[ #scans | # points [ # planes | ratio [%] | time [s] [ mem. [KB] |

2 722 3 100 0.28 56.7
3 1083 3 99.72 0.64 58.8
10 3610 4 99.78 3.70 61.9
100 36100 40 99.08 56.52 222.4
344 124128 233 98.7 235.45 1158.8
1083 403598 1742 95.76 334.74 4512.2
TABLE II. Results of the algorithm produced by a standard Pentium IV
with 1.7 GHz.
What is measured ? ground truth | reconstructed
model
height of the ceiling [m] 2.700 2.696
width of the corridor [m] 2.268 2.266
0 —0.00098
orientation ceiling (normal) 0 0.00188
-1 —1.00000
0 0.00447
orientation lockers (normal) —1 —1.00000
0 0.00106

TABLE III.  Quality of reconstructed map

3D model generated by the robot (right). Table III shows a
comparison of real measures with the reconstructed model.

Fig. 5. Three-dimensional hand-made model of a part of a corridor at ASL
representing ground truth (left). The same scene generated by the mobile robot
measurement and 3D mapping algorithm (right). A superimposition of the two
(center). Note that on the left side of the image a cupboard can be identified;
on the right side, a group of lockers.

V. CONCLUSION

The first part of this paper presented a generic method for
plane-fitting in an orthogonal least-square sense. The method
fits well into the SPmodel framework, as it generates the
parameters of the fitted plane as well as the propagated
uncertainty information from the raw data.

The second section outlines an application for this plane-
fitting method. It uses consecutive laser range scanner scans as
3D scans, filters the data probabilistically to overcome outliers
and holes, performs a plane segmentation with a specialized
AHC approach, and fuses matching planes together to find a
compact 3D model.

It differs from related 3D mapping methods because it
uses probabilistic information extensively. It has been shown
that this not only improves the precision of the reconstructed
model compared to the physical reality (see last section) but
also attaches uncertainty information to the extracted features,
therefore lending itself for feature-based robot navigation
applications, which will be approached in future work.
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