“May You Have a Strong (-Typed) Foundation

9 |

Why Strong-Typed Programming Languages Do Matter

Nicola Tomatisa’d, Roberto Bregab, Gabrio Rivera®, Roland Siegwartd

#BlueBotics SA
PSE-C
CH-1015 Lausanne
nicola.tomatis@bluebotics.com

bLogObject AG
Technoparkstrasse 1
CH-8005 Zurich
roberto.brega@logobject.ch

Abstract—Programming efficient and reliable code can be
considered a non-trivial task, as it requires deep under-
standing of the problem to be solved along with good pro-
gramming skills. However, software frameworks and
programming paradigms can provide a dependable infra-
structure upon which better programs can be written and
deployed. This allows engineers to focus mainly on their
task, while relying on the underlying run-time environment
for taking care of low-level programming issues, such as
memory allocation and disposal, typing consistency and in-
terface compliance.

In this paper, we argue that strong-typed programming
languages and paradigms offer a valid support for the pro-
duction of reliable programs. Aware of the challenges of
formal measurement metrics for code quality, we present
the benefits of strong-typing by considering a practical ap-
plication: The design and implementation of RoboX, a
tour-guide robot for the Swiss National Exhibition Ex-
po.02. The example is extremely well suited for such a dis-
cussion, since complex mechatronic applications can be
considered critical systems—i.e. systems whose failure may
endanger missions, lives and society—thus their reliability
has to be made a prime concern.

I. INTRODUCTION

In the pioneering era of calculating machines, computers
were programmed using primitives, which were able to directly
instruct the underlying processor architecture. These instruc-
tions were either coded as sequences of digits—the machine
language—or, more conveniently, in a human-readable ver-
sion—the assembly language—which would be translated to
machine language by a so-called assembler. Machine and as-
sembly language are sometimes referred to as the first two gen-
erations of programming languages.

In the sixties developers began to realize that programs writ-
ten in assembly language were tedious to write, the produced
code was tied to a particular processor architecture and their
engineering was extremely error-prone, as the semantic gap2
was too large.

The third generation of languages represented the dawn of
the high-level languages. They contributed to the reduction of
the semantic gap by taking care—through compilers and inter-
preters—of the mapping between language constructs and the
underlying instruction set.

The past thirty years witnessed many new languages and par-
adigms, such as imperative or procedural languages (e.g. C,

1. The title quotes, nearly verbatim, Bob Dylan’s “Forever Young”
(Columbia, 1974). Likewise, it shall be taken as a wish and, con-
currently, as a recommendation.

2.The difference between the complex operations performed by
high-level language constructs and the simple ones provided by
computer instruction sets. It was in an attempt to try to close this
gap that computer architects designed increasingly complex
instruction set computers.

Institute for Information Systems

dEPF Lausanne
Autonomous Systems Lab
CH-1015 Lausanne
roland.siegwart@epfl.ch

°ETH Zurich

CH-8092 Zurich
rivera@inf.ethz.ch

Oberon), logical (e.g. Prolog), functional (e.g. ML) and object-
oriented (e.g. C++, Java, Eiffel, Oberon-2). The new para-
digms also introduced new features such as the strong-typing.
Examples of strong-typed programming languages can be
found in the Ada, Java and Oberon programming languages. C
and C++ are sometimes described as strongly typed, they are
indeed weakly typed.

The need for a safe type system in programming languages
was a logical consequence derived from a set of requirements,
coming from developers looking for rapid development-time
and ease of maintenance, without having to pay to incur in per-
formance penalties.

A milestone achievement for the definition of the notion of
type may be identified in the work of Cardelli and Wegner [7].
They argue that types, much akin to mathematics formulae, im-
pose constraints which help to enforce correctness, that is,
type-bound programming languages impose constraints on the
objects’ interaction, thereby preventing objects from an incon-
sistent interaction with other objects. Cardelli and Wegner met-
aphorically depict types as a set of clothes that protects an
underlying untyped representation from arbitrary or unintend-
ed use. In other words, types provide a protective covering that
hides the underlying representation of the information, while
constraining the way objects interact.

As explained in [15], a type system is an instrument that can
be used for enforcing rules in the application domain and de-
tecting their violations. The type system of a programming lan-
guage can be characterized as strong or weak, and the type
checking mechanism as static or dynamic. Strong-typing is a
strict enforcement of type rules because all types are defined
and known at compile-time. Type checking ensures that the op-
erands of an operator are of compatible types. A type check is
static if it occurs before run-time and remains unchanged
throughout program execution, while it is dynamic if it occurs
(or can change) during the execution of the program. A type er-
ror is the application of an operator to an operand of an inap-
propriate type. A programming language is strongly typed if
type errors are always detected. Hence, the most important ad-
vantage of strong-typing is that it allows the detection of the
misuses of variables that result in type errors. Strong-typing
catches more errors at compile time than weak-typing, result-
ing in fewer run-time exceptions.

The real benefits of strong-typing have been often contested.
We contribute to the dispute by presenting the experiences we
gained with the design and implementation of RoboX—a tour
guide-robot for the Swiss National Exhibition Expo.02. The
analysis of the software failures encountered by the robot’s
system, let us argue that strong-typed programming languages
and paradigms offer a valuable support for the production of
reliable code.

The paper is structured as follows: Section II, briefly de-
scribes the hard-real-time operating system XO/2, with its fea-
tures and its support for the strong-typed programming
language Oberon-2. XO/2 is the operating system chosen for
the implementation of the robot’s real-time requirements.
Section III presents the whole project: The architecture of

RoboX, its requirements and characteristics. Section IV dis-
sects the structure of the RoboX software development.
Section V documents the results that have been collected dur-
ing the whole period of activity. Aware of the difficulties in de-
fining strict measurement metrics, we compare and evaluate
the numerical outcomes in Section VI. Section VII wraps up
our experience, with some considerations on the features of
strong-typed programming languages vs. the weak-typed ones.

II. XO/2 HARD—REAL-TIME OPERATING SYSTEM

XO/2 is an object-oriented, hard-real time system software
and framework, designed for safety, extensibility and abstrac-
tion [6]. It is written in, and designed for the object-oriented
language Oberon-2 [19]. It takes care of many common issues
faced by programmers of mechatronic products, by hiding gen-
eral design patterns inside internal mechanisms or by encapsu-
lating them into easy-to-understand abstractions. Careful
handling of the safety aspects has been the criterion by which
the system has been crafted. These mechanisms, pervasive yet
efficient, allow the system to maintain a deus ex-machina
knowledge about the running applications, thus providing
higher confidence to the application programmer. The latter,
relieved from many computer-science aspects, can better focus
his attention to the actual problem to be solved.

Safety, as commonly used, is a rather general notion of “the
system does what it should, and does not what it should not”.
A more formal separation of what is perceived as “safety” is re-
quired in order to analyze in greater detail how safety can actu-
ally be achieved and supported.

Szyperski [23] separated safety in the more technical terms of
safety, progress, and security. These terms can be summarized
as follows: Nothing bad happens, the right things do (eventual-
ly) happen, and things happen under proper authorization (or
potentially bad things happen under proper supervision). All
three interact to make a system safe in broader sense.

Safety can be enforced statically or dynamically. In some
cases it is in fact possible to statically detect safety violations
(or security or progress) by means of (simple) formal verifica-
tion performed off-line. In other cases, safety needs to be en-
forced through supervised execution: If something potentially
unsafe is detected, execution is stopped and proper counter-
measures are taken. XO/2 addresses safety concerns through
the deployment of several distinct mechanisms.

Memory safety is solved with the symbiotic effort of the pro-
gramming language, which takes care of the static type-safety
and a run-time enforcement system, which supervises memory
accesses while isolating spurious fetches through run-time
mechanisms, such as the light-weight sandboxing approach,
described in [5] or the automatic real-time compatible garbage
collector presented in [4].

Progress is handled by an earliest deadline driven scheduler
(EDF), which allows the application programmer to specify the
task’s execution priority by means of its timing constraints, i.e.
its duration, its deadline and its period. The scheduler tests
new tasks for admission in the task set upon task creation,
while continuously monitoring the application run-time for
constraints violations.

A novel approach enables the application programmer to per-
form a reliable estimate of the task’s duration—its worst-case
execution time—by harnessing the performance monitoring
hardware of the underlying processor architecture, as disclosed
in [8].

Several complex mechatronic applications have been devel-
oped and deployed on top of XO/2, in several university
projects and commercial products, ranging from automated
an@sthesia devices [11] to industrial manipulators [13], from
endoscopy devices [25] to service robots [3], [24].

III. ROBOX PROJECT

Robotics was a very successful project presented at Ex-
po.02—the Swiss National Exhibition in Neuchatel. Its goal
was to convey the feeling of increasing closeness between hu-
man and machine. Visitors were able to interact with up to
eleven autonomous, freely navigating tour guide robots.

Both the typical highly dynamic environment of an exhibit,
and the high expectations anticipated by the visitors, imposed
various constraints on the robot’s design and control. This led
to the mobile platform to be specified as follows.

* The navigation shall perform with full autonomy and with
a high degree of reliability in an environment designed
around human beings, crowded with visitors and without
the help of any artificial landmarks for the localization.

 Safety shall be treated as a prime concern for humans, fur-
niture and the robots.

* The robots shall interact with visitors by means of a bi-
directional and multi-modal interface, comprised of
speech—English, German, French and Italian—facial
expressions, face tracking, visual clues to convey emo-
tions—through icons on LED matrix—input buttons and
robot motion, interpreted as a gesture.

* The robots shall require minimal human intervention and
ease of maintenance.

The appearance of the robot was designed in collaboration
with industrial designers. This co-operation yielded RoboX,
the mobile robot platform shown in figure 1.

The robot is composed of a navigation base and an interac-
tion turret. The control system was designed by keeping in
mind that the safety of both humans and the robot have to al-
ways be guaranteed and it is composed of a CompactPCI rack
containing two processor boards sporting, respectively, an In-
tel Pentium III and a Motorola PowerPC 750. The latter is con-
nected by the PCI backplane to an analog/digital I/O card, a
Bt848-based frame grabber, an IndustryPack encoder module
and an IndustryPack high bandwidth RS-422 interface. Fur-
thermore a Microchip PIC processor is used as a redundant se-
curity for the system.

The navigation software is deployed on top of the hard-real-
time operating system XO/2 [6] running on the PowerPC. This
processor has direct access to the camera looking at the ceiling,
the two SICK LMS laser range finders, the tactile plates and
the main drive motors. It communicates with the interaction PC
through Ethernet via an on-board hub.

@)

“ 3 Face tracking

b EL“ matrix

Eye movements

’ «“ (Speech out
K (Speakers)

Buttons

I|H Design
| J l Speech in
i (Microphone)

‘ Obst. avoidance

Motion tracking
Feat. extraction

Localization

Tactile sensors §
4 ~ | CompactPCl
/A rack

Figure 1: a) Functionality of the tour guide robot RoboX. b)
An image of RoboX 9.

~—— Bumpers

The interaction software runs on top of Windows 2000 on the
embedded PC. This allowed integrating commercial off-the-
shelf (COTS) software for speech synthesis and recognition,
while making scenario development easier. The PC has direct
access to the eye camera, the pan-tilt eyes and eyebrows con-
troller, the input buttons, the two loudspeakers and the micro-
phone. Both CPUs are connected via radio Ethernet
(IEEE 802.11) to an external computer for supervision purpos-
es, such as the monitoring of its stati on a graphical interface,
which serves as a data aggregator.

IV. ROBOX SOFTWARE

The robot embeds both an Intel Pentium (PC) and a Motorola
PowerPC (PPC) system. The software has been designed by
taking into account the features and characteristics offered by
the two embedded systems. Having being designed for com-
plex real-time mechatronic applications, XO/2 was the natural
choice for controlling the low-level hardware and the time-crit-
ical tasks. Contrastingly, the functionality requiring the COTS
components has been implemented on the Windows machine
because of their wider availability (e.g. MBrola for speech syn-
thesis, small FireWire cameras in the robot’s eye, vision librar-
ies, etc.).

The design of the software that operates on each of the eleven
robots was started at the end of year 2000. Even if the specifi-
cation of the functionality was very hard due to the lack of ref-
erences for a project of this kind, two milestones were defined
at the beginning: Navigation and interaction. For the naviga-
tion the team could rely on the research of the Autonomous
Systems Lab, EPFL, while for the interaction little experience
was readily available. However, after various attempts, the ba-
sic functionality for the interaction was laid down and encom-
passed the navigation, the speech synthesis, the eye
movements, the face tracking, the feedback buttons, people de-
tection, speech recognition and the LED matrix.

The development of two prototypes started January 2001;
The software development began April 2001. The team was
composed of three special interest groups (SIGs): Robot proto-
typing and integration (three persons), navigation (five per-
sons) and interaction (six persons). The navigation and
interaction SIGs were responsible for the software implemen-
tation under supervision of a computer scientist. The naviga-
tion team was led by an electronics engineer and comprised
two computer scientists and two microengineers (one of each
was a student). The interaction team was led by an electronics
engineer and incorporated four microengineer.

The code developed by the Robotics team checks out at 1376
KB of compiled dynamically-linked executable for the naviga-
tion and 1703 KB for the interaction. The effort can be quanti-
fied in five! man-years for the navigation part and six man-
years for the interaction part. Table 1 shows some notable data
regarding the RoboX software development.

Navigation Interaction
Team [persons] 4 6
Total work [man-years] 4 + 2 (reuse) 6
Micro-eng. [man-years] 1.5 5
Electronics eng. [man-years] | 1 +1 (resuse) 1
IT eng. [man-years] 1.5 + 1 (reuse) 0
Compiled code [KB] 1376 1703

Table 1: Overview of the Teams’ Working Power and
Knowledge.

1.Some code reuse—roughly checking out at two man-years—
should be taken into account for the navigation software. It is the
result of prior research of the Autonomous Systems Lab, EPFL.

Both teams shared a wealth of similar issues, namely hard-
ware design, proprietary periphery devices, control-loop soft-
ware, low-level drivers, software in-the-large, mathematics
models, algorithmics and man-machine interaction. It has to be
noted that the navigation portion of the software is the only one
that can be deemed critical to persons and the environment,
thus adding to its complexity.

V. RESULTS

The whole 159 days of operation—from May 14™ to October
20t 2002—are available for statistics. Every day and during
the whole opening time (9:00 AM to 9:00 PM), six to eleven
freely navigating tour-guide robots have given tours on the ap-
proximately 320 m? surface of the exhibit. At the end of the ex-
hibit, the robots served more than 680’000 visitors for a total of
13’313 hours of run-time. In order to perform the task, they
travelled 3’316 km for a total moving time of more than
9’415 hours. This yields a mean displacement speed of
0.098 m/s.

Run time 13’313 h
Movement time 9’415 h
Travelled distance 3’316 km

Average speed 0.098 m/s

Failures (total / critical / uncritical) | 4’378 /4’086 /292
Critical failures (PC / PPC / HW) 3°216 /694 /98
Critical software failures (PC / PPC) 3’216/ 190
Visitors 686’405

Table 2: Failures survey and statistics.

The wealth of information recorded by the system monitors
allowed us to study the behavior of the robots, to understand
their operational-time and, most notably, to recognize the rea-
sons for the failures.

On the one hand, we deem a failure non-critical, when an ex-
ceptional condition cannot hinder the robot in performing its
current task. For instance, it is not considered a critical failure
if the robot stops sending images streamed over HTTP to the
supervision computer.

On the other hand, we deem a failure critical, when an excep-
tional condition forces the robot to interrupt its activities and
wait upon human intervention. The abrupt failure of the scenar-
io controller or mishap during obstacle avoidance can be con-
sidered examples of critical failures. A particular class of
critical failures can be identified in those failures requiring a
restart of either the Pentium or the PowerPC system. They are
explicitly handled by our taxonomy, as they require more time
before the robot can return to its normal operational state.

From table 2 it can be seen that the non-critical failures rep-
resent only a small portion of the total amount of failures
(6.7%). Since they do not substantially reduce the capabilities
of the robot, they are not considered in our analysis, which will
focus on the failures deemed critical or requiring a reboot.

The mean time between failure (MTBF) of the whole robot
(PC, PowerPC and hardware) was, during the first three weeks,
1.41 hours. Subsequently, the MTBF has been 4.02 hours.

The decreasing failure rate depicted in figure 2, can be
tracked down to the rapid improvement of the software quality
on the PC, which took place as soon as the robot was deployed
under real-world conditions.

Another interesting chart is depicted in figure 3, where all the
critical failures coming from the navigation software (Power-
PC system) are displayed. During the first three weeks, errors
in the safety-critical tasks were treated by the security control-
ler, and could sometimes require a reboot in order to restart the
trapped task. This has been partly addressed in order to avoid
rebooting, thereby allowing a much faster handling of the ex-

Critical Failures PC

Brrors

a0]

o Il

23] T |||||||M|W"WNWMN TITTITT TR IO T

w00
= wx O k-

= = 07 = U
L= L B .~ S v)
—_— = = = =

=t [=7]
[ar] oo

days

[@PC critical mPC renoot|

Figure 2: Critical Failures on the Pentium (PC) System.

ceptional condition. Figure 3 reports failures of the localization
system—Iost failuresl—, which also require manual interven-
tion, but are not directly related to the quality of the software.
They cause 504 errors and thus represent the 73% of all of the
critical failures on the PowerPC system. These failures, while
being very interesting from a robotics point of view, are negli-
gible for our analysis of the software quality.

The MTBF for the PowerPC system has been measured to lie
between 10 and 80 hours. By taking into account the software
errors only—and not the lost situations—the MTBF over the
whole period checks out at 70.1 hours.

By comparing figure 2 and figure 3, we can derive that the
amount of errors manifested by the interaction software (3’216
failures) is one order of magnitude larger than those from the
navigation software (190 failures, without taking into account
the 504 lost situations).

While the navigation software could be considered more
ready for prime time—due to the partial reuse of code, check-
ing out at approximately 200 hours cumulated run-time for
some navigation modules—the difference becomes negligible
as the first three weeks of operation already yielded 1’686
hours of cumulated run-time.

It may be interesting to analyze the particular issues experi-
enced by the three major components, i.e. the PowerPC system,
the Pentium system and the robot hardware.

The typical failures encountered on the PowerPC can be sum-
marized as follows:

» Navigation: In some cases, the robots were unable to deter-
mine their location and thus notified a /os¢ situation.

» Obstacle Avoidance: The process deadline was missed.
Since XO/2 is a hard-real-time operation system, the miss-
ing of a deadline is a potentially dangerous situation, thus
the process is stopped and an exception is thrown.

* Mission halted: In several cases, various modules encoun-
tered semantics issues, such as divisions by zero, array
indexes out of range, run-time type checks, assertions, etc.

Conversely, the typical errors experienced by the Pentium sys-
tem were:

* Fatal errors: The application *.exe trapped and was closed
by Windows.

* Memory errors: Memory errors resulted from a plethora of
different causes: Spurious pointer references; pointer arith-
metic overflows; arithmetic operations on non-initialised,

1. The vast majority of the failures in the localization software are
due to visitors or untrained personnel, who fiddled with the robots
without disconnecting the motors from the amplifiers. This caused
large errors in the odometry not taken into account in the models
and, consequently, failures in the localization.

Critical Faillures PowerPC

25

days

|l Software Failure @ Rebaoot Failure O Lost Failurel

Figure 3: Critical Failures on the PowerPC (PPC) System.

null, or invalid pointer; read/write operations through non-
initialised or null pointers; procedure calls through non-ini-
tialised, null or invalid pointers; wrong type casting; array
references out of declared bounds and non-initialised array
index. Furthermore, memory leaks and dangling pointers
have harmed the reliable run-time of the application.

» FireWire issues: Problems related to the FireWire interface
could result in the freezing of the whole operating system.
This is due to the Windows 2000 architecture, which
departed from the pure micro-kernel approach of Windows
NT 3.x and allows driver software to run in the same
address space of the NT kernel.

The robot hardware has seen the following faults:

* BreezeNET wireless ethernet interface (IEEE 802.11):
Failures, denial of services, jamming have intermittently
undermined the functioning of the networking hardware.

» SICK LMS laser scanner: Each robot was equipped with
two SICK LMS laser scanners, which, sometimes, had
transmission, reading or calibration failures. This flaw was
strictly related to a high temperature in the environment.

VI. DISCUSSION

By looking at the classes of errors listed above, the following
aspects are easily brought to attention: On the one hand, the er-
rors exhibited by the two different platforms do not share any-
thing in common; On the other hand, the frequency of error
conditions on the embedded PowerPC platform is an order of
magnitude smaller than that of the Pentium system.

This difference may be related to several different reasons: In
fact, the complexity of the tasks to be programmed for the two
systems, the specific characteristics of the systems themselves
and the programming experience of the single engineers could
all have contributed to make one system more reliable than the
other. Nonetheless, it would be interesting to understand which
differences played a major role in this particular case, in order
to infer generally valid rules for future projects.

We started by evaluating the software quality. This first step
required us to find a metric, which would be able to identify
and quantify the peculiarities of the code driving RoboX.

This question is not new in the field of computer science. The
assertion that the /ines-of-code metrics offers a rough measure
of code and does not measure its content at all, fostered com-
puter scientists to devise new models for defining such charac-
teristics. The following paragraphs serve as a short survey of
their work.

In the seventies, researchers such as Boehm [2], Barbacci et
al. [1], Deutsch and Willis [9], Evans and Marciniak [10] tried
to establish a hierarchical relationship among a set of quality

measures. They took into account categories such as perfor-
mance—i.e. how well programs function—maintenance—i.e.
how easily programs can be corrected—adaptation—i.e. how
easily programs can evolve or migrate—and user satisfac-
tion—i.e. how well programs meet the users' requirements. A
drawback of this approach is that a real quantitative aspect of
the measurements is still missing.

Other researchers tried to measure the program's complexity
directly gathered from the source code. In doing this, they
stressed computational complexity. As defined by Halstead in
[12], the complexity is extracted from the amount of operators
and operands in the program. However, the Halstead measure
did not receive unanimous acceptance: The critics ranged from

“unreliable” (Jones [14]) to “one of the most valid measures of

maintainability” (Oman [20]). The Halstead measurement
metrics are based on four scalar numbers derived directly from
a program's source code, namely the amount of distinct opera-
tors (n,), the amount of distinct operands (7,), the total num-
ber of operators (N,) and the total number of operands (N,).
From these numbers, five measures are derived, namely the
program length (N = N, +N,), the program vocabulary
(n = n,+ny,), the volume (N = N(log,n)), the difficulty
(D = (n,£2)(N, £n,)), and the effort (E = DV).

These measures are quite simple to calculate once the rules
for identifying operators and operands have been determined.
But as Szulewski noted in [22], establishing these rules could
be quite a difficult task. The Halstead measures have been crit-
icized for several reasons, among them is the claim that they
are a weak estimate for they measure a lexical and textual com-
plexity rather than a structural and logic flow complexity.

To overcome such a limitation other proposals were consid-
ered. A relevant one is the cyclomatic complexity. Introduced
by Thomas McCabe in 1976 [18], it measures the number of
linearly-independent paths through a program. This measure
provides a single ordinal number that can be compared to the
complexity of other programs. As one of the more widely-ac-
cepted software metrics, it is intended to be language indepen-
dent. On the one hand, as presented in [26], cyclomatic
complexity describes a methodology for software testing and
related software complexity analysis techniques. On the other
hand, it has also been extended to encompass the design and
structural complexity of a system, as described in [17].

The cyclomatic complexity of a program is calculated from a
connected graph of the code, which represents the topology of
the control flow. The complexity number is the sum of the
number of edges in the graph with the number of connected
components, subtracted by the number of nodes in the graph.
In order to be able to actually weigh these elements, McCabe
established a counting convention'. The complexity number is
generally considered to provide a stronger measure of a pro-
gram's structural complexity than the one provided by counting
lines of code.

A large number of programs have been measured and ranges
of complexity have been established. The resulting calibrated
measure can be used in development, maintenance and re-en-
gineering situations to develop estimates of risk, cost, or pro-
gram stability. A low cyclomatic complexity contributes to a
program's understandability, while studies show a correlation
between a program's cyclomatic complexity and its error fre-
quency.

It has become common practice to combine measures to fit
the specific program environment. Thus, many measures are to
some degree complementary. Oman in [21] presents a very
comprehensive list of code metrics that are found in maintain-
ability analysis, and orders them by degree of influence on the

1. This convention can be considered the weakest link in the model,
as it introduces a subjective and questionable measure variable.

maintainability measure being developed in that effort, e.g.
lines of code per program, lines of comments per program,
variable span per program and lines of data declarations per
program.

The main drawback of these technique—as highlighted in the
survey work of Marciniak [16], which encompasses the various
software-complexity measures and integrates them into a com-
mon framework—relies in the questionable variables that
eventually make their way into the models. Therefore, instead
of relying on some metrics, which would get polluted anyway
by subjective interpretation or ad-hoc weighting, we decided to
rely on our “qualitative” perception of the problem space.

The problem spaces addressed by the two systems show a
similar degree of complexity. Where the PowerPC system ex-
tracts precise geometry features of the environment through la-
ser scanning, the Pentium system gains cursory perception of
the surroundings, by means of a video camera. Similarly,
where the PowerPC system moves through a finite state ma-
chine for its jobs’ handling, the Windows box follows an au-
tomata for implementing the man-machine interaction.

As a side effect, the complexity of the implementation of the
two sub-systems can be considered roughly similar. This stems
from the fact that both parts need to process the environments
through geometry models, while handling unexpected situa-
tions during their run-time. Incidentally, a superficial code-re-
view reveals a similar number of lines-of-codes, roughly the
same amount of basic-blocks and a comparable complexity of
their execution-paths. Both systems present a hefty share of
mathematical computations.

As a last remark, it can be noticed that the two sub-systems
have been programmed by two separate teams of engineers,
who were similarly qualified for the task: Their background
and experience—as mentioned in Section [V—can be consid-
ered comparable, their profile can be qualified as high-level.

By taking into account the slightly larger amount of code-re-
use, we were expecting the PowerPC to perform more reliably
than the Pentium system—by a factor of 2. Surprisingly, we
were confronted with a system, which was 16-times more reli-
able than the other, thus surpassing our most optimistic expec-
tations. While not disputing the differences between the two
tasks, we argue that they alone cannot be deemed responsible
for such a difference in their respective run-time reliability.
Therefore, other clues have to be found elsewhere.

The single noteworthy distinction that differentiates the two
platforms can be found in the way they address safety with re-
spect to memory. Whereas the PowerPC code was created by
using a strong-typed programming language and it was run on
top of an operating system that provides a plethora of run-time
mechanisms aimed at enforcing safety and semantic correct-
ness—such as a automatic memory reclamation and run-time
typing information—nothing similar can be found on the Pen-
tium system, whose code was programmed in the loosely-
typed C++ programming language and was run on top of an op-
erating system that does a poor job of enforcing memory safe-
ty—besides running applications in separate address spaces.

We strongly believe that the advantages of a strong-typed
programming language and safety-enforcing run-time system
can be measured in a genuine improvement of the code quality
and a real improvement of its dependability: Programs are
more reliable, because several errors are already caught at
compile-time, while the run-time system enforces type and
memory safety during the execution.

We appreciate that this argumentation has some weaknesses:
We found ourselves in the impossible situation to formally
prove this theory, as all of the studies on code quality metrics
serve only the task of showing how difficult is to find a univer-
sal taxonomy, an all-encompassing framework that satisfies
every requirement, covers each aspect and evaluates all.

However, empirical evidence shows that there is a difference
in the systems’ reliability, and this discrepancy cannot be en-
tirely due to the diversity between the two platforms, for such
a simplification would contradict several measurement met-
rics. Furthermore, a non-negligible clue towards the correct in-
terpretation is given by the breed of errors observed on the
Pentium system, which had mostly to do with memory faults,
such as dangling pointers, out-of-range fetches and memory
leaks.

VII. CONCLUSIONS

In this paper, we considered the design and the deployment
of a service robot as a practical application domain to substan-
tiate the advantages of using strong-typed programming lan-
guages and paradigms in the development of safety-critical
applications. This application domain is particularly well-suit-
ed to the discussion, for mechatronic applications can be con-
sidered critical systems—i.e. systems whose failure may
endanger missions, lives and society—thus making their reli-
ability a prime concern. Our results reinforce the conviction
that strong-typed programming languages and paradigms play
a major role in enforcing system safety.

The commonly used argument against languages that are
type-safe is the inefficiency of the produced code. This mis-
conception can easily be refuted. In the case of static type
checking all restrictions are computed by the compiler: There
is, therefore, no overhead in the code to be executed. Addition-
ally, static typing allows for more aggressive utilization of op-
timizations such as reaching-definitions, and common sub-
expression elimination. Whereas each use of an aliased vari-
able, as allowed in unsafe languages through pointer-arith-
metic, forces the optimizer to invalidate all of the assumptions
previously taken. When static safety cannot be enforced dy-
namic checks are needed. The added safety, brought by the val-
idation of the programming invariant at run-time, more than
compensates the penalty paid in the execution time. In fact,
there is no trade-off for letting a type violation happen during
run-time.

The RoboX project represents a milestone in the field of mo-
bile robotics: For the first time ever, eleven interactive mobile
robots were operating for a relative long period in a work-space
shared by human beings. We analyzed the results of 159 days
of operation at the Robotics exhibition within Expo.02 and
considered the amount and the nature of software and hardware
failures. Notwithstanding the obvious differences between the
two architectures driving the robot—i.e. a Motorola PowerPC
and an Intel Pentium systems—and the difficulties in finding a
comprehensive measurement metrics for code quality, the
analogies in the code complexity on both platforms and the
similar know-how of the whole development team led us to the
conclusion that the reason for the /-fo-16 error ratio between
the PowerPC and the Pentium should be ascribed to the fea-
tures offered by programming languages and run-time systems
that support strong-typing.

Lacking a formal proof, a rationale may be found in the
words of Prof. Niklaus Wirth, who summarized the advantages
of strong-typing by advocating that “the basic principle behind
the concept of strong-typing relies in the introduction of redun-
dancies, which verify the consistency of the code operating on
the data—akin to parity checking. This consistency check
should be performed, when possible, at compile-time: That is
the reason of the keyword strong”.

ACKNOWLEDGEMENTS

The Robotics project at Expo.02 is the result of a very strong
team effort: The Autonomous Systems Lab at the Swiss Feder-
al Institute of Technology, Lausanne (EPFL) and various peo-
ple from the academia and the industry contributed to its

successful realization. The project has been funded by Expo.02
and EPFL. The eleven robots were produced by BlueBotics
SA, a spin-off of the Autonomous Systems Lab, EPFL.

REFERENCES

[1] M. Barbacci, M. H.Klein, Th. H. Longstaff and C.B. Weinstock.
Quality Attributes (CMU/SEI-95-TR-021), Pittsburgh, Software Engi-
neering Institute, Carnegie Mellon University, 1995.

[21 B. W.Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod and
M. J. Merritt. Characteristics of Sofiware Quality, New York, North-
Holland Publishing Company, 1978.

[3] R.Brega, N. Tomatis, K. Arras, and R. Siegwart. The Need for Auton-
omy and Real-Time in Mobile Robotics: A Case Study of XO/2 and
Pygmalion, /IEEE/RSJ International Conference on Intelligent Robots
and Systems, Takamatsu, Japan, 2000.

[4] R.Brega, F. Wullschleger. A Personal Robot for Personal Robot Pro-
grammers—The Role of Automatic Storage Reclamation and
Programming Languages in the Lifetime of a Safe Mechatronic System.
In Proc. of the IEEE International Conference on Advanced Intelligent
Mechatronics, 8-11 July 2001, Como, Italy.

[5] R. Brega. Safety ¥s: Speed. In Proc. of the MSy'02 Embedded Systems
in Mechatronics, October 3-4, 2002, Winterthur, Switzerland.

[6] R.Brega. A Combination of System Sofiware Techniques Aimed at Rais-
ing the Run-Time Safety of Complex Mechatronic Applications.
Dissertation ETH Nr. 14513, Ziirich, 2002.

[7] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction,
and Polymorphism, ACM Computing Surveys, 17(4), pages 471-522,
December 1985.

[8] M. Corti, R. Brega, Th. Gross. Approximation of Worst-Case Execu-
tion Time for Preemptive Multitasking Systems. In Proc. of the ACM
SIGPLAN LCTES'2000, Workshop on Languages, Compilers, and
Tools for Embedded Systems, June 18, 2000, Vancouver B. C., Canada,
Lecture Notes in Computer Science 1985 (LNCS 1985), Springer
Verlag.

[91 M. S. Deutsch and R. R. Willis. Software Quality Engineering: A Total
Technical and Management Approach, Englewood Cliffs, Prentice-
Hall, 1988.

[10] Michael W. Evans and John Marciniak. Software Quality Assurance
and Management, New York, John Wiley & Sons, Inc., 1987.

[11] Ch-W. Frei. Fault Tolerant Control Concepts Applied to Ancesthesia.
Dissertation ETH Nr. 13599, ZH, 2000.

[12] M. H. Halstead. Elements of Software Science, Operating, and Pro-
gramming Systems Series, Volume 7, New York, Elsevier, 1977.

[13] M. Honegger and A. Codourey. Redundancy Resolution of a Cartesian
Space Operated Heavy Industrial Manipulator. In Proc. of the Interna-
tional Conference on Robotics and Automation, Leuven, Belgium,
1998.

[14] C. Jones. Software Metrics: Good, Bad, and Missing, Computer, 27(9),
pages 98—100, September 1994.

[15] O. Lehrmann-Madsen, B. Magnusson and B. Méller-Pedersen. Strong
Typing of Object-Oriented Languages Revisited, Proceedings of the
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) and European Conference on Object-Ori-
ented Programming (ECOOP), pages 140—150, ACM Press, New York,
NY, USA, October 1990.

[16] J.J. Marciniak. Encyclopedia of Software Engineering, pages 131-165,
New York, John Wiley & Sons, 1994.

[17] Th. J. McCabe and C. W. Butler. Design Complexity Measurement and
Testing, Communications of the ACM, 32(12), pages 1415-1425, De-
cember 1989.

[18] Th.J. McCabe and A.H. Watson. Software Complexity, Crosstalk,
Journal of Defense Software Engineering, 7(12), pages 5-9, December
1994.

[19] H. Mdssenbdck, Object-Oriented Programming in Oberon-2, Springer
Verlag, 1995.

[20] P.Oman. HP-MAS—A Tool for Software Maintainability, Sofiware
Engineering (#91-08-TR), Moscow, Test Laboratory, University of Ida-
ho, 1991.

[21] P. Oman. and J. Hagemeister. Constructing and Testing of Polynomials
Predicting Software Maintainability, Journal of Systems and Sofiware,
24(3), pages 251-266, March 1994.

[22] P. Szulewski, et al. Automating Sofiware Design Metrics, Rome, Air
Development Center, 1984.

[23] C. A. Szyperski. Insight ETHOS: On Object-Orientation in Operating
Systems. VDF, 1992.

[24] N.Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, K.O. Ar-
ras and R. Siegwart. Designing a Secure and Robust Mobile Interacting
Robot for the Long Term. IEEE International Conference on Robotics
and Automation, Taipei, Taiwan, 2003.

[25] V. Vuskovic, M. Kauer, et al. Method and Device for In-vivo Measure-
ment of Elasto-Mechanical Properties of Soft Biological Tissues.
Machine Graphics & Vision International Journal, 8(4), 1999.

[26] A.H. Watson and Th. J. McCabe. Structured Testing: A Testing Meth-
odology Using the Cyclomatic Complexity Metric. 1996.

