
Robotics and Autonomous Systems 44 (2003) 3–14

Hybrid simultaneous localization and map building: a natural
integration of topological and metric

Nicola Tomatisa,∗, Illah Nourbakhshb, Roland Siegwarta
a Autonomous Systems Lab, Swiss Federal Institute of Technology Lausanne (EPFL), CH 1015 Lausanne, Switzerland

b The Robotics Institute, Carnegie Mellon University (CMU), 5000 Forbes Avenue, Pittsburgh, PA 1513, USA

Abstract

In this paper the metric and topological paradigms are integrated in a hybrid system for both localization and map building.
A global topological map connects local metric maps, allowing a compact environment model, which does not require global
metric consistency and permits both precision and robustness. Furthermore, the approach handles loops in the environment
during automatic mapping by means of the information of the multimodal topological localization. The system uses a 360◦
laser scanner to extract corners and openings for the topological approach and lines for the metric method. This hybrid
approach has been tested in a 50 m× 25 m portion of the institute building with the fully autonomous robot Donald Duck.
Experiments are of four types: maps created by a complete exploration of the environment are compared to estimate their
quality; test missions are randomly generated in order to evaluate the efficiency of the approach for both the localization and
relocation; the fourth type of experiments shows the practicability of the approach for closing the loop.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Mobile robot navigation; Hybrid (metric–topological); Kalman filtering; POMDP

1. Introduction

Research in localization and automatic mapping has
recently led to successful approaches. However, solu-
tions for consistent mapping allowing precise and ro-
bust localization in unmodified, dynamic, real-world
environments have not yet been found. The problem
is highly complex due to the fact that it requires the
robot to remain localized with respect to the portion
of the environment which has already been mapped in
order to build a coherent map.

Current research has diverged to different ap-
proaches: metric, topological or hybrid navigation
schemes have been proposed and studied. Approaches
using purely metric maps[8,15,17] are vulnerable
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to inaccuracies in both map-making and odometry
abilities of the robot. Even by taking into account all
relationships between features and the robot itself, in
large environments the drift in the odometry makes
the global consistency of the map difficult to main-
tain [6]. Landmark-based approaches, which rely on
the topology of the environment[13] can better han-
dle this problem, because they only have to maintain
topological global consistency, not metric. However,
these approaches are either less precise than fully met-
ric approaches[5,11,16], due to the discretization of
the localization space, or computationally intractable
for fully autonomous robots, when fine-grained grids
are used[10]. More recently, approaches combining
the topological and the metric paradigm[3,18,19]
have shown that positive characteristics of both can
be integrated to compensate for the weakness of each
single approach.
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This paper proposes a natural integration of both the
metric and topological paradigms to combine the best
characteristics of both universes. For this, the model
embodies both a metric and a topological representa-
tion. The metric model consists of infinite lines that
belong to the same place. These places are related
to each other by means of a topological map which
is composed of nodes representing topological loca-
tions and edges between nodes. Connections between
a node and a place are a special case: travelling along
these edges causes a switch from the topological to the
metric paradigm. The effectiveness of this method for
localization has already been shown in[20]. In this pa-
per an extension to automatic mapping which permits
the handling of loops in the environment is presented.

The metric approach is anExtended Kalman Filter
(EKF). This method has already proven its strength
for localization [2]. Map building can then be done
with the Stochastic Map approach[17]. Topological
navigation uses aPartially Observable Markov Deci-
sion Process (POMDP)[5] for state estimation. This
permits efficient planning in the large, has an ad-
vantageous symbolic representation for man–machine
interaction and is robust due to its multihypothesis
tracking.

2. Environment modeling

The environment is described by a global topologi-
cal map, which permits moving in the whole environ-
ment, and local metric maps which can be used by the
robot as soon as it needs further localization precision
(see alsoFig. 1). The only requirement specific to this
model is to have adetectable metric feature when trav-
elling from a topological node to a metric place. This

Fig. 1. The environment is represented by places given by their
metric maps and nodes representing topological locations. When
travelling from a node to a place, the system switches from topo-
logical to metric and vice versa.

permits the system to determine the transition point
where the change from topological to metric has to be
executed and allows robust initialization of the metric
localization (i.e. relocation). Given this metric feature
local metric maps can be placed anywhere in the en-
vironment.

Switching to topological does not require any spe-
cific characteristic: the robot navigates metrically to
the initialization position for the current local place
where it resumes its topological navigation.

2.1. Global topological map

Landmarks, which are helpful for the topological
model, are those discriminating between locations in
the environment. In this case two different types are
chosen:

• Corners, characterized by their orientation.
• Openings, that are also used for model transition.

The topological map can be viewed as a graph.
Topological locations are represented by nodes con-
taining the information about the way to reach the
connected topological location/metric place. Further-
more, the landmarks lying between two locations are
represented as a list between the two nodes. InFig. 2

Fig. 2. (a) A portion of a hallway with the extracted corner and
opening features. (b) The topological map is represented by a
graph. It contains nodes connected to each other with the list of
corner features lying between them. Openings (topological nodes)
can either be a transition to a room or be a connection to another
hallway.
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Fig. 3. (a) Laser data and the extracted features. (b) The resulting
observation graph.

the graph representing the topological model is viewed
for a portion of the environment.

The corner extractor returns a set of (x, y, θ) param-
eters in robot coordinates, representing the position
and orientation of the corners with respect to the robot.
Furthermore an extraction confidence parameterpc is
calculated for each corner by taking into account its
size. Openings are either large steps perpendicular to
the direction of motion in hallways or transitions from
rooms to hallways. They can either be a transition be-
tween a hallway and a room or between two perpen-
dicular hallways. Due to the use of a 360◦ laser scan-
ner, an observation contains many landmarks which
are transformed in a graph compatible to the environ-
ment model, as shown inFig. 3.

2.2. Local metric maps

The features used for metric environmental repre-
sentation are infinite lines. They are less informative
than line segments, but have a better probabilistic
model with analytical solution and permit a very com-
pact representation of structured geometric environ-
ments requiring only about 10 bytes/m2 for a typi-
cal office environment. InFig. 4 a typical office is

Fig. 4. An office of the institute (a) and the lines representing it
in the local metric map (b). The black segments permit to see the
correspondence between the two figures.

shown with the lines used for its local metric map.
The line model isρ cos(ϕ− α)− r = 0, where (ρ, ϕ)
is the raw measurement and (α, r) the model param-
eters.α is the angle of the perpendicular to the line,
r its length. The extraction algorithm used has been
described in[1]. Its result is a set of (α, r) parameters
with their 2×2 covariance matrix, which is calculated
by propagating the uncertainty from the laser measure-
ments.

3. Localization and map building

The environment models allow the use of two
different navigation methods with complementary
characteristics. The metric localization permits a very
precise positioning at the goal point[2,20], whereas
the topological one[5,20] guarantees robustness
against getting lost due to the multimodal representa-
tion of the robot’s location.

3.1. Map building strategy

As explained inSection 2, the environment model
is composed of a global topological map and a set of
local metric maps. Given a metric transition feature,
local metric maps can be everywhere in the environ-
ment. Even if the approach is applicable to any struc-
tured environment, a suitable environment-dependent
strategy has to be adopted.

For many possible application scenarios it can be
expected that the robot will have to be very precise in
rooms, where most of its tasks have to be executed (e.g.
docking for power recharging; manipulation tasks with
objects on a table; human–robot interaction). While
navigating in the large (i.e. hallways), precision with
respect to the features is less important, but robustness
and global consistency take an important role. Because
of this, the two different levels of abstraction are used
in combination of the different type of environmental
structures:

• While navigating in hallways the robot firstly cre-
ates and then updates the global topological map.

• When it enters a room, it creates a new local metric
map.

These two environmental structures are recognized
by means of the laser sensor: thin and long open spaces
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are assumed to be hallways, while other open spaces
will be defined as rooms.

3.2. Exploration strategy

The proposed exploration strategy is simple: the
robot first explores all the hallways in a depth-first
way. It then explores each room it encountered by
backtracking. Note that, in general, for each hallway
the room exploration reduces to a linear list traver-
sal. Rooms with multiple openings cause two special
cases, which are treated in the next paragraphs.

Rooms with an opening to another room: The robot
continues building the current metric map. This leads
to the next case if the other room has an opening to a
hallway.

Rooms with multiple openings to a hallway: Due to
the metric navigation mode during room exploration,
the robot knows the direction of the opening and can
therefore deduce if it opens to the same hallway, a
known one or a new one. In the case of known hall-
ways, the robot simply goes back to the hallway it was
coming from and continues its exploration. This could
result in two metric maps for the same metric place,
one for each opening. In the case of a new hallway,
the exploration continues in a hallway depth-first way.

3.3. Topological localization and map building

The current experimental test bed is a part of the
institute building. This environment is rectilinear and
mainly composed of offices, meeting rooms and hall-
ways. Therefore, only four directions of travel are
employed: N, E, S, and W. However, this is not an
inherent loss of generality because it is not a general
requirement of the POMDP algorithm.

Position estimator: Given a finite set of environment
statesS, a finite set of actionsA and a state transi-
tion modelT, the model can be defined by introduc-
ing partial observability. This includes a finite setO
of possible observations and an observation function
OS, mappingS into a discrete probability distribution
over O. T(s, a, s′) represents the probability that the
environment makes a transition from states to state
s′ when actiona is taken. OS(o, s, a) is the probabil-
ity of making an observationo in states after having
taken actiona. The probability of being in states′ (be-
lief state of s′) after having made observationo while

performing actiona is then given by the equation:

SEs′(k + 1) = OS(o, s′, a)
∑
s∈ST(s, a, s′)SEs(k)

P(o|a,SE(k))
,

(1)

where SEs(k) is the belief state ofs for the last
step, SE(k) is the belief state vector of last step and
P(o|a,SE(k)) is a normalizing factor. The observa-
tion function OS is made robust by the fact that an
observation is composed of many landmarks (Fig. 3),
rising its distinctiveness. When no openings are vis-
ible, T(s, a, s) = 0.99 while T(s, a, s′) = 0.01 for
s �= s′. When the robot encounters an opening, the
most probable states′ is searched by comparing
the traveled distanced, measured starting from the
last detected opening ins, to the information saved
in state nodes during map building. In this case
T(s, a, s′) = 0.99 whileT(s, a, s′′) = 0.01 for s′′ �= s′.

Heading estimator: Because the position estimator
does not take into account the heading of the robot, this
is done separately as in[11]. However, in this case the
orientation is estimated by a weighted mean of each
observed line that is either horizontal or vertical with
respect to the environment. The success of this method
is guaranteed by the fact that, in general, lines given
by the environmental structures are either parallel or
perpendicular to the direction of travel. Infinite lines
are matched by means of the validation test

(z[i] − ẑ[j])S−1
ij (z

[i] − ẑ[j])T ≤ χ2
α,n, (2)

where predictionẑ[j] is directly the odometry state
vector variableθ andχ2

α,n is a number taken from a
χ2 distribution withn = 1 degrees of freedom. This
can be viewed as an EKF for heading only, where no
map is required because for predictionθ is directly
used instead.

Control strategy: Since it is computationally in-
tractable to compute the optimal POMDP control strat-
egy for a large environment[5], simple suboptimal
heuristics are introduced. For the system presented
here themost likely state policy has been adopted: the
world state with the highest probability is found and
the action that would be optimal for that state is ex-
ecuted. However, it can happen that the robot is not
sure about its current state. This is calculated by mean
of the unconfidence functionU(SE(k)), which is the
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entropy of the probability distribution over the states
of the map. The POMDP is confident when

U(SE(k)) = −
∑
s

SEs(k) log SEs(k) < Umax, (3)

whereUmax is determined by experience. When the
robot is unconfident, it follows the hallway in the di-
rection where it expects to find more information.

Map building: Instead of using a complex scheme
for model learning like in[12,19], where an exten-
sion of theBaum–Welch algorithm is adopted, here
the characteristics of the observation graph (Fig. 3)
are used. When the robot feels confident about its po-
sition, it can decide if an extracted landmark is new
by comparing the observation graph to the node in the
map corresponding to the most likely state. This can
happen either in an unexplored portion of the envi-
ronment or in a know portion, where new landmarks
appear due to the environment dynamic. As explained
in Section 2.1, the landmarks have an extraction confi-
dencepl . This characteristic is firstly used to decide if
the new landmark can be integrated in the map. When
an opening landmark is extracted, it is integrated in the
map as a new state node (Fig. 2) with a rough measure
of the distance to the last state node. Furthermore, for
each integrated landmark, the confidencepl is used
to model the probability of seeing that landmark the
next timepl map. When it is re-observed, the probabil-
ity in the map is averaged with the confidence of the
extracted one. If the robot does not see an expected
landmark the probability 1− pl map is used instead:

pl map(ti) =
n∑
i=1

pl(ti)

n
, (4)

where

pl(ti) =
{
pl(ti), observed,

1 − pl map(ti−1), observed.
(5)

When the confidencepl map decreases and is below a
minimum, the corresponding landmark is deleted from
the map. This allows for dynamics in the environment,
where landmarks that disappear in the real world will
be deleted from the map too.

3.4. Model transition

Because the topological navigation method is mul-
timodal, the confidence before switching to the uni-

modal metric navigation is very critical. In contrast
to pure topological navigation, a false state estimate
when switching to metric would cause the robot to be
in a false place when using the map describing the
goal position. If such a problem occurs a solution for
detecting this situation and exiting the current local
place would be required in order to allow the robot to
relocate itself by means of the topological approach.
To limit all this, in the current implementation, a door
find and passing action is executed only when the es-
timator is confident (seeEq. (3)).

When switching from topological to metric the
Kalman filter has to be initialized. Thisrelocation
problem can be simplified for this approach. As ex-
plained inSection 2, a detectable metric feature (door
in this case) between a node and a place permits
knowing when to switch and gives an approximation
of the robot position with respect to the local met-
ric map. The first two moments of the measure are
used to initialize the Kalman filter and permit a fast
convergence of the filter.

Changing from metric to topological reduces to a
metric navigation to the initialization position of the
current local place and the resume of the POMDP.

3.5. Closing the loop

The problem ofclosing the loop can be defined
as the question of how to know when a location has
already been explored, meaning that the environment
contains a loop and that the loop in the map must
also be closed. In[19] this is achieved by adding a
topological mapper which ensures global consistency.
This information is then used to correct the global
metric map which eventually converges to a global
consistent map.

The current approach differs in two main aspects:

• Instead of closing the loops only by means of the
perception, loops are detected and closed by means
of the localization information.

• Loops have to be closed only in the topological map
because the metric model is represented by many
disconnected local metric maps.

Loops can also exist in a local metric map; however,
in such small maps the drift in odometry between two
updates should not cause any problem to the local
consistency, as it has been shown in[6].
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The current method works as follows: the robot does
not try to recognize if a single observation has already
been seen somewhere else. However, as soon as the
robot creates the map for a part of the environment
which has already been visited, the probability distri-
bution starts diverging into two peaks: one for the cur-
rent map position; another for the previously created
location representing the same physical place. The al-
gorithm starts tracking the two highest probabilities
as soon as the POMDP becomes unconfident because
this is the first clue indicating a divergence of the prob-
ability distribution. A loop can then easily be detected
when the distribution has converged into two peaks
which move in the same way. The position where the
loop has to be closed can be detected by turning off
the automatic mapper and backtracking with local-
ization until the distribution re-converges to a single
peak. This should be the point where the robot started
mapping the loop. An example is given inFig. 5.

3.6. Metric localization and map building

This section briefly describes the main character-
istics of the Stochastic Map approach[17], which
permits using anExtended Kalman Filter [8,15] for
localization.

With this approach both the robot positionxr =
(x, y, θ)′ and the featuresxi = (α, r)′ are represented
in the system state vector:

x =



xr

x1

...

xn


 , C(x) =



Crr Cr1 . . . Crn

C1r C11 . . . C1n

...
...

...
...

Cnr Cn1 . . . Cnn


 .

(6)

This represents the uncertain spatial relationship be-
tween objects in the map, which is changed by three
actions:

• Robot displacement.
• Observation of a new object.
• Re-observation of an object already existing in the

map.

Robot displacement: When the robot moves with an
uncertain displacementu given by its two first mo-
ments (u,Cu), which are measured by the odometry,
the robot state is updated tog(xr,u). The updated po-

Fig. 5. (a) A loop in the environment. (b) Mapping with the
POMDP. (1) The map when the robot is at position 1 in the en-
vironment. (2) The robot is re-exploring the start point. The ob-
servation function OS(o, s, a) gives high values for both the new
node in the map and for the start node, but the probability distribu-
tion has not yet diverged because the transition functionT(s, a, s′)
gives a low probability of coming at the map start. (3) However,
by moving in the same way on the map the distribution diverges
and the POMDP becomes unconfident. (4) The distribution has
diverged and the two peaks move in the same way to 5. (c) The
mapping is stopped. The loop is closed by backtracking.

sition and uncertainty of the robot pose are obtained
by error propagation ong:

xr(k + 1) = g(xr(k), u) = xr(k)⊕ u, (7)

Crr(k + 1) = G

[
Crr(k) Cru(k)

Cur(k) Cu

]
GT, (8)

where⊕ is compounding operator andG is the Jaco-
bian ofg with respect toxr andu.

New object: When a new object is found, a new en-
try must be made in the system state vector. A new



N. Tomatis et al. / Robotics and Autonomous Systems 44 (2003) 3–14 9

row and column are also added to the system covari-
ance matrix to describe the uncertainty in the object’s
location and the inter-dependencies with the other ob-
jects. The new object (x̂new, Cnew) can be integrated
in the map by computing the following equations of
uncertainty propagation:

xN+1(k) = g(xr(k), xnew) = xr(k)⊕ xnew, (9)

CN+1N+1(k) = GxrCrr(k)G
T
xr

+GxnewCnewG
T
xnew
,

(10)

CN+1i(k) = GxrCri(k). (11)

Re-observation: Let xnew be the new observation in the
robot frame. The measurement equation is defined as

z = h(xr, xnew, xi) = g(xr, xnew)− xi. (12)

xnew is temporarily included in the state to apply the
EKF. However, if predictionxi satisfies the validation
test

(xnew − xi)S−1
newi(xnew − xi)T ≤ χ2

α,n, (13)

whereSnewi = Cnew new+ Cii − Cnewi − Cinew, χ2
α,n

is a number taken from aχ2 distributionn = 2 with
degrees of freedom andα the level on which the hy-
pothesis of pairing correctness is rejected, thenxnew
is a re-observation ofxi.

Extended Kalman Filter: When a spatial relation-
ship is re-observed, the updated estimate is a weighted
average of the two estimates calculated by means of
an EKF. It permits to update a subset of the state vec-
tor while maintaining the consistency by means of
the covariance matrices. A measurement equationz =
h(x1, . . . , xm) is considered as a function ofm rela-
tionships included inx. All of the n estimatesxi of the
state vectorx are updated by a value which is propor-
tional to the differenceδ = z − ẑ between the ideal
measurementz and the actual measurementẑ:

xi(k + 1) = xi(k)+ ΓizΓ
−1
zz δ, (14)

Γiz = E[xiδ
T] =

M∑
j=1

CijH
T
xj, (15)

Γzz = E[δδT] =
M∑
j=1

M∑
k=1

HxjCjkH
T
xk
, (16)

whereHxj is the Jacobian matrix ofh with respect to
xj.

The variance and covarianceCij are also updated:

Cij(k + 1) = Cij(k)− ΓizΓ
−1
zz Γ

T
jz . (17)

4. Experimental results

The approach has been tested in the 50 m× 25 m
portion of the institute building shown inFig. 7 with
four different types of experiments for a total of more
than 1.5 km.

For the experiments, Donald Duck has been used
(Fig. 6). It is a fully autonomous mobile vehicle run-
ning XO/2, a deadline driven hard real-time operating
system[4]. Donald navigates locally by means of a
motion control algorithm, which plays the role of both
position control and obstacle avoidance: it reaches the
given (x, y, θ) or (x, y) goal by planning a collision
free path (with respect to the current local data), and
reacting to the dynamic environment either by merely
replanning the path or by changing heading direction
and replanning when an object appears in front of the
robot.

4.1. Map building

In this section the automatic mapping capabilities
of the presented approach are evaluated. Note that the
environment is arbitrarily closed (Fig. 7), so that the

Fig. 6. The fully autonomous robot Donald Duck. Its controller
consists of a VME standard backplane with a Motorola PowerPC
604 microprocessor clocked at 300 MHz running XO/2. Among
its peripheral devices, the most important are the wheel encoders,
a 360◦ laser range finder and a gray-level CCD camera.
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Fig. 7. The test environment. It is complex, dynamic and artificially
closed in A so that the exploration procedure is finite. Black dots
are the places where the automatic mapper is expected to extract
state nodes (the other doors are closed). In B and B′ the robot had
problems distinguishing between the two neighbor locations. C and
D are detected as rooms and represented by a single local metric
map. A large loop does not exist in this environment. Therefore,
for the experiments inSection 4.3, a loop is “artificially created”
by starting the exploration in 1, stopping it in 2, taking the robot
manually to 3 and resuming.

exploration procedure is finite. Furthermore local met-
ric maps are taken from the a priori map used in[2],
because thestochastic map is not yet implemented on
the robot and runs, therefore, only off-line.

For this evaluation, five maps generated by com-
plete explorations of the environment shown inFig. 7
are compared to evaluate their quality with respect
to consistency and completeness. In order to evaluate
the topological mapper first, maps are compared be-
fore the backtracking step. By knowing which door is
open during the exploration, it can be extrapolated how
many state nodes should be extracted (see the black
dots in Fig. 7). Their position (odometry) and type
(opening or hallway) are stored during exploration to
check whether the resulting model is consistent with
the real environment. For the other features (corners),
each resulting map is compared to the others to calcu-
late the average amount of differences between a pairs
of maps. The results are presented inTable 1.

One of the problems encountered during the explo-
ration is the difficulty of distinguishing between open-
ings and hallways. This leads to a mean of 1.2 false
detections for each experiment. Nevertheless by visit-
ing all the openings when traversing the environment
by backtracking to add the local metric maps, these
errors are detected and corrected. In one experiment a
state (opening) was not extracted at all.

Table 1
Comparison of five maps generated by complete explorations of
the environment shown inFig. 7

Number of explorations 5
Total traveled distance 343 m
Number of states in the environment 13
Mean detected states 12.8/98%
Mean confused hallway/opening 1.2/9.2%
Mean detected features 78
Mean different features 18/23%

For the corner features it is more difficult to define
which features really exist in the environment. What
is easy to see is the difference between two maps. The
mean amount of extracted corners in a map is 78; an
average of 18 of these are noisy features that are not
always extracted. This means that 77% of the features
are constant in the five maps showing that the percep-
tion delivers valuable information to the mapper.

4.2. Localization

The quality of a map can also easily be estimated
by testing it for localization. For this, two types of
localization experiments are performed: one for local-
ization (position tracking) and the other for relocation.

To test the topological localization, 25 randomly
generated test missions for a total of about 900 m and
28 000 estimates are performed. The robot knows in
which state it is at the beginning. A mission is suc-
cessful when the robot reaches its goal location, is in
front of the opening and is confident about its posi-
tion. There it switches to the metric approach. To have
more information about the experiments, each state
transition is stored in a log file with all the informa-
tion permitting to determine if each state transition de-
tected by the localization took place physically. The
results are presented inTable 2. Even if all the mis-
sions are successful the log file permits to detect 21
false state transitions that caused 404 false estimates
in B and B′ (Fig. 7), where the peak probability moved
forward and backward between two neighbor states.
These false estimates represent only 1.4% of the to-
tal, meaning that the system recovers quite fast from
these errors. Nevertheless the robot had also confident
false estimates (0.5%) that can cause a mission failure
if the goal state is estimated when the robot is in front
of another opening.
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Table 2
Localization experimentsa

Number of missions 25
Success 25/100%
Total traveled distance 899 m
Mean travel distance 36 m
Mean travel speed 0.31 m/s
Total real state transitions 181
False state transitions 21/12%
Total estimates 27870
Unconfident states 3413/12%
False estimates 404/1.4%
Confident false estimates 149/0.5%

a All the test missions have been successfully performed. How-
ever, the robot also made false state transitions that caused some
false estimates (1.4%). This happened only by B and B′ in Fig. 7.
The reason that lead to a success rate of 100% is that the sys-
tem always recovered from its error without estimating the goal
location in front of a false opening.

The second type of test is focused on recovering
from a lost situation (relocation). Ten experiments are
started from a randomly defined position in the envi-
ronment with a uniform belief state distribution (i.e.
lost situation). The goal is to measure which distance
or amount of state transitions are required in order to
converge to a correct confident state estimate. To avoid
false interpretations, the robot is required to travel
three state nodes further without estimate errors to ful-
fill the test. InTable 3the 10 tests are briefly resumed.

As expected the robot can always recover. Its policy
is simple: go forward until recovery or end of hallway;
if end of hallway, turn. The system requires a minimum
of one and a maximum of four states to recover. The
interesting point is that this difference in the results is
position-dependent and repeatable. For example, the
crossing between the two hallways permits recovery
with a single state transition because it is global dis-
tinctive for the environment inFig. 7. On the other

Table 3
Recovering from a lost situation (i.e. overall constant belief state)a

Number of experiments 10
Total traveled distance 250 m
Mean distance for recovering 13.7 m
Min/max distance for recovering 1.21/20.31 m
Mean number of state for recovering 2.11
Min/max state for recovering 1/4

a The robot requires from one to four states to recover, depend-
ing on the distinctiveness of the part of the environment where it
is moving.

hand, the right part of the horizontal hallway seems to
be more distinctive than the left one where the robot
require the maximum amount of states to recover.

The metric localization is used but not explicitly
tested here, because the used EKF has already been ex-
tensively tested in[2] with a total of 6.4 km. The mean
2σ-error bounds are approximately 1 cm inx andy and
1◦ for θ. Furthermore the metric localization approach
has also been tested with this hybrid method for local-
ization on the same robot in[20], where ground truth
measurements at goal position resulted in an average
error of less than 1 cm.

4.3. Closing the loop

In the test environment there are no large loops. In
order to test the proposed approach a loop is artificially
created by displacing the robot during the exploration
as shown inFig. 7. As explained inSection 3.5, it can
be assumed that when two peaks appear and move in
the same way for three subsequent state transitions a
loop has been discovered. In all the other experiments
this has effectively never appeared, showing that this
is a good test for loops. This experiment has been per-
formed three times. Each time the probability distribu-
tion has effectively diverged into two peaks allowing
the detection of the loop. In order to close the loop
the robot has turned off the mapping algorithm and
has gone back until the distribution has converged to a
single confident peak. This took place where the map
has been started (1 inFig. 7) proving that the loop
could be closed correctly.

5. Related work

Successful navigation of embedded systems for real
applications relies on the precision that the vehicle can
achieve, the capacity of not getting lost and the prac-
ticability of their algorithms on the limited resources
of the autonomous system. Furthermore the fact that a
priori maps are rarely available and, even when given,
not in the format required by the robot, and that they
are mainly unsatisfactory due to imprecision, incor-
rectness and incompleteness, makes automatic map-
ping a real need for application-like scenarios.

Simultaneous localization and map building re-
search can be divided into two main categories: metric
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and topological. Metric approaches are defined here
as methods, which permit the robot to estimate its
(x, y, θ) position, while topological are those where
the position is given by a location without precise
metric information.

After the first precise mathematical definition of
thestochastic map [17], early experiments[8,15] have
shown the quality of fully metric simultaneous local-
ization and map building: the resulting environment
model permits highly precise localization, which is
only bounded by the quality of the sensor data[2].
However, these approaches suffer of some limitations.
Firstly they rely strongly on odometry. For automatic
mapping this makes the global consistency of the map
difficult to maintain in large environments, where the
drift in the odometry becomes too important. Further-
more they represent the robot pose with a single Gaus-
sian distribution. This means that an unmodeled event
(i.e. collision) could cause a divergence between the
ground-truth and the estimated pose from which the
system is unable to recover (lost situation). In[6] it
has been shown that by taking into account all the cor-
relations (off-diagonal cross-covariances inEq. (6)),
the global consistency is better maintained. However,
this is not sufficient, as confirmed by a recent work
[7], where a solution is proposed by extending the ab-
solute localization to include a localization relative to
local frames.

On the other hand, topological approaches[13] can
handle multihypothesis tracking and have a topolog-
ical global consistency, which is easier to maintain.
The robustness of such approaches has firstly been
proven by the application of thestate set progression
[16], which has then been generalized to the POMDP
approach[5,11]. For automatic mapping in[12] the
Baum–Welch algorithm has been used for model learn-
ing. In contrast to the above mentioned topological
approaches, Kunz et al.[14] proposes a topological
approach, which heavily relies on odometry in order
to handle environment dynamics better. All these ap-
proaches are robust, but have the drawback of losing
in precision with respect to the fully metric ones: the
robot pose is represented by a location without precise
metric information. To face this,Markov localization
[10] has been proposed: a fine-grained grid guaran-
tees both precision and multimodality. However, this
approach remains computationally intractable for cur-
rent embedded systems. A more efficient alternative

has recently been proposed, but theMonte Carlo lo-
calization [9] has not yet been extended for simulta-
neous localization and mapping.

Metric and topological approaches are converging,
like [7,9,10], to hybrid solutions by adding advanta-
geous characteristics of the opposite world. Going in
this direction, in[18] the approach consists of extract-
ing a topological map from a grid map by means of a
Voronoi-based method, while[19] proposes to use the
Baum–Welch algorithm as in[12], but to build a topo-
logically consistent global map which permits closing
the loop for the global metric map too. In[3] a dis-
creteMarkov Model is used to generate hypotheses,
which are then tracked by multipleKalman trackers.

In contrast to the above mentioned approaches, for
this system a natural integration of the metric and
topological paradigm is proposed. The approaches
are completely separated into two levels of abstrac-
tion. Metric maps are used only locally for structures
(rooms) that are naturally defined by the environ-
ment. There, a fully metric method is adopted. As it
has been shown in[6], for such small environments,
where the drift in the odometry remains uncritical,
stochastic map allows for precise and consistent au-
tomatic mapping. The topological approach is used
to connect the local metric maps that can be far away
from each other. With this the robot can take advan-
tage of the precision of a fully metric EKF navigation
added to the robustness in the large of the POMDP
approach. All this by maintaining a compactness of
the environment representation and a low complex-
ity, which allows an efficient implementation of the
method on a fully autonomous system. This hybrid
approach shows also its practicability for environ-
ments with loops. In this case the loop is closed in
the global topological map based on the information
from the topological localization, while the metric
information remains local and does not therefore re-
quire further processing, contrasting to[19], where
the topological information is used for mapping only,
to close the loop in the metric map correctly.

6. Conclusions and outlook

This paper presents a hybrid approach for both
localization and map building. The metric and topo-
logical parts are completely separated into two levels
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of abstraction. Together they allow a very compact
and computationally efficient representation of the
environment for mobile robot navigation. Further-
more, this combination permits both precision with
the non-discrete metric estimator and robustness by
means of the multimodal topological method.

The approach is validated empirically by extensive
experimentation for a total of more than 1.5 km. Map
building is tested by performing five complete explo-
rations of the environment and comparing the result-
ing maps. This comparison demonstrates that the maps
are consistent with respect to the environment and that
the perception permits to extract precious information.
For localization, the success rate over the 0.9 km of
the 25 tests missions is 100%. Nevertheless a precise
analysis of the state transitions shows that, between
neighbor states, false state estimates occur (1.4%) and
sometimes are even treated as confident (0.5%). The
relocation performance of the topological method has
been shown with 10 successful experiments where the
belief state converges with one to four state transi-
tions depending on the distinctiveness of the part of
the environment where the robot is navigating. It has
been shown how loops can be closed on the localiza-
tion level instead of the perception level. This is easily
done by using the multihypothesis tracking character-
istic of the POMDP for detection and backtracking for
closing the loop.

These experiments show that the presented ap-
proach is mature and appropriate for real applications
in office-like environments. Further research will
therefore focus on long-term experimentation in large
indoor environments presenting other different and
challenging characteristics. Nevertheless, the prob-
lem of switching from topological to metric remains
a non-neglectable limitation to the generality of the
approach. A solution facing this limitation has to be
implemented as proposed inSection 3.4.
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