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Abstract

This paper presents the results of the development of an autonomous mobile robot,
designed according to some new concepts established in this �eld during the last decade.
These principles can be found in other work based on the constructivist approach, arti�cial
life, subsumption architecture and other bottom-up methodologies. These ideas have been
applied to the complete robot design, spanning from the shape of the robot to the sensors,
from the electronics to the software control structure. By this way we have developed what we
call an "Application Speci�c Mobile Robot" (ASMR). The target application is a domestic
autonomous vacuum cleaner. Despite the actual limitations of the �nal robot, this work
shows how this methodology can bring many interesting results.

1 Introduction

The domestic autonomous vacuum cleaner that cleans your home while you are outdoors doing
some shopping, is an old wish and it may stay so for some time. Many companies and research in-
stitutions have tried to develop such a robot, with only few results. The human operator can not
be replaced easily by \arti�cial intelligence" [Schraft et al., 1994, Scho�eld and Gr�unke, 1994].
The lack of results is common to a large range of applications in autonomous mobile robotics,
and it is due to the complexity of the task and the limitations of the actual technology. \Au-
tonomous", in this case, does not simply mean that the robot has batteries, good computational
power and good behavioral rules, but much more. As Steels explains very well [Steels, 1995],
autonomy is not simply composed by a set of smart rules, but is the ability to create its own
rules. To move around, �nding a path or doing a job like cleaning seems very simple for us and
for many animals. The di�erence between robots and animals is that animals use their brain
to solve a problem, and we start to understand the complexity of these \simple" tasks when we
analyze the complexity of the brain.

In the last decade, new approaches have tried to bring \arti�cial intelligence" (AI) and
the computer science community back to the real world to get better results in the �eld of
autonomous mobile robotics [Brooks, 1990]. This �eld needs smart systems that are well adapted
to their environment through their shapes, sensors, actuators and behaviors. The embodiment
[Brooks and Lynn, 1993] of the system is important and brings a new and complex dimension
to the problem of arti�cial intelligence.

In this paper, we present the development of a domestic autonomous vacuum cleaner based on
some basic principles, like bottom-up approach, simplicity and coherence between the di�erent
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parts of the system. Domestic environments are mostly unstructured and often very complex,
much more than the industrial environment where some cleaning robots are already being used
[Scho�eld, 1995]. Moreover, this application sets some important constrains for the size, the
self-su�ciency, the e�ciency and the autonomy of the robot.

To get a satisfying cleaning job, we de�ne that the robot has to cover at least 90% of the
open surface. The robot has to accomplish this task without any arti�cial landmarks, as the
client would probably not like to have beacons installed in his apartment. Furthermore, the
robot has no initial map of the environment as it would be too expensive to program a map
for each customer. Also the possibility that the customer himself programs the map must be
excluded.

2 \Application Speci�c Mobile Robot" (ASMR)

2.1 Basic principles

Despite a demanding market [Pellerin, 1995], only few cleaning robots have been developed until
now [Scho�eld, 1995] and many companies went out of business trying to develop new products
for this domain [T. Gomi, personal communication 1995].

A new approach must be followed to design an autonomous vacuum cleaner working in an
unknown and unstructured environment. It is not su�cient to use a standard mobile robot
platform, to surround it with rings of general purpose distance sensors and then to emphasize
the work on the \intelligence".

As it is necessary to develop the behavior of the robot, it is also necessary to optimize its
shape and its sensor system. All these three criteria (shape, sensors, software) must not only
be designed individually but also as a whole. Only with a total integration of hardware and
software can such an application become feasible. This integrated design is what we call an
\Application Speci�c Mobile Robot" (ASMR).

Developing the proper shape is essential for the success of such an application, even though
its importance is often neglected. If the robot's body is well adapted to the application, it will be
more compatible with the sensor system and facilitate the programming of the robot's behavior.

The sensor system is an important part of the robot as it provides information about the
environment. The better adapted and the more reliable this system is, the easier the program-
ming of the robot will be. Furthermore, the robot's behavior can only be as good as its sensor
system.

Finally the control system is responsible for the \intelligent behavior" of the robot. Bene�ting
from a well-designed robot, the program will be shorter, faster, less complicated and more
reliable.

2.2 The basic mobile platform and the Koala robot

Two motion structures are mainly used on wheeled mobile robots: the \synchro-drive" and the
simple and classical structure based on two lateral wheels or tracks. These two structures can
deal with complex situations using simple control strategies. For our cleaning robot we have
chosen the second structure which is simpler to build. To deal with small obstacles as doorsteps,
but to avoid expensive tracks, the robot has been equipped with six wheels, actuated by two DC
motors, each controlling three wheels on each side. Due to the fact that we already had such a
mobile robot in our laboratory (the robot called \Koala"), this platform was chosen as the basic
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element for this project. In addition to its mechanical structure, this robot has the advantage
of a modular structure that is easy to modify and extend. Moreover, the CPU and the BIOS of
this robot are compatible with the \Khepera" miniature mobile robot [Mondada et al., 1994],
used by more than 100 universities and for which a lot of software has been written.

The Koala has a square shape and measures about 30 cm by 30 cm. With its dimensions, the
Koala �ts the application of an autonomous vacuum cleaner. A bigger robot would complicate
the navigation between obstacles and would not be easily stored after use.

The Koala main processor is a Motorola 68331, with 1MBytes of RAM and 128KBytes of
ROM. A specialized processor helps the main processor in all time-speci�c tasks. The motion
is based on two DC motors with incremental encoders. The rechargeable Ni-Cd batteries have
a capacity of 2.4Ah, providing the robot with more than three hours of autonomy.

The new version of the Koala robot is equipped with sixteen IR proximity sensors disposed
all around the robot, with a higher density at its front. These sensors were not available yet
during this project but could be used as described in section 6.

Figure 1: The Koala robot in its commercial version.

2.3 The shape of the robot

The robot's shape has an important in
uence on the facility for covering a surface, which is the
main task of an autonomous vacuum cleaner. Theoretically, many shapes allow the robot to cover
most of the surface, but only a few allow this without requiring a very complex behavior. The
ease of the surface coverage is a very important aspect as it largely determines the complexity
of the robot's algorithm and also the power consumption due to its movements. Furthermore,
the less the robot has to move, the better the accuracy of its odometry.

2.3.1 The possible shapes

To �nd the best shape for our application we compared many di�erent possibilities shown in
�gure 2, where the cleaning area is colored black. In general, the possible solutions can be
classi�ed into three categories: simple shapes, round robots and robots with an arm.
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Figure 2: a. Simple shapes. b. Round robots. c. Robots with an arm.

All the simple shapes are easy to build. But all of them either require a complex trajectory
to clean along walls or can't clean in corners and around legs in an e�cient way. They all need
a very complex algorithm for these tasks and are therefore far away from an ASMR.

The round robots have the advantage of facilitating the navigation around obstacles. But
round robots can not clean in corners which is a big disadvantage for potential markets. They
also require a complex trajectory to clean around small obstacles like legs. Another problem
is the cleaning along walls due to the non-compliant contact between the massive robot body
and the wall. In addition, many of these solutions require a too large cleaning area. The power
available on the Koala limits the cleaning area to less than 40 cm2 to guarantee an acceptable
suction.

2.3.2 Mobile robot with 2-dof arm

Mobile robots equipped with an arm o�er many interesting possibilities. This lead us to choose
the solution of an arm with two active degrees of freedom. The arm consists of revolute joints
(RR) and an additional passive degree of freedom allowing vertical movements to cope with 
oor
irregularities. As the cleaning head becomes mobile, it is possible to reduce its size to obtain a
better suction. It also allows us to increase the density of sensors by concentrating them on the
small cleaning head.

The major advantage of the arm is that it allows the decoupling of the cleaning movements
from the robot displacements. The Koala is responsible for the global displacements while the
arm acts locally. While the arm is cleaning in corners, around legs or other obstacles, the Koala
can stay stationary and therefore keeps its accuracy of the odometry. In the case of concave
corners the robot can turn easily, even though it has a rectangular shape, for the platform's
center of rotation is far enough from the walls. The arm also helps to clean along walls, as its
joints introduce a compliance which reduces the friction between the robot and the wall.

The same advantage of the decoupling occurs during the exploration of an unknown obstacle.
As the Koala can stay immobile it represents a good reference. With the information of the
arm, the robot can construct a local map of the obstacle relative to a �x point, the position of
the Koala.
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Figure 3: Wall following.

The major drawback of the additional arm is its construction cost and the need for an
additional control system. But this cost is worth it as it really facilitates the further development
of the robot and makes the application feasible.

Figure 4: Koala robot modi�ed and equipped with an arm.

2.4 The sensor system

In addition to the robot's shape we have to de�ne a sensor system which is best adapted to
its tasks and shape. For a mobile robot navigating in an unknown, cluttered environment,
the priority of its sensor system must be its reliability. The sensor system must be capable of
detecting as many types of obstacles as possible. The accuracy is less important.

In the case of an autonomous vacuum cleaner, the sensor system must especially be able to
detect legs of chairs and tables which often have small diameters but are typical obstacles in an
apartment. In addition, the sensor system must be cheap.
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2.4.1 The tactile sensor system

Tactile sensors are rarely used in mobile robots as most of the applications need a robot that
avoids obstacles without touching them. Some mobile robots are surrounded by a bumper that
uniquely turns on an emergency stop in case the obstacle avoidance algorithm failed.

In the case of the autonomous vacuum cleaner, it is desired that the cleaning head touches
the obstacle to guarantee a good cleaning. A tactile sensor system on the cleaning head can
reliably detect a contact with an obstacle. As the contour of the cleaning head is much smaller
than the contour of the robot it is also easier to get a high density of sensors.

In addition, tactile sensors are low cost, easy to implement and especially very reliable.
Especially this last point, the reliability, is a big advantage in unstructured and unknown envi-
ronments [Yamamoto, 1993][Rucci and Dario, 1994].

Figure 5: Cleaning head equipped with the tactile sensor.

We designed a low cost tactile sensor system consisting of plug pins and a metal plate in the
shape of a comb (�gure 6). The plate is �xed vertically around the cleaning head. To protect
the plate and to reduce shocks during a contact, a 
exible band is put around the top of it. In
addition, the band distributes an exterior force on the local plug pins which allows it to obtain
information about the intensity of the force: The larger the force, the more contacts will be
made, as illustrated in �gure 7.

The actual system consists of 54 contact points with spacings of 6 mm. This allows the
detection of most of the obstacles. The necessary force to detect a contact is less than 1
Newton for the worst case of several contacts in parallel. The information of the 54 contacts is
preprocessed by a MC68HC11 microcontroller.

2.4.2 The compass

The robot is also equipped with a compass. Unfortunately, the magnetic 
ux is not constant in an
apartment but is highly in
uenced by metallic objects and electronic equipment. Nevertheless,
using the compass in an appropriate and careful way can give precious information to facilitate
the determination of the robot's position.

An implemented application is the classi�cation of walls. When the robot follows a wall it
memorizes the magnetic 
ux along it. The magnetic 
ux stays constant for some walls, but
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Figure 6: Section view of the tactile sensor.
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Figure 7: E�ect of di�erent forces on the tactile sensor.

changes greatly for others. To reduce this problem, the robot memorizes the maximum and the
minimum values. The memorization of this 
ux helps later to determine the robot's position in
case it gets lost (section 3.3.2).

2.4.3 The dust sensor

It is also important to adapt the cleaning speed to the accumulation of dust. This is something
we do automatically when we use a vacuum cleaner, looking at the 
oor and insisting where more
dust is. To implement this behavior, the robot is equipped with a dust sensor that measures
the quantity of dust sucked up. This sensor is composed of an optical barrier placed in a narrow
section of the sucking tube. This device is similar to others that can be found in commercial
vacuum cleaners.

2.5 The vacuum cleaner

The energy source needed to create the vacuum e�ect is a big problem. Normal domestic vacuum
cleaners consume between 600 and 1500 W taken from an electrical outlet.

Unfortunately, it is not possible to have batteries with such power on the Koala. The only
possibility would be to add a cable connected to an electrical outlet. But such a cable would be
very annoying for the robot. It is easy to imagine the result of a trajectory between several legs
and other obstacles. The user would probably need more time to undo the knots than to clean
the apartment himself.

Hand vacuum cleaners consume less power and often have their own batteries. For this
reason, we chose a model that is able to clean e�ectively on an area of about 8 x 1 cm2 for
about 15 minutes with its own batteries. By using the batteries of the Koala this time could be
extended to about 45 minutes.
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2.6 The cleaning robot structure

The robot consists of four microprocessors working in parallel (see �gure 8). The main boards
\Master" and \Slave" each contain a MC68331 processor. The other two boards contain a
MC68HC11 microcontroller and are used for the preprocessing of the tactile and IR proximity
sensor data. The serial line to a Sun workstation is used only for downloading and debugging.
Most of the communication between the boards is done by bi-directional FIFO memories. The
communication between the MC68HC11 of the tactile sensor system and the \Slave" CPU is
done by a serial line.
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Figure 8: The global hardware structure of the vacuum cleaner robot.

3 Navigation

3.1 Identi�cation of an obstacle

When the robot detects an obstacle it tries to roughly classify it. The classi�cation of obstacles
allows the robot to create a more useful representation than a map containing just the informa-
tion \empty" or \occupied". Moreover, the identi�cation allows the robot to use these obstacles
as natural landmarks. The con�dence in such a landmark is higher for supposedly immobile
obstacles like walls than for obstacles that could be moved around as for example chairs. The
robot is then able to determine its position by using the detected and identi�ed obstacles it
came across during the exploration of the previously unknown environment.

In this project, we limited the identi�cation to the following classes that are typical obstacles
in domestic apartments: legs, walls, convex corners, concave corners and unidenti�able obstacles:

� \Legs" are all obstacles with a round shape whose diameter is less than 15 cm. Whether
the obstacle is a chair, a table or any other piece of furniture has no importance to the
robot.
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� \Walls" are all obstacles with a straight edge. Hence this class can also contain obstacles
like a cupboard or a bookcase.

� \Corners" are the junctions between two obstacles classi�ed as walls. Corners can be either
convex or concave.

� \Unidenti�able obstacles" are all obstacles that do not �t into these categories. In future
works, it will be possible to identify some of these obstacles into new and more speci�c
classes.

This identi�cation of obstacles can be done relatively easily by using the arm and its tactile
sensor system. With a simple algorithm based on where the cleaning head successively touches
the obstacle, the robot is able to conduct a �rst, often correct identi�cation.

Afterwards, the result is veri�ed by contouring the obstacle with the cleaning head. This
process allows the robot to create a local bitmap representation of the obstacle by using the
forward kinematics and the tactile sensor data. This local map not only veri�es the identi�cation
but also gives some other interesting information to the robot. In the case of a wall, it gives the
distance and the angle between the robot and the wall. In the case of a leg, it is easy to extract
its diameter. Furthermore, the robot simultaneously cleans closely around the obstacle. During
this process, the robot bene�ts from the fact that its platform can stay immobile. If the robot
itself had to move around, not only the odometry would be worse but also the quality of the
local map due to the loss of the reference point.

An interesting analogy exists between this mobile robot and a blind person. If a blind
person enters an unknown room, he uses his arms or his cane but not his body to explore the
environment. The use of his arms allows him to keep his body as a point of reference during
the exploration. Moreover, his hands have a large density of tactile sensors which allow him to
identify objects.

3.2 Using hypotheses

Knowing the identity of an obstacle, the robot can make some hypotheses which considerably
help to create a coherent map. To avoid problems due to an incorrect identi�cation, the hy-
potheses are veri�ed during their use.

When the robot identi�es an obstacle as a wall it can make the hypothesis that the wall is
straight. Following the wall, the robot can measure its length accurately by using its odometry
which is very precise and reliable for distance measurements. Knowing that the obstacle is a
wall and knowing its length, it is easy to draw a straight line into the bitmap representation. It
is even possible to recalibrate the odometry at its end.

As most walls are straight, this hypothesis is correct in most cases. But what happens if the
wall is not straight but has a small curvature? In this case the robot will identify it as a wall
in a �rst step, as it seems to be locally straight. However, even though this obstacle is a wall it
should not be classi�ed as a \wall". Hence the identi�cation is wrong and the robot will make
a wrong hypothesis. But after having followed the \wall" for a certain distance, the robot will
detect that its odometry changed too much for an expected straight trajectory and it will reject
the hypothesis. The obstacle will then be treated as an unidenti�able obstacle.

Another important hypothesis is that most of the corners have an angle of 90�. When the
robot arrives at a corner, it measures the angle with its arm. But this measurement contains an
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error of several degrees. If the measured angle is between 80� and 100� the robot will assume
that the angle is 90�.

Even if the corner had in reality an angle of 92�, it would still be better to assume that it was
90� than to use the real value. Unless the wall is very long, the error due to the hypothesis will
not be very important. Corners with an angle of 90� are much more convenient and facilitate
the generation of a coherent map.

3.3 Map creation

The only way to guarantee a complete cleaning is by using a map in which the robot can
mark cleaned areas. The creation of a map is a well-studied subject in mobile robotics. Many
interesting methods are described by [Holenstein, 1992] and [Knieriemen, 1991].

The major problem of creating a map is to keep it coherent. Primarily, it must contain all
obstacles, the exact position is secondary. It is more important that the relative positions of the
obstacles are right.

The easiest way to create a coherent map is to contour the room �rst and then to explore its
interior. The map of the contour will be a reference for further obstacles being detected inside
the room. With a map of the border, the robot will always be able to determine its position
even when it gets completely lost. Hence, the major problem of a mobile robot, getting lost,
will be solved.

Therefore, the problem of creating a coherent map reduces to the problem of creating one of
the room's border. Hence, the major problem for the robot is to detect when it comes back to
the starting point. Otherwise it risks to run around the room until its batteries get empty.

3.3.1 Bitmap representation

The easiest method to memorize cleaned areas is certainly a bitmap approach. Used for un-
known environments, bitmaps are also more likely to yield results in real-time [Hoppen]. In our
implementation, each pixel has a value that characterizes the environment in the following way:

Value Class
0 unknown (not cleaned)
1 empty and cleaned
2 empty but not cleaned yet
3 wall
4 concave corner
5 convex corner
6 leg
7 unidenti�able obstacle

A bitmap representation also allows us to memorize the shape of unidenti�able obstacles by
putting the local image, created by contouring the obstacle with the arm, into the global map.
This procedure is much simpler and faster than to memorize a complex obstacle with a polygonal
representation. In addition, the bitmap approach also permits some interesting algorithms for
the navigation [Jarvis, 1993] and especially the cleaning of the open surface (section 4).

The implemented map uses pixels of 2 cm by 2 cm. Using 8 values for a pixel requires only
about 245 kilobytes of memory for a surface of 100 m2. In case of a lack of memory or a much
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bigger surface, it is possible to reduce the amount of memory by combining areas of surfaces
without obstacles. A common method is called \Quadtree" [Hoppen, 1992].

3.3.2 List representation

To facilitate some of the implemented algorithms, the robot also creates a list for each class of
obstacles. In our implementation, the robot uses four lists, each containing speci�c attributes.

The list of walls is very similar to a polygonal representation but with the di�erence that
it contains only obstacles with straight edges and not all obstacles. It contains all obstacles
classi�ed as walls with the following attributes:

� global position x-y of the starting point

� global position x-y of the ending point

� length

� orientation

� compass values

Some of the attributes are redundant, for example, the length and the two end points. This
redundancy is desired as it makes possible repeated instant access to any attribute, without
having to recalculate it. This speed-up requires a higher amount of memory. But the required
memory for the lists is small compared to the amount needed for the bitmap representation.

The list of corners contains the global positions x-y and the corner angles. Similarly the list
of legs contains the global positions x-y and the leg diameter.

These lists are very useful when the robot gets lost. The robot must try to move towards the
border of the room. If the robot arrives at a wall, it tries to identify it by following it until the
next corner. Comparing the values of the compass and the minimum length to the attributes
stored in the list of walls, the robot can already eliminate some of the potential walls. If there
is more than one wall left, the robot measures the angle of the corner, compares it to the list
of corners and can then maybe again eliminate some of the possible walls. If the identi�cation
is still not unique, the robot follows the next wall until its end. Using again the values of the
compass and the length of the wall, the identi�cation of the wall should be unique in most cases.
Otherwise, the robot goes on with this procedure until the identi�cation is unique.

Once the wall(s) and corner(s) are identi�ed by using the lists, the robot knows where it is
relative to its global map and can hence reinitialize its odometry with the help of the last corner.
To relocate itself by using the bitmap representation instead would be much more complicated
and more time intensive.

The list of corners is especially useful to recalibrate the odometry of the robot. When the
robot needs to recalibrate its odometry, this list allows it to easily �nd the nearest corner which
is all that the robot needs. To �nd the nearest corner could also be done by a bitmap approach,
but again, this would be more complicated and slower.

3.3.3 Correction of the wall lengths

Due to the hypotheses of the straight walls and the perpendicular corners, it is very easy for
the robot to detect when it is back to the starting point. Nevertheless, the measurements of the
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lengths of the walls are not perfect. Also only few corners are exactly perpendicular in reality.
Hence, the coordinates of the starting point and the ending point are not exactly the same. The
typical errors in our experiences were about 5 cm for a perimeter of the cleaning area measuring
6 meters.

Now the robot can bene�t from the fact that these two points must be the same, or in other
terms that the vector sum of all walls must yield zero. Actually, during the contouring of the
room, the robot measures all the distances twice. For example, if the robot �rst goes south
for some distance, it will have to go north later for the same distance in order to come back
to the starting point. Hence, the robot can average all the x-projections and y-projections to
calculate the new corrected lengths of the walls. These new lengths are more accurate as they
are obtained by an average of two measurements.

Doing this correction algorithm we get two very useful results. First the lengths of the walls
are more accurate and second the ending point exactly matches the starting point. Hence we get
a closed image of the room's border which will be convenient for the exploration and cleaning
of the interior.

3.3.4 Result of map creation

The combination of the bitmap and the list representations allows the optimization of the dif-
ferent tasks by using the best suited representation. It also allows us to apply and to combine
existing algorithms for the bitmap approaches and the polygonal models.

Due to the hypotheses based on the identi�cation, the detection of the starting point is very
reliable and the robot is able to generate a coherent map of the environment's border. This map
is memorized in two di�erent forms, bitmap and list representation, both containing the exact
same information if there were no unidenti�able obstacles.

The good quality of the generated map insures that the robot will not get lost and greatly
facilitates the next step, the cleaning of the interior.

An example of a bitmap representation created by the robot is shown in �gure 9. The cross
at the upper left side is the position of the robot after having contoured the room. The robot
used only its odometry and its tactile sensor system to create this accurate map. The di�erence
between the starting and ending point in this example is only 6 cm and 1 cm in the two main
directions for a contour of about 6 m. The errors on the individual wall lengths is less than 2
cm, the size of a pixel. During the whole exploration, the robot never needed more than 5 ms
to choose the next action.

4 The cleaning operation

There are many di�erent ways to clean a surface, or simply cover it.
One way would be to use the created map of the border and to �nd the shortest path to

cover the whole surface by using well-known AI techniques. But this approach would not work
well, as the interior of the area is not known. There will likely be some obstacles in the middle of
the room that have not been detected during the exploration of the border. Hence this so called
optimal path would have to be recalculated each time the robot comes across a new obstacle.
In addition, as the �rst generated path is based on incomplete information, the �nal path will
be far from optimal in many cases.

In this work, we used another approach which is easy to implement and furthermore allows
the robot to often recalibrate its odometry. To simplify the navigation of the robot, it is preferred
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Figure 9: a) border after exploration b) border after correction

to move on straight lines and to turn on the spot. If a trajectory ends with a wall, the robot can
recalibrate the orientation and one x-y component of its odometry. If the next trajectory ends
with another wall perpendicular to the last one, the robot can again recalibrate the orientation
and this time the other x-y component of its odometry. Hence, following a path which ends
successively with mutually perpendicular walls allows the robot to keep a good accuracy of its
odometry.

If the trajectory ends at a corner, the robot can even recalibrate all components of its
odometry. But trajectories from corner to corner do not give very good results in terms of
overlapping paths and ease of navigation.

As a result, we implemented a trajectory generator that tries to end its paths with succes-
sively mutually perpendicular walls or with corners.

The task of the trajectory generator is to yield the next direction in which the robot should
head. In a �rst step, the robot analyzes the four mutually perpendicular directions parallel to
the majority of walls. Using the bitmap representation, the robot can easily count the number
of uncleaned pixels in these four directions. The most interesting direction is the one with the
maximum number of uncleaned pixels. Hence, the robot starts to move in this direction. If
there is no unknown obstacle in its path, the robot will �nally arrive at a mapped wall which
will allow it to recalibrate a good part of its odometry. If the robot comes across a new,
unmapped obstacle, it will try to identify it and then add it to its bitmap representation and
to the corresponding list. The robot then cleans around that obstacle and goes on with the
standard trajectory generation.

After a while, the robot will be in a situation with no uncleaned pixels in all four directions.
In that case, it counts the number of uncleaned pixels as if it were one robot distance transverse
to its actual position. Then it takes again the path with the maximum number of uncleaned
pixels.

With these very simple criteria, the robot is able to generate very interesting trajectories
allowing it to often recalibrate its odometry without long calculations, as the algorithm simply
consists of counting pixels in a bitmap.

This algorithm is evidently not the only possible one. There are certainly other algorithms
yielding similar results, but using the same principles, like counting uncleaned pixels and trying
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to end successive trajectories with mutually perpendicular walls. Moreover, due to the bottom-
up approach, the existing algorithms could easily be combined with a higher level controller.

5 Results

First we need to specify that this development was made over four months and then stopped.
The goal was not to reach the product stage, but more to check the level of complexity that
one can reach during this time using some new principles that have been described above. The
results have to be analyzed considering this aspect.

The tests were performed on environments similar to the one presented in �gure 9, having
a surface of about 2-3 m2. The real vacuum cleaner installed on board was used to suck up
sawdust distributed in an uniform fashion on the 
oor. The robot is able to clean this kind of
environments in the time given by the batteries of the vacuum cleaner, which is 12 minutes.
This time includes the map building process and the cleaning of the middle of the room. The
robot stops when more than 95% of the surface in its internal map is covered. More than 90%
of the sawdust had been cleaned in our tests.

start

end

exploration

pure cleaning

Figure 10: Typical cleaning path

Figure 10 illustrates a typical cleaning path. As said above, this path is composed by the
exploration of the border which is used to build the map, followed by the cleaning of the interior
of the room.

6 Future improvements

The cleaning path has yet to be optimized as a lot of time is used to reach the opposite wall for
recalibration, even if the surface has already been cleaned. This should be easily achieved by
slightly modifying the rules of the trajectory generator.

One major improvement will be the use of the Koala's 16 new infrared sensors. They will
allow the robot to detect an obstacle before it gets hit by the arm. The robot could move faster
and then slow down as soon as the infrared sensors detect an obstacle in its path. The infrared
sensors will also speed up the recalibration process when the robot arrives at a known obstacle.
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The combination of the tactile sensor system and the infrared sensors open new possibilities.
The robot will still use its tactile arm to identify an obstacle. For example in the case of a wall,
the robot will know its relative position to it after the identi�cation process. Hence knowing
its relative distance and orientation, the robot can calibrate the infrared sensors for this wall
and memorize the calibration values in the list of walls. Due to this calibration, we can greatly
decrease the color sensitivity of the infrared sensors. With the calibrated infrared sensors, it
will be easier to follow a wall or to measure its relative position to a known obstacle.

Furthermore, it is necessary to reach a higher level of environment complexity, introducing
obstacles inside the room. The basic functionalities allowing the robot to deal with this kind of
environment are ready but have not been used yet.

7 Conclusion

The autonomous vacuum cleaner is not yet ready for commercialization, which was never the
goal of the project. Nevertheless, many of the achieved results are very promising, especially
considering that they were achieved in four months of work by one person. The shape of the
robot is well suited for the application, especially for a task like cleaning along a wall, around
legs and in corners. Furthermore, the arm with its tactile sensor system is able to identify
obstacles which then allows the robot to make hypotheses.

The combination of the robot's shape, its tactile sensor system and its algorithm play well
together and make the task of cleaning an unknown and unstructured environment feasible.

The developed robot is capable of dealing with a real environment in real-time. The robot
is able to contour an environment composed of walls and corners in an acceptable time. The
speed will even be increased with the now ready infrared sensors. In addition, the robot detects
reliably when it returns to the starting point and hence is able to create a coherent and very
accurate map of the contour. And by using the di�erent lists of obstacles, the robot is able to
relocate itself in its environment in case it gets lost.

Unfortunately, most domestic apartments are too complex for the robot in its actual stage.
But in other more structured environments, like simple apartments, corridors and hotel rooms
this robot could ful�ll its task. Especially hotel rooms, which are often very structured, are a
big potential market for such robots. The vacuum cleaning could be done by the robot while an
accompanying person takes care of other cleaning tasks.
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