Dynamic Texture on Fixed-Point Architectures

Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Abstract. Videos representing smoke, flames, flowing water, moving
grass, and so on, show a periodic repetition of some basic pattern. The
periodicity is not perfect, since each video frame is actually different from
the others, but it is enough to perceive a certain regularity, so that these
videos are referred as to dynamic textures. Recently, one method based
on linear dynamic system theory was proposed to synthesize dynamic
textures. Textures are represented as the output of a linear dynamic sys-
tem and synthesis is reduced to matrix multiplication operations. In this
report, we study the problem of implementing this method using fixed-
point arithmetic, as required in many portable devices, such as PDAs or
mobile phones. This is done by jointly evaluating the effect of model co-
efficient quantization and of fixed-point precision arithmetic, which are
both source of errors with respect to the floating-point implementation.
Our analysis shows that the fixed-point scheme permits to obtain visual
synthesis quality comparable to the more expensive floating-point imple-
mentation, with the advantage of requiring far less buffer memory space
and permitting to perform faster synthesis.

1 Introduction

Starting from a sample video, there exist two approaches to synthesize dynamic
textures. The first approach is non-parametric and consists in collecting different
video clips taken from the same texture [1,2] and “fusing” them together such
that time junctions are not noticeable. This approach produces high quality
synthetic videos, but consecutive synthetic frames cannot be generated on-the-
fly and a large amount of memory is needed to store the entire synthetic video.

The second approach is parametric, i.e., it is based on a model of the dynamic
texture. The model parameters are estimated in the analysis step and used during
the synthesis. Among such methods, the linear model of Soatto et al. [3] showed
to be a valid approach to dynamic texture modelling, both for the good synthesis
results that it can achieve, and for the clear mathematical framework used for
analyze and synthesize dynamic texture. In this model, the dynamic texture
is considered as a dynamical system, where each video frame is represented as
a point moving on a trajectory in a given space. The analysis part consists in
identifying this trajectory using methods borrowed from the system identification
community, and producing an estimation of the model parameters. The synthesis
consists in using the model parameters to generate synthetic frames by driving

2 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

the system with white noise. The following equation represents the model used
for the synthesis:
{;v[k—l—l] = Az[k] + Bvlk] (1)
z|k] = Cz|k] + D

where z € R™ is the vector representing a synthesized color image, x € R™ is the
system state vector, A € R"*" B € R"*™ (C € R™*" and D are the model
parameters, v € R™ is a Gaussian random vector N (0, I;,, xn,), and m = N x M
is the dimension of a single N x M color video frame. The index k indicates the
frame index and is also referred to as the time index. In the original work of
Soatto [3] each image is represented using RGB color encoding for the color
channels; in [4] YCbC'r color encoding is used, instead, since it achieves a more
compact color representation than RGB. In this work, we consider as well the
Y CbC'r color encoding to represent each video frame.

In this report we design a fixed-point implementation of the linear model of
Eq.(1), specifically tailoring portable devices, where memory and computational
costs are severe constraints.

The model coefficients A, B, C, and D of Eq.(1) are real-value matrices. In
the synthesis process they are stored in the temporal memory (Random Access
Memory or RAM) where synthesis takes place. In a computer, they are usually
represented with high precision, i.e., 64 bits or 32 bits, for double and single
precision respectively. The size of the buffer memory necessary to store the co-
efficients can thus be very large. For instance, the size of the matrix C' used to
synthesize a color texture of size 160 x 120 pixels would be 160 x 120 x 3 x 20 x 64
bits !, which corresponds to approximately 8.8 MBytes. This is acceptable for
general purpose PCs, even though buffer economy is always favorable, but be-
comes an obstacle in portable devises, because of more severe memory and CPU
power restrictions.

One way to reduce the memory size needed to store the model coefficients
is to code them using a lossless coding scheme. A classical procedure is to use
quantization followed by entropy coding [5]. In the quantization step, the orig-
inal real value is quantized, i.e., it is represented using a finite (and generally
lower) dimension dictionary. In the entropy coding step, the data are coded us-
ing a variable length coding scheme, where shorter codewords are assigned to
highly probable outcome values. The entropy coder can compress the data by
a factor usually variable from 2 to 5 and has also the property that the code
is instantaneous and self-synchronizable. This means that the codeword can be
decoded as soon as the last digit has been read and that each codeword ends
with a specific terminating symbol, which helps synchronization.

The drawback of using an entropy coder is that decoding operations will take
some computational time. It can be done one single time before the synthesis
starts to recover the coded coefficients, but in this case the temporal buffer used
to store them must have the same size as the original, uncoded data. Decoding
can be done on-the-fly, i.e., model coefficients can be decoded only when used.

! We consider n = 20 as a typical state order size value [4].

Dynamic Texture on Fixed-Point Architectures 3

However, this solution increases the synthesis cost.

A different way to reduce the data size is to consider quantization without
entropy coding. The memory necessary needs to be slightly bigger, but no latency
will be introduced by on-the-fly data decoding during synthesis. In this report,
we study the quantization step in order to find the minimal amount of bits that
can be assigned to the model coefficients to obtain a good synthesis quality. We
study this from the more general perspective of translating the floating-point
synthesis of Soatto’s method in a fixed-point architecture. This, in fact, implies
both taking care of the quantization of the model coefficients, and of the finite
precision of the operations with respect to a floating-point scheme. The study is
done independently from the use of entropy coding, which can always be used if
process power allows for it.

Section 2 introduces definitions and concepts of quantization, while Section
3 gives some definition of the fixed-point arithmetic. Section 4 describes the
design of the fixed-point synthesis and Section 5 is used to evaluate the fixed-
point implementation performance on some test video sequences. Finally, Section
6 concludes the report.

2 Quantization

2.1 Definitions

A continuous time-amplitude signal x(t) is defined for time instants ¢ € R and
can take any real value in a given subset of R. When dealing with digital signals,
however, time and amplitude assume a finite number of possible values. Sampling
is used to discretize time, while A /D conversion constraints the signal to discrete
(quantized) values.

Given a sampled signal z € R, the quantized signal y is defined in 7 =
{y1,92, ...y} C R according to the following rule [5]:

=y ifeely={v:o, <z <z }fork=1,2...,L (2)

where L = 2% is the length of the dictionary Z and R is the bit rate. The values
yr are called the reconstruction values and the x; are called the threshold or
decision values.

The quantized signal can be represented as a function of the original signal,
as depicted in Fig. 1. The abscissa shows the values of the real signal =, while the
ordinate indicates the reconstruction values of the quantized signal y = Q(z).
The first and last threshold levels correspond to —oo and 400 respectively, mean-
ing that y = y; for x < 29 and y = yr for z > xp. The difference between the
quantized signal and the original one is the quantization error e, = x — Q(x).

To study the properties of the quantization error, = is considered as the
realization of a random variable (r.v.) X, with variance 0% and probability den-
sity function (PDF) px(z). The quantized signal is a r.v. ¥ = Q(X) and the

4 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

Y3
Y2

Y1

Fig. 1. Quantizer function y = Q(z) in the case of a 3-bit uniform quantizer
(R=3).

quantization error is the random variable @ = X — Y of variance

+o0 Tp41

L
03 = F[QY = / & — Q@)Ppa(a) dz = 3 / & — Q) (x) dr (3)
k=1"7%k

— 00

This variance defines the quantization noise and is used to compute the
signal-to-quantization noise ratio SNR defined as :

SNR (dB) = 1010g10(a§(/a§2). (4)

2.2 Granular and overload noise

The quantization noise contains two contributions: granular and overload noise.
Granular noise is the one associated to the quantization of the signal values
inside the interval [—z;, 2o1]. The term x,;, called overload amplitude, is indi-
cated in Fig. 1. It represents the signal value after which the quantized signal
assumes the maximum amplitude allowed. When |z| > |z,| the quantized signal
is saturated. The overload noise is the one associated to such saturated values,
while the granular noise is the noise associated to non saturated values. The first
is characterized by burst of values of the same sign, while the second oscillates
rapidly between positive and negative values.

If a signal is bounded, the overload distortion can be made zero by imposing
Tol = Tmaz, Where ., is the maximum signal amplitude. For unbounded
signals, the overload distortion will always have a contribution, more or less
relevant according to the probability that the signal is bigger than the overload
amplitude. The ratio between z,; and the signal standard deviation ox is a
parameter that will be used in the following, and it is defined as the loading
factor: :

fi=za/ox (5)

Dynamic Texture on Fixed-Point Architectures 5

2.3 Uniform and nonuniform quantization

In uniform quantization, the decision intervals have the same length A. When R
bits are used, the decision thresholds are defined as 1 = —o0, 11 = oo, and
Tpy1 —xp = Afor k=2,...,L — 1, where L = 2.

Once the bit rate R is fixed, the overload value z; is fixed and defined by A
and L as x,; = AL/2. The granular and overload errors are then defined by x,; as
well. If x,; is smaller than the maximum value assumed by the input signal, then
we will have some overload noise. On the contrary, a bigger x,; induces a less
overload saturation, but a larger granular noise, as A increases. The optimum
value for z,; depends on the PDF of the signal and can be computed numerically
for a given PDF.

In nonuniform quantization, the decision levels have different length. Smaller
decision intervals are used when px(z) is high, i.e., in the zone where signal
values occurrences are more probable. Larger intervals are used for less probable
signal values. This introduces a bigger quantization error on a smaller number of
coefficients, leading to a globally smaller error variance with respect to a uniform
quantizer.

If the signal PDF is log-concave, then a closed formula exists for the optimal
quantizer in the minimum-mean-squared-error (mmse) sense [5]. The resulting
quantizer is called Lloyd-Maz quantizer and is defined by the following equations:

1
xzpt = 7(y2pt -|—yz]it1) fork=23,...,L;

2
J’.(ljpt = =00, xilil = +00;
IZT1
t Iopt l‘pm(-’ﬁ) dl‘
yt =t fork=1,2,..., L. (6)

oot pa(a) da
k

The threshold levels are defined as the average value between consecutive
reconstruction levels. The reconstruction levels are defined as the conditional
expectation of the signal inside an interval given that the signal lays in this
interval (centroid): y?” = E(X | X € I}), which is the centroid of the PDF in
that interval.

In case of large R, an approximated formula can be found and a compander
technique can be use to obtain a nonuniform quantization ([5] p.138).

3 Floating-Point to Fixed-Point Basis

3.1 Definitions

In a given processor, real numbers are represented as floating-point numbers,
where the scientific notation is used and numbers are expressed as a product
between a fractional part and an exponent. The basis for the exponent is 2.

A floating point number can be of single or double precision, depending if it
is represented using 32 or 64 bits, respectively. The IEEE standard floating point

6 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

representation [6] divides a floating-point number into three basic components:
the sign, the exponent, and the mantissa. The sign (1 bit) indicates the sign of
the number, the exponent (8 or 11 bits in single or double precision respectively)
the power of two that has to be used, and the mantissa represents the precision
bits of the number.

The mantissa is obtained by shifting the point (called radiz point) of the
number in order to push the first “1” number digit in first position before the
radix point. For example the number 1101.001110 becomes 1.101001110 x 23,
since the radix point has been shifted by three positions toward left. Since the
first 1 is always present, it is not considered and the mantissa becomes 101001110.

Differently from floating-point notation, fixed-point numbers are represented
using a fixed position for the radix. This is done according to the following bit
pattern:

oNi—1 9l 90 9=1 o-Np

lam, 2] Jarfaola 1] Ja_ws]

where N; — 1 is the number of bits used for the integer part of the number,
Nr is the number of bits used for its fractional part, and the first bit on the left
is used for the sign [7]. We call this particular bit pattern [N;; Np] format. The
number value is equal to:

Ny—2
z=—an, 12V +) a2, (7)
k=—N

If Nr = 0, the number is represented with integer arithmetic; if Ny = 1 the
number is represented with fractional arithmetic. We can pass from fractional to
integer arithmetic by multiplying the number by 2V#. As an example, the real
number 2.23 is represented as z, = 2.2299804687500 in data format [3;13] (16
bits) and as z, = 18268 using integer arithmetic.

3.2 Fixed-point Arithmetic

In fixed-point arithmetic, operators are defined only among numbers expressed
in fixed-point format. In general, fixed-point operations are faster than floating-
point ones, since they are performed using less instruction cycles. Tab.1 shows an
example of the fixed-point implementation of a simple algorithm. We see that
before an operation is performed, the number is quantized to a certain fixed-
point format in a block called quantizer. This block receives as input a number
and a given format [N;; Ng] and produces as output the quantized value in
this format. The quantization is done with a rounding operation following the

Dynamic Texture on Fixed-Point Architectures 7

float a, b, ¢, y;|a = quant(a,q0);

y =a* b+ c;|b = quant(b,ql);

temp = a*b;

temp = quant(temp,q2);
¢ = quant(c,q3);

y = temp + ¢ ;

y = quant(y,q4);

Table 1. Floating point and fixed point implementation of the operation de-
picted in Fig. 2.

c\
Qs

b~ \O q
qd4 — 4
BOmk

Fig. 2. Example of use of quantizers.

a/qo

equation:
|z -2NF +0.5]
T = oNy (8)
Fig. 2 shows a pictorial view of the fixed-point code, where the blocks indi-
cated with the letter “q” correspond to quantizers. We notice that intermedi-
ate results between different operation needs also a quantization step, since the
operand have to be expressed in the same format. For example, the addition
operation imposes the two operands to have the same fractional part. Moreover,
after each operation it is generally necessary to discard some information. This
happens, for instance, in quantizer g, that receives the result of the product of
two numbers. In fact, during multiplication between two fixed-point numbers of
respectively nq and no bits, the results need nj +ns — 1 bits to be exactly repre-
sented. In order to avoid a rapid expansion of the number of bits necessary for
operations, the result is quantized by discarding the information contained in the
least significant bits of the product, thus producing a value with an acceptable
number of bits for the next computation.

4 Fixed-point Synthesis Implementation

4.1 Coefficient Quantization

The model coefficients of Eq.(1) are represented using 64 or 32 bit floating-point
precision. The first step in implementing the synthesis algorithm using fixed-
point arithmetic is to quantize the model coefficients, allowing a lower precision

8 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

Histogram of A Histogram of B
150 - 60
100 40
50 20
0
-1 0 1 —SOO 0 200
Histogram of C Histogram of D
1500 3000
1000 2000
500 1000
8 o
-0.1 0 0.1 0 100 200
values values

Fig. 3. Histogram of the model coefficients A, B, C, and D obtained from the
dynamic texture video “Flame”, considering n = 30 and Y C},C). color space.

in order to save memory buffer space and facilitating the computation. In fact,
the multiplication of a 32 bit number takes more time than that of a 16 bit
number, for instance. In this Section we show how this is done.

As seen in Section 2, quantization depends strongly on the PDF of the signal.
In the case of the linear model of Eq.(1), the model coefficients A, B, C, and
D have the typical histogram of Fig. 3. The coefficients of matrices A, B, and
C have a similar histogram, exhibiting a Laplacian-like PDF, but differ in the
dynamic range. The histogram of the vector D is different. This is because this
vector collects the temporal average for each pixel value of the video sequence
[3]. Since pixels assume values in the range [0, 255], the vector D contains real
numbers in this interval. We define D} = [D + 0.5 the quantized D coefficient,
where the index I indicates that the vector is constituted by integer values.

More attention is paid to quantize the other matrix coefficients. In fact, we
generally do not know in which value range they fall. For this reason, we use
scaling to ensure that they fall in an interval that we fix. This is done according
to the following formulas:

|A-2%4 +05] Al

_ _ q
Aq - QRA - L
|B-2¢5 40.5] B}
Bj=—" =
oK B oK 5
C-25¢ +0.5 cl
A 0

orc T 2o

Dynamic Texture on Fixed-Point Architectures 9

and

ka=Ra— [logy(fi* - 0a)] +1
kg = Rp — [logy(f - op)] +1
ke = Ro — [logy(fF - 0c)] +1 (10)

where k4, kB, and k¢ are integer values, R4,Rp, and R are bit rates, flA7 le,
and flc are loading factors, and 04, op, and o¢ are the standard deviations of
the model coefficients A, B, and C' respectively. The matrices Aé, B; , and Cg are
rounded and scaled model coefficients and are constituted by integer numbers.

In Eq.(9) scaling and quantization are done simultaneously. Scaling is done by
multiplying each coefficient by a factor 2"+, quantization is done by a rounding
operation and a division by 2%+. Eq.(10) is used to impose that the integer
values lie in a given interval. For example, the scaling coefficient x4 ensures
that the value Al is an integer in the range [—2(Fa=1) 4 1 2(Ra=D] This is
why R4, Rp, and Rc are called rates: they are the number of bits needed
to represent the respective integer coefficients. Once the rate R4,Rp, and Ro
are fixed, the problem is to find the values of k4, kg, and k¢ that ensure the
smaller quantization error. This will depend on the loading factor chosen for
each coefficient.

As shown in Section 2, the quantization error is composed of two antagonist
terms: the granular and the overload error, both depending on the factor load
used for quantization. Using a larger load factor has the benefit of decreasing the
distortion due to saturation effects, but increases the granular noise. An example
of this trade-off is depicted in Fig. 4, where we show the quantization SNR as
a function of the loading factor for the matrix B obtained from the analysis of
the“Flame” texture.

Fig. 4 shows 3 curves, each obtained considering a given rate (indicated as
Rp) for the quantization of matrix B. Note that at Rp = 16 we reach the higher
SNR using a factor load greater than 4. Using less bits has two consequences:
first, it decreases the SNR, since the maximum value is smaller than the max-
imum value reached by using 16 bit; second, it generally shifts to the left the
loading factor value that ensures the minimum error. In fact, for 4 bits, the op-
timal value for the loading factor is 2. This is because more saturation errors
can be tolerated when fewer bits are at disposal, since the most significant part
of the signal is centered in zero (see the histograms of Fig. 3): the loading factor
has to be smaller to maintain a smaller quantization step A when few bits are
available. In this first part, the appropriate values for the loading factors are
found for each matrix coefficient and the relative scale factors are computed,
according to the respective desired bit rates.

4.2 Fixed-point Synthesis Architecture

The second step is to define the correct way of performing the arithmetic opera-
tions between the integer-quantized model coefficients. Two constraints have to
be considered: the architecture of the fixed-point process that is used and the

10 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk
Signal—-to—quantization noise ratio (SNR)

90

80F \ 1

701 --- RB=4

60F

— 50F
~ 40}

3o} [1

20

I \)
Vrmmmmm-

4
loading factor f = x_ /o
ol X

Fig. 4. Quantization error of the matrix B with respect to different values of the
loading factor. The matrix B is obtained from the analysis of the video sequence
“Flame” (n = 30 and n, = 20).

speed of the computation. The architecture fixes the constraint regarding the
number and size of the internal registers, while the speed is influenced by the
different operations that a processor (or DSP, in general) is capable of perform-
ing.

In this work, we do not focus on a particular architecture, but we create a
platform that is capable of simulating a fixed-point architecture with different
register sizes and general purpose operation between integer data.

The fixed-point implementation of the model of Eq.(1) is the following:

t2 = Bé "Ué;
X, = (t1 +t2) > ka; (11)

Zq=t3>>lic+Dé;

The operations described in Eq.(11) are summarized in the scheme of Fig. 5.
Each block denoted as g, represents a quantization operation of the type:

y=Qr(x)=|z-2" +0.5] (12)

and the operator ¢, ! defines the division by 2+, which corresponds to a shifting
operation.

The variable X, indicates the quantized (integer) state variable, the operator
“>” indicated a shift operator for integer type data, i.e., a division by a power

Dynamic Texture on Fixed-Point Architectures 11

of two, and vé is the quantized noise input that drives the dynamical system.

The variables t1, to, and t3 represent registers that store intermediate results.

The first operation is to compute the product Al - X! and store it in a
temporary register ¢1. Then, the noise is taken into account by computing the
product to = Bé . vé. The two results are then added and scaled by a factor x4,
since this was the scale factor for matrix Aé. Note that we do not separately
scale t; and t, because we chose to impose Ky = k4 — k. With this choice, only
one shifting operation is necessary, since t; and ¢, have the same signal level?.

The noise contribution v! is computed by multiplying the real-valued input

noise sequence v[k] of Eq.(1) for 2"V, according to the same formula of Eq.(9).
Differently for the other coefficients, in this case the rate Ry is imposed by the
constraint Ky = k4 — kp, thus having Ry = k, — [logy(fY - 0v)] + 1, where the
loading factor f) is fixed to ensure that the overload noise is small.

The synthesized image is obtained adding the contribution of ¢3 scaled by k.
to the value Dé. The quantization indicated as k, of Fig. 5 is defined on 8 bits
and corresponds to simple rounding operator that clips the output signal in the
interval [0, 255]. In fact, the output signal is a digital image whose pixel values
are within this range.

AR, bi =A*X
A qA q A its éh q “%q Xq
" -1
B B,: Ry bits CD_. A
ds
da=9g * Qv
do
q, %

Fig. 5. Schematic representation for the fixed-point implementation of Eq.(1).

2 In theory, the addition ¢; + t» could produce an overflow, but in practice this has
a small probability. In order to avoid it completely, we can decrease the values k4
and kp by 1.

12 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

5 Tests

The scheme of Fig. 5 has been used to test the fixed-point synthesis using dif-
ferent rates for the quantized coefficient A,, By, and C;. We tested 9 different
combinations, obtained by choosing R4 in the set [4, 8, 16], R¢ in [2, 4, 8], and
fixing Rg = Ra. We have chosen lower bit rates for R¢, since we aimed at
testing the case where matrix C' is quantized using very few bits per coefficient,
Cq being the largest matrix to store.

We assigned to the registers ¢1, t3, and t3 a number of bit equal to 2 -
max(R4, Rc). This permits to avoid overflow during integer operations. The
maximum length of the register is reached when R4 = 16 and it corresponds to
32 bits, which is the size of a int data type in standard ANSI C programming
language.

In order to evaluate the synthesis performance, we have considered two crite-
ria. The first is an objective one, based on the computation of the peak-to-signal
noise ratio (PSNR) between the synthetic video frames obtained using the fixed-
point and the floating-point implementation of the algorithm. In order to have
a fair comparison, we used the same input driving noise sequence for both the
systems of Eq.(1) and Eq.(11). The PSNR is defined as:

13 9552
PSNR = kZ:l 101log,, MSEGI] =) (13)

where S is the number of frames considered in the computation of the PSNR.
The PSNR evaluates the pixel-wise difference between two images. After a cer-
tain time, the synthetic frames z[k] and z,[k] will differ significantly, since, even
though the input noise sequence is the same, the quantization errors present in
the fixed-point scheme will act as a disturbance, thus leading to a different in-
put driving noise. For this reason, this is an indicative measure of the synthesis
quality for the first few frames that are synthesized, before the quantization er-
ror propagates. After this, a visual quality judgement is used, which constitutes
the second criterium we used to evaluate the synthesis quality. In fact, from a
visual point of view, two synthesized videos can be indistinguishable or compa-
rable, even if their PSNR is very different, since they are not supposed to output
the same video. The average PSNR is then computed for the first 10 synthetic
frames only, while longer synthetic sequences (100 frames) are created for visual
inspection.

During visual inspection we mainly considered two characteristics of the syn-
thetic video created: its dynamic and the visual quality of each frame separately.
The visual inspection was performed by the authors of the present report. The
web address http://lcavwww.epfl.ch/~ costanti/fixed-point-results.html provides
the synthetic videos results. The PSNR, comparison is given in Fig. 6, where
we tested 4 videos sequences, called respectively “Flame”, “Grass”, “Waterfall”,
and “Pond”.

Dynamic Texture on Fixed-Point Architectures 13

Flame Grass
55 55
50 O RC=2 A 50 A
O RC=4
A RC
45 45 A o
o o o
= A)
o 40 @ 40 o
P4 =z A
) 2]
e o © & o o
35 35
o
o
o o O RC=2
30 30 o RC=4
A RC=8
25 25
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
RA RA
Waterfall Pond
55 55
A O RC=2 A
50 50 O RC=4
A RC=38
A
45 o 45
& 4 o) A
=)
x 40 @ 40 o ¢
§> 3 o é o
35 35 8 o
0 RC=2
30 6 RC-4 30
RC=8
e e
"2 4 6 8 10 12 14 16 18 < 2 4 6 8 10 12 14 16 18
RA RA

Fig. 6. Performance evaluation using 4 test videos.

For R4 = 4, the PSNR value reaches its minimum PSNR, in every test video
considered. This corresponds to the worst synthesis result. We notice in this case
that the PSNR value does not change significantly when Ro varies from 2 to 8.
This means that when few bits are assigned to the quantization of the matrices
A and B, the quantized system gives an output whose quality is independent
on the quantization of the other parameter C. The visual inspection showed
that in this case the synthesis quality was very bad, the dynamic being much
affected by the coarse quantization. This is the consequence of the fact that a
large error enters in the loop for state vector X, and thus propagates, affecting
the state vector X,. The role of C|, is limited, since it operates on very noisy data.

For higher values of R4, the quality of the quantization of C' matrix starts
to play a role in the overall quality of the synthetic video. We notice, in fact,
that for values R4 > 8, the PSNRs obtained varying R are clearly separated.
Visual inspection showed that this separation reflects also a perceptually differ-
ent quality of the synthesized videos. In fact, when R4 = 16 and Rc > 8 the
fixed-point synthesis is indistinguishable from the floating-point one, while for

14 Roberto Costantini, Luciano Sbaiz, and Sabine Siisstrunk

R¢ = 4 the effect of the quantization are visible on the single image frames, but
not on the dynamic.

For R4 = 8, the PSNR is in general smaller than that obtained for R4 = 16
for some values of Rc and greater for others. In this case, the visual inspec-
tion showed that the dynamic of the synthesized video is slightly modified, but
still looks acceptable with respect to the dynamic of the original floating-point
implementation, and the image quality is good.

Tests have highlighted that the best solution in terms of synthesis quality
(both dynamic and visual aspect of the dynamic video) is the one obtained
using R4 = 16 and Rc = 8. From the point of view of coefficient storing, this
solution permits to store the model coefficients using 8 times less space than
the original floating point coefficients, since just 8 bits instead of 64 are used to
store the entries of the matrix C, which has the biggest size among the model
coefficients.

If even lower memory is needed, an alternative solution is to consider R4 = 16
and R = 4, which is the second best performance obtained in terms of dynamic
and single frame quality. This has been determined by visual inspection, where
we noticed that even if the case R4 = 8 and R¢c = 8 has a greater PSNR than
the case R4 = 16 and R¢ = 4, the synthesized video obtained using the former
quantization is more appealing in terms of visual quality.

Since matrices A and B have much less coefficients than matrix C, our results
show that it is always favorable to encode them using 16 bits instead of 8 bits,
since the increase in synthesis quality is well justified by a small increase of the
number of bits needed to store them.

6 Conclusions

In this report, we studied the problem of implementing the synthesis of dynamic
texture in a fixed-point architecture. We have considered a linear model for
synthesis, where each synthetic image is represented as the output of a linear
system driven by white noise. The fixed-point solution addresses the problem
of optimal model coefficient quantization in the sense of memory requirement
needed to store them and final synthesis quality. We found that a solution that
permits to obtain a synthesis quality indistinguishable from the floating-point
solution is the one that assigns 16 bit to the matrices of the autoregressive part
(state vector update) of the system and 8 bit to the observation matrix C. This
permits to store the model coefficient using 8 time less space than the original
coefficients, represented using 64 bit precision.

Suboptimal solution also exists, using only 4 bits for C, for instance. In this
case, the dynamic of the video slightly changes, but the overall synthetic video
quality is still acceptable.

Dynamic Texture on Fixed-Point Architectures 15

7 Acknowledgments

This project is supported by the Swiss National Science Foundation (SNF) under
grant number 21-067012.01.

References

1. Schodl, A., Szeliski, R., Salesin, D., Essa, I.: Video textures. (Proc. of SSIGGRAPH
2000) 489-498

2. Kwatra, V., Schédl, A., Essa, 1., Turk, G., Bobick, A.: Graphcut textures: Image
and video synthesis using graph cuts. (Proc. of SIGGRAPH 2003) 277-286

3. Doretto, G., Chiuso, A., Wu, Y., Soatto, S.: Dynamic textures. Int. Journal of
Computer Vision 51 (2003) 91-109

4. Costantini, R., Sbaiz, L., Stisstrunk, S.: Dynamic texture synthesis: Compact models
based on luminance-chrominance color representation. (To appear in Proc. ICIP
2006, Atlanta, GA, USA)

5. Jayant, N., Noll, P. In: Digital Codign of Waveforms. Prentice-Hall Signal Processing
Series (1984)

6. IEEE: Standard for binary floating-point arithmetic. (IEEE Std 754-1985)

7. Zamuner, G.: Implementazione in virgola fissa di un algoritmo per la codifica vocale

a banda larga su dsp tms320c62xx. Tesi di Laurea in Elaborazione Elettronica di
Segnali e Immagini (2002)

