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ABSTRACT 

We present methods to estimate perceptual 
uniformity of color spaces and to derive a 
perceptually uniform RGB space using 
geometrical criteria defined in a logarithmic 
opponent color representation. 

1. INTRODUCTION 

RGB color spaces play an important role in 
imaging: images captured with most digital 
cameras and displayed on CRT or LCD 
monitors are encoded in RGB. When we edit 
an image and modify one of its color 
attributes, such as lightness, we do not want 
to see shifts of the other attributes, hue and 
saturation. Similarly, simple non linear 
operations, like contrast modification, should 
only induce perceptually relevant changes. 
Both can be achieved by using a 
perceptually uniform encoding. 

Opponent color spaces, like CIELAB 1976, 
are used to evaluate color difference in color 
imaging applications. CIELAB is based on 
the CIE 1931 XYZ color matching functions 
(CMFs). The non-linear relations for L, a and 
b values are an attempt to model the non-
linear and opponent response of the human 
visual system, and to derive a color space 
representation where perceptually relevant 
color differences can be calculated with 
Euclidian distance.  

In imaging applications, simpler transforms 
using opponent color representation, such 
as YCrCb or HSV are successfully used. It 
seems that for many applications, an 
approximation of a perceptual color space is 
sufficient for engineering tasks. 

In this paper, we present methods to derive 
a perceptually uniform RBG color space 
where color differences can be measured as 
Euclidian distances. Our optimization criteria 
are not based on any knowledge of the 
human visual system but rely only on 

geometrical criteria defining space 
uniformity. Our transform has the form of a 
colorimetric color space [1]: a linear 
transform is applied to XYZ tristimulus 
values, followed by a non linear color 
component transfer function. Those values 
are then represented in an opponent space, 
where color attributes can easily be defined 
and distances measured. The optimization 
criteria are the straightness of hue lines, 
uniformity of hue angles and chroma.  

The resulting RGB color spaces have better 
perceptual uniformity than both sRGB [2] 
and ROMM [3] transforms, but do not have a 
suitable gamut to be used as color image 
encodings. However, they also have similar 
perceptual uniformity than IPT [4] and 
CIELAB opponent color spaces.  

2. EXPERIMENT 

Our experiment is an extension of the work 
of Finlayson and Süsstrunk [5]. Using hue-
constant psychophysical data by Hung and 
Berns [6], they derived hue-constant RGB 
color matching functions. They tested a 
large set of possible linear transforms from 
the CIE XYZ 1931 color matching functions. 
Each transform was applied to Hung and 
Berns hue-constant XYZ values. The 
obtained RGB values were then represented 
in a logarithmic opponent color space. The 
straightness of each hue line was estimated 
by singular values decomposition (SVD) line 
fitting.  

Brightness and Gamma Invariant Hue 

Hue can be defined independently from 
gamma and brightness [5, 7]. RGB vectors 
are encoded as: 
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where γ  compensates for the system’s non-
linearity and α  compensates for 
illuminance. Applying a logarithm removes 
γ  from the exponent When taking the 
differences, followed by the ratio, both γ  
and α  cancel out: 

1 log( ) log( )
log( ) log( ) 2log( )

tan lin lin
hue

lin lin lin

R G
h

R G B
− −

+ −
= (2) 

Spherical sampling 

We use a spherical sampling technique to 
find the optimal transform [8]. Each triplet of 
points on the unit sphere represents one 
possible 3x3 transform from XYZ to RGB 
(T). By testing all triplets, we can test 
transforms exhaustively. For computational 
reasons though, we initially limited the 
tested transforms to those located within 45° 
of the sRGB transform [2]. We had to slightly 
extend the sampling points area to reach a 
minimum. 

 
Figure 1: Sampling points 

Data 

We first use Munsell renotation data [9], 
Simulations were run on the “real” XYZ 
tristimulus values, i.e. representing colors 
lying inside the MacAdam limits [10]. It 
represents a dataset of 390 values 
distributed in 40 hue angles, defined under 
illuminant C. We used the Sharp chromatic 
adaptation transform [11] to calculate 
corresponding colors under D65. Hung and 
Berns data [12] were also used for 
comparison. 

Logarithmic Opponent Color Calculation 

XYZ values are converted into linear RGB 
by applying the (3x3) transform T found 
through the spherical sampling technique. 

We ignore negative RGB values instead of 
offsetting or compressing them. The number 
of positive RGB values N may thus vary for 
each transform. We take into account only 
transforms giving at least 67% of positive 
values. 

The log opponent color matrix O (Nx2) is 
calculated from the (Nx3) RGB matrix 
according to 

O [log( ) log( ), log( ) log( ) 2log( )]lin lin lin lin linR G R G B= − + − (3) 

Singular values decomposition line fitting 

Hue constant data should lie on a line in the 
log opponent hue representation. Hue lines 
are evaluated using a singular values 
decomposition method. The deviation of hue 
values from the fitted line gives an 
estimation of hue constancy. We add the 
constraint that the line should pass through 
the origin. This is done by mirroring all 
opponent colors values resulting in a (2Nx2) 
matrix = [ ; - ]H O O . 

Prior to line fitting, the components are 
decorrelated using a whitening transform. 
This transform is based on the eigenvalue 
decomposition of the covariance matrix 

T )(H H  of H . 

T T=  H H EΛE (4) 

H  then becomes 
1/2= ( )  TH H EΛ% (5) 

The matrix H%  is then separated into 40 
matrices nH% , each corresponding to a hue 
line and containing the log opponent RGB 
values and their mirrored values. 

The singular value decomposition is 
T

n n n n=  H U D V% (6) 

Where nU  and nV  contain singular vectors 
and nD  is a diagonal matrix of singular 
values, 
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The second singular value σ2 is the residual 
error, i.e., the distance between the points 
and the fitted line. 

For one given transform, the residual error is 
the mean error over all 40 hues. 
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The residual error also varies with the 
square root of the number of fitted points, 
i.e. 

2 2
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σ σ= , (9) 

where N is the number of positive values. 

Using equations (8) and (9), the residual 
error is given by 

40

2
1

1 1 ( )
40

norm

n

n
N

ε σ
=

= ∑  (10) 

Finally, each set of opponent RGB values 
were normalized prior to line fitting using 
their extreme values so that the range of 
values does not have an influence on the 
residual error. For each hue line separately  
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, (11) 

where x and y are the red-green and yellow-
blue opponent coordinates, respectively. 

Optimization criteria 

Hue constancy 

Optimizing for hue constancy alone will not 
result in a perceptually uniform space, it only 
gives a measure of hue constancy for 
increasing chroma. Hence we introduced 
other criteria on the geometrical 
representation. 

 

 
Figure 2: line fitting 

x-axis: log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 

 

Hue angle uniformity 

The second criterion is the uniformity of hue 
angles. Using Munsell renotation data, the 
angle between each pair of adjacent hue 
lines should be 360°/40 hues = 9° (see 
Figure 3). SVD line fitting returns unit 
vectors normal to the line. The angles 
between two lines can thus be computed 
using: 

1
1cos ( )i i in nα −
+=

uur uuuv
o (12) 

The variance of the 40 angles around 9° is 
then computed. A low variance indicates 
good angle uniformity. 

The variance is given by: 
40
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Figure 3: uniform hue angles 

x-axis: log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 

Chroma uniformity 

The third criterion uses color distances on 
each hue line. Supposing the distance 
between every two pairs of XYZ Munsell 
values to be perceptually equal, we compute 
the distances between each pairs of 
adjacent points on one hue line and store 
them in a vector d: 

2 2d( ) ( ( 1) ( )) ( ( 1) ( ))i x i x i y i y i= + − + + − (14) 

Where x and y are the red-green and yellow-
blue opponent coordinates, respectively and 
the index i runs over the chroma. 

The vector d is computed for every hue line 
and the 40 vectors are then concatenated 
into a 350x1 vector D. The variance is 
computed as: 
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A low variance on the intervals lengths is an 
indicator of good chroma uniformity. 

 

 
Figure 4: intervals 

x-axis : log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 

The eccentricity of chroma circles is also a 
condition for good space uniformity. Uniform 
hue angles plus uniform color differences 
imply that chroma circle eccentricity is close 
to zero.  

Note that the whitening transform was only 
used to estimate hue constancy, as it would 
have falsely influenced the other criteria. 
The variances on color differences and hue 
angle uniformity were computed using non 
normalized logarithm opponent color values. 

 

3.RESULTS 

We tested over 300 millions different 
transforms. We only kept the transforms 
having line fitting residual errors, angles and 
intervals variances comparable to IPT and 
CIELAB’s. It represents a total of 660 
transforms.  

In this section, we present the results for 
each individual optimization criterion and the 
overall solution. The results are then 
compared with CIE Lab and IPT transforms.  

In the last section, we present results using 
the same criteria but performed on Hung 
and Berns hue constant dataset.  

Transform 1: Best hue constancy 

 
Figure 5: best hue constancy 

x-axis: log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 

Transform 2: Best hue angles uniformity 

 
Figure 6: best hue angle uniformity 

x-axis: log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 

Transform 3: Best chroma uniformity 

 
Figure 7: lowest intervals length variance 

x-axis: log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 
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Combining all criteria 

The three space uniformity indicators,  angle 
variance, interval lengths variance and line 
fitting residual error, represented in a three 
dimensional space define a function. Its 
minimum is the point located at the shortest 
distance from the origin. The corresponding 
transform defines the overall best transform. 
This transform is the one having the lowest 
interval lengths variance, i.e. it is also 
transform 3. 

Corresponding sensors 

 
Figure 8: best transform’s corresponding sensors 

Comparison with CIELAB and IPT 

Table 1 shows the space uniformity 
indicators for CIELAB, IPT, sRGB and 
ROMM transforms as well as for the three 
transforms obtained through our 
optimization. 

 
Table 1: uniformity indicators for several transforms 

using Munsell dataset 

Dependency on the data set  

We performed the same optimization using 
the same criteria on Hung and Berns hue 
constant data set.  

 
Figure 9: overall minimum using Hung and Berns 

dataset 
x-axis: log(R)-log(G), y-axis: log(R)+log(G)-2log(B) 

 
Figure 10: corresponding sensors 

Corresponding gamuts 

 
Figure 11: Lu’v’ diagram and gamuts 

 

4. CONCLUSION 

We do not obtain definitive results, the 
optimal transform depends strongly on the 
dataset used to perform the optimization. 
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Considering the angles, intervals lengths 
and hue constancy computed for both 
CIELAB and IPT, CIELAB shows better hue 
constancy than IPT. On the other hand, 
when we compute the same indicators for 
Hung and Berns hue constant data, IPT 
gives much better results. The quality of the 
result depends on the perceptual relevancy 
of the dataset. 

We do not obtain transforms that have all 
space uniformity indicators – hue constancy, 
hue angle uniformity and interval lengths 
uniformity – lower that IPT and CIELAB’s, 
but we obtain a much better space 
uniformity that sRGB or ROMM RGB. 

The gamut extent of the resulting transforms 
has too much values lying outside the 
spectral locus to be used as a color 
encoding. However, this representation can 
still be used to estimate color differences 
using a Euclidian metric. 

The mathematical tools presented here are 
applicable for evaluation of color space 
uniformity and further optimizations taking 
more criteria into account – like the gamut 
extent – can be carried out.  

The logarithmic opponent color definition we 
are using here [5, 7] might not be 
appropriate for space uniformity evaluation, 
the use of the power function instead may 
give better results. 
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