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Abstract

We show for the first time that standard model checking allows one to completely
verify asynchronous algorithms for solving consensus, a fundamental problem in fault-
tolerant distributed computing. Model checking is a powerful verification methodology
based on state exploration. However it has rarely been applied to consensus algorithms,
because these algorithms induce huge, often infinite state spaces. Here we focus on
consensus algorithms based on the Heard-Of model (HO model, for short), a new com-
putation model for distributed computing. By making use of the high abstraction level
provided by this computation model, we develop a methodology for verifying consensus
algorithms in every possible state by model checking. This paper describes the proposed
verification methodology and the results of applying it to various consensus algorithms.

Keywords: Consensus, Heard-Of (HO) model, model checking, fault-tolerant dis-
tributed systems, verification

1 Introduction

Asynchronous fault-tolerant distributed algorithms are typically difficult to design; inherent
asynchrony and concurrency make them highly error-prone. The goal of our research is to
alleviate this problematic situation by providing a means of automatic verification for these
algorithms.

Recently, a new computation model for asynchronous fault-tolerant distributed systems,
called the Heard-Of model (HO model for short), was proposed [6]. The HO model can
capture the synchrony degree and any type of non-malicious faults in a unified manner,
and thus provides a general framework for designing and reasoning about fault-tolerant
distributed algorithms.

This paper presents our attempt to mechanically verify HO model-based algorithms.
Specifically, we focus on algorithms for solving the consensus problem, a fundamental prob-
lem in fault-tolerant distributed computing. As a verification approach, we use model
checking. In model checking a system to be verified is first represented as a finite state ma-
chine and then verified against a temporal logic specification through state exploration. A
remarkable advantage of model checking over other formal verification methods is that it is
fully automatic and its application requires no user supervision or expertise in mathematical
reasoning.

Although model checking has been widely practiced, there is little work on applying
it to the verification of asynchronous distributed algorithms for consensus. A plausible
reason for this is that these algorithms induce huge, often infinite, state spaces, thereby
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severely limiting the usefulness of model checking techniques. Sources that yield infinite
state spaces include unbounded round numbers and unbounded message channels, which
are both typical for asynchronous distributed systems/algorithms.

By restricting to finite models with a fixed number of processes and a fixed number
of rounds, one could apply standard model checking to the verification of asynchronous
consensus algorithms. Clearly, this approach can only be used for detecting errors that
manifest themselves in early rounds; nothing conclusive can be obtained if no errors are
detected.

In previous work [12, 14, 16], therefore, model checking was not used as a stand alone
method, but in conjunction with other mathematical proof techniques. In [14], a shared
memory-based randomized consensus algorithm was verified. The authors of [14] separated
the algorithm into a probabilistic component and a non-probabilistic component. They ap-
plied standard probabilistic model checking techniques to the probabilistic component. For
the verification of the non-probabilistic part, whose state space is infinite, they used proof
techniques that reduce the verification problem to small problems that can be solved by
model checking. In [12, 16], model checking was used for debugging purposes in developing
the mathematical proofs for some of the Paxos consensus algorithms. The models that were
model checked consisted of two or three processes and a small number of rounds [17]. Such
small-sized models cannot be used to ensure that the algorithm is correct but are sufficient
for detecting simple bugs. The applications of formal verification methods other than model
checking to consensus algorithms can be found in [11, 13, 19, 20, 22].

The work presented in this paper is different from the previous work in that our approach
does not rely on any other formal verification techniques than model checking. As a result,
the verification can be carried out in a fully automatic manner. Also, we fix the number of
processes but do not impose any restrictions on the number of rounds; thus our verification
is complete in the sense that it verifies the behavior of algorithms in every possible state.
To the best of our knowledge, this is the first time standard model checking allows one to
completely verify asynchronous consensus algorithms.

We should remark that this becomes possible largely due to the high abstraction level
provided by the HO model. In the HO model, for example, the computation consists of
asynchronous communication-closed rounds where every message sent but not received in
the same round is lost. Thus, when model checking HO model-based algorithms, one no
longer has to explicitly consider messages buffered in the channels. However, the state
space can be infinite especially when the algorithm uses timestamps, because the number of
rounds is unbounded. As shown later, we devise a technique for dealing with such infinite
state spaces, as well as other modeling and optimization techniques.

Unlike mathematical proving, our approach can only be applied to the case where the
number of processes is fixed to a small value and thus, it cannot provide a correctness proof
for the general case. On the other hand, our approach is fully automatic and, if the design
fails to satisfy a desired property, can produce a counterexample, which is particularly
important in finding subtle errors. Both approaches are therefore complementary.

This paper is structured as follows. In Section 2, we describe the HO model and the
consensus problem. In Section 3, we briefly explain the concept of model checking as well as
NuSMV [8], the model checker used throughout this research. In Section 4, we present how
one can model check HO model-based consensus algorithms using a particular algorithm
as an example. In Section 5, several techniques are introduced to apply the proposed
approach to various algorithms with different characteristics. We conclude the paper with
a brief summary and future work in Section 6.
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2 The HO Model and the Consensus Problem

2.1 The HO Model

We consider a distributed system consisting of n processes. Let Π = {p0, p1, · · · , pn−1}
be the set of the processes. The Heard-Of (HO) Model is a general computational model,
suitable for describing any type of systems with benign faults [6]. The two notable features
of this model are that (1) synchrony degree and fault model are encapsulated in the same
abstract structure, namely the Heard-Of (HO) sets, and (2) the notion of faulty compo-
nent has totally disappeared; instead, only the effects of faults are specified in the form of
transmission faults.

In the HO model an algorithm runs in rounds. Without loss of generality, we assume
that an algorithm starts at round one. Each round consists of three parts: send, receive,
and state transition. Every process sends messages to all processes, then receives a subset
of the messages sent, and finally makes a state transition based on the current state and the
messages it received. We denote by HO(pi, r)(⊆ Π) the HO set for process pi in round r. A
process pi receives the message sent by a process pj iff pj ∈ HO(pi, r). That is, HO(pi, r)
is the set of processes that pi has “heard of” in round r. A transmission fault from pj to pi

in round r is notified by the fact that pj does not belong to HO(pi, r).
There can be various reasons for transmission faults. For example, messages may have

been lost because they missed a round due to the asynchrony of communication and pro-
cessing. Process or link faults can also cause transmission faults. The key is that the HO
model captures the synchrony degree and faulty components in a unified manner by means
of the HO sets, without attributing transmission faults to specific causes.

2.2 The Consensus Problem

The consensus problem is recognized as a fundamental problem to solve when one has to
design a fault-tolerant distributed system. In this problem, each process is assumed to have
a proposed value at the beginning of the algorithm execution and is required to eventually
decide on some value. In the HO model the problem is specified by the following three
conditions [6]:

Integrity Any decision value is the proposed value of some process.

Agreement No two processes decide differently.

Termination All processes eventually decide.

It should be noted that the termination property requires that all processes decide, since
there is no notion of faulty processes in the HO model. A detailed discussion of this issue
can be found in [6].

We assume that a process chooses its proposed value from a set V and that each process
pi has a special variable di whose domain is V ∪ {?} where ? is a special value that is
not contained in V . Variable di is initially ? and pi decides on a value v ∈ V by setting
di to v. By convention, we denote the assignment of v to di by decide(v) and omit an
explicit reference to di in the pseudo-codes presented in this paper. We assume that a
process chooses its proposed value from a set V which is an arbitrary set of totally ordered
elements.

As a running example, we consider the UniformVoting algorithm [6] (Algorithm 1). This
algorithm can be viewed as a deterministic version of the well-known randomized consensus
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Algorithm 1 The UniformVoting algorithm [6]
1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?

4: Round r = 2ϕ − 1 :
5: Sr

p :
6: send ⟨xp ⟩ to all processes

7: T r
p :

8: if at least one ⟨v⟩ is received then
9: xp := smallest v received
10: if all the values received are equal to v then
11: votep := v

12: Round r = 2ϕ :
13: Sr

p :
14: send ⟨xp , votep ⟩ to all processes

15: T r
p :

16: if at least one ⟨ ∗ , v ⟩ with v ̸=? is received then
17: xp := v
18: else
19: xp := smallest w from ⟨w , ? ⟩ received
20: if all the messages received are
21: equal to ⟨ ∗ , v ⟩ with v ̸=? then
22: decide(v)
23: votep := ?

algorithm by Ben-Or [1]. The UniformVoting algorithm shares many features with other
HO model-based consensus algorithms. For example, these algorithms run in phases, each
of which consists of one or more rounds. We let m denote the number of rounds in one
phase.1 For the UniformVoting algorithm, one phase is composed of m = 2 rounds. Each
round r starts with the send part denoted by Sr

p . Each process p then receives messages
from processes, which defines HO(p, r). Finally, processes execute the state transition part
denoted by T r

p .
Since the HO model represents the degree of synchrony and fault model by the HO

sets, system’s characteristics can be captured by a condition on the HO sets. It is well
known that no deterministic consensus algorithm is possible in pure asynchronous systems
prone to failures [10]. In general, therefore, consensus algorithms based on the HO model
are intended to work when a certain condition holds on the HO sets. The UniformVoting
algorithm, for example, assumes that both of the following conditions are met.

• No Split Rounds : ∀r > 0, ∀pi, pj ∈ Π, HO(pi, r) ∩ HO(pj , r) ̸= ∅.

• Space Uniform Round : ∃r0 > 0, ∀pi, pj ∈ Π, HO(pi, r0) = HO(pj , r0).

The first condition ensures agreement, while the second condition ensures termination.
When the transition part T r

p is executed, the messages available guarantee that the condi-
tions on the HO sets hold.

In contrast to agreement and termination, integrity is trivially satisfied and this is usually
the case for most consensus algorithms. Thus we limit our discussion to the verification of
agreement and termination in the rest of this paper. Also, we will not explicitly verify the
possibility that the same process makes different decisions in different rounds, because it is
straightforward to modify any algorithm to avoid such a situation (adding an extra boolean
variable per process is sufficient).

3 Symbolic Model Checking

Model checking is the process of exploring a finite state transition system to determine
whether or not a given temporal property holds. Formally a finite state transition system
is a 3-tuple (S, I,R) where S is a set of states, I is a set of initial states, and R ⊆ S×S is a
transition relation. R must be total, that is, for every state s ∈ S there is a state s ∈ S such
that (s, s′) ∈ R. A computation path is defined as an infinite sequence of states s0, s1, · · ·

1In Paxos [15] and in [5], a round is decomposed in phases. “Round” and “phase” are swapped here to
use the classical terminology [9].
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such that (si, si+1) ∈ R for any i ≥ 0. In the process of model checking, a given temporal
property is evaluated with respect to all the initial states.

The major problem with model checking is that the state spaces arising from practical
problems are often extremely large, generally making exhaustive exploration not feasible.
One of the most successful approaches to this problem is the use of symbolic representa-
tions of the state space. In symbolic model checking [18], boolean functions represented by
Binary Decision Diagrams (BDDs) are used to represent the state space, instead of, for ex-
ample, explicit adjacency-lists. This can reduce dramatically the memory and time required
because BDDs represent many frequently occurring boolean functions very compactly.

We use the NuSMV Version 2 model checker [8]. NuSMV is one of the latest and most
successful symbolic model checkers. NuSMV takes a program written in its own input
language as input and outputs the verification results for given temporal specifications.

A NuSMV program consists of variables that have finite domains. The set of states, S,
is the Cartesian product of these domains. Each valuation to these variables corresponds
to a unique state in S. To avoid confusion, we refer to the variables occurring in NuSMV
programs as program variables and the variables used in HO model-based algorithms as
process variables.

In the NuSMV input language, the transition relation is described either by parallel
assignments to the next version of the program variables, or by propositional constraints
on the reachable state set and the transition relation, or both. Assignments of next values
to the variables are preceded by the keyword ASSIGN. The expression next(x) is used to
refer to the program variable x in the next state. The TRANS keyword is used to declare a
constraint on the transition relation, while the INVAR keyword is used to specify a constraint
on the reachable states.

Initial states are assigned by specifying the initial values of the program variables using
the expression init(x) where x is a program variable. Assignments to the initial values
must be preceded by ASSIGN.

NuSMV supports CTL and LTL as temporal specification logics; however we stick to
using CTL because CTL model checking requires much less computational complexity than
LTL model checking [23]. Here we only use two temporal operators, AG and AF. The
formula AG g holds in state s if g holds in all states along all computation paths starting
from s, while the formula AF g holds in state s if g holds in some state along all computation
paths starting from s. An atomic state formula is a CTL formula. If g1 and g2 are CTL
formulae, then so are ¬g1, g1 ∧ g2, g1 ∨ g2, AF g1, and AG g1.

A given CTL formula is evaluated with respect to all the initial states as follows: First,
the set of all reachable states is computed by performing a forward search from the set of
the initial states. This step does not affect the correctness of the result but often improves
the performance, because it can allow the model checker to limit the state search performed
thereafter to the reachable states. In the next step, the set of states where the given
temporal property holds is computed. This is done by computing in turn the state set
satisfying each subformula of the CTL formula in a bottom-up manner. Finally, whether
the set obtained contains all initial states is determined. If it contains all the initial states,
then the system meets the correctness property.

If the CTL formula is of the form of AG g where g contains no temporal operator, the
first step (that is, reachability analysis) suffices to check that formula. In NuSMV the -AG
option enables this search, making it possible to skip the remaining, time-consuming steps.
In this work we always use this option whenever it can be applied.
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4 The Proposed Model Checking Approach

In this section we show how one can model the behavior of an HO model-based consensus
algorithm as a finite state transition system so that model checking can be applied to the
verification of the algorithm.

4.1 Program Variables

Program variables determine the state space S. Since different configurations of process
states must be distinguished in S, we need at least program variables that correspond to
the process variables.

Some of the process variables usually have V as their domain (see Algorithm 1). Since V
can be arbitrarily large, it is necessary to represent it by a set of small size. Since integrity
usually trivially holds and at most n distinct values can be proposed at a time, we substitute
a set of n values {0, 1, · · · , n − 1} for V . In other words, the elements of {0, 1, · · · , n − 1}
can be viewed as symbolic values representing any of at most n distinct values taken from
V .

Additional program variables are used to represent the current round and the HO sets.
The HO model-based algorithms we consider here run in phases each of which consists of
m(≥ 1) rounds. The variable ro is used to represent the current round. Specifically, the
domain of ro is {0, 1, · · · ,m− 1} and round mϕ− ro for some phase ϕ is represented by ro.
Hence the value of ro changes as m − 1, m − 2, · · · , 0,m − 1,m − 2, · · · .2 The HO set for
process pi is represented by n boolean variables hi,0, hi,1, · · · , hi,n−1 such that hi,j = true
iff pj belongs to the HO set for pi in the current round.

For the UniformVoting algorithm, for instance, the following program variables are used
to define the state transition system:

• xi ∈ {0, 1, · · · , n − 1} (i = 0, 1, · · · , n − 1).

• votei ∈ {0, 1, · · · , n − 1} ∪ {?} (i = 0, 1, · · · , n − 1).

• di ∈ {0, 1, · · · , n − 1} ∪ {?} (i = 0, 1, · · · , n − 1).

• ro ∈ {0, 1}

• hi,j ∈ {true, false} (i = 0, 1, · · · , n − 1, j = 0, 1, · · · , n − 1).

The NuSMV code for declaration of these variables in the case n = 3 is shown below. The
value ? is represented as -1 to avoid type conflicts.

MODULE main

VAR

-- Process variables

x0 : {0, 1, 2};

x1 : {0, 1, 2};

x2 : {0, 1, 2};

vote0 : {0, 1, 2, -1}; -- -1 stands for ?

vote1 : {0, 1, 2, -1};

vote2 : {0, 1, 2, -1};

d0 : {0, 1, 2, -1}; -- -1 stands for ?

2For Algorithm 1, we have m = 2. In this case, ro = 1 represents rounds 1, 3, 5, etc.; ro = 0 represents
rounds 2, 4, 6, etc.
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d1 : {0, 1, 2, -1};

d2 : {0, 1, 2, -1};

-- Round

ro : {0, 1};

-- HO sets: hij = true iff i hears of j

h00 : boolean; h01 : boolean; h02 : boolean;

h10 : boolean; h11 : boolean; h12 : boolean;

h20 : boolean; h21 : boolean; h22 : boolean;

Using these variables we construct the state transition system (S, I,R) as follows. A
state in S represents: (i) one of the rounds constituting a phase, (ii) the states of the
processes at the beginning of that round, and (iii) the HO sets in the round. The set of
initial state in I contains all states that correspond to round one. A transition (s, s′) ∈ R
exists iff s′ represents: (i) the round next to the round represented by s, (ii) the process
states yielded by a round of algorithm execution from the process states and the HO sets
represented by s, and (iii) HO sets that can occur in the round represented by s′. In the rest
of this section, we describe how one can specify the state transition system in the context
of NuSMV.

4.2 Representing Algorithms

Here we explain how to describe the behavior of an algorithm by specifying the transition
of the values of program variables except hi,j . The representation of HO sets using hi,j will
be discussed in Section 4.3.

Initial States

The initial states of the state transition system represent the states of the processes when
an algorithm starts. Process variables are initialized as specified in a given algorithm. In
NuSMV, if no initial value is assigned to a variable, that variable can take any value in its
domain in the initial state. For the case of the UniformVoting algorithm, this applies to
the variables xi, because a process can propose any value in V . The value of ro is initially
m − 1, where m is the number of rounds comprising a phase. Below is the NuSMV code
fragment that specifies the initial states for the UniformVoting algorithm.

ASSIGN

init(vote0) := -1; init(d0) := -1;

init(vote1) := -1; init(d1) := -1;

init(vote2) := -1; init(d2) := -1;

init(ro) := 1;

Algorithm Execution

Now we show how to express the transition of the values of these variables. First, let
us consider ro. Remember that ro is used to show that the current state represents round
mϕ−ro for some phase ϕ. Thus ro changes cyclically as m−1,m−2, · · · , 1, 0,m−1,m−2, · · · .
That is, ro′ = m − 1 if ro = 0; ro′ = ro − 1 otherwise.3 In NuSMV this can be specified
using a case expression as follows:

3Remember that a primed variable is used to refer to a variable of the next state (see Section 3). Thus
ro′ represents the value of ro at the next state. In the NuSMV language, next is used to represent a next
state variable.

7



next(ro) :=

case

ro = m - 1 : m - 2;

ro = m - 2 : m - 3;

...

ro = 1 : 0;

1 : ro - 1;

esac;

A case expression returns the value of the first expression on the right hand side of ‘:’, such
that the corresponding condition on the left hand side evaluates to 1 (true).

The process variables (xi, votei, di for the UniformVoting algorithm) are updated along
with the execution of the algorithm. The state of a process p at the beginning of round
r + 1 is determined from its HO set HO(p, r) and the states of all the processes at the
beginning of round r (the messages sent by a process in round r are determined by its
state at the beginning of round r). Hence the new value of a process variable at the
next state can be represented as an expression over the process variables and hi,j . When
r = mϕ − k (0 ≤ k ≤ n − 1), we denote by f(v, k) the new value for a process variable v.

For the UniformVoting algorithm, for example, when the current state represents the
beginning of round 2ϕ− 1, the value of xi at the next state is represented by f(xi, 1) shown
below (see lines 5–9 of Algorithm 1):

f(xi, 1) :=

{
xi ∀j : hi,j = false

min
hi,j=true

{xj} otherwise

In the NuSMV input language, the expression (f(x0, 1)) can be defined as follows (here
n = 3 is assumed):

DEFINE

fx0_1 :=

case

!h00 & !h01 & !h02 : x0;

h00 & (!h01|(x0 <= x1)) & (!h02|(x0 <= x2)): x0;

h01 & (!h00|(x1 <= x0)) & (!h02|(x1 <= x2)): x1;

1 : x2;

esac;

For any process variable v, its value in the next state is f(v, ro), since round mϕ − ro is
the round that corresponds to the current state. That is, the transition of the value of v
is specified as v′ = f(v, ro). The following code fragment, which specifies the next value of
x0 in the UniformVoting algorithm, shows how one can describe this in the NuSMV input
language.

next(x0) :=

case

ro = 1 : fx0_1;

1 : fx0_0;

esac;

4.3 Representing Conditions on HO Sets

Algorithms based on the HO model are correct when a certain condition holds on the HO
sets. There are two ways to represent such a condition in our verification method. The first
approach is to explicitly incorporate it into the state transition system, by imposing some
constraints on the behavior of the HO sets.
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In the second approach, the condition on HO sets is not modeled in the state transition
system; instead, the condition is incorporated into the temporal logic formula to be verified
so that only computational paths that meet that condition will be examined. In this case,
since the HO set changes arbitrarily, so does the value of program variable hi,j .

The second approach is more flexible since it allows one to verify the algorithm under
various conditions without altering the state transition system. For example, if one wants
to verify that pi will eventually decide if the HO sets meet a condition c1 in some round,
then the property is expressed in CTL as AG (c1 → AF (di ̸=?)).

However, CTL is not so expressive that this approach can always be feasible. For
example, suppose that only the computation paths where the HO sets invariantly meet
some condition c2 are of interest. In this case, the property to be verified can be expressed
in LTL as G c2 → F (di ̸=?);4 but CTL is not capable to express this property. In such a
case, we must resort to the first approach.

The condition of interest is often a conjunction of subconditions. In that case, the two
approaches can be taken at the same time for different subconditions. For the UniformVot-
ing algorithms, the two (sub)conditions described in Section 2.2 are of particular interest.
The first condition, which states that no round is split, specifies an invariant condition.
Thus the first approach is used to model this property. Specifically, we impose the following
constraint on the reachable states:∧

0≤i<j≤n−1

(
(hi,0 ∧ hj,0) ∨ · · · ∨ (hi,n−1 ∧ hj,n−1)

)
This can be performed using the INVAR keyword. Below is the fragment of the NuSMV
program which specifies this constraint for the case n = 3:

INVAR

((h00 & h10) | (h01 & h11) | (h02 & h12))

& ((h00 & h20) | (h01 & h21) | (h02 & h22))

& ((h10 & h20) | (h11 & h21) | (h12 & h22))

For the second condition to hold, on the other hand, a uniform round only needs to
occur in some round after the algorithm started. This property can be expressed in CTL,
as shown in Section 4.4.

4.4 Verification

Here we show the results of a verification experiment for Algorithm 1 using the model
described above. If no notice is provided, these results are those obtained when the number
of processes n was set to three. All measurements in this paper were performed on a
Windows XP machine with a 1.66GHz Intel T2300 CPU and 1.5Gb memory.

Case 1: No Split Rounds

We first model checked the algorithm assuming only no split rounds (see Section 2.2). We
started with verification of agreement. This property is expressed in CTL as follows:

AG agreement (CTL 1)

where
agreement :=

∧
0≤i<j≤n−1

(
(di ̸=?) ∧ (dj ̸=?) → di = dj

)
4Operators G and F mean globally and sometime in the future, respectively.
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Table 1: Time required for verification (UniformVoting)
n = 3 n = 4

Agreement (CTL 1) 0.2sec 11.0sec
Termination (CTL 2) 1.9sec 14min5sec
Termination (CTL 3) 1.9sec 13min58sec
# reachable states 21,350 1.58658 ×107

The CTL formula is expressed in the NuSMV input language as follows:

DEFINE

agreement :=

((d0 != -1) & (d1 != -1) -> (d0 = d1))

& ((d0 != -1) & (d2 != -1) -> (d0 = d2))

& ((d1 != -1) & (d2 != -1) -> (d1 = d2));

SPEC

AG agreement

NuSMV completed the verification instantly, showing that the property holds.
Next, we checked termination. The first CTL formula we tried is:

AF termination (CTL 2)

where
termination := (d0 ̸=?) ∧ · · · ∧ (dn−1 ̸=?)

NuSMV checked this formula in a few seconds, making a verdict that it does not hold with
the following counterexample.

State 1:

x0 = 0, x1 = 0, x2 = 2, vote0 =?, vote1 =?, vote2 =?, d0 =?, d1 =?,
d2 =?, ro = 1, h0 = (true, false, true), h1 = (true, false, true), h2 =
(false, false, true)

↓
State 2:

x0 = 0, x1 = 0, x2 = 2, vote0 =?, vote1 =?, vote2 = 2, d0 =?, d1 =?,
d2 =?, ro = 0, h0 = (true, true, false), h1 = (true, true, false), h2 =
(true, false, true)

↓
State 1:
↓
...

This counterexample clearly shows an execution that alternates between State 1 and State
2; i.e., the No Split Rounds condition does not suffice to ensure termination.

10



Case 2: No Split Rounds and a Space Uniform Round

We changed the CTL formula so that it asserts that when a space uniform round occurs,
the termination will be met eventually. The following expression represents that the current
round is space uniform.

uniformity :=
∧

1≤i≤n−1

(
(h0,0 = hi,0) ∧ · · · ∧ (h0,n−1 = hi,n−1)

)
Thus the CTL formula to be verified is:

AG(uniformity → AF termination) (CTL 3)

NuSMV proved within two seconds that this formula holds.
Table 1 summarizes the time required for model checking the UniformVoting algorithm.

(The time used for producing counterexamples is not included.) The number of reachable
states was calculated using the -r option of NuSMV. When n = 5, verification was not be
completed because of a memory shortage.

5 Extensions and Optimizations

5.1 Coordinator-Based Algorithms

Many algorithms for consensus are coordinator-based algorithms. The HO model can be
naturally extended to include the notion of a coordinator. In a coordinator-based algorithm,
the behavior of a process depends not only on its current state and the received messages,
but also on the identity of the coordinator of that process. Here we show how to deal with
coordinator-based algorithms.

To represent the coordinator, we add a new program variable per process. Let coordi be
this variable for process pi. The domain of coordi is {0, 1, · · · , n − 1}. Variable coordi can
be treated in the same way as HO sets: The value of coordi could be nondeterministically
changed in a fully arbitrary manner or some constraints could be imposed. Probably the
most typical constraint is that the coordinator of a process never changes during a phase. In
this case the coordinator can change only at the end of round mϕ− 0. Thus this constraint
is described as:

(ro ̸= 0) →
(
(coord′0 = coord0) ∧ · · · ∧ (coord′n−1 = coordn−1)

)
In the NuSMV language, this can be specified using the TRANS keyword, as shown below
(n = 3).

TRANS

(ro != 0) ->

((next(coord0) = coord0) & (next(coord1) = coord1) & (next(coord2) = coord2))

It is also often the case that the coordinator of a process is deterministically determined
based on the current phase number. The well-known rotating coordinator strategy is such
an example, in which case process p(ϕ−1) mod n is the coordinator for all the processes in
phase ϕ. To represent the rotating coordinator, it suffices to set the initial value of coordi

to 0 and to explicitly specify the next state value as follows:

coord′i =
{

(coordi + 1) mod n ro = 0
coordi otherwise

The corresponding code fragment is shown below (n = 3):

11



Algorithm 2 The CoordUniformVoting algorithm [6]
1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?

4: Round r = 3ϕ − 2 :
5: Sr

p :
6: if p = Coord(p, ϕ) then
7: send ⟨xp ⟩ to all processes

8: T r
p :

9: if some message ⟨ v ⟩ is received
10: from Coord(p, ϕ) then
11: xp := v

12: Round r = 3ϕ − 1 :
13: Sr

p :
14: send ⟨xp ⟩ to all processes

15: T r
p :

16: if all the values received are equal to v then
17: votep := v

18: Round r = 3ϕ :
19: Sr

p :
20: send ⟨ votep ⟩ to all processes

21: T r
p :

22: if at least one ⟨ v ⟩ with v ̸=? is received then
23: xp := v
24: if all the messages received are
25: equal to ⟨ v ⟩ with v ̸=? then
26: decide(v)
27: votep := ?

ASSIGN

init(coord0) := 0; init(coord1) := 0; init(coord2) := 0;

next(coord0) :=

case

ro = 0 : (coord0 + 1) mod 3;

1: coord0;

esac;

next(coord1) :=

...

As an example of verification of a coordinator-based algorithm, we show the results
of model checking the CoordUniformVoting algorithm [6] (see Algorithm 2), which is a
coordinator-based variant of the UniformVoting algorithm. In the CoordUniformVoting
algorithm, the coordinator of each process is assumed not to vary during a phase. The
coordinator of process p in phase ϕ is denoted as Coord(p, ϕ) in the pseudo-code.

In order to meet agreement, the CoordUniformVoting algorithm assumes that no round
is split, as in the case of UniformVoting. Thus the agreement property can be checked just
as described in Section 4.

Termination is intended to be satisfied if for some phase ϕ, round 3ϕ − 2 is uniformly
and well coordinated, that is, in that round, all the processes agree on the coordinator and
can hear from it. Let uwc be an expression that evaluates to true iff when the current round
is uniformly and well coordinated; that is,

uwc :=
( ∧

1≤i≤n−1

(coord0 = coordi)
)
∧

( ∧
0≤i≤n−1

(
(coord0 = i) → (h0,i ∧ · · · ∧ hn−1,i)

))
Using this expression, the following CTL formula can be obtained which specifies the liveness
property of interest.

AG
(
((ro = 2) ∧ uwc) → AF termination

)
(CTL 4)

Note that the term (ro = 2) ∧ uwc evaluates to true at a state s iff s corresponds to round
3ϕ − 2 for some phase ϕ and that round is uniformly and well coordinated.
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Table 2: Time required for verification (CoordUniformVoting and CoordUniformVotingrc)
CoordUniformVoting CoordUniformVotingrc

n = 3 n = 4 n = 3 n = 4
Agreement (CTL 1) 0.2sec 14.0sec 0.2sec 16.0sec
Termination (CTL 4) 0.8sec 17min5sec 0.8sec 16min39sec
# reachable states 2.46645 × 106 5.21465 × 1010 274, 050 8.14789 × 108

We were able to model check this algorithm and its variant that uses the rotating
coordinator strategy (denoted by CoordUniformVotingrc) with up to n = 4. It should be
noted that in the latter algorithm, all the processes always agree on the same coordinator;
thus the first conjunct of the uwc formula is always true. The running time and the size of
the state spaces are shown in Table 2.

An interesting finding is that although the number of reachable states for CoordUniform
Votingrc is much smaller than CoordUniformVoting, the time needed for verification was
almost the same for these two algorithms. The reason for this is that the size of Binary
Decision Diagrams (BDDs) arising in the process of model checking was similar in both
cases. In symbolic model checking, state spaces and transition relations are symbolically
represented by BDDs, and the execution time critically depends on the size of these BDDs.
Although a small state space can often be represented by a small BDD, this is not necessarily
always the case.

5.2 Expressing Complex Conditions on HO Sets

As another example of a consensus algorithm, let us consider the OneThirdRule algo-
rithm [6] (see Algorithm 3). A notable feature of this simple algorithm is that it can solve
consensus in a single round in favorable circumstances where enough processes propose the
same value. A similar structure is shared by the algorithms proposed in [2] and in [21], and
Fast Paxos [16].

For this algorithm, the corresponding finite state transition system can be constructed
just the way described in Section 4. Indeed, the resulting state transition system is even
simpler in some sense. Since each phase of this algorithm consists of one single round, the
program variable ro is no longer necessary. In addition, the INVAR part, which was used
to represent the absence of split rounds for the UniformVoting algorithm, can be omitted

Algorithm 3 The OneThirdRule algorithm [6]
1: Initialization:
2: xp ∈ V , initially vp { vp is the initial value of p }

3: Round r:
4: Sr

p :
5: send ⟨xp ⟩ to all processes

6: T r
p :

7: if |HO(p, r)| > 2n/3 then
8: if the values received, except at most [ n−1

3
], are equal to x then

9: xp := x
10: else
11: xp := smallest x received
12: if more than 2n/3 values received are equal to x then
13: decide(x)
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Table 3: Time required for verification (OneThirdRule)
n = 4 n = 5 n = 6 n = 7

Agreement (CTL 1) 0.1sec 0.5sec 7.7sec 5min41sec
# reachable states 4.27295 × 107 1.50324 × 1011 3.64653 × 1015 5.66894 × 1020

Termination (CTL 5) 0.4sec 10.5sec 6min15sec NA
Termination (CTL 6) 0.2sec 0.7sec 41sec NA
# reachable states 6.39631 × 107 1.91092 × 1011 5.83709 × 1016 NA

too, since the OneThirdRule algorithm does not require any conditions to be met in order
to ensure the agreement condition.

To verify termination, on the other hand, the finite state transition system needs to
be extended to represent the required condition. The OneThirdRule algorithm terminates
when the following condition holds:

∃r0 > 0,∃Π0 ⊆ Π s.t. |Π0| > 2n/3,∀pi ∈ Π :
(HO(pi, r0) = Π0) ∧ (∃rpi > r0 : |HO(p, rpi)| > 2n/3)

(1)

To verify that this condition is sufficient for the algorithm to terminate, one has to limit the
scope of verification to the computation paths where the rounds r0 and rpi(pi ∈ Π) occur.
This can be done by introducing n + 1 boolean program variables. With these variables,
even if two states correspond to the same configuration of process states, it is possible to
distinguish them depending on whether they already experienced the rounds r0 and/or rpi .

Let a and b0, · · · , bn−1 be these new variables. They are initially false. Variables a and
bi are used to record that the rounds r0 and rpi have occurred, respectively. The transitions
of the values of these variables are represented as follows:

a′ =



true ¬a ∧∨
Π0⊆Π:|Π0|> 2

3
n

( ∧
pi∈Π0

(h0,i ∧ · · · ∧ hn−1,i)

∧
∧

pi∈Π−Π0

(¬h0,i ∧ · · · ∧ ¬hn−1,i)
)

a otherwise

b′i =


true a ∧

∨
Π0⊆Π:|Π0|> 2

3
n

∧
pj∈Π0

hi,j

bi otherwise

Using these variables, the following CTL formula can be obtained which states that all
the processes will eventually decide provided that condition (1) holds:

AG
(
(b0 ∧ · · · ∧ bn−1) → AF termination

)
(CTL 5)

This benefit cannot come without cost; adding such auxiliary variables enlarges the
state space. For example, when n = 4, the number of the reachable states grows from
4.27295 × 107 to 6.39631 × 107. Table 3 shows the relationships between n and the time
and space needed for model checking.
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5.3 Verifying Termination by Checking Reachability

Here we introduce an optimization technique for speeding up the verification of the termina-
tion property. As can be seen in the performance results shown so far, checking termination
usually incurs much more execution time than checking agreement.

This is due to the difference in the CTL formulae used to represent the two properties.
The agreement property is specified by AG agreement. As stated in Section 3, if a CTL
formula is of the form AG g where g is a state formula that contains no temporal operator,
then it can be verified simply by reachability analysis, which is the very first step performed
in the process of model checking in NuSMV.

The idea of the proposed optimization is to represent the termination property as a
CTL formula of this form. This optimization can be made when one wants to verify that
a consensus algorithm terminates by the end of the round where some specific condition
holds on HO sets.

For example, in [6], it is claimed that in the OneThird-Rule algorithm a process pi will
make a decision at the latest by the end of round rpi (see formula (1) in Section 5.2). The
program variable bi evaluates to true iff the current state corresponds to the end of round rpi

or later (see again Section 5.2). Thus, instead of AG
(
(b0 ∧ · · · ∧ bn−1) → AF termination

)
,

the termination property can also be verified by checking the following CTL formula.

AG
(
(b0 ∧ · · · ∧ bn−1) → termination

)
(CTL 6)

We were able to check that this CTL formula holds when n is up to six, with much less
execution time as shown in Table 3.

5.4 Finite Representation of Unbounded Timestamps

For all the consensus algorithms discussed so far, process variables have finite domains. On
the contrary, some consensus algorithms use timestamps to record the phase number when
some event happened, such as an update of an estimate of the decision value (e.g., [5, 15]).
In asynchronous systems there is no bound on the phase number; thus the domain of these
timestamps is a set of non-negative integers N. In this case, clearly, possible process states
are infinite.

As an illustrative example, let us take the LastVoting algorithm (Algorithm 4) [6]. This
algorithm follows the basic line of the Paxos algorithm [15]. In the LastVoting algorithm,
the agreement condition is never violated no matter how bad the HO sets are. Each process
pi uses exactly one timestamp tsi. The timestamp is updated to the current phase number
when a process receives an estimate of the decision value from the coordinator in round
4ϕ−2 (see lines 20–21). The timestamp value is used in round 4ϕ−3 by the coordinator to
select the most recently updated estimate value (lines 11–13). It is also used for a process
to decide whether to reply an ack to the coordinator in round 4ϕ − 1 (lines 24–25); the
process sends an ack if its timestamp represents the current phase. Here we address the
problem of modeling the behavior of such an algorithm as a finite state transition system.

Typically the ways of using a timestamp in consensus algorithms are limited only to:
(i) setting it to the current phase number, (ii) arithmetically comparing it with another
timestamp, and (iii) checking if it equals the current phase number. The behavior of these
algorithms therefore depends on, rather than their actual values, (a) the relative order of
pairs of timestamps and (b) whether the values equal the current phase number or not.
Also, the timestamp values never exceed the current phase number, since they are initially
set to zero. These observations lead us to the following simple representation.
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Algorithm 4 The LastVoting algorithm [6]

1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?
4: commitp a Boolean, initially false

5: readyp a Boolean, initially false

6: tsp ∈ N, initially 0

7: Round r = 4ϕ − 3 :
8: Sr

p :
9: send ⟨xp , tsp⟩ to Coord(p, ϕ)

10: T r
p :

11: if p = Coord(p, ϕ) and
number of ⟨ν , θ⟩ received > n/2 then

12: let θ be the largest θ from ⟨ν , θ⟩ received
13: votep := one ν such that ⟨ν , θ⟩ is received
14: commitp := true

15: Round r = 4ϕ − 2 :
16: Sr

p :
17: if p = Coord(p, ϕ) and commitp then
18: send ⟨votep⟩ to all processes

19: T r
p :

20: if received ⟨v⟩ from Coord(p, ϕ) then
21: xp := v ; tsp := ϕ

22: Round r = 4ϕ − 1 :
23: Sr

p :
24: if tsp = ϕ then
25: send ⟨ack⟩ to Coord(p, ϕ)

26: T r
p :

27: if p = Coord(p, ϕ) and
number of ⟨ack⟩ received > n/2 then

28: readyp := true

29: Round r = 4ϕ :
30: Sr

p :
31: if p = Coord(p, ϕ) and readyp then
32: send ⟨votep⟩ to all processes

33: T r
p :

34: if received ⟨v⟩ from Coord(p, ϕ) then
35: decide(v)
36: if p = Coord(p, ϕ) then
37: readyp := false

38: commitp := false

Let tsi(0 ≤ i ≤ N − 1) denote a timestamp used by the algorithm under consider-
ation. N is the total number of the timestamp variables. For the LastVoting algorithm,
N = n because each process has a single timestamp. We represent the values of these times-
tamps using N program variables ats0, ats1, · · · , atsN−1 such that atsi ∈ {0, 1, · · · , N} as
follows. If tsi is not equal to the current phase number and is the jth smallest value in∪

0≤i≤N−1{tsi}, then atsi is set to j − 1. If tsi represents the current phase, on the other
hand, then atsi is set to N .

When N = 3, for example, (ts0, ts1, ts2) = (10, 100, 25) is represented as (ats0, ats1, ats2) =
(0, 3, 1) if 100 is the current phase number; otherwise as (ats0, ats1, ats2) = (0, 2, 1). Simi-
larly, (ts0, ts1, ts2) = (10, 10, 100) is represented as (ats0, ats1, ats2) = (0, 0, 3) if the current
phase is phase 100; otherwise as (ats0, ats1, ats2) = (0, 0, 1).

Clearly, if (ats0, · · · , atsN−1) corresponds to (ts0, · · · , tsN−1), then (a) for any i, j, the
relative order between atsi and atsj coincides with that between tsi and tsj , and (b) for
any i, the timestamp tsi is equal to the current phase number iff atsi = N .

Now we show how the transition of atsi can be specified in NuSMV. We assume that
the algorithm under consideration does no update timestamp values in the last round of
any phase, which is the case for the LastVoting algorithm. This property makes the repre-
sentation of the transition simple; it can easily be generalized, however, to the case where
the property does not necessarily hold.

In the initial states, every atsi is set to zero. Since tsi is initially zero, it is clear that
the values of atsi correctly represent tsi in the initial states.

The transition of atsi is specified by the conjunction of four constraints. Two of these
constraints involve symbol cpi(0 ≤ i ≤ N−1), which represents the expression over program
variables that evaluates to true iff the value of tsi in the next state (that is, ts′i) is equal
to the phase number in the next state. The expression for cpi will be derived from the
algorithm later. Here we assume that the expression is available.

Now suppose that in the current state the values of atsi correctly represent tsi as de-
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scribed above. Then, the following two constraints guarantee that (a) for any i, j, the order
between ats′i and ats′j matches that between ts′i and ts′j and (b) for any i, ats′i = N iff ts′i
is the current phase number (in the next state):

1. For any i, j(i ̸= j) such that cpi = cpj = false, the relative order between atsi and
atsj is maintained in the next state; that is,∧

i,j:0≤i<j≤N−1

(
(¬cpi ∧ ¬cpj) →

(
(atsi = atsj → ats′i = ats′j)

∧(atsi < atsj → ats′i < ats′j) ∧ (atsi > atsj → ats′i > ats′j)
))

2. For any i, ats′i = N iff cpi = true; that is,∧
0≤i≤N−1

(
cpi ↔ (ats′i = N)

)
.

Given that the ordering of atsi coincides with the ordering of tsi, the remaining two
constraints shown below ensure that when atsi ̸= N , atsi = j − 1 holds iff tsi is the jth
smallest value in

∪
0≤i≤N−1{tsi}:

3. atsi = 0 for some i, unless all atsi are N ; that is,

(ats0 ̸= N ∨ · · · ∨ atsN−1 ̸= N) → (ats0 = 0 ∨ · · · ∨ atsN−1 = 0)

4. There is no “gap” between atsi( ̸= N) and atsk( ̸= N) that are consecutive in value.
Formally, ∧

i,j:0≤i,j≤N−1

(
(atsi < atsj ∧ atsj ̸= N) →

∨
0≤k≤N−1,k ̸=i

(atsi + 1 = atsk)
)

Since the values of atsi correctly represent those of tsi in the initial states, these four
constraints (1) to (4) inductively guarantee the correct correspondence between atsi and
tsi in every reachable state. Figure 1 shows these four constraints expressed in the tool
language when N = 3.

The expression cpi can be derived from the consensus algorithm. For the LastVoting
algorithm, it is obtained as follows (see lines 15–21):

cpi :=
(
(ro ̸= 0) ∧ (atsi = n)

)
∨

(
(ro = 2) ∧

∨
0≤j≤n−1

(
hi,j ∧ (coordi = j) ∧ (coordj = j) ∧ commitj

))
In words, cpi evaluates to true iff tsi has already been updated to the current phase number
(remember N = n) or is updated in the current round 4ϕ − 2 as a result of the reception
of a message from its coordinator. The two disjuncts of the right-hand side of the above
formula respectively represent these two conditions.

When n = 3 and n = 4, we were able to prove that the agreement property of the
LastVoting algorithm holds no matter how the HO sets are. Table 4 shows the time needed
for model checking and the size of the state spaces.

The LastVoting algorithm is supposed to terminate at the end of a phase ϕ0 > 0 such
that :

∃c0 ∈ Π,∀p ∈ Π,∀k ∈ {0, 1, 2, 3} :
(|HO(c0, 4ϕ − 3)| > n/2) ∧ (|HO(c0, 4ϕ − 1)| > n/2)
∧(c0 = Coord(p, ϕ0)) ∧ (c0 ∈ HO(p, ϕ0))
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TRANS

((!cp0 & !cp1) -> ((ats0 = ats1 -> next(ats0) = next(ats1))

& (ats0 < ats1 -> next(ats0) < next(ats1)) & (ats0 > ats1 -> next(ats0) > next(ats1))))

&((!cp0 & !cp2) -> ((ats0 = ats2 -> next(ats0) = next(ats2))

& (ats0 < ats2 -> next(ats0) < next(ats2)) & (ats0 > ats2 -> next(ats0) > next(ats2))))

&((!cp1 & !cp2) -> ((ats1 = ats2 -> next(ats1) = next(ats2))

& (ats1 < ats2 -> next(ats1) < next(ats2)) & (ats1 > ats2 -> next(ats1) > next(ats2))))

TRANS

(cp0 = (next(ats0) = 3)) & (cp1 = (next(ats1) = 3)) & (cp2 = (next(ats2) = 3))

INVAR

((ats0 != 3) | (ats1 != 3) | (ats2 != 3)) -> ((ats0 = 0) | (ats1 = 0) | (ats2 = 0))

INVAR

(((ats0 < ats1) & (ats1 != 3)) -> ((ats0 + 1 = ats1) | (ats0 + 1 = ats2)))

&(((ats0 < ats2) & (ats2 != 3)) -> ((ats0 + 1 = ats1) | (ats0 + 1 = ats2)))

&(((ats1 < ats0) & (ats0 != 3)) -> ((ats1 + 1 = ats0) | (ats1 + 1 = ats2)))

&(((ats1 < ats2) & (ats2 != 3)) -> ((ats1 + 1 = ats0) | (ats1 + 1 = ats2)))

&(((ats2 < ats0) & (ats0 != 3)) -> ((ats2 + 1 = ats0) | (ats2 + 1 = ats1)))

&(((ats2 < ats1) & (ats1 != 3)) -> ((ats2 + 1 = ats0) | (ats2 + 1 = ats1)))

Figure 1: Constraints specifying timestamps tsi

Table 4: Time required for verification (LastVoting and LastVotingrc)
LastVoting LastVotingrc

n = 3 n = 4 n = 3 n = 4
Agreement (CTL 1) 2.3sec 2min36sec 2.9sec 3min41sec
# reachable states 1.68311 × 109 1.73436 × 1014 2.37487 × 108 3.86427 × 1012

Termination (CTL 7) 4min5sec NA 3min13sec NA
Termination (CTL 8) 4.5sec 3min5sec 4.4sec 4min6sec
# reachable states 1.86288 × 109 1.75119 × 1014 2.79977 × 108 4.16511 × 1012

We successfully verified for the case n ≤ 4 that the termination property holds if such a
phase ϕ0 occurs, using the techniques described in Sections 5.2 and 5.3. More specifically,
we introduced n auxiliary variables to define an expression good phase that evaluates to
true iff phase ϕ0 has occurred. This allows us to assert termination by either of the following
two CTL formulae:

AG(good phase → AF termination) (CTL 7)
AG(good phase → termination) (CTL 8)

Table 4 shows the time needed to verify these two formulae.
We also model checked the LastVoting algorithm with the rotating coordinator strategy

(denoted by LastVotingrc). The results are shown in Table 4.

Other Examples

Here we show the results of model checking two consensus algorithms (Algorithm 5 and
Algorithm 6) proposed in [7] and [9]. These algorithms and the LastVoting algorithm share
some characteristics as follows. First, both algorithms never violate the agreement condition
no matter how bad the HO sets are. Second, all processes can decide by the end of a “good”
phase that satisfies a certain condition. Thus CTL 7 and CTL 8 can be used to assert the
termination property for these two algorithms, if the definition of good phase is replaced
with a new one corresponding to the algorithm to be verified.
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Algorithm 5 Algorithm Pa [7]

1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?
4: voteToSendp a Boolean, initially false

5: tsp ∈ N, initially 0

6: Round r = 3ϕ − 2 :
7: Sr

p :
8: send ⟨xp , tsp⟩ to Coord(p, ϕ)

9: T r
p :

10: if p = Coord(p, ϕ) and
number of ⟨ν , θ⟩ received > n/2 then

11: let θ be the largest θ from ⟨ν , θ⟩ received
12: votep := one ν such that ⟨ν , θ⟩ is received
13: voteToSendp := true

14: Round r = 3ϕ − 1 :
15: Sr

p :
16: if p = Coord(p, ϕ) and voteToSendp then
17: send ⟨votep⟩ to all processes

18: T r
p :

19: if received ⟨v⟩ from Coord(p, ϕ) then
20: xp := v ; tsp := ϕ

21: Round r = 3ϕ :
22: Sr

p :
23: if tsp = ϕ then
24: send ⟨ack, xp⟩ to all processes

25: T r
p :

26: if ∃v, number of received ⟨ack, v⟩ > n/2 then
27: decide(v)
28: voteToSendp := false

Table 5: Time required for verification (Pa)
n = 3 n = 4

Agreement (CTL 1) 0.9sec 1min39sec
# reachable states 6.44807 × 108 1.28554 × 1014

Termination (CTL 7) 9.2sec 61min46sec
Termination (CTL 8) 1.5sec 1min57sec
# reachable states 1.25521 × 109 1.29868 × 1014

Algorithm 5 (which is referred to as Algorithm Pa in [7]) is a direct adoption of the
Paxos algorithm (augmented with some optimizations) to the HO model. As the LastVoting
algorithm, this algorithm uses a total of n timestamps (i.e., N = n). All processes decide
by the end of a phase ϕ0 > 0 such that:

∀k ∈ {0, 1, 2} :
(∀p ∈ Π : (|HO(p, ϕ0 − k)| > n/2) ∧ (Coord(p, ϕ0) ∈ HO(p, ϕ0 − k)))
∧(∀p, q ∈ Π : Coord(p, ϕ0) = Coord(q, ϕ0))

Table 5 summarizes the time required for model checking.
Algorithm 6 is due to Dwork, Lynch, and Stockmeyer [9], which we refer to as the DLS

algorithm. This algorithm adopts the rotating coordinator strategy; i.e., Coord(p, ϕ) =
p(ϕ−1) mod n for any p ∈ Π. Each phase consists of a lock-release phase (round 4ϕ − 3) and
a trying phase (rounds 4ϕ − 2, 4ϕ − 1, 4ϕ). In the trying phase a process may lock a value
that has been proposed by some process. A phase number is associated with every lock as a
timestamp (see lines 37–39). Since n processes can propose at most n distinct values, each
process needs at most n timestamp variables. Hence N = n2.

The following two modifications were made to the original algorithm: (1) In Algorithm
6, the lock-release phase is performed before the trying phase, while the trying phase comes
first in the original algorithm. (2) In Algorithm 6, processes send acks to all processes in
round 4ϕ (see lines 44–45), while in the original algorithm, processes send acks only to the
coordinator.

In [9] it was proven that the algorithm terminates when a majority of processes are
correct and the Global Stabilization Time (GST) is reached. GST is defined as a time
such that all messages sent from correct processes at that time or afterwards are correctly
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Algorithm 6 The DLS algorithm [9] (∀p ∈ Π : Coord(p, ϕ) = p(ϕ−1) mod n)
1: Initialization:
2: PROPERp ∈ 2V , initially {vp}

{vp is the initial value of p}
3: LOCKSp ∈ 2V ×N, initially ∅
4: votep ∈ V ∪ {?}, initially ?
5: lockp, a Boolean, initially false

6: Round r = 4ϕ − 3 :
7: Sr

p :
8: send ⟨⟨PROPERp⟩⟩ to all processes
9: send ⟨LOCKSp ⟩ to all processes

10: T r
p :

11: for all ⟨⟨P ⟩⟩ received do
12: PROPERp := PROPERp ∪ P
13: for all ⟨L⟩ received do
14: for all (v, l) ∈ LOCKSp such that

∃(w, h) ∈ L with v ̸= w, l ≤ h do
15: LOCKSp := LOCKSp − {(v, l)}

16: Round r = 4ϕ − 2 :
17: Sr

p :
18: send ⟨⟨PROPERp⟩⟩ to all processes
19: if LOCKSp = ∅ then
20: send ⟨PROPERp⟩
21: else
22: if |LOCKSp| = 1 then
23: send ⟨{v}⟩ such that LOCKSp = {(v, ts)}

24: T r
p :

25: for all ⟨⟨P ⟩⟩ received do
26: PROPERp := PROPERp ∪ P
27: if p = Coord(p, ϕ) and

∃v, more than n/2 ⟨L⟩ received contain v then
28: votep := v

29: Round r = 4ϕ − 1 :
30: Sr

p :
31: send ⟨⟨PROPERp⟩⟩ to all processes
32: if p = Coord(p, ϕ) and votep ̸=? then
33: send ⟨ votep ⟩ to all processes

34: T r
p :

35: for all ⟨⟨P ⟩⟩ received do
36: PROPERp := PROPERp ∪ P
37: if ⟨ v ⟩ received from Coord(p, ϕ) then
38: LOCKSp := LOCKSp − {(v, ∗)}
39: LOCKSp := LOCKSp ∪ {(v, ϕ)}
40: votep := v ; lockp := true

41: Round r = 4ϕ :
42: Sr

p :
43: send ⟨⟨PROPERp⟩⟩ to all processes
44: if lockp = true then
45: send ⟨ ack, votep ⟩ to all processes

46: T r
p :

47: for all ⟨⟨P ⟩⟩ received do
48: PROPERp := PROPERp ∪ P
49: if ∃v, number of received ⟨ack, v⟩ > n/2 then
50: decide(v)
51: votep :=?; lockp = false

delivered. In [6] it is shown that this termination requirement can be drastically weakened.
Specifically, Algorithm 6 terminates by the end of a phase ϕ0 such that:

∃Π0 ⊆ Π s.t. |Π0| > n/2 :
(∀k ∈ {0, 1, 2, 3},∀p ∈ Π : HO(p, ϕ0 − k) = Π0) ∧ (Coord(p, ϕ0) ∈ Π0)

When n = 3, we were able to verify that agreement and termination hold. Table 6 shows
the time needed for verification.

6 Conclusions

In this paper, we presented a model checking approach for verifying HO model-based con-
sensus algorithms. First we showed how one can model the behavior of the Uniform-Voting
algorithm as a finite state transition system. Also we demonstrated that CTL formulae can
be used to specify the agreement and termination properties and that with the NuSMV
model checker these properties can be verified with practical time. We also presented the
results of model checking other consensus algorithms, in conjunction with the techniques
for applying our approach to these algorithms.

Our approach is different from previous attempts to apply formal verification methods
to asynchronous consensus algorithms in at least one of the following two aspects: (1) Our
approach relies only on standard model checking techniques and thus the verification is
fully automatic, and (2) our approach is complete in the sense that it verifies the behavior
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Table 6: Time required for verification (DLS )
n = 3

Agreement (CTL 1) 24min41sec
# reachable states 3.6656 × 108

Termination (CTL 7) NA
Termination (CTL 8) 29min12sec
# reachable states 4.86804 × 108

of consensus algorithms in every possible state. This is, to our knowledge, the first time
standard model checking allows one to completely verify asynchronous consensus algorithms.

A notable technique that we devised is the finite representation of unbounded times-
tamps. This allows us to use existing powerful technologies for finite state space exploration
to verify algorithms having infinite state spaces. In fairness, it should be noted that there
exist model checking methods that can deal with infinite integer variables in a general form
by means of, for example, Presburger arithmetic [3, 4]. Although these methods can often
be applied only to small systems, a qualitative comparison should be made in the future.
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