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An Integral-Equation Technique for Solving
Thick Irises in Rectangular Waveguides
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Abstract—This paper presents an efficient integral-equation (IE)
technique for analysis of thick irises inside multilayered rectan-
gular waveguides. The IEs remain the same as in the case of zero-
thickness iris and the thickness is accounted for only as a correc-
tion term in the IE kernel. This technique halves the number of
unknowns on the iris, thus leading to computational effort and sim-
ulation times comparable to the zero-thickness case. In this paper,
two efficient ways for computing the correction term are intro-
duced and the accuracy of the approach is discussed on several
waveguide structures and filters.

Index Terms—Green’s functions, integral equations (IEs),
multilayered structures, rectangular waveguide discontinuities,
stratified media theory, thick irises.

1. INTRODUCTION

THICK iris, defined as an aperture in a metallic wall

of finite thickness, is one of the most common types of
discontinuities encountered in waveguides. These apertures can
arise in the waveguide external walls (slot waveguide antennas,
coupling holes between waveguides) or in additional walls
filling the waveguide cross section and dividing the waveguide
into coupled cavities, useful to create filtering structures.
From this second point-of-view, irises were first analyzed
in the early 1950s, by means of approximate analytical and
variational techniques, well detailed in classical textbooks
[1]-[4]. Initially, these approximate expressions were derived
for small apertures in zero-thickness conducting walls, but
correction factors for larger apertures and/or finite thickness
walls [5]-[7] were soon introduced. The first systematic tech-
nique for the full-wave analysis of irises in waveguides was the
mode-matching (MM) technique [8], [9]. Specific applications
for several regular iris shapes can be found in [10]-[13]. Today,
in order to cope with arbitrary shapes and more complicated
geometries, so-called hybrid methods are used, where the MM
is combined with integral-equation (IE) approaches [14] or
with finite-element method (FEM) algorithms [15]-[17]. The
excellent review paper by Arndt et al. [18] gives a comprehen-
sive and up-to-date survey. In addition to these, there is another
group of hybrid-analysis methods developed for planar discon-
tinuities embedded within layered media inside waveguides:
the generalized scattering matrix (GSM) procedure used in
conjunction with the method of moments (MoM) [19], [20] or
finite-difference time-domain (FDTD) method [21].
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Fig. 1. Thick iris modeled as a zero-thickness iris.

In parallel to these developments, slots in waveguides have
been also analyzed with classical IE approaches using the equiv-
alence principle [22]. In this context, the problem of thick irises
inside waveguides is equivalent to the problem of apertures of
a finite thickness in printed multilayered antennas. Recently, an
IE-based approximate model has shown that the apertures of fi-
nite thicknesses can be treated as infinitely thin (Fig. 1) with the
thickness appearing only as a modification of the Green’s func-
tions. Theoretical developments for this approach [23] have now
been experimentally validated [24].

In this paper, we first review the IE model for general wave-
guide discontinuities and we adapt it to our needs, especially in
terms of excitation models and numerical algorithms. We then
combine it with the approximate model for thick irises and apply
it to several waveguide structures and filters to show the flexi-
bility and potentialities of the combined formulation.

II. IEs AND MoM

Consider a structure composed of a number of waveguides
with different rectangular cross sections (Fig. 2). Any intercon-
nection between waveguides of different cross sections and any
zero-thickness iris is treated like a slot in the standard slot an-
tenna formulation. An iris with a nonzero-thickness will be con-
sidered ab initio as a new waveguide cross section. However,
for not very thick irises, an original and efficient treatment will
be introduced later on. On the other hand, any waveguide sec-
tion can by filled by stratified dielectrics and include conductive
patches of arbitrary shapes localized in planes perpendicular to
the propagation direction.

In the IE formulation of the problem, the boundary conditions
for the fields are imposed. On every interconnection of two dif-
ferent waveguides and every slot, the surface equivalence prin-
ciple is applied and magnetic surface currents J i (on both sides

0018-9480/$20.00 © 2006 IEEE
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Fig. 2. General multilayered waveguide structure composed of an arbitrary
number of planar printed patches and slots.

of the interface) are introduced in such a way as to insure the
continuity of the tangential component of the total electric field
+ _ - +_ -

Etan - Etan < JH - _JH' (1)

The continuity of tangential component of the total magnetic

fields on the slots and the interconnections of two different
waveguides has to be satisfied as follows:

HT

tan

=H,,. 2)

Every patch surface is modeled using electric surface currents
J . Considering all the patches to be made of perfectly con-
ducting metallizations, the tangential component of the total
electric field (E) on them has to be set to zero as follows:

Euan = Bl + B = 0 )
where EI"® and E*®* are the incident and scattered electric
fields, respectively.

Introducing field Green’s functions, the scattered fields can
be expressed as convolution integrals of the electric and/or
magnetic sources and the corresponding Green’s functions.
The boundary conditions evolve this way into a system of IEs
with unknown electric and magnetic surface currents.

The MoM technique has been used for numerical solving of
the system of IEs. The unknown electric and magnetic currents
are expanded into a set of basis functions. In order to model
the general shape of magnetic and electric planar sources, sub-
sectional (rectangular/triangular) basis functions have been se-
lected so the unknown sources can be expanded as follows:

Jo(r') =) aqufor(r),
k

where the source index (Q = F for a horizontal electric dipole
(HED) or Q@ = H for a horizontal magnetic dipole (HMD). In
the same expression, agy, are the unknown coefficients in the
expansion of the currents and fg;, are the Ng subsectional basis

functions defined on electric () = E) or magnetic (Q = H)
surfaces.

Using the Galerkin procedure, the same set of functions as
the one used for the basis functions is chosen. This way, the
original coupled system of IEs is transformed into an algebraic
linear system of equations with coefficients agj, as unknowns

as follows:
et fre] [l =[6al] o

There are four different types of terms Rp¢ that appear in the
final MoM matrix. The term (k,!) in each submatrix can be
written in a condensed form as

RpQ(k./l) = /'fpk(r)dS/apQ(r|r’)le(r’)dsl, (6)
S 3,

Using the equivalent transmission-line networks to represent
the waveguide sections, the field dyadic Green’s functions are
given by

Gro(lr') =Y Gri(z. 2)pilz, )i y). (D)

It must be pointed out that the above is a compact notation where
both the observer index P and the source index () can be either
E (electric field, electric source) or H (magnetic field, mag-
netic source). Accordingly, the vector mode functions p and q
are either the modal function of electric (e) or of magnetic (h)
type. Finally, G p;(z, 2’), depending only on the observer index,
is the associated spectral Green’s function that corresponds to
either the voltage (p = e) or the current (p = h). The index ¢
represents the order number of the rectangular waveguide mode
(TEy, » where m,n = 0,1,2...,mn # 0 or TM,, ,, where
m,n = 1,2,3,...). The expressions for e; and h;, the vector
mode functions of electric and magnetic types for waveguides
of rectangular cross sections, can be found in [1].

Introducing the rectangular waveguide Green’s functions (7)
into the expressions for MoM coefficients, (6) becomes

RPQU{:J) = ZéPzCP(kvé)CQ(lvz) ®)
where

Cp(k,i) = /ka(377 y)pi(z,y)dzdy. 9
Sk

It can be noticed from the above (8) that all MoM matrix coeffi-
cients are functions of only two different overlapping integrals.
In particular, the overlapping integrals of the e and h vector
mode functions with the vector basis functions. Having rectan-
gular and/or triangular subsectional basis functions, these inte-
grals can be computed analytically.

III. EFFICIENT EVALUATION OF MOM MATRIX

For efficient evaluation of the series in (8), the extraction of
the quasi-static term of the spectral Green’s functions is per-
formed [2], [25], [26]. The main implication of this technique is
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that the original series are separated into frequency-independent
and frequency-dependent series. The frequency-independent se-
ries are evaluated only once for a given geometry and are, there-
fore, not recomputed for each new point in frequency. As for the
frequency-dependent series, they are evaluated for each point in
frequency, but due to the extraction of the quasi-static part, the
convergence is enhanced considerably. As a result, an important
saving in computational time for the analysis of multilayered
media waveguide structures over a wide range of frequencies is
achieved.

Dropping the P and () indices, any MoM matrix coefficient
in (8) can be written in the following general form:

Z G; Ceh

where C,, is an overlapping integral of the e or h vector mode
functions with the vector basis functions, and G} is a voltage or
current coefficient computed using equivalent transmission-line
networks (spectral quantity). The first step in the procedure is
to add and subtract to (10) the quasi-static term of the spectral-
domain quantity G; as follows:

eh( l) (10)

Rk )=y (Gi=G?) Cenli, k) Cen(is )+ Ro(k, 1)~ (1)

%

where é? is the quasi-static part of éi, and we have defined

=Y GICun(isk)

To obtain the quasi-static part, the case of modes infinitely below
the cutoff has to be considered. The equivalent network for the
quasi-static part is composed only of two semi-infinite transmis-
sion-line sections, above and below the exciting generator, i.e.,
the source point.

For the case of a HED as a source (Q = F), the quasi-static
part of the voltage coefficient is nonzero only for the basis func-
tions belonging to that electric interface and is given by

Cen(i,1). 12)

Ro(k,1) = iDT™ RIE (K, 1) + DTM RIM(k, 1) (13a)
with

ROTE k l Z k Csh 7 eh (L l) (l3b)
RIM(k, 1) kaCTM i K)YCEMG, D) (13¢)

+ -
DTE =wp Ha oy (13(1)

+ —

Hr = by
D™ =weq (ef +¢5) (13e)

where C;FhE and CeThM are the overlapping integrals between
the basis functions of a given electric interface with the TE,, ,,
and TM,, , modal sets, respectively, k,; is the transverse
wavenumber of the ¢th mode, and the superscripts 4+ and — are

! 1
Ay \
a; f\» I
—
I 1/

Fig. 3. Waveguide excitation.

used to designate the dielectric parameters of the layers above
and below the considered interface, respectively.

Analogously, for an HMD as a source, (@ = H), the quasi-
static part of the current coefficient is nonzero only for the basis
functions belonging to that magnetic interface and is given by

Ro(k,l) = DTERTE(k D) +iD™RM(E, 1) (14a)
with

RIE(k,1) kac i, k)CEE®, 1) (14b)

RTM k l Z k eh Ceh (LJ)' (140)

The interesting feature of (13b), (13c), (14b), and (14c) is that
all the quantities depend only on geometry and are, therefore,
frequency independent. Consequently, the series are computed
only once for a given geometry and are not recomputed for each
subsequent frequency point. Once they are summed up, the total
quasi-static matrix coefficients are evaluated using of (13a) and
(14a).

Substituting the quasi-static part in (11), the final MoM ma-
trix coefficients are obtained, this time frequency dependent. It
is important to note that since the quasi-static term is extracted,
the resulting series will converge much faster than the original
ones.

IV. MODAL EXCITATION

Let the excitation of the waveguide be a source that produces
a single mode of unit amplitude. This mode (usually the dom-
inant mode) is denoted by the index ¢. The field transverse to
the z-direction can be expressed in terms of the incident power
wave a; as

a;

where 7; is the characteristic impedance and h; is the magnetic
field vector modal function of the considered mode.

Suppose that we want to compute the reflection coefficient in
the reference plane 1—1’ (Fig. 3). Let the aperture A; in that ref-
erence plane be discretized into a number of subsectional (rect-
angular and/or triangular) basis functions fg for all indexes
k =1,..., Ng for which S}, C A;.

Hinc _

h; (15)



192 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 1, JANUARY 2006

! 2
Az\ |
@y N Aoy
b4~ P e
o

Fig. 4. Port for which the transmission coefficient is computed.

The excitation vector in the MoM system of equations (5) can
then be expressed as follows:

VHE = —Z/HmC Ky dS (16)

Sk

where the coefficient 2 comes from the “mirrored” magnetic
field [27].

After having solved the system, we obtain, among the others,
the unknown coefficients ar, which are used to expand the
magnetic current on the aperture A; in a given set of basis func-
tions

Jp = Z agrfm.
k

a7)

The tangential electric field in the aperture, now that magnetic
current is known, can be expressed as

E:ZA’XJH:ZaHk(,%XfHk). (18)
k

On the other hand, this field can be represented with a mode
expansion because it is also a field solution in the waveguide

E=Y (a;+b)VZje;.

19)

By projecting the electric field onto the incident mode ¢ over the
aperture A1, using the orthonormality of the modes, and taking
into account (18), (19) becomes

1
bi =—a; — — OéHk/fHk'hidS
>

Sk

(20)

for all indices k for which S;, C A;. The reflection coefficient
on the aperture A; can now be expressed as

b; 1 1 "
811:;:—1—a—i\/—z_i;aHk'/fHk-hidS. (21)

1
Sk

Suppose our structure has another port, defined at the refer-
ence plane 2 — 2/, and we would like to compute the transmis-
sion coefficient between the two ports. Let the second port be at-
tached to the right-hand side of the aperture A» at this reference
plane (Fig. 4) and let the incident power wave that excites the

port attached to the aperture A; (Fig. 3) be a}. The transmission
coefficient between the two ports is then defined as (see Fig. 4)

’
b2 a?
_ Y M
a; a;

Taking into account that, by definition, the second port is per-
fectly matched a? = b7 = 0 and following the same procedure
as in (17)—(20), for the transmission coefficient, one obtains

1 1 "
= ——— frr -h;dS
S$21 a%\/Z‘;aHk/ Hk

Sk

(23)

for all indices k for which S;, C A,.

Here, we presented numerical developments for a two-port
waveguide structure, but they can be easily extended to a struc-
ture with several ports.

V. EFFICIENT NUMERICAL TREATMENT OF THICK IRISES

An iris of a finite thickness inside the rectangular waveguide
can be solved using the theory presented in the previous sections
as a cavity region with magnetic currents on its both interfaces.
We will refer to this solution as the “full-wave cavity approach.”
This problem is equivalent to the problem of apertures of a fi-
nite thickness in printed multilayered antennas. However, recent
results [23], [24] have shown that reasonably thick apertures
can be treated as infinitely thin (Fig. 1). The aperture thickness
appears only as a modification in the Green’s functions of the
problem, but otherwise the aperture is treated as a two-dimen-
sional object. This technique reduces two times the number of
unknowns on the aperture and, depending on how the correction
term is computed, allows to treat the apertures of arbitrary cross
sections. As shown in [23], the approximate treatment of thick
apertures led to a perturbation term in the existing IE kernel.
The IEs remain the same, save for the correction factor that is
added to the Green’s functions at the aperture interface

o _ S+ < - <A

Gov = Gumut Guu T2GHEM (24)
where the superscripts + and — designate the region above and
below the thick aperture.

The possibility of not being forced to consider the volume
defining the thick aperture/iris as a new waveguide region is the
keystone of the efficient procedure presented in this paper. How-
ever, to implement a particular computational algorithm, we
shall need a fast and accurate way of evaluation of the Green’s
function correction term S

The correction term that accounts for a thick iris is given by
(23], [24]

A o= =X

GevM = GHM ~ GHM (25)
where a s 1s the Green’s function of the thick iris region
when both source and observer points are on the same iris inter-
face, and G 52z 1s the same Green’s function when they are on
the opposite iris interfaces.

One approach in efficient computing of the correction term
is to neglect the iris’ walls and use a parallel-plate equivalent
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waveguide (“PEW” approach). A second one, more accurate, is
to use the true Green’s functions of the thick iris cavity (“TIC”
approach).

In the “PEW” approach, the thick iris correction term is com-
puted in the way presented in [23] and [24]. There, correction
terms for the potential Green’s functions of the thick iris are ap-
proximated using the parallel-plate Green’s function. This ap-
proximation will remain valid for all shapes of the thick irises
as long as the iris’ thickness is sufficiently small compared to
its minimal lateral dimensions [23].

The correction terms for vector and scalar potential Green’s
functions G2 = GF — G r and G& = Gf — G, re-
spectively, are obtained applying the zeroth-order inverse Som-
merfeld transformation Sy to the parallel-plate spectral-domain
Green’s function [24], [28]

A A € 1 k.t
GFea =GFyy = %50 [E tan 5 ] (26a)
1 1 k.t
G = =—38o | — tan — 26b
W 2w°{kza“2] (260

where ¢ is the thickness of the considered iris and k. is the prop-
agation constant inside the iris in the z-direction. The difference
with respect to the approach presented in [23] and [24] is in the
fact that the correction terms are not added in the level of the
spectral-domain Green’s functions, but on the MoM coefficient
level. The MoM coefficients of the iris are computed as if it were
infinitely thin using the theory presented in the previous sec-
tions. The correction terms in MoM coefficients are then com-
puted using the mixed potential integral equation (MPIE) and
the potential Green’s functions (26) and added to already com-
puted MoM coefficients.

In the “TIC” approach, the Green’s function correction term
for field Green’s functions is expressed as a sum of modes (rect-
angular waveguide modes), obtaining in this way a consistent
IE approach that always uses (for closed regions) the modal
field Green’s functions. In this approach, the correction term
will necessarily depend on the thick iris cross section.

If we consider the rectangular iris, the Green’s function can
be written as

Gmy =Y Guilz, 2 hi(z,phi(ey) @7

where Gp;(z, 2') is the current evaluated at the coordinate z
along the equivalent transmission-line network, when the ex-
citing generator is set to one and placed at the coordinate z’ in
the direction of propagation, and h; is the vector mode of mag-
netic type for waveguides with rectangular cross sections.

Taking into account (25) and (27), the Green’s function cor-
rection term can be expressed as

Gm = Z Gaihi(z,y)hi(a’,y) (28)

where

(29)

ay

b] b

a

Fig. 5. Thick iris inside rectangular waveguide: @ = 22.86,b = 10.16,a; =
11.43, by = 5.08, and ¢ is variable iris thickness. All dimensions given in
millimeters.
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Fig. 6. Reflection coefficient for iris thickness ¢ = 0.1 mm = A/200: “PEW”
(0), “TIC” (4), full-wave cavity approach ().
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Fig.7. Reflection coefficient foriris thicknesst = 1mm = A/20:“PEW” (o),
“TIC” (4), full-wave cavity approach (M), and zero thickness iris (dashed line).

VI. NUMERICAL RESULTS FOR THICK IRIS PROBLEMS

The first test-structure simulated is a simple rectangular
waveguide WRI0 with a thick rectangular iris of dimensions
a1 = a/2 and by = b/2 placed at the center of the waveguide’s
cross section (Fig. 5). Simulations have been performed for
iris thicknesses up to 1 mm (A/20 at the center frequency).
Figs. 6 and 7 show results for two thicknesses: 0.1 and 1 mm.
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Fig. 8. CPU time versus number of unknowns for a problem from Fig. 5
solved using the full-wave cavity approach (o), the “PEW” (o), and the “TIC”
approach (x) with the same mesh density.

In both figures, the reflection coefficients shown are simulated
using the “PEW” approach (o), the “TIC” approach (+), the
full-wave cavity approach (M), and supposing that the iris
is infinitely thin (dashed line). In the full-wave approach, the
simulations were done with 5000 modes used in computation of
the quasi-static terms (frequency independent) and 1000 modes
for computation of dynamic terms (frequency dependent). In
the “PEW” approximate approach, the correction factor was
computed taking into account the dimensions of the rectangular
iris cross section. The quasi-static term was not extracted.
Number of modes used for computing dynamic terms was
1000. The results reached the numerical convergence since we
obtain the same response when the number of modes is doubled
and even three times bigger. The almost perfect matching of
the “PEW” and “TIC” approaches with the full-wave cavity
approach taken as a reference can be observed up to iris
thicknesses of ¢ = 0.1 mm = A/200 at the center frequency
f = 15 GHz. Above this thickness, the approximate models
predict the scattering parameters less accurately, but still better
than the zero thickness approach (dashed lines in Fig. 7).

Fig. 8 shows the CPU time versus the number of unknowns
for the problem from Fig. 5 solved using the full-wave approach
(o), the “PEW” approach (e), and the “TIC” approach (X ) on a
PC with 2.4 GHz and 512 MB of RAM. As can be seen from this
figure, the problem solved using the approximate approaches
with the same mesh density as in the full-wave cavity problem
will have a twice smaller number of unknowns (the thick iris
is accounted for as an infinitely thin iris with the correction
factor in the Green’s function) and the corresponding CPU time
will be significantly smaller. Note that, in Fig. 8, the number
of unknowns N corresponds to the problem solved using the
full-wave approach.

A second example is a strip-to-slot transition module (Fig. 9),
which has been presented in [20] as a benchmark for the GSM
method. For the case of a zero-thickness slot, our IE approach
shows excellent agreement (Fig. 10) with the results of [20].
This is a good validation case for our technique. In addition,
finite thickness slots/irises can be analyzed with only a small

) ®

e L2

Y

0 h h+t z

Fig. 9. Geometry of a rectangular waveguide-based strip-to-slot transition
module. All dimensions are given in millimeters [20]. Waveguide WR90:
a = 22.86,b = 10.16. Strip: a; = 10.4, b; = 9.0. Slot: a> = 10.4,
b, = 0.2. Dielectrics: €1 = 1.0, 5 = 6.0,65 = 1.0, h = 0.381, t—variable
slot/iris thickness.

-20

125 13 135 14
J [GHz]

14.5 15

Fig. 10. Magnitude of the reflection s1; and transmission s2; coefficients
against frequency for a resonant strip-to-slot transition. Numerical results (solid
lines) are compared with results obtained using GSM in conjunction with MoM
taken from [20] (dashed lines). Slot thickness ¢ = 0 mm.

30 ; ] ; ; ; ;
11.5 12 12.5 13 13.5 14 14.5 15

J IGHz]
Fig. 11. Magnitude of the reflection s;; and transmission s2; coefficients

against frequency for a resonant strip-to-slot transition. Approximate approach
using “TIC” method (solid lines with o) are compared with results obtained
using full-wave approach (dashed lines with ). Iris thickness ¢ = 0.1 mm.

overhead in the computational effort. Figs. 11 and 12, where we
compare the full-wave approach with the approximate “TIC”
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Fig. 12. Magnitude of the reflection s;; and transmission s>; coefficients
against frequency for a resonant strip-to-slot transition. Approximate approach
using “TIC” method (solid lines with o) are compared with results obtained
using full-wave approach (dashed lines with ). Iris thickness t = 1 mm.
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Fig. 13. Relative error in predicted resonance frequency as a function of the
iris thickness t. The wavelength is computed for f = 15 GHz.

strategy, give results for slot thicknesses ¢ = 0.1 mm and ¢t =
1 mm. Agreement is excellent with only a small frequency shift
observed for ¢ = 1 mm. We have performed a systematic check
of the error introduced in the resonant frequency by the “TIC”
approach. Fig. 13 shows that this error increases linearly with
the iris thickness and remains acceptable (0.2%) for thicknesses
up to 0.1\. Finally, we have tried to characterize the overall
error generated in typical scattering parameters over the whole
frequency band. To this end, we have defined a root mean square
(rms) error computed as

N

€rms = §

=1

(30)

where y; is a scattering parameter computed at different fre-
quency points ¢ using the full-wave approach and z; is the same
scattering parameter computed using the approximate “TIC”

0.2

0.18

0.14

01_

E’l'l"l'lS»

0.08

0.06[

0.04

0.02r

0.08 0.1
£/

Fig. 14. rms error in the transmission coefficient as a function of the
iris thickness ¢ (solid line). The same error after the frequency shift in
predicted resonance frequencies has been taken into account (dashed line). The
wavelength is computed for f = 15 GHz.

Fig. 15. Circular iris coupled rectangular waveguide three-resonator filter.
Filter dimensions are in millimeters [13]: « = 15.8,b = 7.9,¢t = 0.218,
ar = 2.577,a> = 1.142, as = 1125, a4 = 2.592,1; = 12.499,
I, = 12.819,13 = 12.461.

approach. Fig. 14 shows the rms error before and after having
accounted for the resonance frequency correction. After the
correction, the rms error in the whole frequency band remains
below 6% for thicknesses up to 0.1\.

Finally, we have simulated the circular iris coupled resonator
filter shown in Fig. 15 [13]. For this problem, the “PEW”
approach did not provide accurate enough results and the
Green’s function correction factor, calculated using the “TIC”
approach, has been preferred. For the correction factors, rect-
angular waveguides of the cross sections that circumscribe the
cross sections of the circular irises are used. As can be seen
from Fig. 16, the results for the insertion loss simulated using
our approach are in excellent agreement with the measured
values taken from [13], which demonstrates the precision of
our technique. The irises in this practical example are rather
thin, being a hundredth of the operating wavelength. However,
neglecting this thickness when simulating the structure would
lead to erroneous results (dashed line in the same figure).
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Fig. 16. Insertion loss of the iris coupled resonant filter: simulation using the

“TIC” approach (solid line) and measured values (+) taken from [13]. The
dashed line represents the simulation with infinitely thin irises.

VII. CONCLUSION

In this paper, we have surveyed the IE models for finite
thickness irises and applied them to several rectangular wave-
guide discontinuities and filter configurations including irises.
It is obvious that above a certain thickness, only a rigorous
model treating the irises themselves as cavities can provide ac-
curate results. However, for moderate thicknesses (up to 0.1),
reasonable accuracy can be obtained by combining a recently
introduced approximate model for finite thickness slots with a
classical integral formulation of waveguide discontinuities. The
proposed technique then reduces by a factor of 2 the number of
unknowns in every iris and, thus, includes the effect of irises’
thickness with no increase in the computational complexity as-
sociated to zero-thickness irises. The key point of the approach
is to include the thickness as an analytical correction in the
Green’s function that must be used when solving irises with
the equivalence principle. Two practical formulations of this
correction factor have been discussed and implemented with
excellent results. The roughest and simplest one (the “PEW”
approach) can be applied to irises of any shape, but they must
be large and not very thick because the coupling phenomena
corresponding to the irises’ lateral walls are neglected. If this
assumption cannot be made, an alternative way of computing
the Green’s function correction (the “TIC” approach) is pro-
posed, which is valid for shapes where the waveguide modes
have an analytical expression. This second alternative repre-
sents only a slight overhead in computer time and, hence, it is
always preferable to the zero thickness approach. Moreover,
our approach is very accurate when compared with a full-wave
approach for thicknesses of the order of several hundredths of
a wavelength. For these thicknesses, frequently encountered in
current technologies, the zero-thickness model does not provide
the accuracy requested in many modern applications.
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