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ABSTRACT This paper presents an experimental investigation of diversity gain influenced by polarization
and spatial diversity techniques in ultrawideband (UWB) radio technology. To this aim, two different
coplanar-fed UWB diversity antennas having the same size and employing identical monopoles were taken
and both effective and apparent diversity gain were measured in a reverberation chamber. To extract
the diversity gain, three commonly used approaches to combine diversity (i.e., selection, equal gain, and
maximal ratio) have been considered. Results showed that >1 dB (∼26%) improvement in diversity gain
is obtained over most of the considered band for polarization diversity case as compared with spatial case,
showing the usefulness of polarization diversity for future UWB diversity applications.

INDEX TERMS Diversity gain, polarization and spatial, UWB diversity antenna, reverberation chamber.

I. INTRODUCTION
Diversity proved to be an effective solution to mitigate
multipath fading signals and enhance the system capacity.
The most popular diversity technique is the antenna diversity
which can be classified as spatial/space, polarization and
pattern diversities [1], [2]. It is widely used in body-centric
wireless communications due to offering significant
improvements for instance for the on-body channels [3], [4].
Moreover, it can benefit from ultra-wideband (UWB) radio
technology due to its large bandwidth which improves the
number of channels allowing higher data rates and resolution
(see for instance [5]). This also facilitates the compatibility of
such technology in body-centric applications. There are some
studies presented in the literature investigating the benefits of
employing spatial or polarization diversity techniques. For
instance, in [6] the spatial diversity has been investigated
as it doesn’t need any additional spectrum whereas in [7]
with the motivation of having high isolation considering the
smaller space needed and the reduced cost for installation the
polarization diversity was preferred.

Diversity gain (DG) is a measure of reliability, estimating
the decays of error probability with the increase of signal-to-
noise ratio (SNR) at a given outage probability. Recently,
another term, i.e. effective DG, has been introduced
as an absolute value of DG enabling the comparison
between different diversity antennas [8]. In classical
narrow-band applications, spatial diversity is a common

method to combat fading [9]. The study presented in [10] has
shown that, under the considered conditions, the DG brought
by spatial diversity is about 0.7 dB more important than the
one brought by polarization diversity. Moreover, results
in [7] have shown that the aperture-coupled patch provides
at least 1.5 dB more DG compared to a slanted dipole
configuration. Regarding the DG in UWB case, the studies
in [6] and [11] investigate the DG for on- and off-body
communications with the antenna employing spatial
diversity. In [12], an experimental study of both spatial
and polarization diversity with multiple-input–multiple-
output (MIMO) antennas has been presented for body-centric
applications. However, no DG discussion and result were
provided. To the authors’ knowledge the influence of
UWB spatial and polarization diversities on DG has been
unreported.

In this paper, an investigation of DG influenced by both
spatial and polarization diversities has been performed in
the frame of a specific UWB scenario. For this purpose,
two UWB diversity antennas having the same size and
employing identical monopoles were taken and both effec-
tive and apparent DGs were measured in a reverberation
chamber.

II. DIVERSITY GAIN CONCEPTS
Diversity gain definition is conditioned by the
probability that the SNR is above a reference level.
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Mathematically, its general expression is [13]

DG = [
γc

Γc
−
γ1

Γ1
]

where γc is the instantaneous SNR of the diversity combined
signal, Γc is the mean SNR of the combined signal, γ1 is the
highest SNR of the diversity branch signals, and Γ1 is the
mean value of γ1.
The received power level in a multipath environment

with no line of sight is statistically distributed as a
Rayleigh function [8]. Moreover, in a diversity scheme with
two branches, the received power from each of themwill have
a Rayleigh-shaped probability density function. For this, the
probability that an arbitrary power level sample is smaller
than a certain power level; that is, the cumulative distribution
function (CDF) is plotted. To this aim, the squared
power samples (|S21|2) are simply sorted and then the
series on the x axis against i/N on the y axis are plotted
(where i is the index of the sorted series ranging from 1 to N ).
Theoretically, the difference between the strongest

channel trace and the combined signal represents the
DG for each different combining technique, for a fixed
level of the CDF of the received signals [14]. In order
to optimize the SNR in a diversity scheme, the output
signals can be combined in several ways such as selection
combining (SC), equal gain combining (EGC), and maximal
ratio combining (MRC) [15].

FIGURE 1. Three common methods of combining signals: (a) SC; (b) EGC;
and (c) MRC.

A. SELECTION COMBINING
It selects the strongest received signal in branches [16], [17].
Fig.1a shows the SC block-diagram. The key idea is that,
at any given moment of time, it picks up the branch with the
highest SNR. Note that to provide same SNR for each branch,
a number of modulators are required to adjust the gain of each
diversity branch.

B. EQUAL GAIN COMBINING
It gain all received signals with the same values and
coherently combines all [16], [17]. Fig.1b shows the
EGC block diagram. The key idea is that it linearly combines

the branch signals which leads to a high SNR output stronger
than each branch signal. Note that all signals are co-phased
to provide equal gain combining.

C. MAXIMAL RATIO COMBINING
It gains more in better branches and gains less in bad
branches [16], [17]. Fig.1c shows the MRC block diagram.
The key idea is that it uses linear coherent combining of the
branch signals which leads to the maximized SNR output.
Note that all signals must be co-phased before being summed.
This requires a phasing circuit for each antennas element.

If the two received levels are combined according to a
certain diversity combination rule, the diversity gain relative
to the reference branch, can then be expressed as [8]:

DG =
Pdiv
Pbranch

where Pdiv is the power level after diversity combining,
and Pbranch is the power level of the reference branch. The
two power levels must be read at the same cumulative
probability level, which normally is taken to be 0.01;
that is, 1%. It should be noted that the cumulative power
distribution for the combined case will be located to the right
of the curves for the two branches. DG is a useful tool for
evaluating the diversity performance, but it might not express
the reality. In reality, the antenna performance encounters
different losses, accumulated in the antenna radiation
efficiency. Recently, another term, i.e. effective DG, has been
introduced which is an absolute measure of DG [8]. It also
enables comparing the DG of different diversity antennas.
It can be mathematically expressed as:

DGeffective =
[

Pdiv
Pbranch

]
. ηradiation = [

Pdiv
Pideal

]

where ηradiation is the radiation efficiency of the reference
branch, and Pideal is the received power level of a
single antenna with unit radiation efficiency and located in
the same environment.Pdiv andPbranchmust also bemeasured
at the same cumulative probability levels. In a CDF plot, the
effective diversity gain can be seen as the difference along
the abscissa axis between the ideal reference and the diversity
curve at some specific outage probability.

III. ANTENNA STRUCTURE AND DESIGN
To be able to study the spatial and polarization effects on
DG and to have a fair comparison, we have designed a new
dual-port coplanar waveguide-fed (CPW) UWB diversity
antenna having the same size (27 × 52 × 1.57 mm3) and
identical monopoles as the polarization diversity antenna
reported in [18] but employing spatial diversity. In this case,
the space between the two branches is 8 mm. The detailed
design of the polarization diversity antenna was presented
in [18]. Photographs of both prototypes are shown in Fig. 2.
For the rest of this paper and to simplify the descriptions, the
spatial and the polarization UWB diversity antennas will be
referred to as SP and POL, respectively.
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FIGURE 2. Photographs of UWB diversity antennas: (a) SP; (b) POL [18].

TABLE 1. Measurement setup information.

IV. MEASUREMENT SETUP
Multiple-mode fields inside reverberation chambers can be
expanded in terms of eight times more plane waves than
excited modes [19]. It emulates a rich multipath propagation
environment [20], and can be used to accurately measure
both embedded radiation efficiencies [21] andDGs [22], [23].
The DGs can also easily be estimated from the
embedded element efficiencies and correlation between
ports using simple equations [24]. In this study, the
whole measurements were conducted in the reverbera-
tion chamber at Chalmers University, with dimensions
1.9 m× 2.0 m× 1.4 m, one of the chambers characterized
in [21]. The detailed measurement setup information is
given in Table 1. Note that measurements to evaluate the
DG have been carried out from 3 to 12 GHz; performance
at higher frequencies was measured considering the
limitation in the measurement equipment, e.g. the refer-
ence (REF) antenna. As seen in Table 1, the REF antenna is a
standard discone antenna developed by BLUETEST [25].
It is well matched (based on |S11| ≤ −10 dB) from
0.7-9.5 GHz and its impedance up to 12 GHz is below−6 dB.
The same setup was used for the calibrations. During the
measurements, when one branch is connected to the network
analyzer, the other branch is terminated with a 50-�
load and vice versa. In order to obtain the DG, at first
the power samples of the two branches of each diversity
antennas are combined using the three common methods,

i.e. SC, EGC and MRC. Then, the CDF of each branch’s
power and the combined power samples need to be evaluated.
Finally, by estimating the average power level difference
between the CDFs, at the certain cumulative probability
level (normally 1%), of the combined case and the strongest
branch the DG is obtained.

FIGURE 3. Measured antennas‘ |S11| in reverberation chamber.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Fig. 3 illustrates measured |S11| of both prototypes in
the reverberation chamber demonstrating their ultra-wide
matching bandwidth. For both antennas the |S11|was checked
in an anechoic chamber as well; for the POL, looking at the
results presented in [18] we note that the matching levels
are very similar when measured in a reverberation chamber.
The isolation between the two branches of the SP was also
checked and found to be higher than 15 dB across the entire
band of interest.

FIGURE 4. Measured antennas‘ total efficiency in reverberation chamber.

In order to be able to compare the DG of both antennas, the
effective DG must be calculated [8]. For this, total efficiency
of both antennas is required. Fig. 4 depicts the measured total
efficiency of the considered antennas. As observed, when
both antennas are matched (4-12 GHz), an average total
efficiency of almost 90% for SP and of about 80%-91% for
POL is obtained for each of their branches. The fluctuations at
higher frequencies 9.5-12 GHz is due to the matching issues
of the used reference antenna, which has a similar behavior.
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FIGURE 5. Measured correlation between antenna ports for both
SP and POL.

FIGURE 6. CDF plot, showing diversity gain at 1% outage probability,
calculated from reverberation chamber measurement: (a) SP; (b) POL.

The apparent DG performance for SC, EGC and MRC
in reverberation chamber is related to efficiency and
correlation [26]. The correlation between antenna ports
for SP and POL cases is plotted in Fig. 5. As seen, the
correlation in the interval where the reference antenna
is well matched is higher in the SP than the POL case
which makes POL diversity perform better and provide
improved DG results. To confirm this, the received
power at each antenna’s branches was combined through
SC, EGC, and MRC techniques and the CDFs were
calculated; Fig. 6 shows the results. As observed, by taking
the power difference of the strongest branch, here both
have similar power levels, and the combined case the
DG is obtained. Fig. 7 illustrates both apparent and effective

FIGURE 7. Measured apparent and effective diversity gains of the
two antennas assuming 1% outage probability: (a) SP; (b) POL.

DGs of both antennas achieved with the considered
combining techniques at outage probability of 1%. As seen,
in all cases the DGs slightly improve with the increase
of the frequency. The effective DG values, considering
the frequency interval where both antennas have more
stable efficiencies 4-9.5 GHz, for the SP/SC is
about 6 dB whereas for the POL/SC it is about 7 dB. The
MRC technique results in a higher effective DG for the both
considered antennas; about 7.5 dB and 8.5 dB for SP and
POL, respectively. This shows that both diversity antennas
are suitable for UWB diversity applications, however, the
POL leads to at least 1 dB (∼ 26%) improvement in DG.
The fluctuations appearing at the higher frequencies of the
effective DG are due to the relation with the antenna’s
total efficiency. The repeatability of the measurements was
checked, and similar results obtained.

VI. CONCLUSION
An experimental comparison of diversity gain between
polarization and spatial diversity techniques in UWB systems
has been made. In order to have a fair comparison,
two different dual-port CPW-fed UWB diversity antennas
having the same size and identical monopoles were
taken as representative antennas. The diversity gain
was measured in a reverberation chamber which provides
characteristics similar to a multipath propagation envi-
ronment. Three common diversity combining techniques
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were considered. Results showed a diversity gain
at 1% cumulative probability around 7.5 and 8.5 dB for
SP/MRC and POL/MRC, respectively. Both antennas ensure
good diversity behavior; however, the POL improves the
diversity gain of about 1 dB.
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