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Abstract
We describe the design, analysis, and performance

of an on–line algorithm to dynamically control the fre-
quency/voltage of a Multiple Clock Domain (MCD) mi-
croarchitecture. The MCD microarchitecture allows the
frequency/voltage of microprocessor regions to be adjusted
independently and dynamically, allowing energy savings
when the frequency of some regions can be reduced with-
out significantly impacting performance.

Our algorithm achieves on average a 19.0% reduction in
Energy Per Instruction (EPI), a 3.2% increase in Cycles Per
Instruction (CPI), a 16.7% improvement in Energy–Delay
Product, and a Power Savings to Performance Degrada-
tion ratio of 4.6. Traditional frequency/voltage scaling
techniques which apply reductions globally to a fully syn-
chronous processor achieve a Power Savings to Perfor-
mance Degradation ratio of only 2–3. Our Energy–Delay
Product improvement is 85.5% of what has been achieved
using an off–line algorithm. These results were achieved
using a broad range of applications from the MediaBench,
Olden, and Spec2000 benchmark suites using an algorithm
we show to require minimal hardware resources.

1 Introduction

Microprocessor clock frequencies continue to rise at a
rapid pace,e.g., Intel presently ships the Pentium 4 at
2.8 GHz [8]. Transistor delays are reduced in each sub-
sequent process generation at a much faster rate than wire
delays. This disparity often affects the clock distribution
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network. Continuing to increase the clock frequency re-
quires more and larger clock circuits [1, 24].

One solution to these obstacles is an MCD proces-
sor [15, 22] which allows parts of the processor (i.e., do-
mains) to be independently clocked, creating a globally–
asynchronous, locally–synchronous (GALS) design. In an
MCD design the chip is broken into smaller pieces, al-
lowing traditional design techniques to be applied against
substantially simpler problems. An MCD processor not
only circumvents clock distribution obstacles, it introduces
a new degree of freedom in energy conservation: the volt-
age and frequency for each domain may be independently
and dynamically controlled. The difficulty is in determin-
ing when and how to change the frequency/voltage of the
domains so as to minimize performance degradation and
maximize energy reduction.

There are many techniques that can be used to control
the domain frequencies. Off–line algorithms may be best
suited for applications which can be hand–tuned, which will
exhibit run–time characteristics similar to the off–line anal-
ysis, and which are likely to repeat this behavior whenever
they are executed,e.g., embedded systems where the en-
vironment and execution characteristics of the application
are constrained and repeatable. On–line algorithms may be
best suited for situations where the applications that will be
executed are not known or not controllable. Since our ex-
isting off–line, optimistic algorithm [22] has the advantage
of performing global analysis over the complete run of the
application, it provides a benchmark against which to com-
pare on–line algorithms.

We propose an on–line algorithm that reacts to the dy-
namic characteristics of the application to control domain
frequencies. The algorithm uses processor queue utiliza-
tion information and achieves a 16.7% improvement in



energy–delay product while degrading performance by only
3.2%compared to a baseline MCD processor; the improve-
ment in energy–delay product is 85.5% of what has been
achieved with the off–line algorithm. When taking into ac-
count the inherent inefficiencies of an MCD processor, the
algorithm achieves a 13.8% improvement in energy–delay
product while degrading performance by only 4.5%com-
pared to a conventional (fully synchronous) processor.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the MCD microarchitecture. In Section 3,
we describe our algorithm to control the domain frequen-
cies and the required circuitry. In Section 4, we describe
the simulation methodology employed to evaluate this al-
gorithm and the benchmark applications used. In Section 5,
we present results of this work. Sections 6 and 7 contain ad-
ditional discussion of related work and concluding remarks.

2 Multiple Clock Domain Microarchitecture

Matzke has estimated that as technology scales down to
a0.1µm feature size, only 16% of the die will be reachable
within a single 1.2GHz clock cycle [19]. Assuming a chip
multiprocessor with two processors per die, each processor
would need to have a minimum of three equal–size clock
domains. The Multiple Clock Domain (MCD) architecture
proposed by Semeraroet al. [22] uses four domains, one
of which includes the L2 cache, so that domains may vary
somewhat in size and still be covered by a single indepen-
dent clock, with the voltage in each domain independently
controlled. The boundaries between domains were cho-
sen where (a) there existed a queue structure that served to
decouple different pipeline functions, and/or (b) there was
little inter–function communication. The four chosen do-
mains, shown in Figure 1, comprise the front end (includ-
ing L1 instruction cache, branch prediction, rename, and
dispatch); integer processing core (issue/execute); floating–
point processing core (issue/execute); and load/store unit
(including L1 data cache and unified L2 cache). The main
memory can also be considered a separate clock domain
since it is independently clocked but it is not controllable
by the processor,i.e., the frequency and voltage of the main
memory remain constant at the maximum values. We be-
lieve that the final result is an evolutionary departure from
a conventional processor and would result in a physically
realizable floorplan for an MCD processor. Table 1 lists the
MCD–specific processor configuration parameters.

The MCD processor provides the capability of in-
dependently configuring each domain to execute at fre-
quency/voltage settings at or below the maximum values.
This allows domains that are not executing instructions crit-
ical to performance to operate at a lower frequency, and
consequently, energy to be saved. An MCD processor po-
tentially offers better energy savings than the global volt-

Table 1. MCD processor configuration parameters.

Parameter Value(s)
Domain Voltage 0.65 V – 1.20 V
Domain Frequency 250 MHz – 1.0 GHz
Frequency Change Rate 49.1 ns/MHz [7]
Domain Clock Jitter 110ps, normally distributed about zero
Synchronization Window 30% of 1.0 GHz clock (300ps)
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Figure 1. MCD processor block diagram.

age/frequency scaling of commercial processors such as
Transmeta [9] and XScale [7] because of the finer grain
approach. Simultaneously, an MCD processor can poten-
tially degrade the performance of applications significantly
if critical resources are slowed down. Also, an MCD pro-
cessor has the disadvantage that inter–domain communica-
tion may incur a synchronization penalty (depending on the
relative frequency and phase of the domain clocks). These
synchronization penalties are fully modeled for all inter–
domain communication within our MCD simulator. We as-
sume the arbitration and synchronization circuits developed
by Sjogren and Myers [23], which detect whether the source
and destination clock edges are far enough apart such that a
source–generated signal can be successfully clocked at the
destination. Based on [23], we assume a synchronization
window of 30% of the period of the highest frequency.

Semeraroet al. [22] determined the inherent perfor-
mance degradation of an MCD processor using architec-
tural parameters modeled on the Alpha 21264, to be less
than 4%. Our more recent experiments put that perfor-
mance degradation at less than 2%. This difference is at-
tributed to the fact that we have modified the simulator to
include a more accurate clocking scheme which does not
incur excess synchronization penalties due to integer round-
ing errors, as is the case in [22].

There is a potential performance improvement that can
be achieved from an MCD processor which would likely
outweigh the inherent performance degradation. That is,
the maximum frequency of operation of all but that domain
with the longest timing path would likely be higher for an



MCD processor than for the same design in a fully syn-
chronous system. Similarly, a domain that performs best
when clock frequency is traded off for IPC improvements
would no longer be constrained to run at the faster over-
all frequency. This has the potential of increasing the per–
domain performance relative to a fully synchronous chip.
In addition, since the MCD processor does not need a low–
skew global clock, the domain frequencies may be further
increased. We have not attempted to exploit these potential
improvements here, but these are areas of active research.

3 Dynamic Frequency Control Algorithm

To be effective, control of the frequency and voltage of
each domain must be adaptive [15]. To accomplish this, the
algorithm must take clues from the processor hardware to
infer characteristics of the application that would allow the
frequency of one or more domains to be decreased without
significantly impacting performance.

Analysis of CPU structure resource utilization character-
istics of many applications revealed that a correlation exists
between the number of valid entries in the issue queues for
each domain over an interval of instructions and the desired
frequency for that domain (the desired frequencies were
taken as the frequencies chosen by the off–line algorithm
described in [22]). This observation is consistent with the
conclusions of [4] where an issue queue utilization–based
algorithm achieved similar results to a parallelism–based al-
gorithm. These algorithms were used to dynamically resize
the issue queue to achieve power efficiency. Although the
parallelism–based algorithm takes into account where the
instructions are being issued from within the queue, sim-
ply using the utilization of the queue was sufficient in most
cases, indicating that issue queue utilization correlates well
with instruction flow through the corresponding functional
units. Intuitively, this correlation follows from considering
the instruction processing core as the sink of the domain
queue and the front end as the source. The queue utilization
is indicative of the rate at which instructions are flowing
through the processing core. If the utilization increases,
instructions are not flowing through the processing units
fast enough. This makes the queue utilization an appro-
priate metric for dynamically determining the appropriate
frequency for each domain (except the front end domain).

This analysis also highlights the fact that decentralized
control of each domain is possible. Since the benefits of
an MCD architecture are in partitioning the processor, and
global information needs to be synchronized to each do-
main, we decided that an algorithm that uses information
generated locally in the domains is preferable. Given that
the MCD architecture is partitioned in such a way that a
queue exists on the input of each domain, other than the
front end (see Figure 1), it seemed logical to exploit the ex-

istence of these queues and this correlation. (As discussed
later, we use a fixed frequency for the front end). This
correlation between issue queue utilization and desired fre-
quency is not without problems. Notable among them is
that as the frequency in a domain is changed it may have
an impact on the issue queue utilization of that domainand
possibly others. The interaction between the domains is a
potential source of error that might cause the actual perfor-
mance degradation to exceed the expected value and/or lead
to lower energy savings. It is also possible that these inter-
actions will cause perturbations in the domain frequencies
as each domain is influenced by the changes in the other do-
mains. These are issues we considered when designing the
dynamic frequency control algorithm described next.

3.1 The Attack/Decay Algorithm

The algorithm developed consists of two components
which act independently but cooperatively. The result is
a frequency curve that approximates the envelope of the
queue utilization curve, resulting in a small performance
degradation and a significant energy savings. In general,
an envelope detection algorithm reacts quickly to sudden
changes in the input signal (queue utilization in this case),
and in the absence of significant changes the algorithm
slowly decreases the controlling parameter. This comprises
a feedback control system. If the plant (the entity being
controlled) and the control point (the parameter being ad-
justed) are linearly related, then the system will be stable
and the control point will adjust to changes in the plant cor-
rectly. Due to the rapid adjustments required for significant
changes in utilization and the slow adjustments otherwise,
we call this anAttack/Decayalgorithm. It is inspired by the
Attack–Decay–Sustain–Release (ADSR) envelope generat-
ing techniques used in signal processing and signal synthe-
sis [16]. TheAttack/Decayalgorithm is designed such that
the loop delay (the time from when the control is changed
until the effects of that change are seen on the feedback
signal) is significantly smaller than the sampling period.
The sampling period was chosen to be 10,000 instructions,
which is approximately10× longer than the loop delay. In
addition to ensuring that delay would not cause instability
in the loop, we also accounted for the inaccuracy in the sys-
tem (i.e., the control point and the plant arenot linearly
related, they are highly correlated) by purposelynot using
the feedback signal to calculate a scaled error to be applied
to the control point. Although a scaled error is typically
used in control systems, in this case doing so would have
almost certainly resulted in loop oscillations. Rather, we
apply a fixed adjustment to the control point independent
of the magnitude of the error. Although a fixed adjustment
can result in a less than ideal envelope, it cannot produce
excessive oscillation.



The implementation of theAttack/Decayalgorithm is
very simple. Listing 1 shows the code from the model.
The algorithm requires the number of entries in the domain
issue queue over the previous 10,000 instructions. Using
thatQueueUtilizationand thePrevQueueUtilization, the al-
gorithm is able to determine if there has been a significant
change, in which case theattackmode is used (lines 10–21).
If no such change has occurred or the domain is unused,
the algorithm decreases the domain frequency slightly, in
which case thedecaymode is used (lines 22–27). In all
cases, aPerfDegThresholdis examined when attempting to
decrease the frequency (lines 19 & 25). If the IPC change
exceeds this threshold, the frequency is left unchanged for
that interval. The purpose is to catch natural decreases
in performance that are unrelated to the domain frequency
and prevent the algorithm from reacting to them. Changes
in IPC related to frequency changes will cause queue uti-
lization changes and subsequent frequency adjustments by
the algorithm. ThePerfDegThresholdalso tends to mini-
mize interaction with adjustments made in other domains.
The IPC performance counter is the only global information
provided to all domains. As an added measure against set-
tling at a local minimum when a global minimum exists, the
algorithm forces an attack whenever a domain frequency
has been at one extreme or the other for 10 consecutive in-
tervals (lines 4–9 & 38–47). This is a common technique
applied when control systems reach an end point and the
plant/control relationship is no longer defined. After theAt-
tack/Decayalgorithm is run, range checking is performed
to force the frequency to be within the range of the MCD
processor (not shown).

With exception of the Fetch/Dispatch domain, each do-
main operates independently using the same algorithm and
configuration parameters. The Fetch/Dispatch domain be-
haves significantly differently than the others because it
drives the remainder of the processor. We have found that
decreasing the frequency of the front end causes a nearly
linear performance degradation. For this reason, the results
presented are with the front end frequency fixed at 1.0 GHz.
In addition, theAttack/Decayalgorithm operates on a queue
structure at the front of the domain, and the Fetch/Dispatch
domain does not have such a structure. An alternative algo-
rithm would be needed for the Fetch/Dispatch domain. The
range of parameter values used in our experiments are given
in Table 2. The ranges for the parameters were chosen to be
large enough to allow a sensitivity analyses (presented in
Section 5) to be performed.

Figure 3(a) shows the Floating–Point Issue Queue (FIQ)
utilization for the MediaBench applicationepic de-
code , and Figure 3(b) shows the frequency of the floating–
point domain chosen by theAttack/Decayalgorithm. This
application is interesting because the floating–point unit is
unused except for two distinct phases. The dynamic algo-

Table 2. Attack/Decayconfiguration parameters.
Algorithm Parameter Range
DeviationThreshold 0–2.5%
ReactionChange 0.5–15.5%
Decay 0–2%
PerfDegThreshold 0–12%
EndstopCount 1–25 intervals

rithm adapts accordingly, increasing the frequency during
periods of activity and permitting it to decay when the do-
main is unused.

A similar relationship between utilization and frequency
exists for the Load/Store domain. To understand this rela-
tionship it is useful to examine in detail the difference be-
tween Load/Store Queue (LSQ) utilization values in suc-
cessive 10,000 instruction intervals (it is the difference
that drives theAttack/Decayalgorithm). A representative
region exists inepic decode between 4–5M instruc-
tions. From Figure 2(a) and the load/store domain fre-
quency shown in Figure 2(b), one can see that the domain
frequency changes significantly when the utilization

1 /∗ Assume no f r e q u e n c y change r e q u i r e d∗ /
2 P e r i o d S c a l e F a c t o r = 1 . 0 ;
3

4 i f ( UpperEndstopCounter = = 1 0 ) {
5 /∗ Force f r e q u e n c y d e c r e a s e∗ /
6 P e r i o d S c a l e F a c t o r = 1 . 0 + React ionChange ;
7 } e l s e i f ( LowerEndstopCounter = = 1 0 ) {
8 /∗ Force f r e q u e n c y i n c r e a s e∗ /
9 P e r i o d S c a l e F a c t o r = 1 . 0− React ionChange ;

10 } e l s e {
11 /∗ Check u t i l i z a t i o n d i f f e r e n c e a g a i n s t t h r e s h o l d∗ /
12 i f ( ( Q u e u e U t i l i z a t i o n− P r e v Q u e u e U t i l i z a t i o n ) >
13 ( P r e v Q u e u e U t i l i z a t i o n∗ D e v i a t i o n T h r e s h o l d ) ) {
14 /∗ S i g n i f i c a n t i n c r e a s e s i n c e l a s t t ime∗ /
15 P e r i o d S c a l e F a c t o r = 1 . 0− React ionChange ;
16 } e l s e
17 i f ( ( ( P r e v Q u e u e U t i l i z a t i o n − Q u e u e U t i l i z a t i o n ) >
18 ( P r e v Q u e u e U t i l i z a t i o n ∗ D e v i a t i o n T h r e s h o l d ) )
19 && (( PrevIPC / IPC ) > = Per fDegThresho ld ) ) {
20 /∗ S i g n i f i c a n t d e c r e a s e s i n c e l a s t t ime∗ /
21 P e r i o d S c a l e F a c t o r = 1 . 0 + React ionChange ;
22 } e l s e {
23 /∗ The domain i s no t used or
24 no s i g n i f i c a n t change d e t e c t e d . . .∗ /
25 i f ( ( PrevIPC / IPC ) > = Per fDegThresho ld ) {
26 P e r i o d S c a l e F a c t o r = 1 . 0 + Decay ;
27 }
28 }
29 }
30

31 /∗ Apply f r e q u e n c y s c a l e f a c t o r∗ /
32 DomainFrequency = 1 . 0 / ( ( 1 . 0 / DomainFrequency )∗
33 P e r i o d S c a l e F a c t o r ) ;
34

35 /∗ Setup f o r nex t i n t e r v a l∗ /
36 PrevIPC = IPC ;
37 P r e v Q u e u e U t i l i z a t i o n = Q u e u e U t i l i z a t i o n ;
38 i f ( ( DomainFrequency < = MINIMUM_FREQUENCY) &&
39 ( LowerEndstopCounter ! = 1 0 ) )
40 LowerEndstopCounter ++;
41 e l s e
42 LowerEndstopCounter = 0 ;
43 i f ( ( DomainFrequency > = MAXIMUM_FREQUENCY) &&
44 ( UpperEndstopCounter ! = 1 0 ) )
45 UpperEndstopCounter ++;
46 e l s e
47 UpperEndstopCounter = 0 ;

Listing 1. Attack/Decayalgorithm
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Figure 2. Load/Store domain statistics for epic
decode : 4–5M instructions.

difference exceeds the threshold (horizontal lines at±
1.75% in Figure 2(a)). The first labeled region (Figure 2(b))
shows how the frequency is held constant through minor
perturbations in queue utilization; theattack and decay
modes counteract each other, keeping the frequency rela-
tively stable. The second region shows the frequency ac-
tually being decreased in response to both theattack and
decaymodes of the algorithm.

3.2 Hardware Monitoring and Control Circuits

The hardware required to implement theAttack/Decay
algorithm consists of several components. First, there must
be an instruction counter to frame the intervals. Based on
the general characteristics of the utilization curves and the
decay rate range of the algorithm, we determined that an
appropriate interval is approximately 10,000 instructions;
therefore, a single 14–bit counter is sufficient. Second, the
hardware must provide the queue counters that are used by
the algorithm. These counters must exist for each domain
that is being controlled and must be large enough to handle
the worst case which isQueueSize ∗ IntervalLength ∗
CPI. It is not likely that the counters would ever reach
this value but 15–16–bit saturating counters are not unrea-
sonable. The potential error introduced if a counter were
to saturate is negligible given the adaptive nature of theAt-
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(a) Floating–point issue queue utilization. The y–axis
values are calculated as the average utilization for 10,000
instruction intervals. Since utilization is accumulated
each cycle it is possible to show a utilization that exceeds
the queue size. This occurs when the execution of the
10,000 instructions takes longer than 10,000 cycles.
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Figure 3. Floating point domain statistics for epic
decode : 0–6.7M instructions.

tack/Decayalgorithm.
The most complicated part of the hardware is the fre-

quency computation logic. This logic must perform the fol-
lowing tasks:
• Calculate the difference between the present and the

previous counter values (< 16–bit subtractor).
• Compare the differences with threshold values (<16–

bit comparators in the worst case; simple masks may
be possible).

• Determine the new domain frequency by scaling the
present frequency by a constant value (16–24–bit mul-
tiplier, depending on the frequency resolution).

In addition, 4–bit counters are needed to determine when
to force an attack when the frequency of the domain has
been at one extreme or the other for 10 consecutive inter-
vals. Clearly, scaling the domain frequency will require the
most hardware, but since the result is not time–critical, it is
possible to use a serial multiplication technique. From [27]
it is possible to estimate the equivalent gate count for each
of the above components. These estimates are given in Ta-
ble 3 assuming 16–bit devices in all cases. For each do-



Table 3. Estimate of hardware resources requirement to implement the Attack/Decayalgorithm.
Component Estimation Equivalent Gates

Queue Utilization Counter (Accumulator) 7n (Adder) +4n (D Flip–Flop) =11n 176
Comparators (2 required) 6n × 2 = 12n 192
Multiplier (partial–product accumulation) 1n (Multiplier) + 4n (D Flip–Flop) =5n 80
Interval Counter (14–bit) 3n (Half–adder) +4n (D Flip–Flop) =7n 112
Endstop Counter (4–bit) 3n (Half–adder) +4n (D Flip–Flop) =7n 28

Table 4. Architectural parameters for simulated Al-
pha 21264–like processor.

Configuration Parameter Value
Branch predictor:

Level 1 1024 entries, history 10
Level 2 1024 entries
Bimodal predictor size 1024
Combining predictor size 4096
BTB 4096 sets, 2–way

Branch Mispredict Penalty 7
Decode Width 4
Issue Width 6
Retire Width 11
L1 Data Cache 64KB, 2–way set associative
L1 Instruction Cache 64KB, 2–way set associative
L2 Unified Cache 1MB, direct mapped
L1 cache latency 2 cycles
L2 cache latency 12 cycles
Integer ALUs 4 + 1 mult/div unit
Floating–Point ALUs 2 + 1 mult/div/sqrt unit
Integer Issue Queue Size 20 entries
Floating–Point Issue Queue Size 15 entries
Load/Store Queue Size 64
Physical Register File Size 72 integer, 72 floating–point
Reorder Buffer Size 80

main, 476 gates are required (this includes full magnitude
comparators even though simple masks may be sufficient).
In addition, a single 14–bit interval counter would require
112 gates. Overall, fewer than 2,500 gates are required to
fully control a four–domain MCD processor.

4 Simulation Methodology

Our simulation environment is based on the Sim-
pleScalar toolset [3] with the Wattch [2] power estima-
tion extension and the MCD processor extensions [22].
The MCD extensions include modifications to more closely
model the microarchitecture of the Alpha 21264 micropro-
cessor [18],i.e., the Register Update Unit (RUU) has been
split into separate reorder buffer (ROB), issue queue, and
physical register file structures. A summary of our simula-
tion parameters appears in Table 4.

We selected a broad mix of compute bound, memory
bound, and multimedia applications from the MediaBench,
Olden, and Spec2000 benchmark suites. Table 5 specifies
the benchmarks along with the input data set and/or parame-
ters used for the simulation runs. In addition, the instruction
windows and total number of instructions for each bench-
mark are given. For all results reported, benchmarks for
which multiple data sets were run and for which multiple

Table 5. Benchmark applications, from the Medi-
aBench, Olden and Spec2000 benchmark suites.

Benchmark Suite Datasets Simulation window
adpcm ref encode (6.6M)

decode (5.5M)
epic ref encode (53M)

decode (6.7M)
jpeg ref compress (15.5M)

decompress (4.6M)
g721 ref encode (0–200M)

decode (0–200M)
gsm ref encode (0–200M)

Media- decode (0–74M)
ghost- Bench ref 0–200M
script

mesa ref mipmap (44.7M)
osdemo (7.6M)
osdemo (75.8M)

mpeg2 ref encode (0–171M)
decode (0–200M)

pegwit ref encrypt key (12.3M)
encrypt (32.4M)
decrypt (17.7M)

bh 2048 1 0–200M
bisort 65000 0 Entire program (127M)

em3d 4000 10 70M–119M (49M)
health 4 1000 1 80M–127M (47M)

mst Olden 1024 1 70M–170M (100M)
perimeter 12 1 0–200M

power 1 1 0–200M
treeadd 20 1 Entire program (189M)

tsp 100000 1 0–200M
voronoi 60000 1 0 0–200M

bzip2 source 58 1000M–1100M
gcc 166.i 2000M–2100M

gzip Spec2000 source 60 1000M–1100M
mcf Integer ref 1000M–1100M

parser ref 1000M–1100M
vortex ref 1000M–1100M

vpr ref 1000M–1100M
art Spec2000 ref 300M–400M

equake Floating- ref 1000M–1100M
mesa Point ref 1000M–1100M
swim ref 1000M–1100M

programs comprise the benchmark, we compute an average
result for that benchmark weighted by the instruction counts
of the individual components.

For the baseline processor, we assume a 1.0 GHz clock
and 1.2V supply voltage, based on that projected for
the forthcoming CL010LP TSMC low–power 0.1µm pro-
cess [25]. For configurations with dynamic voltage and
frequency scaling, to approximate the smooth transition of



XScale [7] we use 320 frequency points spanning a linear
range from 1.0 GHz down to 250 MHz. Corresponding to
these frequency points is a linear voltage range from 1.2V
down to 0.65V.1 Our voltage range is tighter than that of
XScale (1.65–0.75V), reflecting the compression of voltage
ranges in future generations as supply voltages continue to
be scaled aggressively relative to threshold voltages. In ad-
dition, the full frequency range is twice that of the full volt-
age range. These factors limit the amount of power savings
that can be achieved with conventional (global) dynamic
voltage and frequency scaling.

We use the XScale model for dynamic voltage and fre-
quency scaling [7] because it allows the processor to exe-
cute through the frequency/voltage change. We believe this
attribute to be essential to achieving significant energy sav-
ings without excessive performance degradation. We as-
sume that the frequency change can be initiated immedi-
ately when transitioning to a lower frequency and voltage
and that the voltage and frequency increase simultaneously
when transitioning to higher values. In both cases, the volt-
age transition rate is defined by [7].

The disadvantage of multiple clock domains is that data
generated in one domain and needed in another must cross
a domain boundary, potentially incurring synchronization
costs [5, 6]. To accurately model these costs, we account for
the fact that the clocks driving each domain are independent
by modeling independent jitter on a cycle–by–cycle basis.
Our model assumes a normal distribution of jitter with a
mean of zero. The variance is 110ps, consisting of an ex-
ternal Phase Lock Loop (PLL) jitter of 100ps (based on a
survey of available ICs) and 10ps due to the internal PLL.

Our simulator tracks the relationships among the domain
clocks on a cycle–by–cycle basis, based on their scaling fac-
tors and jitter values. Initially, all clock starting times are
randomized. To determine the time of the next clock pulse
in a domain, the domain cycle time is added to the starting
time, and the jitter for that cycle (which may be positive
or negative) is obtained from the distribution and added to
this sum. By performing this calculation for all domains
on a cycle–by–cycle basis, the relationship among all clock
edges is tracked. In this way, we can accurately account for
synchronization costs due to violations of the clock edge
relationship or to inter–domain clock rate differences.

For all configurations, we assume that all circuits are
clock gated when not in use. We do not currently esti-
mate the power savings or clock frequency advantage (due
to reduced skew) from the absence of a conventional global
clock distribution tree that supplies a low–skew clock to all
chip latches. In fact, we assume the MCD clock subsys-
tem (separate domain PLLs, clock drivers and clock grid)

1In Wattch, we simulate the effect of a 1.2–0.65V voltage range by
using a range of 2.0–1.0833V because Wattch assumes a supply voltage of
2.0V.

increasesthe clock energy by 10% relative to a globally
synchronous processor. This translates into a 2.9% increase
in total energy for the MCD configurations over the single
clock, fully synchronous system. We believe this is a very
conservative assumption as others suggest that the use of
multiple PLLs would increase the clock energy by an in-
significant amount [11, 12].

5 Results

The results presented are for theAttack/Decayalgorithm
configured withDeviationThreshold= 1.75% Reaction-
Change= 6.0%,Decay= 0.175%, andPerformanceDegra-
dationThreshold= 2.5%. In addition, results for the off–
line algorithm from [22] are included to provide a com-
parison point. Results for the off–line algorithm are pre-
sented for two configurations:Dynamic–1%andDynamic–
5%. Dynamic–1%has performance degradation closest to
Attack/Decayand therefore provides a useful comparison
point. Dynamic–5%is the configuration reported in [22]; it
achieves a higher energy–delay product improvement, but
at a significantly higher performance degradation. These al-
gorithms attempt to cap the performance degradation at 1%
and 5% above that of the baseline MCD processor by find-
ing slack in the application execution off–line, then config-
uring the domain frequencies dynamically (i.e., during re–
execution using thesameinput data set) to eliminate that
slack.

The results (averaged over all 30 benchmark applica-
tions) and the analysis that follows include the inherent per-
formance degradation and energy losses of the MCD pro-
cessor (including the additional 2.9% energy for multiple
PLL clock circuits). Note that these results do not include
the energy consumed by the hardware resources required
to implement the algorithm (described in Section 3.2). We
believe this to be inconsequential given the modest hard-
ware requirements relative to the complexity of the proces-
sor itself. Nor do these results include the power consumed
by the synchronization circuits within the interface queues.
Others [5, 6] have shown that multiple clock domain FIFOs
do not add significantly to the energy consumed by a tradi-
tional synchronous FIFO.

The Attack/Decayalgorithm achieves an energy–delay
product improvement of 13.8% with an average energy per
instruction reduction of 17.5% and a performance degrada-
tion of 4.5% relative to aconventional, fully synchronous
processor. The performance degradation goal was 2.5%
for this configuration (with 1.3% from the inherent per-
formance degradation of the MCD architecture). TheAt-
tack/Decayalgorithm also compares well to theDynamic–
1% algorithm described in [22] (Table 6, results shown are
relative to a baseline MCD processor). Results for the
Dynamic–5%algorithm are also shown, but since the per-



Table 6. Comparison of Attack/Decay, Dynamic–1%and Dynamic–5%algorithms, relative to a baseline MCD
processor. The Global(· · ·) results are for a fully synchronous processor using global frequency/voltage scaling
to achieve the performance degradation of the respective algorithms. Note the power/performance ratio of
approximately 2 for the Global(· · ·) results.

Energy–Delay Power /
Algorithm

Performance Energy
Product PerformanceDegradation Savings

Improvement Ratio
Attack/Decay 3.2% 19.0% 16.7% 4.6
Dynamic–1% 3.4% 21.9% 19.6% 5.1
Dynamic–5% 8.7% 33.0% 27.5% 3.8

Global (Attack/Decay) 3.2% 6.5% 7.8% 2.0
Global (Dynamic–1%) 3.4% 6.6% 3.6% 2.0
Global (Dynamic–5%) 8.7% 12.4% 5.0% 1.9

formance degradation is significantly higher, it is difficult to
make a comparison. Note that the off–line algorithm is able
to take advantage of full knowledge of the slack existing
within the application. In addition, the off–line algorithm is
able to request frequency changes prior to the point in the
program execution where that frequency is required, and
therefore the slew rate of the voltage/frequency changing
hardware does not create a source of error within that algo-
rithm. The on–line algorithm is not able to take advantage
of either of these and is by nature reactive. Still, it is able
to achieve 85.5% of the energy–delay product improvement
of theDynamic–1%off–line algorithm.

The power savings to performance degradation ratio
(calculated as the average percent power savings divided
by the average percent performance degradation) is meant
to express the relative benefit (in terms of power savings)
for each percentage of performance degradation [21]. In
other words, a ratio ofX indicates that for every 1 percent
of performance degradation,X percent of power is saved.
The Attack/Decaypower savings to performance degrada-
tion ratio achieved was 4.6. This compares favorably with
a ratio of 2–3 for global voltage scaling techniques. Our
analysis of the global voltage scaling technique using real-
istic frequency/voltage scaling [7, 9] resulted in a ratio of 2
(Table 6, based on the simulator model and benchmark ap-
plications described in Section 4). Others [21] suggest that
a ratio of 3 can be achieved with global voltage scaling.

The individual application results for performance
degradation, energy savings and energy–delay product are
given in Figures 4(a), 4(b) and 4(c), respectively.2 All of
these results are referenced to a fully synchronous proces-
sor. One observation from Figure 4(a) is that the off–line al-
gorithm is able to achieve anegativeperformance degrada-
tion, i.e., a performance improvement, for themcf bench-
mark. The gains are modest (−1.2% and−3.7% for the
Dynamic–1%andDynamic–5%algorithms, respectively),
but somewhat surprising. Analysis of per–interval proces-
sor statistics reveals a subtle interplay between the timing

2Lines on the graph are meant to ease understanding of the data group-
ing and not meant to imply any relationship between data points.

of loads that miss all the way to main memory and penal-
ties associated with branch mis–predictions. In the case of
Dynamic–5%the MCD architecture results in anincrease
in average memory access time of 2.8%. The change in
instruction timing resulting from this causes adecreasein
average branch mis–predict penalty of 15.5%, resulting in
an overall performance improvement of 3.7%. This same
anomaly exists for theDynamic–1%algorithm, although
to a lesser degree. TheAttack/Decayalgorithm achieves
a performance degradation of 0.3% formcf ; analysis of the
per–interval statistics for this algorithm shows that it does
not exhibit the interaction between main memory latency
and branch mis–predict penalties. This is because theAt-
tack/Decayalgorithm never decreases the frequency of the
Load/Store domain below the maximum value inmcf , and
therefore the instruction timing is not perturbed as it is for
the off–line algorithms.

Originally we used 1.0–1.1B as the instruction window
for gcc . We decided to change to 2.0–2.1B because we de-
termined that 1.0–1.1B was part of the initialization phase
of the program. Although the 1.0–1.1B instruction window
is part of the initialization phase, it does have some interest-
ing properties as the following analysis illustrates: During
this phase of execution, 80% of the instructions are mem-
ory references all of which miss all the way to main mem-
ory. With the load/store–to–main memory interface getting
this highly utilized, the increased memory access time di-
rectly impacts the MCD baseline performance degradation.
This is similar to what happens tomcf for the off–line al-
gorithm except that the change in memory timing due to
the synchronization penaltydoes notcause a decrease in
branch mis–predict penalty forgcc as it does inmcf . This
is because the branches ingcc have no mis–predict penalty
(we are getting 99% branch prediction accuracy for the 1.0–
1.1B instruction window ofgcc , and about 84% formcf ).

In addition to the individual results, it is interesting to
examine the sensitivity of the algorithm to the configuration
parameters.3 The sensitivity results are for reasonable algo-

3The Attack/Decay algorithm is specified in the legends by four per-
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(a) Performance Degradation.
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(c) Energy–Delay Product Improvement.

Figure 4. Application result summary.

rithm parameter values where individual parameters were
swept through the range specified in Table 2. Figure 5(a)
shows the average performance degradation achieved by the
algorithm, versus the target performance degradation. In

centage parameters:DeviationThreshold, ReactionChange, Decay and
PerformanceDegradationThreshold, respectively.X.XX is used as a place-
holder for swept parameters.
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(a) Performance degradation accuracy, offset by the
baseline MCD performance degradation of 1.3%.
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(b) Performance degradation target trend: Energy–delay
product improvement.

Figure 5. Attack/Decayperformance degradation
target analysis.

this figure, the bold line indicates the performance degra-
dation of an ‘ideal’ algorithm,i.e., a fictitious algorithm
which achieves the precise performance degradation re-
quested. (Note that performance degradations of all algo-
rithms are offset by the inherent MCD performance degra-
dation of 1.3%.) TheAttack/Decayalgorithm is able to pro-
vide approximately the performance degradation specified
by the configuration, over the range of 4–10%. Figure 5(b)
shows energy–delay product improvement versus the per-
formance degradation target. The trend in this graph is
that as the performance degradation target increases beyond
approximately 9%, the energy–delay product improvement
tends to decrease. This is consistent with the characteris-
tics of theAttack/Decayalgorithm. The algorithm attempts
to decrease frequencies only as much as is possible with-
out impacting performance. As performance degradation
is increased in an attempt to save more energy, the en-
ergy savings come at the expense of more and more perfor-
mance degradation. In other words, for small performance
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(a)DecayPercentsensitivity.
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(b) ReactionChangePercentsensitivity.
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(c) DeviationThresholdPercentsensitivity.

Figure 6. Attack/Decay sensitivity analysis:
Energy–Delay Product Improvements.

degradation values, the energy savings come quickly; for
larger performance degradation values, the energy savings
are harder to achieve.

Figure 6(a) and 7(a) show the algorithm sensitiv-
ity to DecayPercentfor the energy–delay product and
power/performance ratio, respectively. We can see that for
small and large values ofDecayPercent, the performance of
the algorithm diminishes. It is encouraging that there is a

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00%
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.500_04.0_X.XXX_3.0

Decay Percent

P
ow

er
 / 

P
er

fo
rm

an
ce

 R
at

io
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(b) ReactionChangePercentsensitivity.
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(c) DeviationThresholdPercentsensitivity.

Figure 7. Attack/Decay sensitivity analysis:
Power/Performance Ratio.

rather large range (from 0.5% to 1.5%) where the algorithm
performance is essentially flat, and thus relatively insensi-
tive to this parameter. This behavior follows from the effect
that theDecayPercentparameter has on theAttack/Decay
algorithm. TheDecayPercentcontrols how quickly the al-
gorithm reduces the frequency when queue utilization is es-
sentially unchanged. If the decay is too slow, potential en-
ergy savings are not realized, too fast and performance is



degraded excessively.
Figure 6(b) and 7(b) show the algorithm sensitivity to

ReactionChangePercent. There is a large range of values
for the this parameter (from 3% to 12%) which produce
the best results, higher values continue to show good re-
sults but the incremental improvements diminish quickly.
Again, this behavior follows from the effect theReaction-
ChangePercenthas on theAttack/Decayalgorithm. If the
value of this parameter is too small, the algorithm is un-
able to quickly adapt to the needs of the application, too
large and overshooting and undershooting are likely to oc-
cur. Both of these extremes can result in excess perfor-
mance degradation and/or unrealized energy savings.

Figure 6(c) and 7(c) show the algorithm sensitivity to
DeviationThresholdPercent. Although it might appear that
values less than 1.75% perform equally well, it is impor-
tant to understand how this parameter influences theAt-
tack/Decayalgorithm. This parameter determines the sen-
sitivity of the algorithm to changes in queue utilization.
Small values ofDeviationThresholdPercentwill cause the
Attack/Decayalgorithm to enter theattack mode exces-
sively. Although the net result shows that the performance
is still good, this is not a desirable condition since excessive
energy may be consumed as the PLL and voltage control
circuits are continuously activated. For these reasons, the
DeviationThresholdPercentshould be kept within the range
of 0.75–1.75%.

We also performed a sensitivity analysis on theEndstop-
Countparameter. TheAttack/Decayalgorithm was insen-
sitive to this parameter between the values of 2 and 25, al-
though an infinite valuedid degrade the effectiveness of the
algorithm.

In summary, theAttack/Decayalgorithm exhibits the ex-
pected parameter sensitivity; the performance of the algo-
rithm diminishes for both large and small values of the pa-
rameters. In addition, the extreme values of the parameters
cause wider variation in the overall and individual applica-
tion results. It is also clear that there exists a large parame-
ter space over which the algorithm is relatively insensitive.
This is encouraging since it allows significant latitude in the
implementation of the algorithm. The expected results over
this parameter space exhibit the combination of low perfor-
mance degradation and high energy savings required by an
on–line algorithm.

6 Related Work

To the best of our knowledge, this is the first work to
describe an on–line dynamic algorithm to control the fre-
quency and voltage for domains in an MCD architecture
(although using signal processing techniques in microarchi-
tecture is not without precedent [17]). In [15] the authors
conclude that a multiple clock domain processor can only

reduce energy over a fully synchronous processor if the fre-
quency/voltage are dynamically controlled, but they do not
describe any control algorithms.

There has been significant research related to control-
ling the frequency and voltage for a globally controllable
processor,i.e., Dynamic Voltage Scaling (DVS). Weiseret
al. [26] and Govilet al. [10] describe algorithms developed
for DVS systems which assume that the frequency of the
CPU is controllable via software, that the voltage changes
to the minimum value possible for the chosen frequency,
and that the frequency and voltage changes occur instanta-
neously. The algorithms developed use the operating sys-
tem to execute the DVS algorithm at either normal schedul-
ing points [26] or at prescribed time intervals [10]. In [20]
the authors adapt traditional DVS algorithms to the real–
time systems domain by adding deadline information avail-
able to the real–time operating system as part of the DVS
algorithm. In [13] and [14] voltage scheduling instructions
are inserted by the compiler when the compiler is able to
determine that processor frequency will not impact overall
application execution performance.

7 Conclusions

We have described and evaluated an on–line, dynamic
frequency control algorithm for an MCD processor that
uses a simpleAttack/Decaytechnique to reduce the fre-
quency/voltage of individual domains, resulting in energy
per instruction savings of 19.0% and an improvement in
energy–delay product of 16.7% with only 3.2% degradation
in performance, referenced to abaseline MCD processor
with all domain frequencies of 1.0 GHz. These results were
achieved over a broad range of applications taken from stan-
dard benchmark suites. The algorithm is also able to main-
tain consistent performance levels across these vastly dif-
ferent applications (multimedia, integer, and floating–point)
using only modest hardware resources, achieving 85.5% of
the energy–delay product improvements of our previous,
off–line algorithm.

Whereas traditional global voltage scaling techniques
are able to achieve a power savings to performance degrada-
tion ratio of only 2–3, theAttack/Decayalgorithm coupled
with an MCD microarchitecture achieves a ratio of 4.6.

Our current analysis shows that this algorithm is feasible
and can produce significant energy savings with minimal
performance degradation. Future work will involve devel-
oping alternative on–line algorithms, including approaches
for effective scaling of the front end. Another area of future
research involves the microarchitecture of an MCD proces-
sor and the combination of on–line and off–line algorithms.
It may be possible to change domain boundaries and/or the
number or size of processor resources such that the fre-
quency of one or more domains could be further reduced.
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