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Abstract— This paper presents the dual (2×2) MIMO channel
capacity over the Hoyt fading channel. The joint eigenvalue
distribution of the channel matrix is obtained and it is shown
that the effect of the Hoyt parameter b can degrade around 8.5%

the channel capacity. For the t × r case, an asymptotic result is
also derived. All the results are validated by numerical Monte
Carlo simulations and are in excellent agreement.

Index Terms— Fading distributions, Rayleigh distribution,
Hoyt distribution, Eigenvalue distribution, MIMO channels.

I. INTRODUCTION

The Shannon capacity of a MIMO (multiple input multiple
output) channel can be computed by means of the joint
eigenvalue distribution of the matrix W = H†H, where H

is the channel matrix and † denotes the complex conjugate
transpose. In the classical Rayleigh fading model, the entries
of H are assumed to be i.i.d. (independent and identically
distributed) zero mean complex Gaussian with independent
real and imaginary parts sharing the same variance. For this
model, the joint eigenvalue distribution is known and a closed
form expression for the capacity has been obtained in [1].
Unfortunately, as one departs from this standard model, much
less is known on the joint eigenvalue distribution. In his
pioneering work [2], James obtained a formula for the non-
zero mean (or Ricean) case. Based on this work, the capacity
of the Ricean MIMO channel was computed in [3], [4].

In the present work, our aim is to address the case where
the real and imaginary parts of the entries have different
variances, their modulus being therefore distributed according
to the Hoyt distribution [5]. The Hoyt distribution [5] spans
the range from the one-sided (real) Gaussian distribution to
the Rayleigh distribution. It has found applications in the
error performance evaluation of digital communication, outage
analysis in cellular mobile radio system, or satellite channel
modelling [6]. Despite its practical interest, very little attention
has been paid to this type of fading. In this paper, a new Hoyt-
Wishart distribution is presented for the 2 × 2 case. Besides,
the joint eigenvalue distribution and the channel capacity are
computed analytically.

The same approach can be extended to the general t × r
case, but the mathematical complexity becomes prohibitive. In
this case, an asymptotic result has been found. Although this
formula is asymptotic, it is shown by simulation that it is quite
accurate, even for a small number of antennas. Simulations
results are used to validate the finite and asymptotic results.
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II. THE HOYT DISTRIBUTION

The Hoyt fading signal is modeled as Z = X + j Y where
j =

√
−1, X and Y are independent zero-mean Gaussian

random variables with variances σ2
X and σ2

Y , respectively. The
probability density function (PDF) of R = |Z| is given by [5]

p(r) =
2r

Ω
√

1 − b2
exp

(

− r2

Ω(1 − b2)

)

I0

(

b r2

Ω(1 − b2)

)

(1)

where Ω = E[R2]1, b = (σ2
X − σ2

Y )/(σ2
X + σ2

Y ) ∈ [−1, 1] is
the Hoyt parameter, and I0(·) is the modified Bessel function
of the first kind and zeroth order.

III. SYSTEM MODEL

We consider a single-user Gaussian channel with t antennas
at the transmitter and r antennas at the receiver and refer to
it as a t× r MIMO channel. This channel can be modeled as
y = Hx + n, where H can be written as

H = HR + jHI (2)

and HR, HI are independent r×t real matrices with i.i.d. zero
mean Gaussian entries with variances σ2

X , σ2
Y respectively.

Note that H has i.i.d. complex Gaussian entries with unequal
real and imaginary parts. The vector y ∈ Cr, x ∈ Ct, and n

is zero-mean complex Gaussian noise with E[nn†] = Ir. The
total power of the transmitter is constrained by E[x†x] ≤ P .

IV. CHANNEL CAPACITY

The ergodic channel capacity is given by [1]

C = sup
Q≥0:tr[Q]≤P

E
[

log2det
(

I + HQH†)] (3)

where Q is the covariance matrix of x. Here, the entries Hij

are i.i.d. and the distribution of Hij is the same as −Hij for
all i, j, so we deduce from Corollary 1b in [7] that

C = E

[

log2det
(

I +
P

t
HH†

)]

(4)

Defining then

W =

{

HH† r < t
H†H r ≥ t

(5)

n = max{r, t} and m = min{r, t}, the capacity can be written
in terms of the eigenvalues λ1, . . . λm of W as

C = E

[

m
∑

i=1

log2 (1 + (P/t)λi)

]

(6)

= mE [log2 (1 + (P/t)λ)] (7)
1E [·] denotes the expectation operator.
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It is worth noticing that the distribution of W, when the
variances σ2

X and σ2
Y of the real and imaginary part of H are

the same, is commonly referred to as the Wishart distribution.
In our case, we have a new distribution which we will refer
to as the Hoyt-Wishart distribution.

V. THE HOYT 2 × 2 CASE

The aim of this section is to compute the joint eigenvalue
distribution for the Hoyt-Wishart distribution. Consider the
complex 2 × 2 channel matrix H given by

H = HR + jHI (8)

where the entries of HR are zero mean Gaussian variates with
variance σ2

X and the entries of HI are zero mean Gaussian
variates with variance σ2

Y .
The joint eigenvalue distribution of W will be found using

the following steps: 1) the joint distribution of the entries of
H is the multivariate Gaussian distribution; 2) we then write
H = QL where L is an upper triangular matrix and Q is
an unitary matrix

(

QQ† = I
)

; 3) therefore, W = L†L; 4)
finally, performing the eigendecomposition W = SΛS†, it is
possible to get the joint eigenvalue distribution.

The distribution of H can be written as

p (H) = K e
− 1

8σ2
X

tr[(H+H∗)(HT+H†)]+ 1

8σ2
Y

tr[(H−H∗)(HT−H†)]

(9)
where K =

(

(√
2πσX

)4 (√
2πσY

)4
)−1

, tr [·] denotes the
matrix trace, (·)T denotes transpose and (·)∗ denotes complex
conjugate. Now the following transformation H = QL can be
performed, where [8]

Q =

(

ejφ1 cos (θ) −ej(φ3−φ2) sin (θ)
ejφ2 sin (θ) ej(φ3−φ1) cos (θ)

)

(10)

0 ≤ φ1, φ2, φ3 ≤ 2π, 0 ≤ θ ≤ π/2, and

L =

(

l11 l12R + j l12I
0 l22

)

(11)

The Jacobian of this transformation will be given by J =
l311l22 sin (θ) cos (θ), so carrying out some simplifications, the
joint PDF of Q and L will be given by

p (Q,L) = K l311l22 sin (θ) cos (θ)

× e
−tr[LL†]

„

1

4σ2
X

+ 1

4σ2
Y

«

+Re[tr[QLLTQT ]]
„

1

4σ2
Y

− 1

4σ2
X

«

(12)

where Re [·] denotes the real part of a complex quantity. Now
we can perform the integration over Q2 and get p(L). We then
perform another transformation of variables

W = L†L =

(

w1 w3 + jw4

w3 − jw4 w2

)

The Jacobian of this transformation is given by J = 4l311l22,
and we get the 2× 2 Hoyt-Wishart distribution given in (13).

2We introduce the notation
R

Q

dQ =
R

2π
0

R

2π
0

R

2π
0

R π/2

0
dθdφ1dφ2dφ3

where

f1 (θ, φ1, φ2) = cos (θ)
2
cos (2φ1) + sin (θ)

2
cos (2φ2)

f2 (θ, φ1, φ2) = cos (θ)
2
sin (2φ1) + sin (θ)

2
sin (2φ2)

f3 (θ, φ1, φ2, φ3) = cos (θ)
2
cos (2 (φ1 − φ3))

+ sin (θ)
2
cos (2 (φ2 − φ3))

f4 (θ, φ1, φ2) = sin (2θ) sin (φ1 − φ2)

Finally, to get the joint eigenvalue distribution, we perform
another decomposition W = SΛS† where S is given by

S =

(

cos (κ) −eiψ sin (κ)
e−iψ sin (κ) cos (κ)

)

. (14)

0 ≤ ψ ≤ 2π, 0 ≤ κ ≤ π/2, and

Λ =

(

λ1 0
0 λ2

)

Computing the Jacobian of this transformation gives |J | =
1
2 (λ1 − λ2)

2
sin (2κ) and integrating over dS gives the for-

mula (15) for the unordered joint PDF p (λ1, λ2).
The same analysis can be done for the t × r case, but the

number of integrals turns out to be very large and therefore
the mathematical complexity becomes prohibitive. Note that
for the Rayleigh case (σX = σY ), the results given in (13) and
(15) reduce in a exact manner to the results already presented
in [2, Eq. 94] and [2, Eq. 95], respectively. In the same way,
for b = 1 (σY = 0) the expressions (13) and (15) reduce in a
exact manner to [2, Eq. 55] and [2, Eq. 58], respectively.

VI. THE ASYMPTOTIC CASE

For the asymptotic case, the result given in [9] can be used
even when dealing with complex matrices with unequal real
and imaginary parts. The PDF for the eigenvalue λ of the 1

n
W

matrix is given by

p (λ) =
1

2πλβΩ

√

(b− λ) (λ− a) a ≤ λ ≤ b (16)

where a = Ω
(

1 −
√
β
)2, b = Ω

(

1 +
√
β
)2, β = r/t, and

Ω = E
[

|Hij − E[Hij ]|2
]

= σ2
X + σ2

Y . Using (16) in (7),
the following result can be obtained for the asymptotic Hoyt
channel capacity

C

m
→

r,t→∞

∫ b

a

log2 (1 + Pλ) p (λ) dλ (17)

Although this formula is asymptotic, it is shown by sim-
ulation that it is quite accurate, even for a small number of
antennas.

VII. NUMERICAL RESULTS

In Fig. 1, we validate with Monte Carlo simulations the
expression given in (15) for the joint eigenvalue distribution. In
Fig. 1, we have plotted the marginal PDF for different values
of the Hoyt parameter b: b = 0, b = 0.5 and b = 0.9. Note the
excellent agreement between the simulation and the theoretical
results.

In Fig. 2, the channel capacity is simulated and compared
with the theoretical result (7) for the 2 × 2 case and b = 0,
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p (W) =
K

8
e
− (w1+w2)

4

„

1
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X
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«
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Q

e
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„

1

4σ2
Y

− 1
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X
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„
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«

sin (2θ) dQ (13)

p (λ1, λ2) =
K (λ1 − λ2)

2

32
e
− (λ1+λ2)

4

„

1
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X

+ 1

σ2
Y

«

∫

Q

∫

S

e

„

1

4σ2
Y

− 1

4σ2
X

«

f1(θ,φ1,φ2)(λ1 cos(κ)2+λ2 sin(κ)2)
sin (2θ) sin (2κ)

× e

„

4λ1λ2f3(θ,φ1,φ2,φ3)+(λ1−λ2)2 sin(2κ)2f3(θ,φ1,φ2,−ψ)+4(λ1−λ2)
√
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1

4σ2
Y

− 1

4σ2
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«

dSdQ (15)

Fig. 1. Hoyt eigenvalue PDF for b = 0, 0.5, 0.9 (Ω = 2).

b = 1. For the 4×4 and 6×6 case, simulations were performed
and compared with the asymptotic result given in (16). The
best performance is achieved for the Rayleigh case (b = 0) and
reaches its minimum for b = 1 (one-sided Gaussian case). The
effect of the Hoyt parameter b depends on the power P , but
in the worst case it can degrade 8.5% of the capacity for the
2×2 case, 5% for the 4×4 case, and 3.5% for the 6×6 case.

Fig. 3, for P=5,10, and 15 dB, shows the theoretical and
simulated channel capacity for the 2×2 case varying the Hoyt
parameter b.

VIII. CONCLUSION

In this paper, a new distribution, the Hoyt-Wishart dis-
tribution and its eigenvalue distribution were obtained. This
distribution was used to compute the Hoyt 2 × 2 channel
capacity and for this case the Hoyt parameter b can degrade
8.5% of the channel capacity. As the number of antennas
increases, the effect of b is less perceptive. The asymptotic
channel capacity was also addressed for the t× r case, and in
all the cases, the results were validated by simulations.
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