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Abstract

We obtain a precise information theoretic upper bound on the rate per communication
pair in a one-dimensional ad hoc wireless network. The key ingredient of our result is a
uniform upper bound on the determinant of the Cauchy matrix.

1 Introduction

The study of the capacity of ad hoc wireless networks goes back to the seminal paper of P. Gupta
and P. R. Kumar [3], in which they prove, under some realistic assumptions regarding state of
the art wireless communications, that the transport capacity of planar ad hoc networks grows
asymptotically at most like the square root of the number of users in the network. One still
misses a confirmation of this result from an information theoretic point of view (i.e., without
any assumption on the way communications are established in the network). Some attempts
have been performed recently (see for instance [4, 5, 6]), all leading to partial answers.

The argument of Gupta and Kumar can be easily translated to one-dimensional networks and
leads to the conlusion that in this case, the transport capacity of the network grows asymp-
totically at most like the number of users. Even though the analysis is (much) simpler in the
one-dimensional case, no complete information theoretic confirmation of this result has been
given so far.

In [5], P. R. Kumar and L.-L. Xie consider an arbitrary one-dimensional network composed of
n users separated by a minimum distance d > 0 and show that the transport capacity of such
networks does not grow faster than n, provided that the attenuation function of the transmitted
signals over distance is given by

g(r) =
e−βr/2

rα/2
,

where either β > 0 or α > 4 (note that g describes the decay of the amplitude of the electric
field and not that of the power).

In the particular scenario where order n pairs chosen at random wish to establish communication,
the above result implies that the maximum achievable rate R per communication pair decreases
like 1

n as n gets large, since order n communications need to be established over distances of
order n on average (recall that the network is assumed to be one-dimensional and that users are
separated by a minimum distance d).

In the case β = 0, the above assumption that α > 4 is quite unrealistic regarding wireless com-
munications. In [6], O. Lévêque and E. Telatar consider uniformly distributed one-dimensional
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networks (with a constant density of users) and show that in the above mentioned scenario, if
α > 1, then

R ≤ K
log n

n1− 1
α

, (1)

so that R tends to zero as n gets large. However, this upper bound is as not tight as the 1
n

behaviour obtained under a weaker assumption on α in [5]. In the following, we consider an
arbitrary one-dimensional network with users separated by a minimum distance d > 0 and show
(see theorem 3.1) that if 2 ≤ α ≤ 4, then the following upper bound holds true:

∀ε > 0, ∃K > 0 such that R ≤ K
(log n)3+ε

n
, (2)

which is tighter than (1), especially for small α. With this respect, our result below closes the
information theoretic gap left open in [5] concerning one-dimensional ad hoc networks.

Note finally that a result similar in spirit has been obtained by A. Jovicic et al. in [4]: for
one-dimensional networks and under the slightly different propagation model

g̃(r) =
eiφ

(1 + r)α/2
,

where φ is a random phase, they prove that the transport capacity does not grow faster than
n, provided that α > 3 and that the users have a perfect knowledge of the phases, or provided
that α > 2 but that users have no information about the phases.

2 Our Approach

We follow here the lines of [6], specializing the model to arbitrary one-dimensional networks.

We consider a network of n users (with n even for simplicity) arbitrarily placed on the real
line, but separated by a minimum distance d > 0. Among these n users, we choose n/2 users
at random and assume that each of these users wishes to establish communication with a cor-
respondent chosen at random in the other group of n/2 users (without any consideration on
their respective locations). We assume that there is no fixed infrastructure that helps relaying
communications, but we also assume no restriction on the kind of help the users can give to
each other; in particular, any user may act as a relay for the communicating pairs, but we may
also imagine more sophisticated group communications and interference cancellation strategies.
We further assume that in order to establish communication, each user has a device of power P .
The attenuation of the transmitted signals over distance is governed by the function g(r) given
by g(r) = 1

rα/2
with 2 ≤ α ≤ 4. For notational convenience, let us define the coefficient δ = α/2

(corresponding to the coefficient δ defined in [5]).

We divide the network into two parts, so that there are exactly n/2 users on each side, and
place the origin at the middle point between the two most “central” users. There are therefore
n/2 users located left to the origin; statistically, half of these are transmitters and half of these
transmitters wish to establish communication with a receiver located right to the origin. In
total, there are therefore about n/8 communications which need to be carried over the origin
from left to right, and deviations from this idealized situation are of order much smaller than n
with high probability.

Let R be the the maximum achievable rate per communication pair in the network. In order to
obtain an upper bound on R, we first assume that only the above n/8 + o(n) communications
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need to be established. We then introduce n additional “mirror” user that help relaying com-
munications (where the mirror location of x ∈ R is x̃ = −x). There are now n users on each
side of the origin whose positions are denoted respectively by

x1, . . . , xn and y1, . . . , yn, with yi = −xi.

Without any restriction of generality, we may order the points so that x1 ≤ . . . ≤ xn. By the
constraint imposed on the minimum distance, we obtain that x1 ≥ d

2 and that xi ≥ (i− 1) d2 for
all i ∈ {2, . . . , n}.
Using the classical cut-set bound of [2, Thm 14.10.1] and following the argument of [6], we obtain
that

R ≤ Cn
n/8 + o(n)

, (3)

where Cn is the capacity of the vector channel given by

Yj =
n
∑

i=1

G
(δ)
ij Xi + Zj , j = 1, . . . , n,

with

G
(δ)
ij =

1

|xi − yj |δ
=

1

(xi + xj)δ

and Z = (Z1, . . . , Zn) is a vector of independent circularly symmetric complex Gaussian random
variables with unit variance. Under the power constraint

n
∑

i=1

E(|Xi|2) ≤ nP,

the capacity of the above channel is given by

Cn = max
Pk≥0:

∑n
k=1 Pk≤nP

n
∑

k=1

log(1 + Pk λ
2
k), (4)

where λk are the eigenvalues of the symmetric matrix G(δ). Noting that Pk ≤ nP for each k
and that the λk are non-negative (see [6]), we further obtain that

Cn ≤
n
∑

k=1

log(1 + nP λ2
k) ≤ 2

n
∑

k=1

log(1 +
√
nP λk) = 2 log det(I +

√
nP G(δ)). (5)

3 Main Result

Theorem 3.1. Let 1 ≤ δ ≤ 2 (or equivalently, 2 ≤ α ≤ 4). For all ε > 0, there exists a constant
K > 0 (independent of n and δ) such that the capacity Cn is bounded above by

Cn ≤ K (log n)3+ε, ∀n ≥ 1,

so this estimate combined with (3) implies the upper bound (2) on the maximum achievable rate
R per communication pair in the network.
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Remark 3.2. Looking into the details of the proof below shows that the constant K is actually
proportional to log( 1

d), so that if we consider that the minimum distance d between users is of
order 1

nη with η > 0, then

Cn ≤ K̃ (log n)4+ε,

In particular, if we consider n users independently and uniformly distributed on the line segment
[−n, n] (resp. [−1, 1]), then typically d is of order 1

n (resp. 1
n2 ), so the above argument applies.

Scheme of the proof of theorem 3.1.

The proof starts with the following identity, valid for any n× n matrix A:

det(I +A) =
∑

J⊂{1,...,n}

det(A(J)), where A(J) = (aij)i,j∈J . (6)

The capacity Cn can therefore be expressed in terms of determinants of the form

Dδ(xJ) = det

(

(

1

(xi + xj)δ

)

i,j∈J

)

, where xJ = (xi)i∈J . (7)

The first step of the proof consists in showing that there exists a constant K > 0 independent
of n such that for all 1 ≤ δ ≤ 2,

Dδ(xJ) ≤ mKmD1(xJ), where m = |J |, (8)

so that we can concentrate on the case δ = 1, for which we have the following nice analytic
expression, due to Cauchy (see for instance [7, p. 202]):

D1(xJ) =







∏

i,j∈J
i<j

(xj − xi)
2







/





∏

i,j∈J

(xi + xj)



 . (9)

In a second step, we perform a detailed study of the configuration xJ maximizing D1(xJ) and
show that there exist K1,K2 > 0 such that

D1(xJ) ≤ Km
1 exp(−K2m

3/2). (10)

Finally, using estimates (8) and (10) together with formula (6) leads to the conclusion.

Proof of theorem 3.1: first step.

Lemma 3.3. Let δ > 0 and J ⊂ {1, . . . , n}. The determinant defined in (7) satisfies the
following identity:

Dδ(xJ) =
1

m! Γ(δ)m

(

∏

i∈J

∫

R+

dti t
δ−1
i

)

det
(

(

e−ti xj
)

i,j∈J

)2
,

where m = |J | and Γ is the Euler Gamma function.

Proof. Let us first recall that

1

(xi + xj)δ
=

1

Γ(δ)

∫

R+

dt tδ−1 e−t (xi+xj) .
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For a matrix A(J) = (aij)i,j∈J , the following formula holds:

det(A(J)) =
∑

σ∈S(J)

ε(σ)
∏

i∈J

ai,σ(i) =
1

m!

∑

σ,τ∈S(J)

ε(σ) ε(τ)
∏

i∈J

aσ(i),τ(i),

where S(J) is the set of permutations of J and ε(σ) is the signature of the permutation σ.
Therefore,

Dδ(xJ) =
1

m! Γ(δ)m

∑

σ,τ∈S(J)

ε(σ) ε(τ)
∏

i∈J

(∫

R+

dti t
δ−1
i e−ti xσ(i)−ti xτ(i)

)

=
1

m! Γ(δ)m

(

∏

i∈J

∫

R+

dti t
δ−1
i

)





∑

σ∈S(J)

ε(σ)
∏

i∈J

e−ti xσ(i)





2

=
1

m! Γ(δ)m

(

∏

i∈J

∫

R+

dti t
δ−1
i

)

det
(

(

e−ti xj
)

i,j∈J

)2
.

Lemma 3.4. Let f : R+ → R be a measurable function such that both f(t)2 and t f(t)2 are
integrable on R+. Then for all 1 ≤ δ ≤ 2,

∫

R+

dt tδ−1 f(t)2 ≤
(∫

R+

dt t f(t)2
)δ−1 (∫

R+

dt f(t)2
)2−δ

.

Proof. Let us write tδ−1 f(t)2 = u(t) v(t), where u(t) = (t f(t)2)δ−1 and v(t) = f(t)2(2−δ). Using
Hölder’s inequality with p = 1

δ−1 ∈ [1,∞[ and q = 1
2−δ ∈ [1,∞[ (so that 1

p +
1
q = 1), we obtain

∫

R+

dt u(t) v(t) ≤
(∫

R+

dt u(t)
1

δ−1

)δ−1 (∫

R+

dt v(t)
1

2−δ

)2−δ

=

(∫

R+

dt t f(t)2
)δ−1 (∫

R+

dt f(t)2
)2−δ

.

Lemma 3.5. For all J ⊂ {1, . . . , n} and 1 ≤ δ ≤ 2,

Dδ(xJ) ≤
1

Γ(δ)m
D2(xJ)

δ−1 D1(xJ)
2−δ,

where m = |J |.

Proof. Let tJ = (ti)i∈J . A multidimensional version of lemma 3.4 shows that for a measurable
function f : Rm

+ → R,

((

∏

i∈J

∫

R+

dti t
δ−1
i

)

f(tJ)
2

)

≤
((

∏

i∈J

∫

R+

dti ti

)

f(tJ)
2

)δ−1 ((
∏

i∈J

∫

R+

dti

)

f(tJ)
2

)2−δ

,
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provided that both integrals on the right-hand side are finite. From this and lemma 3.3, we
deduce that

Dδ(xJ) =
1

m! Γ(δ)m

(

∏

i∈J

∫

R
dti t

δ−1
i

)

det
(

(

e−ti xj
)

i,j∈J

)2

≤ 1

m! Γ(δ)m

((

∏

i∈J

∫

R
dti ti

)

det
(

(

e−ti xj
)

i,j∈J

)2
)δ−1

·
((

∏

i∈J

∫

R
dti

)

det
(

(

e−ti xj
)

i,j∈J

)2
)2−δ

=
1

m! Γ(δ)m
(m! Γ(2)mD2(xJ))

δ−1 (m! Γ(1)mD1(xJ))
2−δ

=
1

Γ(δ)m
D2(xJ)

δ−1 D1(xJ)
2−δ,

since Γ(2) = Γ(1) = 1.

Let us recall the definition of the permanent of a m×m matrix A(J) = (aij)i,j∈J :

perm(A(J)) =
∑

σ∈S(J)

∏

i∈J

ai,σ(i).

We also define for δ > 0 and J ⊂ {1, . . . , n}:

Pδ(xJ) = perm

(

(

1

(xi + xj)δ

)

i,j∈J

)

.

Lemma 3.6. [1] Let A(J) = (aij)i,j∈J be a m ×m matrix and let us assume that A is a most
of rank 2 and that all the coefficients aij are non-zero. Then

det

(

(

a−2
ij

)

i,j∈J

)

= det

(

(

a−1
ij

)

i,j∈J

)

perm

(

(

a−1
ij

)

i,j∈J

)

Since the m × m matrix A(J) = ((xi + xj)i,j∈J ) is indeed of rank 2 (because the range of
A(J) = span(1,xJ)) and all its coefficients are non-zero, we obtain as a corollary of the above
lemma that

D2(xJ) = D1(xJ)P1(xJ). (11)

Note that this equality is also known as Borchardt’s identity.

As a consequence, we obtain using lemma 3.5 that

Dδ(xJ) ≤
1

Γ(δ)m
P1(xJ)

δ−1 D1(xJ). (12)

By the definition of the permanent, we moreover have

P1(xJ) =
∑

σ∈S(J)

∏

i∈J

1

xi + xσ(i)
≤

∑

σ∈S(J)

∏

i∈J

1

xi
≤ m!

m
∏

i=1

1

xi
,

since the xi are ordered. Now, since xi ≥ (i− 1) d2 and x1 ≥ d
2 , we obtain

P1(xJ) ≤ m!

(

2

d

)m
(

m−1
∏

i=1

1

i

)

= m

(

2

d

)m

.
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We also know that for 1 ≤ δ ≤ 2, Γ(δ) ≥ 1
2 , so (12) finally implies that

Dδ(xJ) ≤ 2m
(

m

(

2

d

)m)δ−1

D1(xJ) ≤ m

(

4

d

)m

D1(xJ), (13)

and this completes the first step of the proof.

Proof of theorem 3.1: second step.

For notational simplicity, we rewrite the vector xJ as xJ = d
2 z, where z = (z1, . . . , zm) and

z1 ≤ . . . ≤ zm. We therefore have

D1(xJ) =

(

2

d

)m

D1(z). (14)

Because of the constraint on x1, we obtain that z1 ≥ 1. We are looking for a uniform upper
bound on D1(z) over all vectors z ∈ Z = {z ∈ [1,∞[m: z1 ≤ . . . ≤ zm}, so we may as well
assume that z1 = 1; indeed, if z1 > 1, then z′ = 1

z1
z is such that z′1 = 1 and

D1(z) =

(

1

z1

)m

D1(z
′) < D1(z

′).

Notice that

D1(z) =





∏

1≤i<j≤m

zj − zi
zi + zj





2
∏

1≤i≤m

1

2zi
≤

∏

1≤i≤m

1

2zi
,

so D1 reaches its supremum on the set Z. We define next the function V1 by

V1(z) = − logD1(z) = 2
∑

1≤i<j≤m

log

(

zi + zj
zj − zi

)

+
∑

1≤i≤m

log(zi) +m log(2).

Lemma 3.7. Let z ∈ Z be such that V1(z) reaches its infimum at z. If 1 ≤ p ≤ k < l ≤ m, then

(k − p+ 1) (l − k)
zpzl

z2
l − z2

p

≤ m− k

4
. (15)

Proof. If g(t) = V1(z1, . . . , zk, tzk+1, . . . , tzm), then

g′(t) = 2
∑

1≤i≤k
k<j≤m

[

log

(

tzj + zi
tzj − zi

)]′

+
m− k

t
= 2

∑

1≤i≤k
k<j≤n

(

zj
tzj + zi

− zj
tzj − zi

)

+
m− k

t
,

so
g′(1) = −4

∑

1≤i≤k
k<j≤m

zizj
z2
j − z2

i

+m− k.

Since V1 is minimum in z, we have g′(1) = 0, i.e.

∑

1≤i≤k
k<j≤m

zizj
z2
j − z2

i

=
m− k

4
. (16)

But
zjzi

z2
j − z2

i

=
1

zj
zi
− zi

zj

increases if i increases or j decreases, so

zpzl
z2
l − z2

p

≤ zizj
z2
j − z2

i

, whenever p ≤ i ≤ k and k < j ≤ l.
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Therefore,
m− k

4
≥
∑

p≤i≤k
k<j≤l

zizj
z2
j − z2

i

≥ (k − p+ 1) (l − k)
zpzl

z2
l − z2

p

.

Corollary 3.8. Let z ∈ Z be such that V1(z) reaches its infimum at z. If 1 ≤ p ≤ k < l ≤ m,
then

zl
zp
≥ 4(k − p+ 1)(l − k)

m− k
. (17)

Proof. Let x > 0 and β > 0. If x− 1
x ≥ 2β, then x ≥ β +

√

1 + β2 ≥ 2β. The corollary follows

by combining this fact with inequality (15) (taking x = zl
zp

and β = 2(k−p+1)(l−k)
m−k ).

The proof of theorem 3.1 relies on the following key estimate.

Lemma 3.9. There exists a constant K > 0 independent of m such that

V1(z) ≥ Km3/2, or equivalently, D1(z) ≤ exp(−Km3/2), (18)

for all z ∈ Z.

Note that there exists a (sort of) converse to the above lemma; see the appendix.

Proof. Let z ∈ Z be the point where V1 reaches its infimum. Let r = 1 + b
√
m− 1c, where

b
√
m− 1c is the integer part of

√
m− 1. By (17), we have

zk+r
zk−r+1

≥ 4r2

m− k
≥ 4r2

m− 1
≥ 4, if r ≤ k ≤ m− r,

i.e.
zs+2r−1

zs
≥ 4, if 1 ≤ s ≤ m+ 1− 2r, so zt(2r−1)+1 ≥ 4t.

Let us write m = (2r − 1)t+ q (q and t integers, 0 ≤ q < 2r − 1). We obtain that
∑

1≤i≤m

log zi ≥ (2r − 1) log 1 + (2r − 1) log 4 + · · ·+ (2r − 1) log(4t−1) + q log(4t)

≥ (2r − 1)
t(t− 1)

2
log 4.

So for all ε > 0, there exists m0 ≥ 1 such that

∑

1≤i≤m

log zi ≥ m3/2 (1− ε)
log 4

4
, whenever m ≥ m0.

This concludes the proof, since V1(z) ≥
∑

1≤i≤m log zi +m log(2).

Proof of theorem 3.1: conclusion.

Let us now gather together all estimates. By (5) and (6), we have

exp(Cn/2) ≤ det(I +
√
nP G(δ)) =

∑

J⊂{1,...,n}

det(
√
nP G(δ)(J))

=
∑

J⊂{1,...,n}

(nP )|J |/2 Dδ(xJ) =
n
∑

m=0

(nP )m/2
∑

J⊂{1,...,n}:|J |=m

Dδ(xJ).
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Using (13), (14) and (18), we obtain successively that

exp(Cn/2) ≤
n
∑

m=0

(nP )m/2 m

(

4

d

)m
∑

J⊂{1,...,n}:|J |=m

D1(xJ)

≤
n
∑

m=0

(nP )m/2 m

(

4

d

)m
∑

J⊂{1,...,n}:|J |=m

(

2

d

)m

exp(−Km3/2).

Since
∑

J⊂{1,...,n}:|J |=m

1 =

(

n
m

)

≤ nm,

we have

exp(Cn/2) ≤
n
∑

m=0

Pm/2 n3m/2 m

(

8

d2

)m

exp(−Km3/2) ≤
n
∑

m=0

exp(Lm log n−Km3/2),

where L is some positive constant. Choosing m0 =
(

L logn
K

)2
, we moreover have

exp(Cn/2) ≤
m0−1
∑

m=0

exp(Lm log(n)−Km3/2) +
n
∑

m=m0

exp(Lm log n−Km3/2)

≤
m0−1
∑

m=0

exp(Lm0 logn) +
n
∑

m=m0

1 = m0 exp(Lm0 log n) + n

Since m0 =
(

L logn
K

)2
, we conclude that for all ε > 0, there exists M > 0 sufficiently large such

that
exp(Cn/2) ≤ exp(M(log n)3+ε),

which concludes the proof of theorem 3.1. ¤
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A Appendix

In this appendix, we show that the order of magnitude obtained in (18) is not only an upper
bound, but is also tight.

Proposition A.1. There exists a constant K > 0 independent of m such that

V1(z) ≤ Km3/2, if zj = exp

(

j − 1√
m

)

, j = 1, . . . ,m.

Proof. It is clearly sufficient to prove the above relation for m = r2 with r integer. Since

∑

1≤i≤m

log(zi) =
∑

1≤i≤m

i− 1√
m

=
m(m− 1)

2
√
m

= O(m3/2),
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we only need to prove that

∑

1≤i<j≤m

log

(

zi + zj
zj − zi

)

=
∑

1≤l≤m−1

(m− l) log

(

1 + e−l/r

1− e−l/r

)

is O(m3/2).

Let now

s =
∑

1≤l≤r

(m− l) log

(

1 + e−l/r

1− e−l/r

)

and t =
∑

r+1≤l≤m−1

(m− l) log

(

1 + e−l/r

1− e−l/r

)

.

Since

log

(

1 + y

1− y

)

= 2
∑

k odd

yk

k
≤ 2

∑

k odd

yk =
2y

1− y2
, for 0 < y < 1,

we obtain that

t ≤ 2m
∑

r+1≤l≤m−1

e−l/r

1− e−2l/r
≤ 2m

1− e−2

∞
∑

l=r+1

e−l/r ≤ 2m

1− e−2

e−1

1− e−1/r
.

But 1− e−1/r = 1
r e
−c for some 0 < c < 1

r , so

t ≤ 2m

1− e−2
e−1 r ec ≤ 2rm

1− e−2
,

which is O(m3/2). On the other hand, if u > 0, we have 1− e−u = ue−c with 0 < c < u, hence
log(1− e−u) = log u− c. Therefore, for 1 ≤ l ≤ r, − log(1− e−l/r) ≤ log( rl ) + 1 and

s ≤ m
∑

1≤l≤r

(

log 2 + log
(r

l

)

+ 1
)

= mr(1 + log 2) +m log

(

rr

r!

)

,

and since log( r
r

r! ) ∼ r, s is also O(m3/2).
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