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Abstract
I report on the e�ect of amoderate excess electron population on nonlinearities
inmodulation-doped CdTe quantumwells. I show that the electron population
does not qualitatively a�ect the nature of correlations between excitons. In this
respect, I bring strong evidence of the existence of unbound and bound (stable)
two-exciton states in the presence of electrons and charged excitons (trions).
In time-resolved pump and probe experiment, they lead to the observation of
electromagnetically induced transparency and optical Stark shi� of the exciton
resonance. Rabi 
opping of excitons within a sea of electrons is also clearly
evidenced through ac Stark splitting and gain without inversion.  e quantum
coherence is more robust to electron induced dephasing than what would have
been expected.
I demonstrate third and higher-order exciton correlations in the presence

of electrons, which manifest, for increasing exciton densities, through the
blue-shi� of counter-polarized exciton resonance, the red-shi� of the biexciton
resonance and the exciton to biexciton crossover. I also evidence correlated
behavior of excitons and trions under excitation which manifests itself by
crossed trion-exciton e�ects. I observe a wealth of phenomena encompassing
bleaching, crossed bleaching, induced-absorption and energy shi�s of the
resonances. Signi�cant di�erences are found between the nonlinear optical
e�ects induced by an exciton and a trion population.
Electron scattering with electron and exciton is shown to strongly broaden

the high energy tail of exciton and trion resonance lineshapes. Variation of
electron density result in a clear modi�cation of both resonance lineshapes.
 e dynamics of the formation of trions is also studied. I propose a

two-channel mechanism for their formation; they are formed through bi-
and tri-molecular processes.  is implies that both negatively and positively
charged excitons coexist in a quantum well, even in the absence of excess carri-
ers.  e model is applied to a time-resolved photoluminescence experiment
performed on a very high quality InGaAs quantum well sample, in which
the photoluminescence contributions at the energy of the trion, exciton and
at the band edge can be clearly separated and traced over a broad range of
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times and densities.  e unresolved discrepancy between the theoretical and
experimental radiative decay time of the exciton in a doped semiconductor is
explained.
Keywords: semiconductor, modulation-doped quantum well, exciton,

charged exciton, trion, many-body e�ects, nonlinearities, optical coherence,
electromagnetical induced transparency, optical Stark shi�, gain without inver-
sion, Stark splitting, Mollow triplet, dynamics, formation, electron scattering.
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Résumé
Ce travail de thèse contient une étude expérimentale des propriétés non linéaires
d’un puits quantique de CdTe à modulation de dopage. J’y montre que les
électrons présents dans un puits ne modi�ent pas qualitativement la nature
des corrélations entre excitons. Aussi, j’identi�e clairement l’existence d’états à
deux excitons liés (stables) et non liés en présence d’électrons et d’excitons. Des
expériences de pompe et sonde me permettent de tirer parti de ces états à deux
excitons et d’observer des phénomènes tels que la transparence électromagnétique
induite ou l’e�et Stark optique de la résonance excitonique. J’observe indirecte-
ment des oscillations de Rabi dans une mer d’électrons à travers le triplet
de Mollow. Quand bien même les électrons induisent un fort déphasage des
excitons, la cohérence quantique s’avère très résistante.
Je mets en évidence l’existence de corrélations de Coulomb au troisième et

même au cinquième ordre en présence d’électrons. Lors d’une augmentation de
la densité d’excitons, ces corrélations semanifestent à travers la renormalisation
des résonances excitonique et biexitonique ainsi que d’un transfert de force
d’oscillateur de l’exciton au biexciton. Je mets également en évidence des e�ets
de corrélation entre excitons et trions. J’observe nombre d’e�ets non-linéaires
allant du blanchissage au blanchissage croisé des résonances, en passant par
leur absorption induite ou leur renormalisation. D’importantes di�érences
entre les e�ets non-linéaires induits par des excitons ou des trions sontmontrés.
Les collisions entre électrons et excitons et entre électrons et trions élargis-

sent la queue à haute énergie des excitons et des trions et contribuent à les
rendre fortement asymétriques. Par conséquent, des variations de populations
électroniques peuvent être responsables de fortes variations du spectre d’absorp-
tion.
La dynamique de formation du trion est également étudiée. Je propose

un mécanisme de formation à deux canaux. Soit le trion est formé au cours
d’un processus bi-moléculaire où un exciton et un porteur libre s’assemblent,
soit le processus est tri-moléculaire et le trion est directement formé à partir
de porteurs libres. J’en déduis qu’inévitablement, des populations d’excitons
chargés négativement et positivement cohabitent dans un puits quantique
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même en l’absence d’excès de porteurs. Mon model est corroboré par une
expérience de photoluminescence résolue en temps réalisée sur un puits quan-
tique d’InGaAs de qualité inégalée. Dans cet échantillon, les contributions des
trions et du plasma de porteurs libres à la luminescence des excitons peuvent
être parfaitement séparées et mesurées sur un large intervalle de temps et de
densités. J’explique alors pourquoi le temps de vie des excitons augmente en
présence d’électrons.
Mots-clés: semiconducteur, puits quantique, modulation de dopage, cohé-

rence optique, excitons, excitons chargés, trions, e�ets à N-corps, nonlinearités
optiques, transparence électromagnétique induite, Stark shi� optique, gain
sans inversion, triplet de Mollow, dynamique, formation.
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1 Introduction
 e emergence of arti�cially tailored semiconductor nanostructures in the 70’s
and the new physical phenomena arising from the con�nement of the carriers
down to their de Broglie wavelength has provided a fantastic laboratory for the
study of Coulomb correlations. Notably, Coulomb bound electron-hole pairs
—excitons (X)— and their series of sharp resonances in the low-excitation
spectra quickly turned out to be the most important source of optical nonlin-
earities in wide-gap materials and a direct probe of the many-body interaction
occurring in semiconductors. For instance, in quantum wells, Fermi exclu-
sion principle manifests through the renormalization of the exciton binding
energy with increasing density (Haug and Schmitt-Rink, 1985; Chemla and
Miller, 1985; Schmitt-Rink et al., 1989) and higher-order exciton interactions
yield two-exciton bound states —biexcitons (XX). Despite the strong Coulomb
correlation that contribute to increasing the dephasing rate, the possibility to
control excitons both optically and coherently (Heberle et al., 1995) lead to the
observation of the ac Stark coupling under excitation of a strong non-resonant
optical pulse (Frohlich et al., 1985; Von Lehmen et al., 1986; Mysyrowicz et al.,
1986), Rabi 
opping (Cundi� et al., 1994; Deveaud et al., 2001) and more re-
cently electromagnetically induced transparency (EIT) (Ferrio and Steel, 1998;
Phillips and Wang, 2002).
Amajor step was achieved in the development of semiconductor nanos-

tructures with the arrival of modulation-doped heterostructures (Dingle et al.,
1978). During growth of such structures, the dopants are restricted to the
barrier material so that they do not a�ect the mobility of the electronic gas
formed in the quantumwell.  ey ionize with the free carriers migrating to the
lower-energy quantum wells and can form a high density electronic gas. Apart
from having yielded some of the transistors with the smallest noise and the
highest operating frequency of the market, this technique has allowed to study
many-body phenomena that could not have been evidenced at lower electronic
densities, notably the band-gap renormalization (Kleinman and Miller, 1985)
and the Fermi edge singularity (Ruckenstein et al., 1986).  e observation
of charged exciton – trions — by Kheng et al. (1993) has given rise to new
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1 Introduction

investigation. A�er the �rst controversy related to proper identi�cation of the
charged excitons, several important questions related to their properties were
addressed. For example detailed studies were performed on the selection rules
(Lovisa et al., 1997; Kheng, 1995), dynamics (Finkelstein et al., 1995; Vanelle
et al., 2000; Yonn et al., 1996; Tribollet et al., 2003), localization of charged
exciton in quantum well (Brinkmann et al., 1999; Wagner et al., 1999; Yonn
et al., 1996), interaction between neutral and charged exciton states (Gilliot
et al., 1999; Brunhes et al., 1999), laser action (Puls et al., 2002), radiative
time (Finkelstein et al., 1998; Ciulin et al., 2000a), localization, coherence and
di�usion (Portella-Oberli et al., 2002).
Still, little is known on the e�ect of the presence of an additional electron

gas on nonlinearities in semiconductors, neither in the coherent regime, nor
in the uncoherent one. It is however a topic of major interest for applications
such as transport of light by a charged exciton (Sanvitto et al., 2001) and
for the quantum-information science (Nielsen and Chuang, 2000). Recent
schemes for the implementation of quantum information processing devices in
semiconductor nanostructures aim at marrying advantages of both spintronics
and optoelectronics, using electrons as quantum memory and excitons for
optical gating (Pazy et al., 2003; Nazir et al., 2004). Such an approach takes
advantage of the slow electron spin decoherence (Tribollet et al., 2003) and of
the strong correlations between excitons (Pazy et al., 2003; Feng et al., 2004)
as well as of the possibility to control them optically and coherently (Stievater
et al., 2001; Kamada et al., 2001).  erefore, the optical and coherent generation
and control of exciton correlations within a sea of electrons is amajormilestone
on the roadmap to quantum information devices.
 is thesis work is an investigation of the dynamics of the nonlinearities

in modulation-doped quantum wells. We �rst demonstrate through cw linear
optical measurements (Chapter 3) that electrons scatter with excitons and
trions, a�ecting profoundly the shape of their resonance; the high energy tail
of both trion and exciton resonance is broadened and the exciton oscillator
strength is reduced.
In pump and probe experiments (Chapter 4) in which we can selectively

excite an exciton or a trion population, we demonstrate that, on one hand, due
to exciton-electron collisions, a photogenerated exciton gas heats the electron
gas. On the other hand, the trion creation process remove electrons from the
quantum well and strongly reduce the scattering. Both excitons and trions
resonance are therefore a�ected by electrons. We also evidence correlated
behavior of excitons and trions under excitation which manifests itself by

2



crossed trion-exciton e�ects. We observe awealth of phenomena encompassing
bleaching, crossed bleaching, induced-absorption and energy shi�s of the
resonances. Signi�cant di�erences are found between the nonlinear optical
e�ects induced by an exciton and a trion population. We also evidence high-
order exciton correlations, up to the ��h-order, in the presence of electrons.
We identify biexcitons and demonstrate their stability through coherent

optical Stark measurements (Chapter 4). In the coherent regime, we prove that
both ac Stark splitting with gain and electromagnetically induced transparency
are observable within an electron gas, despite electron induced dephasing.
Finally, we show that the dynamics of exciton, trion and electron-hole

plasma can be ruled by a simple rate equation model, in which we account for
bimolecular formation of excitons from an electron-hole plasma, bimolecular
formation of trions from excitons and free carriers and trimolecular formation
from free carriers (Chapter 6).
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2 Samples and Experimental
Methods

In the present work, we selected two semiconductor quantum wells for their
outstanding quality. We devised a strategy to populate those wells with elec-
trons and control their population.  e near-band gap optical spectra were
consequently modi�ed and exhibited notably a trion resonance below the exci-
ton line.  e �rst sample, a CdTe modulation-doped quantum well, featured
well separated exciton and trion resonances. It was consequently used to inves-
tigate the optical properties of quantumwells within an electron gas (Chapter 3,
4 and 5).  e second sample, a GaAs half microcavity, produced photolumi-
nescence spectra with a signal over noise ratio so spectacular that the exciton,
trion and electron-hole plasma signal could be measured at the same time. We
used it to study the dynamics of trion formation from an electron-hole plasma.
 is chapter describes consecutively samples and experiments performed

on each sample.

2.1 Optical properties of the CdTe
modulation-doped quantum well

2.1.1 Sample
Our most studied sample is a high quality, one-side modulation doped CdTe~
Cd0.27Mg0.73Te heterostructure (Wojtowicz et al., 1998), containing a single
CdTe quantum well of 8nm (Fig. 2.1). A remote donor layer of iodine is
embedded in the cap layer, 10 nm apart from the quantum well. Its thickness
varies throughout the sample in four steps (19 Å, 29 Å, 49 Å and 80 Å).  e
steps are 11mm long and labeled from A to D respectively.  e electrons from
the donors can either fall in the quantum well or be trapped by surface states,
both process competing. Although more electrons get trapped by the surface
states, an important electron concentration is obtained in the well. It varies

5



2 Samples and Experimental Methods
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Figure 2.1: CdTe Sample.

step-likely from 3 � 1010 (step A) to 1.2 � 1011 cm−2 (step D). For a given step,
additional control of the electron density can be achieved by illuminating
the sample with light more energetic than the energy gap of the barrier, i.e.
larger than 2.03 eV. In this case, electron-hole pairs are created in the barrier.
Holes are attracted by electrons trapped in the surface states, while electrons
are repelled towards the quantum well. By increasing the light intensity, the
electron gas density can be increased. For step C, for instance, the practical
electron concentrations range from 4.3 � 1010 cm−2 to 1.2 � 1011 cm−2. Since
dopants are embedded in the barrier, they do not interfere with the optical
properties of the quantum well and a very high mobility is achieved.
At low temperature (< 35K), two strong resonances separated by 3meV

arise below the band gap in the luminescence and re
ectivity spectra.  ey
are attributed to heavy hole excitons and negatively charged excitons. At 5K
(Fig. 2.2) they appear at 1625.7meV and 1622.4meV respectively. We will see
in Chapter 3 that the re
ectivity spectra are absorption-like and can be directly
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2.1 Optical properties of the CdTe modulation-doped quantum well
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Figure 2.2: (a) Re
ectivity and (b) photoluminescence spectra of the
modulation-doped CdTe quantum well at 5K on part C.

interpreted.

2.1.2 CW linear re
ectivity experiments

We performed re
ectivity measurements of the sample at 5K. A white light
source was spectrally �ltered so that any high energy component (A 1.7 eV)
likely to modify the density of the electron gas in the quantum well was sup-
pressed.  e light was collimated and focused on the sample.  e re
ection
was then spectrally resolved by an imaging monochromator and recorded by a
CCD camera. We kept the incident light intensity low and made sure we were
working in a linear regime.
 e light coming from a blue GaN light emitting diode (LED) was focused

on the sample and completely covered the white light spot. By monitoring
the intensity of the blue LED we could change the density of electrons in
the well.  e di�usion time of electrons from the barrier to the quantum
well is macroscopic; it usually took from 5 s to 15 s for the system to reach an
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2 Samples and Experimental Methods

equilibrium whenever the LED power was tuned. Re
ectivity spectra were
recorded for various electron densities. Results are presented and discussed in
Chapter 3.

2.1.3 Pump and probe experiments
Pump and probe experimental setup. As both exciton and trion resonances
arewell separated, it is possible to excite solely one of them and create selectively
excitons or trions. We performed spectrally and temporally resolved pump and
probe experiments in re
ectivity at 5K (Fig. 2.3).  e 100 fs spectrally broad
output pulses of a Ti:Saphire laser were split into two: a small portion circulated
through a delay line and probed both exciton and trion resonances, while the
major portion passed through a pulse shaper to generate spectrally narrow
tunable pulses of 0.3meV (for 4 ps).  is spectral resolution was adjusted
so as to selectively pump a single resonance. Fig. 2.4(a) illustrates the case
where the pump is tuned to the exciton resonance. Both pump and probe

Ti:Saphire Laser

100 fs, 1.8 W

CCD & Spectrometer,

f = 500 mm, 1800 gr/mm

Blue Light

Source

Pulse Shaper

f=100 mm

Delay Line

λ/2

λ/2

λ/4
λ/4

Sample

Figure 2.3: Pump and probe experimental setup.
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Figure 2.4: (a) Probe re
ectivity spectra obtained without pump excitation
(R0) and with pump excitation (R).  e pump (red �lled spectrum) is tuned
at the exciton resonance.  ese spectra were measured at 5K on step B.
Pump and probe were crossed-polarized with zero delay. (b) Di�erential
spectrum ∆R = (R − R0)~R0.

spectra are represented.  e pump/probe intensity ratio was kept larger than
50 for all experiments so that probe re
ectivity spectra remained linear in
the probe �eld.  e polarization of both pump and probe pulses could be
chosen independently, allowing to investigate any possible relative polarization
con�gurations, readily linear crossed-polarized, circularly co-polarized and
circularly counter-polarized.
We recorded the re
ectivity and di�erential re
ectivity spectra1 for vari-

ous delay times between pump and probe pulses and various pump intensities
(Fig. 2.3b). Results are presented in Chapter 4 (incoherent regime) and 5
(coherent regime).

1If R0 is the re
ectivity spectrum of the probe without the pump and R with the pump, the
di�erential re
ectivity is de�ned as ∆R = (R − R0)~R0
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2 Samples and Experimental Methods

Selection of a homogenous excitation region.  e pump spot on the sam-
ple had a gaussian excitation pro�le inducing inhomogenous spatial non-
linearities. Pump and probe spots had the same diameter (� 50 µm) and
were overlapping. A�er re
ection, each spatial point of the probe carried on
information corresponding to a di�erent non-linear regime. We focused the
probe on the entrance slit of a monochromator with a 500mm lens (250 µm
spot size). By narrowing the slit down to (25 µm) we were able to select only
a vertical pro�le of the probe.  e monochromator resolved spectrally each
point of the pro�le on the slit and sent it to a 256 � 1024 pixels CCD camera.
Each line of pixel on the CCD had a height of 25 µm and was corresponding to
a homogenous region of excitation. We could advantageously probe di�erent
pump intensity regime in a single experiment by recording a full CCD image.

Electron density control. Unfortunately, no control of the electron density
could be achieved by illuminating the sample with blue light in pump and
probe experiments.  e reason is not clearly identi�ed, but it seams that the
pump a�ects the electron control mechanism.  e electron densities obtained
with pump excitation were identical to the one obtained without blue light
illumination no matter how strong we did illuminate the sample.

Grating

1200 gr/mm

Cylindrical lens

f=100 mm

Mirror

Slit

f

f

(a) top view (b) side view

Figure 2.5: Pulse Shaper. (a) Top view. (b) Side view.
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2.2 Optical properties of the GaAs quantum well

Pulse shaper.  e principle of the pulse shaper is the following. A grating
is placed in the focal plane of a cylindrical lens (Fig. 2.5). An incident laser is
di�racted by the grating and goes trough the lens. Vertically, the laser beam is
not modi�ed. Horizontally, it is Fourier transformed by the lens. We image
the laser spectrum in the Fourier plane of the grating. If we lower the image
thanks to a periscope as shown in Fig. 2.5(b) and send it back through the
lens-grating system, the outgoing laser beam is collimated back and perfectly
identical to the incoming beam.
Now, if we placed a vertical slit in the Fourier plane and selected only

a small part of the laser spectrum, the outgoing laser beam temporal pro�le
would correspond to the Fourier transform of a square function, i.e. a sampling
(sinc) function.  e wavefront would not be gaussian but have small pre- and
post-pulses. A quasi-Gaussian wavefront, can easily be obtained by placing
the slit o� the Fourier plane.  e temporal artefact is blurred out and the
outgoing laser practically become Gaussian, both spectrally and temporally.
By adjusting the width of the slit, we can modify the spectral width of the laser
and consequently the temporal width.  e outgoing pulse is nearly Fourier
transformed.

2.2 Optical properties of the GaAs quantum well

2.2.1 Sample

We have selected a particular sample, with a single InxGa1−xAs 80 Å quan-
tum well (x = 5%), because of its unequalled quality.  is quantum well is
embedded in the middle of a λGaAs layer (λ corresponds to the wavelength
of the quantum well excitonic resonance), which was grown over a 10 period
distributed Bragg re
ector.  is distributed Bragg re
ector allows to measure
directly the absorption of the sample in the re
ection con�guration. It also
increases the optical coupling of the quantum well, but does not disturb the
shape of the observed photoluminescence spectrum, because the resonance
mode has a spectral width of about 40 nm. Such a distributed Bragg re
ector
changes the radiative properties of free carriers (several percent according to
Yokoyama (1992)), but does not a�ect their relaxation properties which will be
studied in Chapter 6.  e sample was grown by molecular beam epitaxy. Due
to inevitable lateral 
ux inhomogeneities in the growth process, the thickness
of all layers in the sample vary by several percent over the lateral dimensions of
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2 Samples and Experimental Methods

the sample. We performed re
ectivity spectroscopy to determine the spectral
position of the cavity.
 e sample is not modulation-doped, contrary to our CdTe quantum

well. Without external excitation, its optical properties do not feature any
charged exciton. Nevertheless, impurities were non-intentionally introduced
in the GaAs barriers during the growth process, most probably carbon and
silicon. With proper excitation energy ħω, we can control the electron density
accumulated in the well, as shown in Fig. 2.6, where we compare the lumines-
cence of the sample collected for ħω = 1.5072 eV and ħω=1.5174 eV. Since the
trion luminescence is a�ected by the concentration of charged carriers in the
well, the relative trion/exciton intensity changes with the excitation energy
(Fig. 2.6b). Electrons appear when the excitation energy exceeds the energy
between ionized acceptors.  e electrons excited to the conduction band may
then be trapped into the quantum well. With increasing excitation energy
one can transfer electrons from the valence band to ionized donors, thereby
increasing the density of holes which then eliminate electrons (Fig. 2.6c). At
ħω = 1.5174 eV, we estimate the excess electron concentration from impurity
concentration: ne = 1010 cm−2.
 eexcess carriers trapped in the quantumwell have a tunneling time back

to the charge centers in the barriers several orders of magnitude longer than the
82MHz repetition rate of the laser that will be used in our experiments to excite
the sample.  erefore, even for a very weak photon density, the population of
available acceptor states in the barrier is quickly fully depleted and, even under
pulsed excitation, the saturation value of the carrier population in the well is
reached.
 e high quality of the sample was evidenced through optical measure-

ments. We do not observe any Stokes shi� between the absorption and photo-
luminescence of plasma, 1s and 2s excitons (Szczytko et al., 2004b, 2005).

2.2.2 Time-resolved photoluminescence experiments
 emeasurements described in Chapter 6 have been carried out on a standard
time-resolved photoluminescence setup where special care has been taken to
ensure high imaging quality.  is is crucial in optical measurements where
the density plays an important role for the observed e�ects. In this respect
and very similarly to what has been done in the pump and probe experiment
(2.1.3), the setup and alignment has been optimized to collect light only from
regions with homogenous excited pair density, i.e. from the central part of

12
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Figure 2.6: a) CW-luminescence collected for two di�erent excitation en-
ergies: ħω = 1.5072 eV (thick line) and ħω = 1.5174 eV (thin line).  e
structures at 1.4807 eV, 1.4823 (1.4882 eV) and Eg = 1.4888 eV correspond
respectively to the trion, heavy-hole exciton 1s (2s) and plasma transitions
(all denoted by vertical dashed lines). b)  e intensity ratio of the trion
to exciton transitions as a function of the excitation energy. c) Schematic
diagram of the electronic transitions from the ionized acceptors A− to the
conduction band cb and from the vallence band vb to the ionized donors
D+.
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2 Samples and Experimental Methods

the excitation spot.  e spatial �ltering of the central spot region was done by
means of imaging the sample surface on a pinhole (50 µm).  e transmitted
light was analyzed spectrally and temporally using a monochromator (1meV
resolution) and subsequent streak camera (3 ps resolution) in photocounting
mode.  e temporal resolution of the whole setup is limited to about 2030 ps,
because of the spectral resolution of 0.1meV.
 e light excitation source was a Ti:Saphire laser (100 fs). In order to study

the dynamics of the luminescence in di�erent density domains, we performed
our experiments with a variety of absorbed photon densities (108 − 1010 cm−2)
at 5.0K.  e excitation energy were 1517.4meV and 1507.2meV, so that we
could either work with zero or 1010 cm−2 excess electron concentration.  en,
we recorded the time evolution of the exciton, trion and plasma luminescence
intensities. We used spectra obtained under cw-excitation2 to resolve the
exciton and trion overlapping transitions.  e experimental results are reported
in Chapter 6.

2We subtract the pure exciton spectrum (1.5174 eV excitation) from the mingled spectrum
(1.5072 eV excitation) and obtain the pure trion spectrum (Fig 2.6).
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3 Linear Optical Properties of
Modulation Doped Quantum
Wells

‘. . . down, down, until they disappeared into the very

stone foundations of the building or into the earth,

poured the harsh x rays, the trembling vectors of

electric and magnetic �elds, unimaginable to the

human mind, or else the more comprehensible

quanta that like shells out of guns pounded and

riddled every thing in they path.’

(Aleksandr Isaevich Solzhenitsyn)

Past experimental studies have clearly pictured the linear optical properties
of quantum wells in the presence of a moderate background electron density.
 ey showed that the exciton resonance is strongly a�ected by the electron
population. First of all electrons screen the excitons and reduce their oscillator
strength (Chemla andMiller, 1985).  en, they �ll up the conduction band and
contribute to shi� the exciton resonance towards higher energies (Huard et al.,
2000; Kossacki et al., 1999; Yusa et al., 2000). Finally they collide with excitons
and broaden their absorption line (Huard et al., 2000). Experimental com-
parison between exciton-electron and exciton-exciton scattering mechanism
in bulk GaAs (Schultheis et al., 1986), and in GaAs quantum wells (Honold
et al., 1989; Capozzi et al., 1993), showed that the exciton-electron scattering
e�ciency is one order of magnitude larger than exciton-exciton process. Both
scattering process are enhanced for the two-dimensional excitons as compared
to bulk excitons.
Linear optical spectrum also feature a charged exciton resonance below

the exciton resonance (Kheng et al., 1993).  eoretical calculations of the
binding energy of charged excitons were performed using variational (Stebe

15



3 Linear Optical Properties of Modulation Doped QuantumWells

and Stau�er, 1989;  ilagam, 1997; Stebe et al., 1997) and full solution of the
three-particle Schrödinger equation (Riva et al., 2000; Esser et al., 2000b).
 ey showed that only the singlet state is bound in the absence of magnetic
�eld. Considering the lineshape of the trion resonance, it was argued that the
momentum of the electron initially present in a semiconductor and used in the
absorption process of a trion yields a low-energy tail on the trion resonance
(Suris et al., 2001; Esser et al., 2001). A simple derivation of the trion-electron
scattering was also performed in GaAs quantumwells (Ramon et al., 2003), but
the overlap or the exciton and trion resonance did not allow to clear identify if
such a simple model leads to correct predictions.
In this chapter, we investigate the e�ect of a two-dimensional electron gas

on the optical properties of CdTe quantum wells. Due to the large separation
between excitons and electrons, we are able to evidence the existence of a
high-energy tail for both exciton and trion resonance. An electron-exciton and
electron-trion scattering model, taking into account both elastic and inelastic
scattering processes, show quantitative agreement with our results.  ese
�ndings go in the direction of modern theory of excitons within an electron
gas, that argue that a trion is intrinsically a many-body object, made of a hole,
interacting with all electrons in the system (Combescot et al., 2005).
 is chapter is structured the following way. In Sec 3.1 we explain the

principles of the transfer matrix formalism used to calculate the re
ectivity of
our sample. In Sec. 3.2, we review how the optical properties of the quantum
well can be included in the calculation. In Sec. 3.3 we give an expression of
the linear susceptibility for a quantum well that contains excitons and trions.
Our experimental results are presented in Sec. 3.4, where we show that a
calculation without electron scattering cannot possibly describe our system.
Sec. 3.5 summarizes the exciton-electron and trion-electron calculation results
that we performed. Finally, Sec. 3.6 demonstrates that linear optical spectra
of modulation-doped quantum wells are quantitatively described by a matrix
transfer calculation including both exciton- and trion-electron scattering.

3.1 Wave propagation in a strati�ed dielectric
medium and transfer matrix formalism

 e layered structure of our sample needs to be taken into account in order to
consistently simulate the optical properties of the quantumwell. Herewe review
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3.1 Wave propagation and transfer matrix formalism

x y

z

є(z)

Figure 3.1: An example of a multilayered dielectric structure.  e corre-
sponding dielectric dispersion pro�le є(z) is plotted on the right.

the transfer matrix formalism. We study the propagation of time-harmonic
electromagnetic wave through a strati�ed medium comprising successive thin
plane-parallel �lms. Each �lm consists of a homogeneous dielectric layer whose
thickness and dielectric constant di�er from �lm to �lm.  e overall medium
is neutral, nonconducting and nonmagnetic. A sketch of a sample structure is
shown in Fig. 3.1, where the z-axis of a Cartesian reference system has been
taken along the strati�cation direction.  e time-harmonic electromagnetic
wave is solution of the Maxwell equations in frequency-space (Jackson, 1999)

∇ ċB(ω,rY, z) = 0,
∇ �E(ω,rY, z) − iωB(ω,rY, z) = 0,

∇ ċD(ω,rY, z) = ρ(ω,rY, z),
∇ �H(ω,rY, z) + iωD(ω,rY, z) = J(ω,rY, z), (3.1)

where the electric �eld E(ω,rY, z), the electric displacement D(ω,rY, z),
the magnetic inductionB(ω,rY, z) and the magnetic �eldH(ω,rY, z) are
expressed in term of the frequency ω, the in-plane position vector rY and the
position along the growth axis z.
We note that we do not loose generality by merely considering eiωt time-

dependent wave, because an arbitrary solution can be built any time by Fourier
superposing equations 3.1. Considering that the dielectric layers are nonmag-
netic—H(ω,rY, z) = µ0B(ω,rY, z)—, nonconducting— the current density
J(ω,rY, z) = 0—and neutrally charged— the charge density∇ρ(ω,rY, z) = 0
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3 Linear Optical Properties of Modulation Doped QuantumWells

—,Maxwell equations can be combined into a coupled equations forE andD

∇
2E(ω,rY, z) − ω2

є0c2
D(ω,rY, z) = 0. (3.2)

We shall �rst solve this equation for a single homogenous dielectric �lm.  en
we shall introduce transfer matrices and use them to express the propagation of
electromagnetic wave at an interface between two consecutive �lms. Finally we
will demonstrate how those matrices can be combined to calculate analytically
the mode of the whole strati�ed medium.

3.1.1 Homogenous dielectric �lms
For a homogenous dielectric medium, the electric and displacement �elds are
linearly dependentD(ω,rY, z) = є(ω)E(ω,rY, z). Eq. (3.2) takes the form of
a Helmholtz wave equation forE(ω,rY, z)

�∇2
+

ω2

c2
є(ω)
є0
�E(ω,rY, z) = 0. (3.3)

 e dielectric dispersion є(ω) may very well be complex. Because it is con-
stant, the electromagnetic �eld is invariant under in-plane translations (Bloch
theorem) and solutions of (3.3) are plane-waves

EkY(ω,rY, z) = εkYukY(ω, z)eikYċrY . (3.4)

Here kY is the in-plane wave vector and εkY the polarization vector. A�er
substitution into (3.3), we are le� with a one-dimensional problem for the
mode function ukY(ω, z)

d2ukY(ω, z)
dz2

+ �ω
2

c2
є(ω)
є0
− k2Y�u(ω, z) = 0. (3.5)

 e solution represents two counter-propagating waves

u(ω,kY, z) = El(kY)e−ikzz + Er(kY)eikzz, (3.6)

kz =
¾

ω2

c2
є(ω)
є0
− kY. (3.7)
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3.1 Wave propagation and transfer matrix formalism

 ecoe�cientEl andEr are two complex coe�cient that have to be determined
by imposing Maxwell boundary conditions at the interface between adjacent
layers. Let us note that if є(ω) is imaginary then kz is imaginary as well and
the solutions are evanescent waves.

3.1.2 Transfer matrix principle
In the framework of the one-dimensional problem (3.5) we de�ne for each
position z in space a two-dimensional vector containing the two coe�cients
in (3.6)

Q = �Er
El
	 . (3.8)

For a given structure, we would like to express the relation between coe�-
cient vectorsQ(1) at z1 andQ(2) at z2. Because Maxwell equations are linear,

zz1 z2

E
(1)
l

E
(1)
r

E
(2)
l

E
(2)
r

Figure 3.2: Electrical �elds at the boundary z1 and z2 of a plane layer.

Maxwell boundary conditions will result in a linear relation, which we write as

Q(2) =MQ(1). (3.9)

 e 2 � 2 complex matrixM thus de�ned is called the transfer or propagation
matrix.  e most important property of transfer matrices is that they can
be composed. Knowing the propagation matrixM1 from z1 to z2 andM2
from z2 to z3, the propagation matrix from z1 to z3 will beM =M2M1.  is
procedure can be immediately generalized to the overall structure.
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3 Linear Optical Properties of Modulation Doped QuantumWells

If z1 and z2 were to be found in the same homogenous layer, from (3.6)
the transfer matrix would simply be

Mhom = �e
ikz(z2−z1) 0

0 e−ikz(z2−z1)
	 . (3.10)

 e calculation of transfer matrices for more complicated problems might be
di�cult. We will now demonstrate that the transfer matrix of a given medium
can simply be expressed in terms of its re
ection and transmission coe�cients.

3.1.3 Transfer matrix in terms of re
ection and transmission
coe�cients

 e Maxwell boundary conditions are invariant under time reversal.  is
means that the complex coe�cient of a transfer matrixM do not change if we
reverse the time evolution (Savona, 1999). Mathematically, we write this as

M = T̂M T̂−1, (3.11)

where T̂ is the time reversal operator. We would like to calculate T̂Q. We
remind that the amplitude of the electric �eld is given by the real part of its
representation in terms of complex exponentials

E(ω,kY,rY, z, t) =R ��Ele−ikzz + Ereikzz� eikYċrYe−iωt� .

 e time reversal operator then acts as

T̂E(ω,kY,rY, z, t) = E(ω,kY,rY, z,−t)
=R ��E�r e−ikzz + E�l eikzz� e−ikYċrYe−iωt� .

 us, ÂT reverse the sign of kY � −kY and acts onQ as

ÂT �Er
El
	 = �E

�

l
E�r
	 . (3.12)

 e time reversal invariance let us express the transfer matrix of a strati�ed
medium in terms of its complex re
ectivity and transfer coe�cients. We
consider the case of a unitary wave which is arriving on the le�, re
ected in
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3.1 Wave propagation and transfer matrix formalism

zz1 z2

1
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t

Figure 3.3: Electrical �elds at the boundary z1 and z2 of a plane layer for a
normalized incoming plane-wave.

the opposite direction with a wave amplitude r and transmitted to the right
with an amplitude t.  en

� t0 	 = �
M11 M12
M21 M22

	 � 1
r 	 (3.13)

By applying the time reversal operator T̂ on both side of the equality we get a
second system of equations

� 0
t�	 = �

M11 M12
M21 M22

	 � r
�

1 	 . (3.14)

Noting that in terms of r and t, the re
ectivity and transmissivity are
R = SrS2 and T = α−112 StS2 with

α12 =
¢̈̈
¦̈̈
¤
R �k(1)z �~R �k(2)z � for TE polarization

R �k(1)z �n22~R �k(2)z �n21 for TM polarization
, (3.15)

we solve the system of linear equations (3.13) and (3.14) and obtain

M = α212

<@@@@@@@>

1
t�
−

r�

t�

−

r
t

1
t

=AAAAAAA?
. (3.16)

We can use Eq. (3.16) here above to calculate the transfer matrix at an
interface between two homogenous layers (Born andWolf, 1999). We obtain
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3 Linear Optical Properties of Modulation Doped QuantumWells

the two transfer matrices for TE and TM polarization

MTE
= αTE12

<@@@@@@@@@>

k(1)z + k
(2)
z

2k(1)z

k(1)z − k
(2)
z

2k(1)z
k(1)z − k

(2)
z

2k(1)z

k(1)z + k
(2)
z

2k(1)z

=AAAAAAAAA?

(3.17)

and

MTM
= αTM12

<@@@@@@@@@>

є(2)k(1)z + є(1)k
(2)
z

2
º
є(1)є(2)k(1)z

є(2)k(1)z − є(1)k
(2)
z

2
º
є(1)є(2)k(1)z

є(2)k(1)z − є(1)k
(2)
z

2
º
є(1)є(2)k(1)z

є(2)k(1)z + є(1)k
(2)
z

2
º
є(1)є(2)k(1)z

=AAAAAAAAA?

. (3.18)

 ese expression are quite general and are valid for complex dielectric constants
as well. Combining those two matrices with the propagation matrix (3.10) we
are able to calculate the electromagnetic modes in any multilayered structure.

3.2 Optical wave in quantum wells
 e optical properties of excitons in quantum wells have been derived for
homogenously (Tassone et al., 1990, 1992) and inhomogeneously broadened
resonances (Andreani et al., 1998). Building on previous work, we propose a
more general derivation that is valid for any kind of optical resonance (exciton,
trion), as long as we know the linear susceptibility of the quantum well.
 e transfermatrix approach introduced in the previous section presumes

that the material is described by a frequency-dependent complex dielectric
tensor є(ω). Close to a resonance, this is not valid anymore (Hyzhnyakov et al.,
1975) and the displacement �eldD(ω,kY, z) of an inhomogenous material
with translational symmetry broken in the z-direction does not depend on the
value of the electric �eld only at the point z, but rather on an average of the
electric �eld over a certain small volume centered at z (Mills and Burnstein,
1974). A spatial dispersion occurs and the general form of the displacement
�eld can be expressed in terms of the nonlocal susceptibility є(ω,kY, z, z′) as

D(ω,rY, z) = ∫ ª
−ª

dz′ є(ω,kY, z, z′)E(ω,rY, z′). (3.19)
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3.2 Optical wave in quantum wells

 is means that if we want to account for a particular resonance in the
quantum well, we have to solve Eq. 3.2 with the displacement �eld 3.19. We
assume that the susceptibility є(ω,kY, z, z′) can be written as

є(ω,kY, z, z′) =
¢̈̈
¦̈̈
¤
є(ω) δ(z − z′) in the barrier
є(ω) δ(z − z′) + χQW(ω,kY, z, z′) in the well

(3.20)

with

χQW(ω,kY, z, z′) = χQW(ω,kY)ρ(z)ρ(z′) (3.21)

where ρ(z) = ζe(z)ζh(z) is the product of the con�nement functions for
electrons and holes in the well.  e con�nement functions will be de�ned in a
later chapter (6.7). An explicit expression for the dielectric susceptibility of the
quantum well χQW(ω) will be given later. We assumed the same homogenous
local background dielectric dispersion є(ω) for the quantum well and the
barriers.  is is clearly not the case, but interface transfer matrices (3.17 and
3.18) can be applied a posteriori to our result.
We propose to �rst solve Eq. 3.2 for a quantum well of with width Lwhen

TE polarized light propagates in the barrier.  e electric �eld is along the
y-axis and (3.2) becomes

(∂2z + k2z)Ey + k2χ(ω)ρ(z) ∫ L~2

−L~2
dz′ ρ(z′)Ey(z′) = 0 (3.22)

with k =
»
є(ω)~є0 ω~c. As ρ(z) is even for optical allowed transitions, it is

convenient to treat separately solutions of the problem with de�nite parity
under inversion of the z coordinate.
For odd Ey symmetry, the integral in 3.22 is zero and there is no polar-

ization contribution from the quantum well.  e re
ectivity takes the simple
form

r(odd)TE = −eikzL. (3.23)

For even Ey symmetry, the solution of the second order di�erential equa-
tion (3.22) is

Ey = A(ω, kz) cos(kzz) + ∫ dz′G(z, z′)ρ(z′). (3.24)
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3 Linear Optical Properties of Modulation Doped QuantumWells

In this expression, the �rst term is the general even solution of the problem
(∂2z + k2z)Ey = 0, with A(ω, kz) a constant to be determined.  e second term
is a particular solution of (3.22) and was simply built from the de�nition of the
Green function (∂2z + k2z)G(z, z′) = δ(z − z′). We choose

G(z, z′) = − 1
2kz

sin(kzSz − z′S) (3.25)

which has the advantage to yield an even solution of Ey. Replacing (3.24) into
(3.22) gives

A(ω, kz) = χ(ω)−1 − P(kz)~Q(kz) (3.26)

Q(kz) = ∫ L~2

−L~2
dz ρ(z) cos(kzz) (3.27)

P(kz) = ∫ L~2

−L~2 ∫
L~2

−L~2
dzdz′

1
2kz

sin(kzSz − z′S)ρ(z)ρ(z′) (3.28)

We consider Maxwell boundary condition at the interface z = −L~2. On the
le� side of the quantum well, we know that there are two counter-propagating
plane waves propagating in the barrier given by Eqs. 3.4 and 3.6.  e Maxwell
boundary conditions give

(E(l)y + E(r)y )Tz=−L~2− = EyTz=−L~2+
∂z(E(l)y + E(r)y )Tz=−L~2−

= ikz(E(l)y − E(r)y )Tz=−L~2− = ∂zEyTz=−L~2+ (3.29)

Substituing Eq. 3.24 in those two equation, we obtain the re
ectivity for the
even solution:

r(even)TE =

E(r)y

E(l)y
=

Ey −
1
ikz
∂Ey

Ey +
1
ikz
∂Ey
W
z=−L~2+

= eikzL
A(ω, kz) − iQ(kz)~2kz
A(ω, kz) + iQ(kz)~2kz

= eikzL
1 − χ(ω, kz)(iα(kz) + P(ω, kz))
1 + χ(ω, kz)(iα(kz) − P(ω, kz)) (3.30)

where α(kz) = Q(kz)2~2kz.  e total re
ectivity is given by the mean of the
odd 3.23 and even re
ectivity 3.30:

rTE =
1
2 �r(even)TE + r(odd)TE � =

−iα(kz)χ(ω, kz)eikzL
1 + χ(ω, kz)(iα(kz) − P(ω, kz)) (3.31)
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 e same kind of calculation apply for the transmissivity, which reads

tTE =
1
2 �t(even)TE − t(odd)TE � =

(1 − P(ω, kz)χ(ω, kz))eikzL
1 + �iα(kz) − P(ω, kz)�χ(ω, kz)

(3.32)

If we now suppose that the quantum well has an in�nite potential, the calcula-
tion of α and P functions becomes trivial. We obtain α� 1 and P� 0. We are
le� with the simple re
ectivity and transmissivity

rTE = e
ikzL −iχ(ω, kz)~2kz

1 + iχ(ω, kz)~2kz (3.33)

tTE = e
ikzL 1

1 + iχ(ω, kz)~2kz = 1 + rTE (3.34)

When used in Eq. 3.16, these two expressions give the transfer matrix of a
quantum well.  e only information that is required to simulate the linear
optical spectrum of our quantum well is the susceptibility.

3.3 Linear Susceptibility in modulation-doped
quantum wells

In order to be able to calculate the transfer matrix of the quantum well, we
need to write an expression for the susceptibility. As a starting point, we chose
to use the linear susceptibility proposed by Esser et al. (2001) in the framework
of density matrix theory. It includes both exciton and trion contributions, has
a rather simple form and takes into account the non zero momentum of the ex-
cess electron in the quantum well used in the process of trion photogeneration.
We emphasize that it neglects any scattering with the electrons. It reads

χ(ω) = χX(ω) + χT(ω), (3.35)

where χX(ω) and χT(ω) are the contributions to the exciton and trion suscep-
tibility.  ey are given by

χX(ω) =fX SϕX(0)S2
ω− ωX − iγX

, (3.36)

χT(ω) =fT ∫ dq ne(q) SMT(q)S2
ω− ωT +Wq − iγT

. (3.37)
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a b c d s R0
X− 1.1723 0.5471 0.4809 0.0682 0.0013 1.1614
X+ 1.1774 0.4294 2.3943 0.08431 0.26173 0.7393

Table 3.1: Variational parameters for Sergeev and Suris’ trion variational
function

where ωX (ωX) is the exciton resonance energy, fX (fT) a contribution to the
exciton (trion) oscillator strength, and γX (γT) the exciton (trion) homogenous
broadening mainly due to phonons; ne(q) is the Fermi-Dirac distribution of
the electrons andWq = ħ2q2MX~2meMT is a correction to the trion resonance
that comprises trion c.o.m. energy and electron initial momentum q, with me,
MX andMT the electron, exciton and trion e�ective mass, respectively. For a
given initial electron momentum, the strength of the integrant is weighted by
the optical matrix element

MT(q) = ∫ dρ2ψT
1s(0,ρ2)eiηqρ2 (3.38)

where η = MX~MT and ψT
1s(ρ1,ρ2) is the trion 1s wavefunction, with ρ1 =

r1e − rh the relative position of the �rst electron to the hole and ρ2 = r2e − rh
from the second electron to the hole.
For the trion wavefunction, we relied on a simpler variational function

(Sergeev and Suris, 2001), given by

ψT(ρ1,ρ2) = (e−aρ1−bρ2 + e−aρ2−bρ1)(1 + cR) e−sR

1 + d(R − R0) (3.39)

whereR = r1e − r2e.  e variational parameters a, b, c, d, s, R0 were obtained
by �tting the numerical solution of the Schrödinger equation (Esser et al.,
2000b).  ey are given in Table 3.1 for both positive and negative trion in units
of the bulk CdTe bulk Bohr radius (7.75 nm).  e overlap with the numerical
wave function is excellent (0.9981 for X−).
Even if this variational function is analytical, its Fourier transform is

not. To speed up calculations, we resorted to a simpler Chandrashekar’s wave
function (Chandrasekhar, 1944) with only two variational parameters λ =
6.8 nm and λ′ = 15 nm. It is given by

ψT(ρ1, ρ2) = NT �eρ1~λ−ρ2~λ
′

+ eρ1~λ
′
−ρ2~λ� , (3.40)
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3.3 Linear Susceptibility in modulation-doped quantum wells

Where NT is the normalization factor. With this approximation, the light
coupling elementM(q) becomes

MT(q) = 4NT � λTλ′T
1

(1 + (λTk)2)3~2 + λT � λ′T� . (3.41)

We evaluated the error induce by using the Chandrashekar’s wavefunction.
In Fig. 3.4, we compare the result obtained with variational functions 3.39 and
3.40.  ey do not di�er much and we conclude that Eq. 3.41 is a reliable
approximation.
Exciton and trion resonancemay also be inhomogenously broadened, due

to quantum well interface roughness. Building on Andreani et al. (1998) work,
we supposed that the broadening can be described by a Gaussian distribution
function.  us, for excitons, we substituted the dielectric susceptibility (3.36)
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Stébé’s

2.5 3
0
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q/λT

M
T (
q)

Figure 3.4: Trion optical coupling as a function of the momentum q of the
initial electron.
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3 Linear Optical Properties of Modulation Doped QuantumWells

by the convolution function

ÇχX(ω) = 1º
π ∫ dν χX(ω− ν) exp

<@@@@>
−�ν − ωX

ΓX
inhom

�
2=AAAA?

=
iπfXSϕX(0)S2

ΓX
inhom

w�ω− ωX − iγX
ΓX
inhom

� , (3.42)

where w is the complex error function (Schreier, 1992) and ΓX
inhom the exciton

inhomogenous broadening constant. For trions the same kind of equation
holds, except the convolution is performed before integrating over q:

ÇχT(ω) = iπfT
ΓTinhom

∫ dq ne(q)SMT(q)S2w�ω− ωT +Wq − iγT
ΓTinhom

� (3.43)

3.4 Experimental Results
We performed the CW re
ectivity experiments described in the previous
chapter (Sec. 2.1.2). Fig. 3.5 shows the re
ectivity spectra obtained for di�erent
electron densities. For increasing electron densities, we clearly observe a blue
shi� of the exciton resonance as reported in the literature (Huard et al., 2000;
Kossacki et al., 1999; Yusa et al., 2000). It is due to the �lling of the conduction
band by electrons. Electron-hole pairs can only be photo-generated above the
Fermi level. To a good approximation, the shi� is linear in the Fermi energy
EF.  us the exciton-trion energy di�erence is given by

E = ET
0 + αEF, (3.44)

where ET
0 is the trion binding energy and α is an empirical parameter. For CdTe

quantum wells, α = 1.07 (Huard et al., 2000). Assuming that ET
0 = 1.7 meV,

Eq. 3.44 was used to estimate the electron concentrations in the quantum
well for each spectrum in Fig. 3.5.  e densities that we obtained range from
4.3 � 1010 cm−2 to 1.7 � 1011 cm−2.
Using the transfer matrix formalism described previously in this chapter,

we calculated the mode of the �eld for our sample structure.  e refractive
index and absorption of the CdMgTe barriers (Choi et al., 1997; Andre and
Dang, 1997), CdTe quantum well1, CdTe bu�er (Benhlal et al., 1999; Hlidek

1Régis André in Grenoble, measured a CdTe quantum well index of 4 (private communica-
tion).
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3.4 Experimental Results

1620 1630 1640 1650

1.7 x 1011
1.5 x 1011
1.2 x 1011
1.1 x 1011
8.9 x 1010
6.7 x 1010
6.0 x 1010

5.4 x 1010
4.9 x 1010
4.5 x 1010
4.3 x 1010

Figure 3.5: CW re
ectivity spectra obtained at 5 K for di�erent electron
densities ranging from 4.3 � 1010 cm−2 to 1.7 � 1011 cm−2.

et al., 2001), GaAs substrate and iodine dopant were all implemented. For
each resonance, we used the following �tting parameters: spectral position,
oscillator strength, homogenous linewidth and inhomogeneous linewidth. We
�tted three densities: 4.9 � 1010, 6.7 � 1010, 1.2 � 1011 cm−2. Results are shown
in Fig. 3.6 and the value of the corresponding �tting parameters in Table 3.2.
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Figure 3.6: CW re
ectivity spectra measured at 5 K and for electron densi-
ties of 4.9� 1010, 6.7� 1010 and 1.2� 1011 cm−2. We show the best �t obtained.

From the �ts in Fig. 3.6, we see that it is impossible to reproduce both low
energy and high energy tail of exciton and trion resonance because of their
strong asymmetry.
 e high-energy tail of the exciton resonance is commonly acknowledge

in the literature and attributed to electron-exciton collisions (Honold et al.,
1989; Capozzi et al., 1993). Since we did not take them into account in our
susceptibility, we obviously cannot reproduce the correct lineshape for the
exciton. As for the high-energy broadening of the trion line, it has, to our
knowledge, not been reported yet. We note that in our experiment, the low-
energy tail of the trion resonance predicted by Esser et al. (2002) is marginal
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3.5 Neutral and charged exciton scattering with electrons

ne [cm−2] E [meV] Γhom [meV] Γinhom [meV]
X 4.9 � 1010 1623.9 0.25 0.1
X 6.7 � 1010 1624.1 0.15 0.1
X 1.2 � 1011 1624.4 0.10 0.1
X− 4.9 � 1010 1621.9 0.2 0.05
X− 6.7 � 1010 1621.9 0.3 0.05
X− 1.2 � 1011 1622.1 0.3 0.10

Table 3.2: Fitting parameters of the re
ectivity spectra for three electron
densities ne. f is proportional to the exciton (trion) oscillator strength.  e
homogenous broadening Γhom is essentially due to phonon interaction and
corresponds to γX for excitons and γT for trions (see Eq. 3.36 and 3.37).  e
inhomogenous broadering is de�ned in Eqs. 3.42 and 3.42.

and can be fairly well reproduced by our �t. In the next section, we will propose
amodel of trion-electron interaction that will perfectly explain the high-energy
broadening.

3.5 Neutral and charged exciton scattering with
electrons

A complete theory of neutral and charged exciton electron scattering has been
proposed by Ramon et al. (2003).  ey investigated both elastic and inelastic
scattering in GaAs quantum wells.  ey were able to �t the high energy line
shape of excitons, but failed to check the validity of their result on the high
energy tail of trions because in GaAs, at low temperature, exciton and trion
lines are not well separated.
We applied their method to calculate the linewidth broadening due to the

exciton-electron scattering in our CdTe quantum well. Here, we summarize
the principles and show the results.

Exciton-electron scattering An electron of momentum ke can interact elas-
tically with an exciton kX. In that case, a momentum q is transferred from the
electron to the exciton

(kX,ke)Ð� (kX + q,ke − q). (3.45)
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Figure 3.7: Top row: exciton-electron (a) elastic and (b) inelastic scattering.
Bottom row: trion-electron (c) elastic and (d) inelastic scattering.

In the process, the electron bound in the exciton can be exchanged with the
free electron.  e exchange scattering matrix element is very strong compared
to direct Coulomb interaction. Using Fermi’s golden rule, it is possible to
calculate the scattering rate of the process 3.45. Summing over all �nal exciton
states, results — in the �rst Born approximation — in the exciton linewidth
ΓelasticX−e (kX) due to elastic scattering, as a function of its initial momentum.
Fig. 3.7(a) shows the computed values of ΓelasticX−e (kX) as a function of the

exciton initial energy and the electron density.  e large linewidth obtained
for relatively low electron density re
ects the high e�ciency of the electron-
scattering mechanism.  is should be compared to an exciton linewidth of
� 0.1 meV for acoustic phonon scattering at T=5 K. It is explained by the
exciton-electron interaction matrix elements that favor small energy-transfer
transitions. At higher densities the e�ect of the phase-space �lling becomes
noticeable and e�ectively enlarges the exciton Bohr radius. Increasing the
electron density further results in a shi� of the maximum linewidth from
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3.6 Electron scattering corrections

kX = 0 to higher momenta.
During the scattering process, the exciton can also ionized into a free

electron-hole pair.  e exciton linewidth ΓinelasticX−e (kX) due to this inelastic
scattering is represented in Fig. 3.7(b). Although themagnitude of ΓinelasticX−e (kx)
is of the same order as ΓelasticX−e (kx), its functional dependence on the exciton
in-plane momentum is very di�erent. In particular, we note that the maximal
linewidth is obtained at a very large momentum.  is is due to the fact that
in order for an exciton with initially small kX to be ionized, it must scatter on
an electron with energy large enough to overcome its binding energy. At zero
temperature this is only possible above the Fermi energy.
 e two scattering processes that we described above contribute to admix

states with kX A 0 to the kX = 0 state.  is admixture can be easily included in
our previous calculation of the absorption by convoluting the imaginary part of
the exciton susceptibility (3.36) with a Lorentzian function whose broadening is
given by the sum ΓX−e(kX) = ΓelasticX−e (kX)+ΓinelasticX−e (kX) (Fig. 3.8). It becomes

Im [χQW(ω)] = ∫ ª0 dω′ Im [χX(ω− ω′)]L (ω′, ΓX−e(ω′)) (3.46)
Use of the Kramers-Kronig relations yields the real part of the dielectric func-
tion. Since ΓX−e(kX) is a decreasing function of kX, the Lorentzian peak is
shi�ed to higher exciton energies.  is is seen as the electron density increases.

Trion-electron scattering For trions, the charge of the trion results in a
divergence of its matrix elements in the limit of zero transferred momentum.
 is divergence, originating from the in�nite range of the Coulomb potential,
is treated by applying the Lindhard model for the potential screening. We use
the Chandrashekar’s variational function introduced above to perform the
calculation. As for excitons, the broadening comes from direct and exchange
scattering.  e broadening ΓX−−e(kT) obtained is shown in Fig. 3.7c.

3.6 Electron scattering corrections
Using the CdTe exciton-electron and trion-electron scattering calculation
performed in the previous section, we were able to �t the three cw re
ectivity
spectra considered in Fig. 3.6. For each resonance (exciton and trion), the
free parameters were the spectral line position, the oscillator strength, the
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Figure 3.8: A schematic picture of the convolution resulting from elec-
tron scattering.  e solid lines represent various exciton initial line shapes
Im(χQW(ω− ω′)).  e contributions of states with kX A 0 to the kX = 0
state are weighted by the value of the Lorentzian functionLx−e[ω, Γx−e(ω)],
given by the dashed line

electron density, the homogenous and the inhomogeneous linewidth.  e �ts
are shown in Fig. 3.9 and the parameters of the �t in Table 3.3.
 e �ts we obtained are exceptionally good. Only a very small inhomoge-

nous broadening had to be included, which is consistent with the high quality
of our quantum well.  e homogenous broadening γX and γT attributed to
phonons remained quite small and more or less constant over the densities.
 is shows that we accounted for almost all electron induced broadening in
our simple model. Had it been perfect, we would have expected the exciton
and trion energy parameters to stay constant for all densities. Unfortunately,
we could not get a perfect match of the spectrum lineshape by keeping the shi�
constant. Our model accounts for part of the shi� but not all. We remind that
it is a simple �rst order perturbation model and that we might expect higher
order contributions to play a role.  e density obtained remained quite close
to those calculated with a simpler model in Sec. 3.4.
As for the oscillator strength, not much can be said, since we did not

include any dependence on the electron density in our model. We did so inten-
tionally because current theoretical models conclude that the trion oscillator
strength depends on the volume of the sample (Esser et al., 2002). We think
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3.7 Conclusion

ne [cm−2] E [meV] Γhom [meV] Γinhom [meV]
X 4.9 � 1010 1623.9 0.25 0.1
X 6.7 � 1010 1624.1 0.20 0.05
X 1.2 � 1011 1624.4 0.20 0.05
X− 4.9 � 1010 1621.9 0.2 0.05
X− 6.7 � 1010 1621.9 0.3 0.05
X− 1.2 � 1011 1622.1 0.3 0.10

Table 3.3: Fitting parameters

that it is a failure of the three-particle oversimpli�ed trion model which is,
strictly speaking, only correct in quantum dots. A correct description of the
trion resonance should take into account the interaction of the excitons with all
electron in the system. Such approach seems to lead to trion oscillator strength
that do not depend on the volume (Dupertuis, 2006).

3.7 Conclusion
We conclude by some general remark on the validity of our model. Although
it is surprisingly good at predicting the lineshape of the optical spectrum we
resorted to strong approximations. First, we did not consider screening of
excitons by electrons, but it was proved not be of much importance (Ramon
et al., 2003).  en the kinetic energy of the exciton was neglected, which may
be of some importance (Rochat et al., 2000). Finally we used a mean �eld
theory that may eventually fail. Our results show that these three assumptions,
that are the current subject of much debate, do not dramatically in
uence
quantitative predictions on the linear optical spectrum in modulation-doped
quantum wells.  eoretical work should then focus on the description of the
oscillator strength intensity ratio between excitons and trions.
As far as we are concerned, we demonstrated that electrons play an im-

portant role on both exciton and trion resonance.  is will be fundamental for
the interpretation of the non-linear properties of modulation-doped quantum
wells in the next chapter.
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Figure 3.9: (red solid) cw re
ectivity spectra measured at 5 K and for elec-
tron densities of 4.9 � 1010, 6.7 � 1010 and 1.2 � 1011 cm−2. Best �t obtained
with electron scattering (black solid) and without (blue dashed).

36



4 Many-body interactions within
an electron gas

Many-body interactions are the main source of nonlinear optical properties in
condensed matter physics, and more particularly in semiconductors. Coulomb
interaction gives rise to excitons and higher-order exciton states, such as biex-
citons, that play a crucial role in determining the optical properties near the
band edge. Although Coulomb correlations have been extensively studied
in undoped quantum wells (Chemla and Shah, 2001), similar work in doped
quantum wells is surprisingly sparse if not existing. Yet, in Chap. 3, we saw that
electrons dramatically a�ect the near band edge spectrum, inducing a trion
resonance and strongly modifying the exciton and trion lineshape.  e exciton
broadening due to electron-exciton scattering is even up to ten times more
important that the well known exciton-exciton collisional broadening (Honold
et al., 1989). Consequently, we suspect that electrons also a�ect nonlinearities
induced by excitons and trions and yield novel nonlinearities of much interest
for the general understanding of many-body interactions in semiconductors.
For this kind of investigations, our CdTe modulation-doped quantum well
provides an excellent model system in which electrons, excitons and charged
excitons cohabit in the same well.  e many-body interactions among elec-
trons excitons and trions may be probed through the non-linear behavior of
trion and exciton optical resonances.
In this chapter, we perform pump and probe experiments (see Sec. 2.1.3)

where the pump excites selectively the exciton or trion resonance. We in-
vestigate dynamical nonlinear optical properties of trions and excitons in
modulation-doped quantum wells. We evidence high-order exciton Coulomb
correlations in the presence of electrons, that lead to the formation of biexci-
tons. We observe crossover from excitons to biexcitons and biexciton redshi�.
We attest correlated behavior of excitons and trions under excitation which
manifests itself by crossed trion-exciton e�ects. We observe a wealth of phe-
nomena encompassing bleaching, crossed bleaching, induced-absorption and
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4 Many-body interactions within an electron gas

energy shi�s of the resonances. Signi�cant di�erences are found between the
nonlinear optical e�ects induced by an exciton and a trion population.  e
main source of these distinct di�erences is proposed to come from the Pauli
exclusion-principle, which is at the origin of phase-space �lling and short-
range fermion exchange. We �nally bring more insight on the role of electron
interactions.
 is chapter is structure the following way. In Sec. 4.1, we discuss the

Pauli blocking of excitons. In Sec. 4.2 we show that third- and higher-order
exciton Coulomb correlations occur in the presence of an electron gas.  e
crossed exciton-trion correlations are investigated in Sec. 4.3, while the time
evolution of the di�erent non-linearities is analyzed in Sec. 4.4. In Sec. 4.5, the
e�ect of electrons on the trion nonlinearities is investigated.

4.1 Exciton Pauli blocking
In Fig. 4.1(a) and (c), we plot a set of di�erential re
ectivity spectra, obtained
when pumping selectively at the exciton resonance for di�erent pump inten-
sities. Both pump and probe are σ+ polarized. Fig. 4.1(a) show the results
obtained for zero delay time between pump and probe. Although discussion
will focus on zero delay spectra, we shall have to keep in mind that coherence
a�ect measurements (Chapter 5).  us, for information, we also present results
obtained in the same conditions at 4 ps delay time (Fig. 4.1(c)) when coherence
is lost.
 ese di�erential spectra all evidence a clear blue-shi� of the exciton line.

 is renormalization of the exciton resonance has been extensively studied in
undoped-semiconductor quantum wells (Peyghambarian et al., 1984; Schmitt-
Rink et al., 1985; Hulin et al., 1986) and, is attributed to short-range exchange
(Schmitt-Rink et al., 1985) having its origin in the Pauli exclusion-principle
acting on the Fermi particles forming the excitons of same spin.  is is a
repulsive electron-electron and hole-hole interaction. It does not show up in
3D systems because it is compensated almost exactly by the attractive long-
range correlations.  e latter corresponds to the �rst Coulomb interaction in
the exciton gas and would induce a red-shi� on the exciton resonance.  e
exciton blue-shi� appears in two dimensional semiconductors (Hulin et al.,
1986) because the long-range Coulomb correlation e�ect is strongly reduced
(Schmitt-Rink et al., 1985).  is means that, in our sample, the existence of
the exciton blue-shi�, due to the generation of an exciton population, is the
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4.1 Exciton Pauli blocking

signature that the long-range Coulomb correlation has an e�ect that we can
neglect to �rst order compared to the more e�cient short-range exchange
interaction.
In order to better understand the origin of the blue shi�, we performed a

calculation of the exciton-exciton exchange energy Ciuti et al. (1998); Tassone
and Yamamoto (1999), similarly to what has been done for exciton-electron
exchange in the previous chapter. Consider the collision of two excitons with
wavevectors kX and k′X. During the scattering process the momentum q will
be transferred from one exciton to the other:

(kX,k′X)� (kX + q,k′X − q). (4.1)

 e exchange of a single carrier lead to the most important contribution to
the shi� of the resonance.  e exchange energy was calculated for both single
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Figure 4.1: Di�erential re
ectivity spectra obtained at (a), (b) 0 ps and (c),
(d) 4 ps for di�erent σ+ pump intensities.  e estimated concentration of
photogenerated excitons are 2�1010, 3�1010, 5�1010, 7�1010 and 1�1011 cm−2.
 e probe is (a), (c) σ+ polarized or (b), (d) σ− polarized.  e sample had a
temperature of 5 K.
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Figure 4.2: Exciton-exciton exchange energy as a function of the relative
momentum ∆Q and transfer momentum q. (a) to (c) electron exchange.
(d) to (f) hole exchange.  e calculation was performed for the relative
momentum angle θ = 0 in (a) and (d), π~2 in (b) and (e), π in (c) and (f).
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4.2 High-order exciton correlations within an electron gas

electron and single hole exchange.  e results are plotted in Fig. 4.2 as a
function of the initial relative momentum magnitude ∆kX = SkX − k′XS and
the transferred momentum amplitude q for three di�erent relative momentum
angle θ. We see that the exchange is positive and maximum for small ∆kX
and small q. At large q, the exchange energy drop and can even become
negative.  e shi� that we measure originates from the superposition of all q
contributions and is therefore clearly positive.
 e excitons that we photogenerate at kX = 0 undergo strong exciton-

electron scattering. A�er some time, the kX distribution should broaden.
However at 5 K, this broadening is not large enough to signi�cantly modify the
weight of the exchange energy terms in the exciton shi� calculation.  erefore
we expect the blueshi� to remain important as long as exciton are present in
the well.  is is corroborated experimentally and the blueshi� is clear up to
100 ps.
In Fig. 4.3, we also show the results obtained for cross-linear pump and

probe. In this case, we generate both σ+ and σ− exciton population. Expectedly,
a blueshi� of the exciton is observed as in the presence of a pure σ+ exciton
population.

4.2 High-order exciton correlations within an
electron gas

Fig. 4.1(b) and (d) show di�erential spectra obtained at the exciton resonance
for σ+σ− con�guration. In that case, neither Pauli blocking nor �rst-order
Coulomb-induced nonlinearity lead to a coupling among the subspaces of
di�erent exciton spin state (Meier et al., 2000). Nevertheless, we observe
nonlinearities on the exciton resonance that are the same order of magnitude
as in the σ+σ− case; a blueshi� of the exciton resonance is clearly visible as
well as a bleaching of the absorption line.  is evidence high-order Coulomb
correlation between excitons andmakes the observation of two excitons bound
states likely.  us, we associate to a biexitonic signature the induced absorption
that shows up about 4 meV below the exciton resonance, for it matches the
biexciton binding energy in CdTe QW’s (Birkedal et al., 1996) and respects the
selection rules for biexciton formation: it is neither observed for same circular
polarization σ+σ+ (Fig. 4.1b), nor for orthogonal linear polarization (Adachi
et al., 1997) (Fig. 4.3). A full proof of the biexciton stability will be performed
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4.2 High-order exciton correlations within an electron gas

in Chapter 5.
 e relative strength of high-order Coulomb correlations relatively to

Pauli blocking in the presence of electrons is very much comparable to the one
observed in neutral quantum wells (Meier et al., 2000).  is demonstrates that
electrons do not strongly a�ect high-order correlations.
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4 Many-body interactions within an electron gas

In Fig. 4.4(b), we plot the shi� of the σ+-exciton, σ−-exciton and biexciton
as a function of the σ+ exciton concentration at 2.5 ps. At this delay time,
coherent e�ects are negligible (see Chap. 5) and trion population is still weak.
Results clearly exhibit a redshi� of the biexciton resonance as the exciton
population rises.  e redshi� grows up to 0.6 meV at 5 � 1010 cm−2 and
saturates for higher exciton densities. Observations of such a redshi� in neutral
quantumwells (Maute et al., 2003) evidenced a linear dependence on the pump
excitation but the authors did neither specify explicitly what populations they
were working at. We point out that the biexciton resonance can only redshi�
if the biexciton binding energy increases with the exciton density strongly
enough to overcompensate the exciton blueshi�. Even if, to our knowledge,
no explanation has been proposed, an intuitive picture of this mechanism can
be given. As the exciton density generated by the pump increases, they grow
more promiscuous and are subject to stronger Pauli exclusion (they blueshi�).
On the other side, excitons photogenerated by the probe feel stronger Van
der Waals attraction (they redshi�). As the power law of both interactions is
di�erent, it is not surprising that the e�ects do not compensate. A thorough
theoretical description would however require to better understand the density
dependence of all exciton and biexciton shi�s.
 e saturation of the biexciton redshi� happens well below the saturation

regime of exciton absorption in the quantum well that would more likely occur
above 3 � 1011 cm−2 exciton population density in CdTe quantum wells. We
point out that it happens at the same exciton density as the σ+ and σ− exciton
blue shi�. Since high-order exciton correlations play an important role, it likely
that this transition correspond to the transition from a third-order regime to a
��h-order regime. Both experiments and calculations performed byMeier et al.
(2000) have demonstrated that third order correlations induced a blueshi�
of the exciton, while ��h-order correlation yielded a redshi�. When the
exciton density increases, the contribution from��h-order exciton correlations
manifests and consequently diminish the increase of the shi�.
In Fig. 4.4a, we show that for increasing σ+ exciton density, the oscillator

strength of the biexciton transition grows at the expense of that of σ− exciton
density.  e sum of both oscillator strength is constant which witness this exci-
ton to biexciton cross-over and corroborate results obtained in microcavities
Saba et al. (2000).  e exciton to biexciton crossover is driven by three-exciton
Coulomb correlations, which once again demonstrate that even in the presence
of electrons, high-order exciton correlation are not a�ected.  is explains why
we observe a bleaching of the σ− exciton resonance in Fig. 4.1(b).
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4.3 Phase-space sharing by excitons and trions

4.3 Phase-space sharing by excitons and trions
We now return to the σ+σ+ experiments performed with the pump tuned to
the exciton resonance.  e novelty in our investigations is that the photo-
generated σ+-exciton population induces also nonlinear e�ects on the trion
resonance. We observe a bleaching of the σ+-trion resonance, which depends
on temperature (Fig. 4.5b) and exciton density (Fig. 4.1(a)). As evidenced in
Fig. 4.1(a), both crossed e�ects already occur at zero delay time.  e trion
bleaching increases with excitation density and broadens with temperature. In
the inset of Fig. 4.5, we show the time evolution of the nonlinear trion signal.
It is important to note that the trion bleaching signal does not increase with
time, as would be expected if this bleaching was only due to a trion population.
However, at 5K, the trion formation from an exciton population takes place
within about 10 ps (Portella-Oberli et al., 2003). Consequently, at short delay
a�er excitation, only a small amount of trions (less than 10%) is formed in
the quantum well.  e almost constant value of the trion bleaching over
about 10 ps evidences that this bleaching evolves according to two opposite
contributions of the same order of magnitude: the contribution due to the trion
population which increases with time, and that due to the exciton population
which decreases with time.  us, we attribute the trion bleaching, at short
times, to the phase-space �lling of the optically-accessible k-space by the photo-
generated excitons, resulting into a blocking of the trion transition.  is result
evidences that excitons and trions share the same k-space and originate from
the same ground state.
A�er showing that the creation of an exciton population induces large

e�ects on the trion resonance, let us turn to the e�ect of a trion population
on the trion and exciton resonances.  e nonlinear optical e�ects in the
re
ectivity spectrum for resonantly created trions are notably di�erent from
those induced by an exciton population (Fig. 4.5).  e trion resonance is
bleached without any shi� in energy and we �nd an induced absorption of the
exciton line. Figure 4.5 displays the time evolution of the di�erential re
ectivity
spectrum for cross linear polarization, when the sample is excited at the trion
resonance, at 5 K. We note that the result are perfectly similar for σ+σ+ pump
and probes (not shown). We evaluated the trion and exciton oscillator strength
variations by using the transfer matrix calculation of Chap. 3. In Fig. 4.6,
they are plotted as a function of time, for several excitation powers.  ese
results show that: (a) as trions are created in the well, the induced absorption
gained by excitons reaches similar amplitude as the bleaching experienced by
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4 Many-body interactions within an electron gas

Figure 4.5: Cross-polarized di�erential re
ectivity spectra obtained by
pumping at the trion resonance for (a) di�erent delay times a 5 K, (b)
di�erent temperatures at zero delay time.

trions and (b) the induced absorption of excitons decays with trion bleaching.
 ese evidence correlated e�ects acting on both signals.  e bleaching of the
trion line obviously originates from phase-space �lling of trions.  e induced
absorption on excitons is not an expected e�ect. Since excitons have been
observed to block the trion transition due to phase-space �lling, the presence
of trions should block the exciton transition by the same phase-space �lling
argument.  us, it is expected that the presence of trions should induce a
loss in the exciton oscillator strength. In our experiment we obtain on the
contrary an increase of the excitonic absorption when the electron population
is transformed into a trion population because not only trions are created in
the process but also electrons are removed.
In chapter 3, we already studied the e�ect of a variation of electron concen-
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tration on the exciton resonance and we saw that excitons lose their oscillator
strength, due to the presence of an electron gas (Kheng et al., 1993).  e re-
duction of the exciton oscillator strength in the presence of carriers has been
attributed to the Pauli exclusion principle, due to both phase-space �lling and
short-range exchange interaction of the electron gas.1 In the inset of Fig. 4.7,
we plot the cw re
ectivity spectra for two electron concentrations in the quan-
tum well. We calculate their di�erential re
ectivity and plot it in Fig. 4.7: this
spectrum reveals the change in the re
ectivity as the electron concentration is
decreased by 1 � 1010 cm−2. In this case, the trion bleaching and the induced
absorption of excitons are purely due to the decreasing concentration of elec-

1First order Coulomb correlation may be neglected in our sample as discussed earlier.  is
validates that the reduction of excitons oscillator strength cannot result from such correlations
(Schmitt-Rink et al., 1985; Huang et al., 1988; Zimmermann, 1988).
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4 Many-body interactions within an electron gas

trons in the electron gas. We compare this di�erential spectrum with that
recorded in the pump-probe experiment with a similar trion density of about
9.6 � 109 cm−2. In this experiment, we also remove 9.6 � 109 cm−2 electrons
from the well but additionally photogenerate 9.6 � 109 cm−2 trions.  e dif-
ference between both di�erential spectra can be attributed to the phase-space
�lling by trions: in the same way excitons that have been observed to block the
trion transition due to the phase-space �lling (above), the presence of trions
should block the exciton transition by the same phase-space �lling argument.
Although, screening e�ect on excitons by trions — much less important than
that by electrons —, cannot be excluded. Further investigations are needed to
get more accurate conclusions.
It is then necessary to invoke another e�ect to explain the increased

absorption of excitons in our experiments. We attribute the gain of exciton
oscillator strength, when trions are created, as resulting from the changes in the
screening of excitons via short-range electron-electron exchange. It is worth
noting that the exchange electron-electron interaction produces e�ects similar
to that of the classical Coulomb interaction: the former also produces an
‘exchange hole’, by repelling all the electrons in the same spin state, just like the
‘correlation hole’ in the latter (Chemla and Miller, 1985).  erefore, this extra
‘positive charge’ generated from electron exchange process screens the exciton
Coulomb potential. As trions are photo-generated, there are less electron in
the electron gas to screen the exciton and the exciton gains back some oscillator
strength. As a trion recombines, the electron is released back to the electron
gas and is able again to screen excitons.  us, we observe a recovery of the
induced absorption signal of excitons with time (Figs. 4.5a).  is result reveals
that electrons interact much more e�ciently among themselves than trions
do, which suggests that excitons are more dynamically screened by electrons
than by trions.  eoretical investigations in the �eld have been undertaken
by Ciuti and Bastard (2004). We would like to stress that the similar amplitude
of the signal changes of the trion and exciton resonances, comes from two
distinct e�ects, which are both the consequence of Pauli exclusion principle:
phase-space �lling for trions and screening reduction for excitons.  is is an
intriguing result and we believe that only a theoretical description can explain
it.
 e above explanation in terms of more e�cient screening of excitons

by electrons than by trions is further corroborated by the absence of an en-
ergy shi� of the trion resonance upon resonant pumping, which evidences
the ine�ectiveness of the trion-trion interaction. Note that, exciton-exciton
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scattering is more e�ective since it induces a blue-shi� in the exciton resonance.
 erefore, we are led to assert that exciton-exciton exchange interaction is
more e�cient than that of trion-trion interaction.  e elastic exciton-exciton
Coulomb scattering in semiconductor quantumwells, considered earlier in this
chapter, has shown that electron-electron and hole-hole exchange terms are the
dominant ones, being much larger than the classical electrostatic dipole-dipole
interaction as well as the direct exciton-exciton exchange. Furthermore, their
computation shows that electron-electron and hole-hole exchange terms give
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4 Many-body interactions within an electron gas

equal contributions to the interaction process (Fig. 4.2). In a simple minded
approximation, we could expect that the inter-trion exchange interaction be-
tween carriers could be larger than that of inter-exciton exchange interaction,
because trions are formed by three particles instead of two as excitons. In our
knowledge, there is no theoretical investigation on the short-range exchange
between trions, but our results suggest that the trion-trion exchange interac-
tions are less e�cient than the exchange interaction between excitons.  e
localization of trions may play an important role in this ine�cient inter-trion
exchange process. Trions have been indeed found to be more localized than
excitons, at low temperature (Portella-Oberli et al., 2002).
At higher temperatures, trions are no more localized2 and thus, we could

expect, when a trion population is generated, a blue shi� of the trion line. We
have performed experiments at 10K and 20K to test this premise (Fig. 4.5b).
We found that there is no blue-shi� of the trion resonance. Additionally,
the induced absorption of excitons persists as a correlated e�ect between
excitons and trions (Portella-Oberli et al., 2004).  is result shows that trion-
trion interaction is always ine�cient whether they are localized or not. As
the temperature is increased, the main scattering process of trions is with
acoustic-phonons via deformation potential, which is muchmore e�cient than
the exciton- (and electron-) acoustic phonon scattering because of the larger
interaction potential of trions (Portella-Oberli et al., 2002).  is is evidenced by
the broadening of the trion resonance with temperature (Fig. 4.5b). Both results
together demonstrate, without ambiguity, that the trion-trion interaction is
not the dominant scattering process for trions.

4.4 Exciton, trion and biexciton dynamics

Fig. 4.8(c) shows the time evolution of the biexciton and trion maximum inten-
sity measured for the σ+ and σ− pump and probe experiment. At positive delay,
the dynamics of the biexciton induced absorbtion signal is ruled by two time
constants correlated to the exciton population decay. From zero delay time

2For low exciton density of 3 � 109 cm−2 and electron concentration (2 � 1010 cm−2) the
dephasing time is 10 ps at 2 K (Portella-Oberli et al., 2002). For doubled density of excitons
(6 � 109 cm−2) the dephasing time is 8 ps. It has been reported that the interaction between
excitons and electrons can be 8 to 10 times stronger than between excitons (Honold et al., 1989).
 erefore, the exciton dephasing time for an electron concentration of 4 � 1010 cm−2 can be
estimated to be 1 ps or even less.
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up to 10 ps, the biexciton induced absorbtion amplitude continuously dimin-
ishes because excitons quickly coalesce with electrons to form σ+ trions. Once
electrons are fully depleted, exciton and trion populations reach a thermody-
namical equilibrium and deplete slowly through electron-hole recombination
(Chap. 6). As we will see, trions need to spin-
ip to e�ciently bleach the
trion resonance seen by the cross polarized probe. Consequently, the observed
rise time of the trion bleaching should be delayed by the spin-
ip time.  e
fact that there is hardly no delay — the rise time of the cross-polarized trion
bleaching is equal to the σ+ trion formation time (10 ps) — shows that the
spin-
ip is very fast and of the order of a few ps. Hole spin-
ip relaxation for
trion is mainly due to Bir-Aranov-Pikus mechanism (Bir et al., 1976), which
scatters preexisting electrons via the exchange interaction.  e e�ciency of
this mechanism increases with the hole kinetic energy (Bastard and Ferreira,
1991).  e extremely short spin-
ip time show new light on the trion formation
from a resonant exciton population: the energy conservation forces electrons
and excitons to form trions with high k-vectors, which relax very quickly to
other polarizations.
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4.5 Electron gas heating
So far the e�ect of the exciton-electron and trion-electron scattering on the
observed nonlinearities was not investigated. We now concentrate on this
aspect. When we look closer at Fig. 4.3 which was obtained for cross-polarized
pump and probe and excitation of the exciton resonance, we observe a slight
induced absorption below the trion resonance.  is e�ect can not be attributed
to a renormalization of the trion transition due to trion population because,
as we have seen above, a trion population does not induce a red-shi� in the
trion resonance and at short times, there are only electrons and the photo-
generated excitons in the quantum well. We suggest that the most likely origin
of this induced absorption is a change in the distribution of electrons due
to the exciton-electron scattering.  is results in an increase of the electron
occupation at higher energies favoring the trion transitions at lower energies.
In other words, it increases the spread of the trion red-tail discussed in Chap. 3.
 is induced absorption cannot be mistakenly attributed to biexcitons since,
as we already mentioned, they cannot be observed for cross-linear pump and
probes.  e trion red-shi� is then observed at short times (inset in Fig. 4.3)
and, at later times, it is masked by the bleaching e�ect due to trion formation
from the exciton population.
At higher temperatures, 10K and 20K, the red-shi� of the trion resonance

is not observed. At these temperatures, the homogeneous broadening of the
electron distribution is essentially due to electron-acoustic phonon scattering,
which is the dominant electron scattering process in this temperature range
(Ciulin et al., 2000b).  erefore, the exciton-electron interaction does not
modify enough the electron distribution to induce an increase in the trion ab-
sorption at low energies. As a result, at higher temperatures, when excitons are
created we only observe a broad bleaching of the trion resonance (Fig. 4.3(a)).
 is bleaching signal is the consequence of phase-space �lling mainly by the
excitons, at short times and, at longer times, is also attributed to trions while
the thermal equilibrium between trion and exciton populations is reached
(inset in Fig. 4.1).
In Fig. 4.9, we compare the di�erential spectra obtained for three di�erent

pumping energies (1628.39, 1625.76 and 1625.59 meV) at 0 ps and 4 ps and
for both co- and counter-polarized pump and probes. When an exciton is
photogenerated by pumping the high-energy tail of the exciton resonance, the
electron gas is also heated in the process. We were hoping to be able to observe
a change in the induced absorption below the trion as the pump is tuned to
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the high-energy tail of the exciton. When the pump is tuned at 1628.39meV
—high-energy tail of the exciton—, the exciton absorption drops to about 10%
and the nonlinear e�ects induced by such a low exciton concentration is hardly
measurable at the exciton resonance. For σ+σ+ at 0 ps, we do not observe the
expected induced absorption.  is comes from the fact that σ+ excitons only
signi�cantly scatter with σ+ electrons and that σ+ electrons only contribute to
the red-tail of σ− trions. At 4 ps, however, electrons thermalize and the low-
energy trion absorption increases. For σ+σ−, the induced absorption should
be obvious, unfortunately it cannot be easily discriminated from the biexciton
signal.
When we pump the trion resonance at 1622.97 meV (Fig. 4.9) with a

pump su�ciently strong to remove a signi�cative amount of electrons in the
quantumwell, we strongly diminish scattering contributions from the electrons
with the excitons and trions.  erefore, the trion high-energy tail shrinks
signi�cantly. Its line-shape changes and shi�s towards lower energies (Chap. 3).
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 is is evidence by the σ+σ− pump and probe measurements in Fig. 4.9 which
show a redshi�.  is redshi� is not observed on σ+σ+ spectra because it is
overwhelmed by the strong bleaching of the resonance.

4.6 Conclusion
In conclusion, we presented novel results which reveal that nonlinearities
induced by trions and excitons are di�erent and mutually correlated. For
resonantly created excitons, a blue shi� of the excitonic transition is observed
due to repulsive exciton-exciton interactions while no energy shi� was seen at
the trion line when trions are generated on resonance.  is result evidences
the relative signi�cance of the exciton-exciton and trion-trion interactions.
Excitons and trions were shown to share the same phase-space.
Variation of the electron distribution or density were shown to strongly

modify the exciton oscillator strength and alter the exciton and trion lineshape.
We also evidenced high-order exciton correlations, up to the ��h-order,

in the presence of electrons.
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5 Optical coherence within an
electron gas

‘[. . . ] la cohérence pure, c’est du

délire, c’est du délire abstrait.’

(Edgar Morin)

Much progress has been made in the controlled manipulation of light and
matter using isolated atomic systems. Today, it is for instance possible to induce
electromagnetically transparency in an otherwise opaque atom system (Harris
et al., 1990), enhance frequency conversion (Harris et al., 1990; Hemmer et al.,
1995) and slow (Hau et al., 1999) or even stop light (Liu et al., 2001). However,
the complex environment of a solid-state system makes it signi�cantly more
challenging to achieve a similar degree of control.
 e extensive study of coherent optical properties of excitons in neutral

nanostructures has allowed to evidence such fundamental results as ac Stark
splitting (Quochi et al., 2000) and Rabi oscillations (Saba et al., 2000), which
witness to the strong coupling between exciton and photons. It has also been
demonstrated that high order Coulomb correlations between excitons play an
important role in multi-level coherent process (Chemla and Shah, 2001) such
as electromagnetically induced transparency (EIT) (Fleischhauer et al., 2005)
and optical Stark shi� (Jo�re et al., 1989). In modulation-doped semiconductor
quantumwells, many-body interactions tend to bemore complicated, for excess
carriers coalesce with excitons to form trion quasi-particles, and all electrons,
excitons and trions interact with their environment. Electrons, for instance,
are known to strongly screen the exciton oscillator strength (Kheng et al.,
1993; Huard et al., 2000) and to modify their linewidth and binding energy
through exchange interactions (Ramon et al., 2003). Yet the �eld remains
mainly unexplored and the e�ect of electrons on exciton coherence needs to
be studied in much more detail. Here, we address the following issue: can
excitons still be strongly correlated within an electron gas?
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To answer this question, we used femtosecond pump and probe experi-
ments (Sec. 2.1.3) to investigate high-order exciton correlations in modulation-
doped quantum wells. In this chapter, we show that the electron population
does not qualitatively a�ect the nature of interaction between excitons and
higher order exciton complexes, such as bound and unbound two-exciton
states. All major non-linear e�ects involving excitons can be observed, proving
that exciton correlations aremuch stronger thanwhat could have been expected
within an electron see. We demonstrate high order correlation between exci-
tons of di�erent spins and bring strong evidence of the existence of unbound
and bound (stable) two-exciton states in the presence of electrons and trions.
 ey lead to the observation of electromagnetically induced transparency (EIT)
and optical Stark-shi� of the excitons. We also observe excitonic ac Stark split-
ting with gain of the exciton resonance, evidencing coherent exciton-photon
coupling. Finally, we show that all coherent processes involving excitons are
observable in the presence of electrons, which may open new possibilities for
the realization of hybrid electron-exciton quantum information processors.
 is chapter is organized as follow. In Sec. 5.1, we �rst give an overview of

the dressed atom theory for an ensemble of non-interacting two-level atoms.
 en we inspect some of its most striking predictions: Optical Stark shi�, ac
Stark splitting, Mollow 
uorescence triplet and gain without inversion. We
�nally examine Λ-kind three-level atoms and introduce the concepts of co-
herent dark states, Autler-Townes splitting and electromagnetically induced
transparency. In Sec. 5.2 we expand these concepts to the optical coherence of
excitons in semiconductors and discuss in what extent they are modi�ed by
Coulomb interactions between excitons. In Sec. 5.3, we present our experimen-
tal results and discuss optical coherent e�ects of excitons in semiconductor
quantum wells �lled with an electron sea.

5.1 Optical coherence of atoms
If we neglect Coulomb interactions between excitons, the electron-photon
interaction couples one valence state to one conduction state.  ese states are
not mixed up by Coulomb and the problem is totally equivalent to the system
of a two-level dressed atom.  e assumption is clearly in contradiction with
the results of chapter 4 where we saw the importance of many-body e�ects
on the exciton resonance. Still, many of the major trends of our experimental
results are encompassed qualitatively by such a simpli�ed model.
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5.1 Optical coherence of atoms

 e theory of an atom gas driven coherently by a radiation �eld has the
advantage to be very well known. Two approach are possible. In the �rst one,
the driving laser �eld is treated classically and interact with the quantum states
of thematter.  e time-evolution of the system is described by the semiclassical
Bloch equations. However, in the classical description of the light �eld, the
Hamiltonian is time-dependent and no energy-level can be actually de�ned.
Consequently, some notions such as the concept of ac Stark splitting and Autler-
Townes splitting have, strictly speaking, no meaning. Conversely, in the second
approach, the �eld is quantized and the Hamiltonian is time-independent.  e
system has well de�ned energy levels and stationary states.  e atom is dressed
by photons, accordingly to the terminology introduced by Cohen-Tannoudji
and Haroche (1969) to describe atoms in a radiation �eld. Here, we use the
second approach and brie
y remind the basics of the dressed atom theory
(Cohen-Tannoudji et al., 1992) which describes the coherent e�ects of a laser
radiation on a two-level atom.

5.1.1 Dressed atommodel

ω
ω0

∆
See

Sge

Figure 5.1: Interaction of a two-level quantum system with a single-mode
laser �eld of frequency ω.  e transition frequency from the ground state
Sge to the excited state See is ω0.  e detuning between the pump and the
probe is ∆ = ω− ω0.

Consider the interaction of a single-mode quantized �eld of frequency ω
with an atom, described by the Hamiltonian

H =HA+HF +H1, (5.1)
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5 Optical coherence within an electron gas

whereHA is the bear atom Hamiltonian,HF the free �eld Hamiltonian and
H1 the atom-�eld coupling. If ω closely matches one atom transition and is
far apart from any other resonance, the atom can be safely modeled by a two
level quantum system. Let See and Sge represent the upper and lower level
states of such a system, i.e. they are the eigenstates of the unperturbed atom
Hamiltonian

HA = ħωeSee`eS + ħωgSge`gS (5.2)

with the eigenvalues ħωe and ħωg, respectively. Let also ω0 be the atom transi-
tion energy

ħω0 = ħωe − ħωg. (5.3)

In the single-mode case, the free �eld HamiltonianHF reduces to

HF = ħω�â†â + 1
2
� , (5.4)

where â† and â are creation and annihilation operators for a photon with
frequency ω, polarization ε and wavevector k.  e state of the free �eld Sfe
can be written in a very general way

Sfe =Q
n
ρnSne, ρn = `nSfe (5.5)

where Sne is an eigenstate ofHF de�ned by

HFSne = nħωSne. (5.6)

If we neglect atom-�eld interactions, the eigenstates of the system are of
the type Sg,ne or Se,me, the corresponding energies being respectively ħ(ωg +

nω) and ħ(ωe +mω). When the detuning
∆ = ω− ω0 (5.7)

between the pump and the �eld is very small in comparison to the atom
frequency (S∆S ω0), the states Sg,n + 1e and Se,ne are nearly degenerate. We
say that they are bunched in the manifold En.  e spectrum ofH0 =HA+HF
can be then view as a sequence of two-dimensional manifolds En well separated
in energy by ħω, each manifold consisting of the nearly degenerate doublet
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Sg , ne

Se , n − 1e

Sg , n + 1e

Se , ne

Sg , n + 2e

Se , n + 1e

S−, n − 1e

S+, n − 1e

S−, ne

S+, ne

S−, n + 1e

S+, n + 1e

ħΩħ∆

ħΩħ∆

ħΩħ∆

ħω

ħω

En−1

En

En+1

Figure 5.2: Dressed-atom energy diagram. (le�-hand side) States of the com-
bined atom-laser mode system without coupling, bunched in well-separated
two-dimensional manifolds. (right-hand side) Dressed states.

�Sg,n + 1e, Se,ne�. On the le�-hand side of Fig. 5.2, we sketch the bear states
of the atom-laser system in the uncoupled basis.
 e atom-�eld couplingH1 can be written in the electric-dipole approxi-

mation as

H1 = −d ċEÙ, (5.8)
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5 Optical coherence within an electron gas

where d = er is the atom dipole andEÙ the �eld operator. In the bare atomic
basis, the dipole reads

d = µ(Sge`eS + See`gS), (5.9)

where we assume (without loss of generality) that µ = `gSdSee = `eSdSge is real.
 e �eld operator is de�ned as

EÙ = ε̂E (â + â†) (5.10)

where E = (ħω~2є0V)1~2. With these de�nitions, the interaction Hamiltonian
H1 takes the form

H1 = ħg(Sge`eS + See`gS)(â + â†) (5.11)

where g = −µ ċ ε̂E ~ħ is a coupling constant.
 e term â†Sge`eS describes the process in which the atom is taken from

the upper state into the lower state and a photon is created in the mode.  e
term âSee`gS describes the opposite process.  e energy is conserved in both
the processes.  e term âSge`eS describes the process in which the atommakes
a transition from the lower to the upper level and a photon is annihilated,
resulting in the loss of ħ(ω0 + ω) in energy. Similarly â†See`gS results in the
gain of ħ(ω0 + ω). Dropping the energy non-conserving terms corresponds
to the rotating-wave approximation.  e resulting simpli�ed Hamiltonian is

H1 = ħg[âSge`eS + â†See`gS]. (5.12)

It connects only the two-state in a givenmanifoldEn to each other.  e coupling
can be characterized by the Rabi frequency ΩR

1
2ħΩR = `e,nSH1Sg,n + 1e = ħg

º
n + 1. (5.13)

As de�ned, the Rabi frequency should depend on n. However we can neglect
this dependence by supposing that the laser beam is strong and initially coher-
ent; it consequently has a Poison distribution for n, the width ∆n of which is
very small compared with the average number of photons:

nQ
º
nQ 1. (5.14)

States in di�erent manifolds are not coupled by Hamiltonian 5.12.  ere-
fore the eigenvectors S�,ne of the dressed atom are a linear combinations of
the states bunched in the same manifold En:

S�,ne = αSg,n + 1e + βSe,ne. (5.15)
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5.1 Optical coherence of atoms

 ey must satisfy the Schrödinger equation H S�,ne = ES�,ne, i.e. in the
matrix form

�ħωe + (n + 1)ħω ħg
º
n

−ħg
º
n ħωg + nħω

��αβ� = E�
α
β� . (5.16)

 e eigenenergies and eigenstates are obtained by diagonalizing the matrix in
Eq. 5.16. We obtain the eigenfrequencies

ω�,n = 1
2[ωg + ωe + (2n + 1)ω] � 1

2Ωn (5.17)

where we introduced the generalized Rabi frequency Ωn =
»
∆2
+ 4ng2.  e

corresponding dressed states are

Sn+e = sin θSg,n + 1e + cos θSe,ne (5.18)
Sn−e = cos θSg,n + 1e − sin θSe,ne (5.19)

where the angle θ is de�ned by

cos 2θ = −
∆
Ωn

. (5.20)

At the approximation 5.14 the generalized Rabi frequency becomes

Ω =
¼

∆2
+Ω2

R. (5.21)

and the structure of the energy diagram ofH is periodic. On the right-hand
side of Fig. 5.2, we sketched the position of the dressed states, when we took
the laser-atom coupling into account.  ey are separated in energy by ħΩ. In
Fig. 5.3 we plot the energy diagram as a function of the pump energy ħω. We
see that the dressed states continuously go from the bear state Se,ne to the bear
state Sg,n+ 1e. At zero detuning they are made of a linear superposition of the
bear states, both having equal weights.  e dressed states feature anti-crossing
and the resonant splitting ħΩR is usually referred to as ac Rabi splitting. At
large detuning, the dressed states asymptotically follow the light shi� due to
the laser coupling. In this limit we usually speak of an optical Stark shi� and
the shi� is given by ħΩ � Ω2

R~∆.
We �nally note that the spectral splitting of the dressed states has its

temporal counter part. If one assumes for t < t0 that there is no interaction
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Energy

ħω0

ħΩ Se , ne

Sg , n + 1eSn+e

Sn−e

ħω0

ħω

Figure 5.3: Variation with ω of the energies of the unperturbed states Se,ne
and Sg,n+1e (red dashed line) and of the dressed states Sn+e and Sn−e (black
solid line).

between the atom and the �eld and that the atom is in its ground state, the
state of the system for t A t0 is given by

Sψe =Q
n
�sin θe−iω+(t−t0)Sn+e + cos θe−iω−(t−t0)Sn−e� . (5.22)

 e atomic population oscillates back and forth between the excited state and
the ground state at the generalized Rabi frequency Ω. It is interesting to note
that oscillations are still possible if no photons are present in the �eld (n = 0),
because of vacuum 
uctuations. In this model, the atom never decays to the
ground state as observed experimentally. We show in the next section how this
can be corrected.

5.1.2 Mollow triplet and gain without inversion

 e Rabi 
opping in Eq. 5.22 is not very realistic, because it does not feature
decay to the ground state.  is non realistic feature comes from the fact that
we only considered coupling to a single mode and disregarded spontaneous
emission to other (empty) modes. In the Weisskopf-Wigner approximation, it
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Sg , ne

Se , n − 1e

Sg , n + 1e

Se , ne

S−, n − 1e

S+, n − 1e

S−, ne

S+, ne

ħΩħ∆

ħΩħ∆

ħω

En−1

En

Figure 5.4: Spontaneous emission between unoccupied levels of the dressed
atom. Allowed decay path between bear states (le�-hand side) and dressed
states (right-hand side) are indicated the red arrows.

is however possible to keep our single �eld description and to introduce non-
Hermitian terms in the Hamiltonian 5.1 which take into account spontaneous
emission to other modes through a decay rate Γ (for a detailed account, see e.g.
Scully and Suhail Zubairy (1997) ).
A photon of the dressed atom that was oscillating between its two bare

states Sg,n+ 1e and Se,ne in a manifold En can now leak out of the laser-atom
system. During spontaneous emission, the dressed atomundergoes a transition
from Se,ne to Sg,ne and ends up in the manifold En−1, where it will again start
to oscillate between Sg,ne and Se,n − 1e. Consequently, with spontaneous
emission to an external reservoir of modes, the atom will cascade down from
one manifold to another.  e cascading time will be limited by the Rabi period,
i.e. the characteristic time that is needed by the atom to absorb a laser photon
and go from Sg,n + 1e (from which no spontaneous radiation is possible) to
Se,ne.
 e 
uorescence spectrum of the atom in a radiation �eld is then easily

understood in terms of the dressed atomic states. Dressed states are a linear

63



5 Optical coherence within an electron gas

superposition of both ground and excited bare states, thus all four transitions
between the dressed states S�,ne and S�,n − 1e of two contiguous manifold
are possible. It is clear from Fig. 5.4 that there is one transition at ω − Ω,
two at ω and one at ω +Ω.  ese three energies are o�en referred to as the
Mollow tripletMollow and Miller (1969) and show out in 
uorescence spectra
of dressed atoms Wu et al. (1975); Hartig et al. (1976); Grove et al. (1977).
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Figure 5.5:Mollow’s absorption spectra of an atom driven by a laser �eld.
(a) At zero detuning for Rabi frequency Ωp~Γ = 0, 1, 2, 4 and 8. (b) For a
Rabi frequency Ωp = 2Γ and a detuning ∆~Γ = 0.0, 0.2, 0.6, 1.0, 2.0.

By solvingmaster equations for the dressed atom, it is possible to calculate
the steady state of the radiation cascade (as long as ∆n is very large).  is
steady state appears a�er a time of the order of Γ−1 a�er which the contribution
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5.1 Optical coherence of atoms

coming from the manifold En+1 compensate those going to the manifold En−1.
 e populations of the states S−,ne and S−,n − 1e (S+,ne and S+,n − 1e) are
then equally populated.  is has some importance when the dressed atom
absorption spectrum is measured by a weak probe �eld. Transitions between
S−,n− 1e and S−,ne (or S+,n− 1e and S+,ne) should not a�ect the probe because
in a steady state regime, they are equally populated. Contrarily to 
uorescence
no central line should be evidenced. Transitions from S−,n − 1e to S+,ne and
S+,n−1e to S−,ne are both possible yielding absorption or gain atω−Ω andω+
Ω. In our treatment, however, we only considered one-photon processes. If we
relax this assumption, N-photons transitions between S�,ne and S�,n−Ne are
possible with various paths that interfere. A full quantum calculation becomes
very di�cult to perform in that case. Mollow (1972) performed a semiclassical
calculation of the problem, in which the pump laser is implemented up to
all orders and the probe remains a weak perturbation. In that case it can
be demonstrated that a small gain might be observed at ω0 even if there is
properly speaking no inversion of the atom population. In Fig. 5.5, we used
B. R. Mollow’s results to plot the absorption (black solid line) and refractive
index (red dashed line) at di�erent pump intensities and pump detuning. We
note that for large detuning, the dressed state tends asymptotically towards the
bear states Sg,n+ 1e and Se,ne. Only one absorption line remains possible. For
instance, a pump tuned below the resonance pushes the resonance up.

5.1.3 Electromagnetically induced transparency
In the previous section, a.c. Stark splitting could be observed when both
coupling �eld and probe were exciting the same transition S2e� S3e. We now
consider the case in which the probe photons couples the upper state S3e to a
third atomic state S1e as shown in Fig. 5.6(a).  is is a typical Λ-level atom for
which the upper level S3e is accessed by both coupling �eld (frequency ωc) and
probe �eld (frequency ωp).
If the probe is very weak, we may think that it is possible to neglect any

perturbation introduced by this beam on the atom dressed by the coupling
�eld. Two transitions from the bear state S1,ne to the dressed states Sn+e and
Sn−e are then possible and the absorption spectrum of the probe features two
resonances called Autler-Townes doublet (Autler and Townes, 1955).
However, we misses some very important physics and the key features

of electromagnetically induced transparency when treating the problem this
way. A full three level calculation has to be performed in order to grasp them.
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δ
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Figure 5.6: three-level Λ-type atom. (a) A coupling �eld of frequency ωc

drives the transition S2e � S3e, while an auxiliary �eld of frequency ωp

probes the transition S1e� S3e. (b)  e detuning between the probe �eld
and the upper level is given by ∆, while δ is the detuning between the
coupling and the probe �eld.

S1, ne

S2, n − 1e

S3, ne

S1, ne

S−, ne

S+, ne

ħΩħ∆
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Figure 5.7: Autler-Townes doublet absorption scheme.

We therefore solve the Schrödinger equation in the case of a three-level atom.
Similarly to the two-level atom, the eigenenergies and eigenstates are obtained
by diagonalizing an Eq. 5.16-like Hamiltonian. In the rotating frame of the
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probe, it reads

−

ħ
2

�
�
�

0 0 Ωp
0 −2δ Ωc
Ωp Ωc −2∆

�
�
�
, (5.23)

where Ωc is the Rabi frequency of the coupling �eld and Ωp of the probe �eld;
δ is the two-photon detuning between the pump and the probe and ∆ is the
one-photon detuning between the probe and the level S3e. We consider that
transitions from S2e to S1e are forbidden. In the dressed atom formalism, we
de�ne the manifolds En,m = �S1,n+ 1,me, S2,n,m+ 1e, S3,n,me�, where n and
m are the quantum number of the pump and probe �eld modes respectively.
For two-photon condition δ = 0, the eigenenergies of the Hamiltonian 5.23
have analytical values

ħω0,�
= �0, 1

2
�−∆�

¼
∆2
+Ω2

p+Ω2
c�  . (5.24)

 e corresponding eigenstates are

Sn,m,+e = sin θ sinϕS1,n + 1,me + cos θ sinϕS2,n,m + 1e (5.25)
+ cosϕS3,n,me (5.26)

Sn,m,0e = cos θS1,n + 1,me − sin θS2,n,m + 1e (5.27)
Sn,m,−e = sin θ cosϕS1,n + 1,me + cos θ cosϕS2,n,m + 1e (5.28)

− sinϕS3,n,me. (5.29)

where the mixing angles θ and ϕ are given by

tan θ =
Ωp

Ωc
(5.30)

tan 2ϕ =

¼
Ω2

p+Ω2
c

∆
. (5.31)

We emphasize that the state Sn,m,0e has zero eigenenergy and is uncoupled
from state S3,n,me whatever the single-photon detuning ∆ is. It is therefore a
dark state. Once the atom is trapped in this state it cannot absorb any photon.
In the limit of a perturbative probe �eld, Ωp Ωc, sin θ � 0 and cos θ � 1,
the dark state become identical to the state Sn,m,0e � S1e.
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Similar to what has been done in the discussion about the Mollow triplet,
it is possible to introduce anti-Hermitian terms in the Hamiltonian to take
spontaneous emission into account.  e Hamiltonian 5.23 then becomes

H = −
ħ
2
[ΩpS3e`1S+ΩcS3e`2S+H.c]+ħ(∆− i

2
Γ3)S3e`3S+ħ(∆− i2Γ3)S2e`2S (5.32)

In the limiting casewhereΩp� 0, the real and imaginary part of the eigenvalue
corresponding to the dark state S1e are the refractive index and absorption of
the Λ-atom.  e result of a direct numerical calculation in this limit is given in
Fig. 5.8. We see that an induced transparency appears at the energy of the dark
state. ForΩc < Γ, the width of this feature ismatch narrower than the linewidth
of the resonance.  erefore, it is a clear quantum interference feature which
is much more than a simple Autler-Townes splitting. We also note that at the
transparency, the refraction is eliminated.  is zero absorption and refraction
is called ellectromagnetically induced transparency. For a full review of EIT
and its applications, the best review was done by Fleischhauer et al. (2005).

5.2 Optical coherence of excitons
In the previous section, we neglected Coulomb interactions between excitons
and argued that, in this limit, excitons were formerly equivalent to two-level
atoms. We surveyed the major results of optical coherence in atoms. We now
discuss the e�ect of Coulomb correlations between excitons and analyze in
what respect it modi�es the dynamical Stark e�ect and how it makes electro-
magnetically induced transparency of excitons feasible.
Because of Coulomb interactions, compound excitons states might form

and have to be considered. Two-exciton states for instance couple to the
pump �eld and play a dramatic role in the prediction of the optical Stark shi�:
wether they are bound (positive binding energy) or di�usive (negative binding
energy) two-exciton may, in certain conditions, modify the direction of the
shi�.  anks to two-exciton states, we will see that electromagnetically induced
transparency of excitons can be observed.

5.2.1 O� resonant Stark e�ect of excitons
If the detuning is large comparedwith the exciton binding energy, the Coulomb
interaction becomes a small perturbation value which can even be neglected
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5.2 Optical coherence of excitons

Figure 5.8: First order susceptibility χ(1) as a function of the probe detuning
∆ to the atomic resonance transition S1e � S3e for an EIT system.  e
imaginary part (red solid line) characterize the absorption, while the real
part (black solid line) determines the refractive properties of themedium. (a)
Resonant coupling �eld of various intensities Ωc = 0.0γ31,0.5γ31, 1.0γ31. (b)
Coupling �eldΩc = 0.5γ31 at various detuning delta = 0.0γ31,0.4γ31,0.8γ31

compared to the electron-photon interaction.  e Coulomb interaction does
not mix up the valence and conduction states and the problem reduces simply
to a dressed two-level system (Fig. 5.9).  e shi� of the exciton state SXje
is then simple to understand. On one hand, the ground state S0e is coupled
to all exciton states SXie, i = 1,N, pushing apart each S0e and SXie pair by
ħΩ: the ground state moves down by NħΩ~2 while all excitons Xi moves
up by ħΩ~2. On the other hand, due to exclusion principle, the particular
one-exciton state SX1e is coupled to only N− 1 two-excitons states (SX1e already
occupy one state in momentum space). It pushes down SX1e by (N − 1)ħΩ~2.
 e shi� of the ground to one-exciton state SX1e transition is �nally given by
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[1 − (N − 1) − (−N)]ħΩ~2 = ħΩ which is the same shi� as for the dressed
state.

ħΩ

2 SX1e

N
ħΩ

2

S0e

SXie

(N − 1)
ħΩ

2

SXXne

ħω

ħω

Figure 5.9: Dressed-atom energy diagram. (le�-hand side) States of the com-
bined atom-laser mode system without coupling, bunched in well-separated
two-dimensional manifolds. (right-hand side) Dressed states.

First order perturbation theory can be used to calculate corrections to the
dressed-atom model for weak Coulomb interaction.  e shi� is then given by

δω = �S`0SUSX1eS2
ωX1 − ωp

−Q
n

S`XXnSU†SX1eS2
ωXXn − ωX1 − ωp

¡ +Q
i

S`XiSU†S0eS2
ωXi − ωp

. (5.33)

whereU andU† are the operator corresponding to the creation and destruction
of one electron-hole pair; ħωXi , ħωXXn and ħωp being the energy of the states
SXie, SXXne and of the pump.
A thorough analysis of each term in Eq. 5.33 has been performed by

Combescot and Combescot (1989).  ey demonstrated that at large detuning
the main corrections to the dressed atom shi� ħΩ originates from Pauli exclu-
sion principle. At small detuning, the corrections come mainly from Coulomb
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5.2 Optical coherence of excitons

interactions between two excitons. It can also be shown that for a pump close
to the exciton-biexciton resonance one �nd a redshi� of the exciton if and only
if the biexciton is bound. Otherwise a blue shi� is observed.
We stress that in order to obtain these results the Coulomb interaction

has to be kept exactly to all orders, forcing us to treat the electron-photon
interaction as a perturbation. A simpli�cation of the Coulomb interaction as
would be done in the Hartree-Fock approximation only gives a correct shi�
in the regime where the Coulomb interaction is unimportant, i.e. at large
detuning.

5.2.2 On resonant Stark e�ect of excitons

At the resonance, a perturbative approach of the pump and probe coupling is
impossible. One approach is to use the dressed semiconductor Bloch equations
in the Hartree-Fock approximation Haug and Koch (1990). In this approach,
many-body interactions are averaged, which means neglecting all real and
virtual, bound and unbound states. At �rst sight, this may seem a very crude
approximation, especially when we know that a correct description of the
non-resonant Stark shi� requires two-exciton states. Nevertheless, a theoreti-
cal contribution in which the Coulomb scattering was treated in the second
Born approximation showed that the light dressing is found to signi�cantly
decrease the Coulomb collision rates: Coulomb scattering is not strong enough
to quench the coherent saturation e�ects due to phase space �lling (?). Cal-
culations show a dynamical Stark splitting in the absorption spectrum of a
weak probe beam that is hardly di�erent from Stark e�ect calculated in the
Hartree-Fock approximation.

5.2.3 Electromagnetically induced transparency of exciton
spin states

Electromagnetically induced transparency in exciton systems has been demon-
strated for excitonic systems in neutral quantum wells (Phillips and Wang,
2002). Fig. 5.10(a) schematically depicts a �rst possible scheme for its obser-
vation. Exciton spin coherence is induced via Coulomb correlations between
excitons with opposite spins (S+e, S−e), including correlations associated with
unbound and bound exciton pairs. A coherent superposition of exciton states
is produced by coupling S−e to SXXunbounde with a strong σ+ polarized pump
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5 Optical coherence within an electron gas

and S+e to SXXbounde or SXXunbounde with a weak σ− probe.  us a typical Λ-
type three-level system is formed that may lead to electromagnetically induced
transparency as discussed in previous section.
Another possible scheme is to couple the S−e to the SXXbounde with a

strong σ+ pump and to the ground state with a σ− probe as shown in Fig. 5.10(b).
 is form a ladder-type three-level system which is equally suited for electro-
magnetically induced transparency.

S0e

S + −unbounde

S+e S−e

S0e

S + −bounde

S+e S−e

σ+ σ−

σ− σ+

σ−σ+

σ+σ−

Figure 5.10: EIT schemes for excitons. (a) Ladder scheme. (b) Λ scheme.

5.3 Optical coherence of excitons within an
electron sea

We performed the pump and probe experiments described in Sec. 2.1.3. When
both pump and probe overlap we are in a coherent regime which corresponds
to the situations described in Sec. 5.2, the pump being the coupling �eld and
the probe the weak measurement �eld. By changing the pump detuning to
the exciton resonance as well as its polarization, we can investigate ac Stark
splitting, electromagnetically induced transparency or optical Stark shi� in
the presence of electrons.

5.3.1 On resonant exciton excitation
Circularly co-polarized pump and probe. First, we studied the e�ect of a
pump tuned on the exciton resonance and worked in σ+σ+ con�guration. As
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Figure 5.11: Re
ectivity spectra collected at various delay times for a σ+

pump tuned to the exciton resonance (1625.7meV).  e vertical scale is the
same for all spectra. a)  e probe is co-polarized and the red dashed-lines
indicate the position of the Stark split modes. b)  e probe is counter-
polarized and the red dashed-line indicates the position of the EIT.
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5 Optical coherence within an electron gas

the probe delay changed, at negative delay, from −5 ps to 0 ps, we monitored
the build up of the picosecond pump �eld and its e�ect on near band gap
resonances. Fig. 5.11(a) shows that the exciton resonance of the unexcited
re
ectivity spectrum splits up as the pump intensity builds up: the side modes
grow apart with the square root of the pump intensity.  is dependence is a
clear signature of the ac Stark splitting, observed in microcavities (Quochi et al.,
2000) and in single quantum wells (Schülzgen et al., 1999; Saba et al., 2000).
 e Rabi energy (half the spectral separation between the two side bands)
is comparable to the exciton linewidth.  is result indicates that nonlinear
exciton-photon coupling dominates the many-body interactions which induce
exciton decoherence. We also point out that the original exciton spectral
position becomes increasingly transparent. At zero delay time (highest pump
intensity), the e�ect reaches its maximum: the transparency turns into gain
(20%).  is is the gain without inversion predicted byMollow (1972), discussed
in Sec. 5.1.2 and calculated in Fig. 5.5.  e robustness of the exciton ac Stark
splitting over exciton induced dephasing was already very surprising when
�rst observed in neutral semiconductors, but the fact that it can be observed
in a see of electrons which is known to accelerate the exciton decoherence by
exciton-electron scattering (Schultheis et al., 1986) is astonishing.

Of course, the pump �eld is eventually absorbed, which creates excitons.
At zero delay, the density of the photogenerated σ+ polarized exciton gas is
estimated at 5 � 1010 cm−2. Excitons repel each other due to Pauli exclusion
principle through exchange of their constituent carriers.  e exciton resonance
blueshi�s (Schmitt-Rink et al., 1985), making the intensity of the exciton Stark
split states asymmetric.  e build up of the exciton blueshi� is clearer on di�er-
ential re
ectivity spectra (Fig. 5.12(a)).  e role of electrons on exciton-exciton
correlation of same spin through exchange interaction is not preponderant.
Still, the presence of electrons is very clear at positive delay times. Electrons
coalesce with excitons to form trions within 10 ps (Portella-Oberli et al., 2003).
As we have shown in Chap. 4, the blueshi� of the excitons diminishes accord-
ingly and the trion line is bleached because excitons and trions share the same
phase-space (Portella-Oberli et al., 2004).

Building on the observation of Mollow’s absorption spectrum we now
con�dently turn to cross-polarized pump and probe measurements in order
to investigate three-level atom-like coherence.
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Figure 5.12: Collected di�erential re
ectivity spectra as a function of the
delay time for (a) σ+σ+ and (b) σ+σ− pump and probe.  e σ+ pump (blue
arrow) is tuned to the exciton resonance (1626 meV).

Circularly cross-polarized pump and probe. Since the σ+ pump �eld only
couples to excitons with angular momentum +1, ac Stark splitting should not
be observed for σ+σ− pump and probes (Saba et al., 2000). Yet, as the pump
�eld builds up, a spectral dip appears at the pump energy (see Fig. 5.11(b)).
Around zero delay time, the sample even becomes fully transparent at this
wavelength. As we slightly tune the pump around the exciton resonance (not
shown), we observe that the dip follows the pump.  is is typical of electromag-
netically induced transparency (EIT) (Harris et al., 1990; Phillips and Wang,
2002). EIT may be explained in terms of a three-level system. If excitons with
opposite spins are correlated, they can form bound and unbound two-exciton
states. Although σ+ and σ− transitions share no common states, the σ+ pump
coherently couples σ− exciton states to two-exciton states. Coherent interfer-
ences then appear on the σ− probe transition, which lead to transparency of
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5 Optical coherence within an electron gas

the resonance. In our case, since EIT occurs at the pump energy, it may be
traced back to coherent interferences between transitions from both σ+ and
σ− one-exciton states to the two-exciton states.  erefore, even within a gas
of electrons, excitons with opposite spin states are su�ciently correlated to
induce robust quantum coherence.
More insight on these correlations is gained by looking at the di�erential

spectra in Fig. 5.12(b).  e observed nonlinearities on the exciton resonance at
short positive delay times, when all coherent processes have decayed away, are
very much comparable in intensity to the ones observed for σ+σ+ pump and
probe; a blueshi� of the exciton resonance is clearly visible as well as a strong
bleaching of the absorption line. Yet, neither Pauli blocking nor �rst-order
Coulomb-induced nonlinearity lead to a coupling among the subspaces of dif-
ferent exciton spin state.  us, the observed correlations evidence high-order
Coulomb correlation between excitons (Meier et al., 2000).  eir strength
make the observation of two-exciton bound states likely and we associate the
induced absorption that shows up about 4 meV below the exciton line to a
bound two-exciton (biexciton) resonance for the following reasons. First, it
matches the exciton-biexciton transition energy in CdTe QW’s (Birkedal et al.,
1996).  en, it respects the selection rules for biexciton formation: it is neither
observed for same circular polarization σ+σ+, nor for orthogonal linear po-
larization (Portella-Oberli et al., 2004; Adachi et al., 1997). Finally, it is a real
population e�ect that manifests well a�er the pump excitation and whose in-
tensity is correlated to the exciton population. From 0 ps to 10 ps it decays very
quickly because exciton merge with electrons to form trions (Portella-Oberli
et al., 2003). A�erwards, excitons and trions reach a thermodynamical equilib-
rium (Chapter 6)) and excitons deplete slowly by electron-hole recombination.
 e biexciton induced absorbtion decreases accordingly.

5.3.2 O� resonant exciton excitation
Circularly cross-polarizedpumpandprobe. Since bound two-exciton states
can be formed within an electron gas, we can now determine if, equally to
unbound two-exciton states, they take part into coherent processes and yield
EIT (Phillips et al., 2003). Fig. 5.13(a) was obtained by tuning the pump close
to the biexciton resonance in σ+σ− con�guration. When o� resonant, nonlin-
earities are small and it is more convenient to assess them through the study
of the di�erential re
ectivity spectra. At exciton resonance and negative delay
times di�erential spectra evidence an EIT signal similar to the one observed
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Figure 5.13: Collected di�erential re
ectivity spectra as a function of the
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in Fig. 5.12(b). Despite the electron population, biexcitons participate to coher-
ent processes and quantum interference between the ground state and bound
two-exciton states is possible.
In the same σ+σ− con�guration and at zero delay time, the exciton reso-

nance redshi�s. It has been observed (Mysyrowicz et al., 1986; Von Lehmen
et al., 1986; Jo�re et al., 1989) and demonstrated theoretically (Combescot and
Combescot, 1988) that when a direct band-gap semiconductor is irradiated
in the transparency region, the exciton line shi�s.  is so-called optical Stark
shi� of the exciton is due to a coupling between the exciton and all virtual
two-exciton states, bound and unbound. At large detuning of the pump rel-
atively to the exciton-biexciton binding energy, this coupling is mainly due
to statistical interactions, i.e. Pauli exclusion principle. It induces a blue-shi�
of the exciton resonance. At small detuning, when the pump is tuned close
to biexciton energy, Coulomb interaction provides the leading term, and, for
counter-polarized pump and probe, leads to a red-shi� of the exciton line if and
only if the biexciton is stable (Combescot and Combescot, 1989).  erefore, in
the absence of stable two-exciton bound states only a blue-shi� of the exciton
resonance can be observed.  e red-shi� of the exciton line shows clearly
the stability of biexcitons within an electron gas. We note that, in order to
optimize the intensity of the redshi� and of the EIT, we had to slightly tune
the pump o� the biexciton resonance towards the exciton.  is corroborates
previous observations of the optical induced Stark shi� (Jo�re et al., 1989) and
EIT (Phillips and Wang, 2004).

Circularly co-polarized pump and probe. For σ+σ+ pump and probe, only
a blueshi� appears up to 0 ps.  is is the signature of the optical Stark shi�
for circular polarized pump and probe when biexcitons cannot be formed.
In this con�guration quantum coherence cannot possibly be established and
therefore no EIT at the exciton resonance is observed. Since the pump and
the trion resonance overlap inevitably, we generate involuntary a population
of 2 � 1010 cm−2 trions that dramatically a�ects the exciton resonance and
notably masks any potential optical Stark shi� at 0 ps.  e observed trion
induced nonlinearities were described in details in Chapter 4. It is extremely
interesting to see that even if electrons e�ciently screen excitons and strongly
attenuate their oscillator strength, exciton-exciton correlation are omnipresent
and quantum coherence still possible when electrons are present.
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5.4 Conclusion
As a conclusion, we have demonstrated that exciton correlations remain very
strong within an electron gas.  ey yield unbound and stable bound two-
exciton pairs that play an important role in quantum coherent processes as
electromagnetically induced transparency and optical Stark shi�. We also evi-
denced that exciton coupling to the incident �eld remains su�ciently robust
in the presence of electrons to observe ac Stark splitting.  e fact that co-
herent control of excitons and fundamental exciton-exciton correlations are
not hindered by electrons opens may very promising opportunities when it
comes to combine spintronics and optoelectronics in view of possible quantum
information processors.
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6 Formation of the neutral and
charged excitons

‘Equilibre est synonyme d’activité.’

(Jean Piaget)
Positively and negatively charged excitons (X+ and X− trions) (Kheng et al.,
1993; Finkelstein et al., 1995) are usually compared to their atomic counterparts
He+ andH− respectively.  e dynamics of the formation of these atomic ions is
of great importance in astronomy (Frolov and Smith, 2003);H− is the primary
source of the continuum opacity in most stellar photospheres and contributes
to the production of hydrogen and other elements in various parts of the
universe. Additionally the abundance of free electrons in the solar atmosphere
is indirectly measured in terms ofH− concentration. Lately, models describing
the formation dynamics ofHe+ andH− have grown more sophisticated and
take into account many-body e�ects resulting from Coulomb correlations and
Pauli exclusion principle in partially or fully ionized plasma (Bi et al., 2000).
In semiconductor quantum wells, we have seen in Chapter 4 that trions are
also subject to many-body e�ects; they are highly correlated with the excitons
and the plasma of free carriers.  erefore, they o�er the possibility to test a
model of formation of three particle complexes in the limit of strong Coulomb
interactions.
 e formation process of neutral excitons (X) in quantum wells has been

extensively investigated over the past two decades (Piermarocchi et al., 1997;
Siantidis et al., 2001) and recently shown to be strongly density and temperature
dependent (Szczytko et al., 2004a); it is a bi-molecular process, in which an
electron (e) and a hole (h) are bound by Coulomb interaction. Conversely, the
formation process of trions has been much less studied. It is largely believed
that trions can only be formed if a population of excess carriers is trapped in
the well, producing exclusively trions with the same charge. Consequently
existing models discriminate the formation channel yielding trions of opposite
charge. Such an approach is questionable, especially at low excess carrier den-
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6 Formation of the neutral and charged excitons

sities, where experiments performed on very pure samples demonstrated that
both negatively and positively charged excitons do coexist indeed (Glasberg
et al., 1999). Current models for trion formation (Jeukens et al., 2002; Vanelle
et al., 2000) surmise that trions are exclusively formed through a bi-molecular
process, i.e. the coalescence of an exciton and a charged free carrier. While
this is conceivable at low densities, nothing attests that genuine formation of
the trion from an unbound electron-hole plasma (tri-molecular formation) is
negligible at higher densities.

In this chapter, we address this fundamental problem and propose a for-
mation model that fully implements bi- and tri-molecular channels for both
negatively and positively charged excitons. We investigate the trion binding
dynamics by following separately the evolution of the exciton, trion and plasma
luminescence, which is possible by using a time-resolved photoluminescence
setup of increased sensitivity. We evidence the complexity of many body e�ects
in the trion formation and demonstrate that all the assumptions made in our
model are necessary to adequately describe experiments over a broad range
of excess carrier densities. Moreover, we show that the higher the carrier con-
centration, the more important the tri-molecular process.  ese experimental
results are corroborated qualitatively by a simple theoretical model. Our model
suggest that the momentum conservation of carriers is important in the trion
formation.

6.1 Time-resolved dynamics of the
photoluminescence

In order to study the dynamics of the luminescence in di�erent density domains,
we performed the time-resolved photoluminescence experiment described in
Chapter 2. We performed our experiments with a variety of absorbed photon
densities (Nhν = 108 − 1010 cm−2) at 5.0 K and 1.5072 eV excitation.  en, we
recorded the time evolution of the exciton, trion and plasma luminescence
intensities. We used spectra obtained under cw-excitation to resolve the exciton
and trion overlapping transitions.  e experimental results are reported as
symbols in Fig. 6.1.
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Figure 6.1:  e intensity of the luminescence of trions (solid line, circles),
excitons (dashed line, squares) and plasma (dashed-dotted line, triangles)
calculated according to rate equations (lines) compared with experimental
data (symbols) for 7 � 108, 6 � 109, 6 � 1010 cm−2 absorbed photon densities.
At 6 � 1010 cm−2 density, the best �t for trions a�er arti�cially enforcing
A3 = 0 (thin dashed line).  e excess of electron concentration isN = 1010

cm−2.
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6 Formation of the neutral and charged excitons

6.2 Trion formation model

 e luminescence dynamics is governed by the temporal evolution of the
population of free carriers, excitons and trions. We �rst make an inventory of
all channels that couple those populations. Apart from the known bi-molecular
reaction e + h � X, we identify two bi-molecular reactions (X + e � X−,
X + h� X+) and two tri-molecular reactions (2e + h� X−, e + 2h� X+)
involving trions.  e kinetics of these reactions is given in terms of �ve coupled
rate equations:

dn
dt
= −Bnp −

n

τnr
− FX

− FX−
2 − F

X−
3 − F

X+
3 +

X−

τX−
dp
dt
= −Bnp −

p

τnr
− FX

− FX+
2 − F

X+
3 − F

X−
3 +

X+

τX+
dX
dt
= FX

−

X

τD
− FX−

2 − F
X+
2

dX−

dt
= FX−

2 + F
X−
3 −

X−

τX−
dX+

dt
= FX+

2 + F
X+
3 −

X+

τX+
,

where the free carrier concentrationsn (electrons) andp (holes) decay through
— in order of appearance— the radiative andnon-radiative recombination rates,
the exciton formation rate FX and the trion formation rates FXα

2 (bi-molecular)
and FXα

3 (tri-molecular), α = �−,+}.  e termXα~τXα corresponds to the
carriers recycled a�er the radiative decay of the trions.  e exciton population
X decays through radiative recombination and trion formation, while trion
concentrations X− and X+ decay through radiative recombination.  e
formation rates FX, FXα

2 , FXα

3 read

FX
= γCnp − γCKXX ,

FX−
2 = A

−

2Xn − A−2K
−

2 X−,

FX−
3 = A

−

3nnp − A−3K
−

3 X−,

FX+
2 = A

+

2Xp − A+2K
+

2 X+,

FX+
3 = A

+

3npp − A+3K
+

3 X+,
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6.2 Trion formation model

where the equilibrium coe�cients KX, Kα
2 , Kα

3 have been introduced to ensure
the steady-state solution of the rate equations (Szczytko et al., 2004a; Phillips
et al., 1996).

A few considerations allow us to reduce signi�cantly the number of free
parameters.  e equilibrium coe�cients can be calculated from a mass action
law, exploiting the fact that the trion binding energies for both X− and X+ are
equal (Glasberg et al., 1999).  e values of the bi-molecular plasma recombina-
tion rate B and bi-molecular exciton formation rate γC are known (Szczytko
et al., 2004a). Due to the high quality of the sample we assume very long
non-radiative decay time τnr. Knowing the number of photonsNhν absorbed
in our sample, we use the initial parameters p =Nhν andn =Nhν+N , where
the excess electron concentration is estimated from impurity concentration:
N = 1010 cm−2. We have introduced the equations of formation for positive
trions for sake of completeness. However, our present measurements are not
sensitive to the X+ population and we have decided to equate A+2 with A−2 and
A+3 withA−3 . Once we have found an expression for the thermalized exciton and
trion radiative decay times τD and τXα , A2 and A3 will be the only parameters
le�.

We assume that excitons, trions and free carriers are thermalized and do
share a same temperature Tc, di�erent from the lattice temperature Tl . In our
time resolved experiment, we use three electron-hole pair densities 7 � 108,
6 � 109, 6 � 1010 cm−2. At the highest density, Tc is given by the exponential �t
to the high energy tail of the free carrier luminescence. Tracing Tc over 1000 ps
returns 35 K in average. At lower densities, the rapid plasma relaxation prevents
us from measuring Tc that way. Yet, it can be trivially calculated if we depict
the accumulated excess carriers trapped in the QW as a cold sea of electrons
at Tl , in which the electron-hole pairs injected by the optical pump e�ciently
thermalize. We get 9 K and 16 K. At last, the temperature dependence of the
radiative decay rates τD(Tc) and τXα(Tc) are most accurately described by
the linear �ts τD(Tc) = 20 � Tc [ps] and τXα = 78 + 7 � Tc [ps] (with Tc in
[K]). Apart from a factor 1.5 attributed to the Bragg mirrors that enhances the
coupling of the excitons and charged excitons to the �eld, and hence diminishes
the radiative decay time, the agreement with the expected theoretical behavior
is very good (Esser et al., 2000a).
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6 Formation of the neutral and charged excitons

6.3 Experimental determination of the bi- and
tri-molecular temperature dependence

We present the complete results of our calculations of excitonic, trion and
plasma luminescence intensity dynamics in Fig. 6.1.  e excitonic lumines-
cence intensity given byX~τD, is denoted by a dashed line.  e luminescence
intensities of X− and X+ are summed up (X−~τX− + X+~τX+) and denoted by
solid lines.  e free carrier luminescence Bnp is denoted by a dash-dotted line.
Even with the necessary simpli�cations mentioned above, our rate equations
provide a very good description of the observed time-resolved luminescence
spectra. For instance for the smallest excitation densities the strongest transi-
tion comes from the trions, while for the larger densities the exciton transition
dominates. Interestingly, for the lowest excitation density, trion and exciton
dynamics are much faster than for the highest, in striking contrast with the ex-
citon dynamics in undoped QWs (Szczytko et al., 2004a). We may understand
this fast luminescence dynamics in the low density regime: this is mostly the
e�ect of the change of the temperature of carriers (and therefore of trions and
excitons). If we impose the same temperature for all excitation densities, τD
and τXα then stay constant over the densities, and we get, as expected, slower
dynamics for lower than for higher densities.
We report in Fig. 6.2 the parameters A2 and A3 derived from our calcula-

tions. We �rst notice that their temperature dependence better reminds the
behavior of the bi-molecular recombination rate B(Tc) than of the bimolecular
formation rate C(Tc). In our range of temperatures, C(Tc)mostly depends
on carrier-acoustic phonon interactions and thus stays constant (Piermaroc-
chi et al., 1997).  e 1~Tc dependence of B(Tc) comes from the momentum
conservation of carriers. Our results strongly suggest that the momentum con-
servation of carriers play a very important role in both bi- and tri-molecular
trion formation processes.  is outcome yields new insight on trion formation
process that should stimulate further theoretical investigations. Secondly, it
turns out that both bi- and tri-molecular channels are essential to the genera-
tion of trions. At high carrier densities, i.e. short times or large densities, the
tri-molecular process even dominates the bimolecular.  is is evidenced by the
thin-dashed �t in Fig. 6.1, calculated a�er having arti�cially eliminated the A3
component. Finally, the trion formation time from an initial resonantly excited
gas of exciton was measured in CdTe QWs for both X− (Portella-Oberli et al.,
2003) and X+ (Plochocka et al., 2004) and turned out to be identical, which
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Figure 6.2:  e bi- and tri- molecular trion formation coe�cients Aα
2 and

Aα
3 as a function of the inverse carrier temperature.  e dark area states for
the error. At 35 K, A2 � 2.0 � 10−14 cm2ps−1 and A3 � 4.0 � 10−24 cm4ps−1.

comforts our assumption A−2 = A+2 .  e bimolecular coe�cient drawn from
those experiments (A2 � 3 � 10−12 cm2~ps) matches ours. In next section, a
theoretical derivation of both bi- and tri-molecular formation coe�cients will
con�rm our hypothesis and qualitatively reproduce the temperature depen-
dence in our experiments.

6.4  eoretical derivation of the bi- and
tri-molecular coe�cients

In the previous section we were able to �nd experimentally the dependence of
both bimolecular and tri-molecular formation coe�cients. In this section, we
propose a theoretical derivation of these coe�cients. We �rst reproduce the
results of Piermarocchi et al. (1997) on exciton formation. We then extend the
formalism to the case of charged excitons.
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6 Formation of the neutral and charged excitons

6.4.1 Bimolecular formation of excitons
 e dynamics of the exciton formation is considered in the framework of
the Boltzmann equation for a system containing free electrons, free holes,
and excitons.  e residual Coulomb interaction between the free carriers
is neglected, which is justi�ed in the range of temperatures and densities
considered. In this work we focus on the exciton formation mechanism and
do not discuss the relaxation of the three species within their respective bands,
the electron-hole scattering, and radiative recombination. We denote the
occupation numbers for electrons, holes, and excitons by fe(ke), fh(kh),
and fX(kX), respectively, where ke, kh, and kX are the in-plane momenta
for electrons, holes, and excitons. For the bimolecular formation, following
Piermarocchi et al. (1997), the scattering terms in the Boltzmann equation
process reads

�df e(ke)
dt

�
form
= − Q

kX ,kh

wke ,kh�kX fh(kh)fe(ke), (6.1)

where wke ,kh�kX represents the probability per unit time for a free electron
and a free hole to bind together and form an exciton. Free carriers thermalize
very quickly in comparison to the exciton formation time, notably through
fast carrier-carrier scattering (Knox, 1992). It is thus assumed that during the
evolution of the system, the free electrons and holes are thermalized at the
same temperature Tc. In the scattering term of Eq. (6.1), we use for fe(ke), and
fh(kh) equilibrium Boltzmann distribution function at Tc. Consequently, by
summing Eq. (6.1) over ke, we obtain an adiabatic equation for the evolution
of the electronic density ne = 1

S Pke
fe(ke)

dn e

dt
= −Q

kX

F(kX)nenh � −Cnenh. (6.2)

 e coe�cient C is the bimolecular formation coe�cient, which depends on
both Tc and the lattice temperature Tl through the term

F(kX) = �2πħ
2

kBTc
�
2 1
memhS

Q
ke ,kh

wke ,kh�kXe
−(Ee(ke)+Eh(kh))~kBTc , (6.3)

where S denotes the QW surface area.
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Free carriers are coupled to the exciton by a continuum of phonon states
(q,qz) through a carrier-phonon interactionHamiltonianHe~h−ph. A phonon
can be emitted (+) or absorbed (-) in the formation process of the exciton. We
calculate both case separatly using the Fermi’s golden rule

w�ke ,kh�kX
=
2π
ħ Qq,qz

T`kXSa `nq,qz � 1SHe~h−ph Snq,qzea Skeea SkheT2

� δ�Ee(ke) + Eh(kh) − EX(kX) � ħωph(q,qz)�, (6.4)
with Ee(ke), Eh(kh) and EX(kX) the energy dispertion of the electrons, holes
and excitons respectively, and ħωph(q,qz) the energy of the emitted (absorbed)
phonon. We �rst build the bound and unbound electron-hole pair states SkXe
and Skeea Skhe.

Bound and unbound exciton states. Let (reY, ze) and (rhY, zh) be the elec-
tron and hole position vectors respectively and ΦX[(reY, ze),(rhY, zh)] the
exciton wavefunction, where we have separated the coordinates in the QW
plane (x-y) from the perpendicular coordinates (z). Denoting the electron
(hole) in-plane momenta ke (kh), we write the in-plane Fourier transform of
this function

ΦX
ke ,kh
(ze, zh) = 1

S ∫ d reYd rhYΦX[(reY, ze),(rhY, zh)] e−i(keċreY+khċrhY),

(6.5)

where S denotes the QW surface area. Transforming to center-of-mass (CM)
and relative coordinates in the QW plane —RY = αXreY + βXrhY, rY = reY −
rhY, where αX = me~MX, βX = mh~MX and me, mh, MX are the electron,
hole and exciton in-plane e�ective mass — we can apply Bloch’s theorem and
decompose the exciton wavefunction into a free motion part eikXċRY related
to the exciton in-plane momentum kX and an envelope function. To facilitate
the calculation, we use an envelope function separable in z and rY, although it
is strictly justi�able only for narrow well structures,

ϕX(rY, ze, zh) = χe(ze)χh(zh)φλX(rY). (6.6)

 e con�nement functions χe(ze) (χh(zh)) is taken to be the wavefunction of
an electron (hole) in the ground state of a �nite square quantum well (Bastard,
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6 Formation of the neutral and charged excitons

1988)

χα(zα) =
¢̈̈
¦̈̈
¤
Aα cos �kw(α)z zα� for SzαS < Lz

2

Bα exp �−kb(α)z (SzαS − Lz~2)� for SzαS A Lz
2 , α = e,h,

(6.7)

and we use the simplest electron orbital function

φλX(rY) =
¾

2
πλ2X

e−rY~λX , (6.8)

whose in-plane Fourier transform is given by

φλX
k =

¾
8πλX2

S
�1 + (λXk)2�−3~2 . (6.9)

 e variational parameter λX is associated with the Bohr radius of the exciton
in the QW. Eq. (6.5) can be rewritten as

ΦX
ke ,kh
(ze, zh) = 1S ∫ dRYd rYϕX(rY, ze, zh)

� eikXċRYe−i[RYċ(ke+kh)+rYċ(βXke−αXkh)]

= δkX−ke−khϕ
X
ke−αXkX

(ze, zh), (6.10)

where ϕX
k(ze, zh) = χe(ze)χh(zh)φλX

k is the in-plane Fourier transform of
the exciton envelope function. We can now construct the state of a single
exciton with an in-plane momentum kX in the Fermionic Hilbert space of
electron-hole pairs. It is the superposition of wavefunctions (6.10) with all
electron momenta ke and all electron ze and hole zh coordinates, given by

SkXe =Q
ke
∫ dz e dz h ϕX�

αXkX+ke
(ze, zh) ĉ†−ke ,ze d̂

†
kX+ke ,zh S0e , (6.11)

where ĉ†kX,ze (d̂
†
kX,zh) is the electron (hole) creation operator with in-plane

momentum kX and ze (zh) coordinate.
Similarly, we choose plane waves for the free carriers.  us the in-plane

Fourier transform ψα
k(z) of the carrier wavefunction takes the simple form

ψα
k(z) = χα(z), α = e,h. (6.12)

 e unbound electron-hole pair then reads

Ske,khe = ∫ dz e d zhψe�
ke
(ze)ψh�

kh
(zh)ĉ†ke ,ze d̂

†
kh,zh S0e . (6.13)
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6.4  eoretical derivation of the bi- and tri-molecular coe�cients

Carrier-phonon interaction Hamiltonian. We write the interaction Hamil-
tonian for a coupled electron-phonon system in the notation of the second
quantization (Mahan, 2000)

Hα−ph = Q
q,qz

Vα
q,qz �âq,qz + â

†
−q,−qz

� ρ̂α(q,qz) (6.14)

where â†q,qz is the phonon creation operator.  e electron density operator
ρ̂α(rY, z) and its counterpart in Fourier space ρ̂α(q,qz) are expressed on the
basis �ϕσ

k(rY, z, s) = eikċrYδ(z)ζσ(s)�

ρ̂σe(rY, z) = Q
k,k′

ĉσ†k,zĉ
σ
k′ ,ze

−i(k−k′)ċrY , (6.15)

ρ̂σe(q,qz) =Q
k
∫ dz e−iqzzĉσ†k+q,zĉ

σ
k,z,

ρ̂σh(rY, z) = − Q
k,k′

d̂σ†
k,zd̂

σ
k′ ,ze

−i(k−k′)ċrY , (6.16)

ρ̂σh(q,qz) = −Q
k
∫ dz e−iqzzd̂σ†

k+q,zd̂
σ
k,z.

Spin states ζσ(s) = `σSse have been intruduced for their will be necessary when
we treat the trion formation.
Only longitudinal acoustical (LA) and longitudinal optical phonons (LO)

couple signi�cantly to careers. We express the coupling vertex functions Vα
q,qz

for both coupling

Vα(LA)
q,qz = iaα

¿
ÁÁÀħ(SqS2 + q2z)

2ρ0Vωq,qz
, Vα(LO)

q,qz =

¿
ÁÁÀ 2πħωq,qze2

(SqS2 + q2z)V
� 1
є0
−

1
єª
�,

(6.17)

where є0 is the static dielectric constant and єª is the high frequency dielectric
constant. We use the notation aα for the deformation-potential constant (as-
sumed to be associated with a non-degenerate conduction or valence band),
ρ0 for the density of the crystal, e for the charge of the electron and V for
the volume of the sample. We follow Einstein interpolation scheme, so that
the dispersion is merely ωLA

q = vs
»

q2
+ q2z for LA phonons and ωLO

q = ωLO
for LO phonons, vs standing for the Debye sound velocity and ωLO for the
reststrahl frequency.
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6 Formation of the neutral and charged excitons

Matrix element calculation.  ematrix elements in Eq. (6.4) are calculated,
making use of Eq. (6.11) and (6.13)

`kX,nq,qz � 1SHe-ph +Hh-ph Ske,kh,nq,qze
= Q

q̃,q̃z
Q
k,k′e

∫ dze dzh dz′e dz′h dz φX
αkX+k′e

� `nq,qz � 1Sâ�q̃,q̃z â†−q̃,−q̃z Snq,qzeχ�e(ze)χe(z′e)χ�h(zh)χh(z′h)e−iq̃zz

� �Ve
q̃,q̃z`0Sĉ−k′e ,z′e ĉ†k+q̃,zĉk,zĉ†ke ,ze S0e`0Sd̂kX+k′e ,z′h d̂

†
kh,zh S0e

−Vh
q̃,q̃z`0Sĉ−k′e ,z′e ĉ†ke ,ze S0e`0Sd̂kX+k′e ,z′h d̂

†
k+q̃,zd̂k,zd̂†kh,zh S0e�.

Applying operators on the ground state

`0Sĉ−k′e ,z′e ĉ†k+q̃,zĉk,zĉ†ke ,ze S0e = δ−k′e ,k+q̃ δ(z − z′e) δk,ke δ(z − ze)
`0Sd̂kX+k′e ,z′h d̂

†
kh,zh S0e = δkh,kX+k′e

δ(zh − z′h)
`0Sĉ−k′e ,z′e ĉ†ke ,ze S0e = δke ,−k′e δ(ze − z′e)

`0Sd̂kX+k′e ,z′h d̂
†
k+q̃,zd̂k,zd̂†kh,zh S0e = δkX+k′e ,k+q̃ δ(z − z′h) δk,kh δ(z − zh)

`nq,qz � 1Sâq̃,q̃z + â
†
−q̃,−q̃z Snq,qze =

¼
nq,qz +

1
2 �

1
2 δ�q̃,q δ�q̃z,qz

we obtain

`kX,nq,qz � 1SHe-ph +Hh-ph Ske,kh,nq,qze
=

¼
nq,qz +

1
2 �

1
2 δ�q,ke+kh−kX

� �Ve
q,qzφ

X
−βXkX+kh

Ie(qz) −Vh
q,qzφ

X
αXkX−ke

Ih(qz)�, (6.18)

where the integrals, in the orthogonal direction are given by

Iα(qz) = ∫ dzα Sχα(zα)S2eiqzzα , α = �e, h�. (6.19)
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6.4  eoretical derivation of the bi- and tri-molecular coe�cients

Finally, if we choose the bound and unbound electron-hole pairs dispersion to
be parabolic, the probability transition (6.4) reads

w�ke ,kh�kX

=
2π
ħ Qq,qz

(nq,qz+
1
2�

1
2) TVe

q,qzφ
X
βXkX−kh

Ie(qz) −Vh
q,qzφ

X
αXkX−ke

Ih(qz)T2

� δ �ħ
2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M

� ħωph(q,qz)	 δ�q,ke+kh−kX .

(6.20)

LA phonons assisted formation Considering that the sample volume V =
LzS is macroscopic the sum over the orthogonal phonon wavevectors may be
replaced by the integral

Q
qz
�� � Lz

2π
� ∫ dq z (6.21)

and reexpressing the Dirac distribution as

δ �ħ
2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M

� ħvs
»

q2
+ q2z	

=

»
q2
+ q2z

SħvsqzS �δ �qz − q
(0)
z (ke,kh,kX))� + δ �qz + q(0)z (ke,kh,kX)��

� θ ���ħ
2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M
�	 , (6.22)

with

q(0)z (ke,kh,kX) =
¿
ÁÁÀ 1

ħ2v2s
�ħ

2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M
�
2

− q2, (6.23)

93



6 Formation of the neutral and charged excitons

makes the integration (6.21) trivial for LA phonons:

wke ,kh�kX =
4π
ħ
Lz
2π

ħ
2ρVvs

q2 + q(0)
2

z

Sħvsq(0)z S
� UaeφX

βXkX−kh
Ie(q(0)z ) − ahφX

αXkX−ke
Ih(q(0)z )U

2

� ��n
q,q(0)z

+ 1� θ �ħ
2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M
�

+ n
q,q(0)z

θ �−ħ
2k2e
2me

−

ħ2k2h
2mh

− Eb +
ħ2k2X
2M
�¡ . (6.24)

 is expression already includes the sum over absorbed and emitted phonon
contributions.  e phonon in-plane momentum needs to be substituted by
q = ke + kh − kX.

LOphonons assisted formation In the case of interaction with LO phonons,
Eq. 6.20 becomes

wke ,kh�kX =Q
qz

2π
ħ
ħωLOe2(1~єª − 1~є0)

V(q2 + q2z)
nq,qz

� TφX
βXkX−kh

Ie(qz) − φX
αXkX−ke

Ih(qz)T2

� δ �ħ
2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M

+ ħωLO	 , (6.25)

where we dropped the phonon absorption part, which is negligible up to room
temperature. For the calculation of the exciton formation coe�cient C, it is
convenient to rewrite the Dirac distribution as

δ �ħ
2k2e
2me

+

ħ2k2h
2mh

+ Eb −
ħ2k2X
2M

+ ħωLO	

=
MX

ħ
�δ �kX − k(0)X (ke,kh))� + δ �kX + k(0)X (ke,kh)�� , (6.26)

with

k(0)X (ke,kh) =
¿
ÁÁÀ2MX

ħ2
�ħ

2k2e
2me

+

ħ2k2h
2mh

+ Eb − ħωLO.�, (6.27)
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Figure 6.3: e exciton formation coe�cient C as a function of the carrier
temperature Tc, at a �xed lattice temperature Tl = 10 K. Other parameters
are given in the text.

Numerical Results. If we change all the sum in Eq. 6.2, 6.3, 6.24 and 6.25
into integrals, the bimolecular formation coe�cient C can be numerically
calculated by Monte Carlo integration. In Fig. 6.3, we report C as a function
of 1~Tc for a �xed lattice temperature Tl = 5 K, for a GaAs QW of 80 Å.  e
two contributions from the acoustic and optical phonons are shown separately.
 e acoustical phonon dominates for temperatures smaller than 40K and does
not depend on Tl . We see that these results perfectly match those published
by Piermarocchi et al. (1997). We show in Table 6.1 the numerical value of the
di�erent parameters entering in the calculation.
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6 Formation of the neutral and charged excitons

Parameter Symbol Value Unit
Band gap energy Eg 1519 meV
Electron e�ective mass me 0.08 m0
Heavy hole e�ective mass mhh 0.17 m0
LO phonon energy ħωLO 36 meV
Static dielectric constant є0 12.85
High frequency dielectric constant єª 10.88
Crystal density ρ 5.3162 gċcm−3
Sound velocity vs 4726.5 mċs−1
Conduction band deformation potential ae −7.0 eV
Valence band deformation potential ah 3.5 eV
Exciton binding energy ET 6.5 meV
Trion binding energy ET 1.77 meV
Exciton Bohr radius λX 11.0 nm
Trion variational parameter #1 (X−) λT 15 nm
Trion variational parameter #2 (X−) λ′T 30.0 nm
Trion variational parameter #1 (X+) λT 16 nm
Trion variational parameter #2 (X+) λ′T 25.0 nm

Table 6.1: GaAs Material Parameters
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6.4  eoretical derivation of the bi- and tri-molecular coe�cients

6.4.2 Bimolecular formation of trions

Wenow extend our formalism to the derivation of the bimolecular formation of
trions. We restrict ourselves to negatively charged excitons and will give at the
end of this work some indication on how to retrieve their positive counterpart.
We write the scattering term in the Boltzmann equation process for the

bimolecular formation of trions:

�df e(ke)
dt

�
form
= − Q

kT ,ke

FkX ,ke�kT fX(kX)fe(ke), (6.28)

where Fkh ,ke�kT represents the probability per unit time for a bound electron-
hole pair and a free electron to bind together and form an exciton. We assume
that bound and unbound carriers are thermalized and use Boltzmann dis-
tribution function fX(kX) and fe(ke) for exciton and electron population,
respectively. By summing Eq. (6.28) over ke, we obtain an adiabatic equation
for the evolution of the electron density

dn e

dt
= −Q

kT

F(kT)nXne � −A−2nXne. (6.29)

 e coe�cient A−2 is the bimolecular formation coe�cient, which depends on
both Tc and the lattice temperature Tl through the term

F(kT) = �2πħ
2

kBTc
�
2 1
mXmeS

Q
kX ,ke

wkX ,ke�kTe
−(EX(kX)+Ee(ke))~kBTc . (6.30)

We calculate the formation rate using Fermi’s golden rule

w�kX,ke�kT
=
2π
ħ Qq,qz

T`kTSa `nq,qz � 1SHe~h−ph Snq,qzea SkXea SkeeT2

� δ�EX(kX) + Ee(ke) − ET(kT) � ħωph(q,qz)�, (6.31)

with EX(kX), Ee(ke) and ET(kT) the energy dispertion of the electrons, holes
and excitons respectively, and ħωph(q,qz) the energy of the emitted (absorbed)
phonon. We �rst build the bound and unbound electron-hole pair states SkTe
and SkXea Skee.
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6 Formation of the neutral and charged excitons

Trion state.  etwo electrons and the hole are positioned at (r1Y, z1), (r2Y, z2)
and (rhY, zh) respectively, while the center-of-mass (CM) and relative coor-
dinates in the QW plane are now given byRY = αT(r1Y + r2Y) + βTrhY and
rihY = riY − rhY (i = 1,2); αT = me~MT, βT = mh~MT and MT is the trion
mass. We consider the same simple two parameter Chandrasekhar-type trial en-
velope function that was successively used to calculate trion-electron scattering
in Chapter 3:

ϕT(r1hY, r2hY, z1, z2, zh)
= NTχe(z1)χe(z2)χh(zh)[φλT(r1h)φλ′T(r2h) � φλ′T(r1h)φλT(r2h)],

(6.32)

where the + (−) sign applies to the singlet (triplet) spin con�guration and the
trion wavefunction normalization factor is given by

NT =
1»

2(1 � κ2)
, (6.33)

with

κ =
4λλ′

(λ+ λ′)2 . (6.34)

Its in-plane Fourier transform reads

ΦT
k1 ,k2 ,kh

(z1, z2, zh) = δkT−k1−k2−kh ϕ
T
αTkT−k1 ,αTkT−k2

(z1, z2, zh) (6.35)
and the state of a single trion with an in-plane CM momentum kT is con-
structed similarly to that of a single exciton

TkS
Tf = Q

k1 ,k2
s1 ,s2

∫ dz 1 dz 2 dz h ϕT�
αTkT+k1 ,αTkT+k2

(z1, z2, zh)

� ξ�S(s1, s2) ĉs1†−k1 ,z1 ĉ
s2†
−k2 ,z2 d̂

†
kT+k1+k2 ,zh S0e , (6.36)

where we have added the spin index to the electron creation operator and intro-
duced ξS(s1, s2) = `SSs1, s2e the projection of a generic spin con�guration of
two electrons on the singlet spin con�guration.  e in-plane Fourier transform
of the trion singlet wavefunction in Eq. (6.35) is given by

ϕT�
k1 ,k2
(z1, z2, zh) = NTχe(z1)χe(z2)χh(zh) �φλT

k1
φλ′T

k2
+ φλ′T

k1
φλT

k2
� , (6.37)
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where φλ′T
k1
has already been de�ned in Eq. 6.9.  e exciton-free electron state

is given by

SkX,ke′e =Q
ke
∫ dze dzh dz′e ϕ�αXkX+ke

(ze, zh)ψ�ke′
(ze′)

� ĉ†
−ke ,ze d̂

†
kX+ke ,zh ĉ

†
ke′ ,ze′

S0e . (6.38)

Matrix element calculation. We calculate the matrix elements in (6.31)

`kS
T; s
′

hSa `nq,qz � 1SHe~h−ph Snq,qz + 1ea SkX; s1; shea Sk2; s2e
=Q

k,s
Q
k1

Q
k′1 ,k

′

2

Q
s′1 ,s

′

2

∫ dz dz 1 dz 2 dz h dz ′1 dz
′

2 dz
′

h
»
nq,qz + 1

�ξ�S(s′1, s′2)ϕX
αXkX+k1

(z1, zh)ψk2(z2)ϕT�
αTkT+k′1 ,αTkT+k′2

(z′1, z′2, z′h)eiqzz

� �Ve
q,qz `0S ĉ1 ĉ2 ĉ†3 ĉ4ĉ†5 ĉ†6 S0e `0S d̂7 d̂†8 S0e

− Vh
q,qz `0S ĉ1 ĉ2 ĉ†5 ĉ†6 S0e `0S d̂7 d̂†3 d̂4d̂†8 S0e �. (6.39)

where we simpli�ed the operators index using the following scheme

1 = (−k′1, z′1, s′1) 2 = (−k′2, z′2, s′2) 3 = (k + q, z, s)
4 = (k, z, s) 5 = (−k1, z1, s1) 6 = (k2, z2, s2)
7 = (kT + k′1 + k′2, z

′

h, s
′

h) 8 = (kX + k1, zh, sh)

Using the electron, holes anti-commutation relations, the Fermi vacuum ex-
pectation value of the operators read

`0S ĉ1 ĉ2 ĉ†3 ĉ4ĉ†5 ĉ†6 S0e = δ13(δ25δ46 − δ26δ45) − δ23(δ15δ46 − δ16δ45)
(6.40)

`0S d̂7 d̂†8 S0e = δ78 (6.41)

`0S ĉ1 ĉ2 ĉ†5 ĉ†6 S0e = δ25δ16 − δ15δ26 (6.42)

`0S d̂7 d̂†3 d̂4d̂†8 S0e = δ37δ48 (6.43)
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Using the later results in Eq. (6.39) gives

`kS
T; s
′

hSa `nq,qz � 1SHe~h−ph Snq,qzea SkX; s1; shea Sk2; s2e
= [ξ�S(s2, s1) − ξ�S(s1, s2)] δsh,s′h

¼
nq,qz + 1~2 � 1~2 Q

k1

ϕX
αXkX+k1

� �Ve
q,qzIe(qz)[ϕT�

αTkT−k2 ,αTkT+k1+q + ϕ
T�
αTkT−k2+q,αTkT+k1

]
−Vh

q,qzIh(qz)ϕT�
αTkT−k2 ,αTkT+k1

�δq,kX+k2−kT . (6.44)

Finally, for parabolic electron, exciton and trion dispersion, the probability
transition 6.31

w�kX,k2�kT

=
2π
ħ Qq,qz

(nq,qz +
1
2 �

1
2)

� WQ
k1

Ve
q,qzIe(qz)[ϕT�

αTkT−k2 ,αTkT+k1+q + ϕ
T�
αTkT−k2+q,αTkT+k1

]

− Vh
q,qzIh(qz)ϕT�

αTkT−k2 ,αTkT+k1
W
2

� δ �ħ
2k2X

2MX
+

ħ2k22
2me

+ ET −
ħ2k2T
2MT

� ħωph(q,qz)	 δ�q,kX+k2−kT ,

(6.45)

where we averaged over the initial electron spin states and exciton angular
momentum states.

6.4.3 Trimolecular formation of trions
Again, we write the scattering term in the Boltzmann equation process

�df e(ke)
dt

�
form
= − Q

kT ,k′e

Fke ,k′e ,kh�kT fe(ke)fe(k′e)fh(kh), (6.46)

where Fke ,k′e ,kh�kT represents the probability per unit time for two free elec-
trons and one free hole to bind together and form an exciton. We assume
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that bound and unbound carriers are thermalized and use Boltzmann dis-
tribution function fX(ke) and fh(kh) for exciton and electron population,
respectively. By summing Eq. (6.46) over ke, we obtain an adiabatic equation
for the evolution of the electron density

dne
dt
= −Q

kT

F(kT)n2enh � −A−3n2enh. (6.47)

 e coe�cient A−3 is the trimolecular formation coe�cient, which depends on
both Tc and the lattice temperature Tl through the term

F(kT) = �2πħ
2

kBTc
�
3 1
m2

emhS3~2
Q

ke ,k′e ,kh

wke ,ke ,k′h�kTe
−(Ee(ke)+Ee(k′e)+Eh(kh))~kBTc .

(6.48)

We calculate the formation rate using Fermi’s golden rule

w�ke ,k′e ,kh�kT
=
2π
ħ Qq,qz

T`kTSa `nq,qz � 1SHe~h−ph Snq,qzea Skeea Sk′eea SkheT2

� δ�Ee(ke) + Ee(k′e) + Eh(kh) − ET(kT) � ħωph(q,qz)�, (6.49)
with EX(kX), Ee(ke) and ET(kT) the energy dispertion of the electrons, holes
and excitons respectively, and ħωph(q,qz) the energy of the emitted (absorbed)
phonon. Finally, for parabolic electron, exciton and trion dispersion, the
probability transition 6.49 becomes

w�ke ,k′e ,kh�kT

=
2π
ħ Qq,qz

(nq,qz +
1
2 �

1
2)

� WVe
q,qzIe(qz)[ϕT�

αTkT−k2 ,αTkT+k1+q + ϕ
T�
αTkT−k2+q,αTkT+k1

]

− Vh
q,qzIh(qz)ϕT�

αTkT−k2 ,αTkT+k1
W
2

�δ �ħ
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6 Formation of the neutral and charged excitons

where we averaged over the initial electron spin states and exciton angular
momentum states.

6.4.4 Numerical results
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Figure 6.4:  e bi- and tri- molecular trion formation coe�cients Aα
2

and Aα
3 as a function of the inverse carrier temperature as calculated from

our model for LA phonon assisted formation.  e red curve indicates X+

formation and the blue curve X− formation.

In Fig. 6.4, we represent the results of our numerical calculation for LA
phonon assisted formation. We stress the fact that the results for LO phonons
are orders of magnitude smaller and consequently negligible for bi- and tri-
molecular processes.  is shows that the exclusive formation mechanism for
trions is governed by LA phonon interaction. We correctly predict a decrease
of the bi- or tri-molecular formation for raising temperatures. We also demon-
strate that the bi and tri-molecular formation coe�cients for negatively and
positively charged excitons are approximatively equal (A+2 = A−2) and (A+3 = A−3),
which validates the assumptionmade at the beginning of this chapter. However,
the values are about 2 times smaller at 10 K and do not drop as sharply as in the
experiment for increasing temperatures. A more accurate calculation should
rely on a better trion wavefunction.  e Chandrashekar variational function is

102



6.5 Predictions of our model

most likely to simple to yield quantitative results. We also argue, that in order
to simplify our model, we neglected any dark state channel that may play a role
in the overall dynamic of our system. However, we believe that our model is
su�cient to predict the dynamics of the photoluminescence spectra for trions.

6.5 Predictions of our model

10
6

10
8

10
10

10
2

10
3

10
4

10
5

Electron concentration (cm-2)

In
te

ns
ity

 (
ph

ot
on

s 
cm

-2
ps

-1
)

10
6

10
8

10
10

10
2

10
3

10
4

10
5

10
6

Hole concentration (cm-2)

In
te

ns
ity

 (
ph

ot
on

s 
cm

-2
ps

-1
)

Exciton

Trion X++X-

Plasma

negative trion X-

positive trion X+

Figure 6.5: Exciton, trion (X− and X+) and plasma cw-luminescence in-
tensities calculated as a function of the residual electron (le� panel) and
hole (right panel) concentrations at Tc=9.0 K. A 5 � 105 photons/(cm2ps)
density was assumed.1

We demonstrate the robustness of our model by some convincing predic-
tions. In Fig. 6.5, we apply our rate equations model to the cw-luminescence
of excitons, trions and free carriers in an InGaAs QW. In the absence of excess
carriers (n = p), the trion luminescence is about 20 times weaker than the
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6 Formation of the neutral and charged excitons

exciton one, which is in very good agreement with experiments (Glasberg et al.,
1999).  e di�erence in intensities of X− and X+ cw-luminescence shown in
Fig. 6.5 are the consequence of the di�erence between Kα

2 and Kα
3 , imposed by

the mass di�erence between positive and negative trions.  e critical excess
carrier concentration of about 1010 cm−2 at which trions start to dominate
the luminescence spectrum, does correspond to many experiments (Kossacki,
2003). What is new however, is that the crossing of X− and X+ intensities,
which has been observed experimentally (Glasberg et al., 1999), does not occur
at zero excess carrier density but is shi�ed toward some positive carrier density.
Applied to a system of excitons under resonant excitation, our model

explains a very puzzling decay time of excitons, which is raised from 20 ps
to 100 ps in the presence of an excess electron gas (Finkelstein et al., 1998).
Excitons and trions actually come into thermal equilibrium and decay together,
which considerably stretches the decay time.

6.6 Conclusion
In summary, we have shown that both bi- and tri-molecular processes are
necessary to describe trion formation. We could quantify both formation rates
from the experiment and draw an empirical law for their temperature depen-
dence.  is lawwas con�rmed by a simple formationmodel at low temperature.
At high temperature, we argued that inelastic electron scattering contributes
to trion ionization and should be taken into account. We obtained new insight
on X− and X+ luminescence intensities at low excess carrier densities.  e
model turned out to be also perfectly applicable to other experiments.
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7 Conclusion
In this thesis work, we carried on pioneering work on the dynamics of nonlin-
earities in modulation-doped quantum wells.
We demonstrated through cw linear optical measurements (Chapter 3)

that electrons scatter with excitons and trions, a�ecting profoundly the shape
of their resonance; the high energy tail of both trion and exciton resonance is
broadened and the exciton oscillator strength is reduced. Electron scattering
was shown to play an important role in non-linear pump and probe experi-
ments (Chapter 4) as well as in the formation dynamics of trions from a free
electron-hole plasma (6). In pump and probe experiments, a photogenerated
exciton gas was shown to heat the excess electron gas and modify their scatter-
ing properties.  e trion creation process removed electrons from the quantum
well and strongly reduced the scattering.
We also evidenced correlated behavior of excitons and trions under exci-

tation, which manifests itself by crossed trion-exciton e�ects. We observed a
wealth of phenomena encompassing bleaching, crossed bleaching, induced-
absorption and energy shi�s of the resonances. Signi�cant di�erences were
found between the nonlinear optical e�ects induced by an exciton and a trion
population. We also evidenced high-order exciton correlations, up to the
��h-order, in the presence of electrons.
 ese strong correlations lead to very interesting features in the coherent

regime, that we would have never expected within a gas of electrons. We
identi�ed biexcitons and demonstrated their stability through coherent optical
Stark measurements (Chapter 4). We proved that both ac Stark splitting with
gain and electromagnetically induced transparency were observable within an
electron gas, despite electron induced dephasing.
Finally, we demonstrated that the dynamics of exciton, trion and electron-

hole plasma can be ruled by a simple rate equation model, in which we ac-
counted for bimolecular formation of excitons from an electron-hole plasma,
bimolecular formation of trions from excitons and free carriers and trimolecu-
lar formation from free carriers (Chapter 6).
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Heberle, A. P., J. J. Baumberg, and K. Köhler, 1995, Phys. Rev. Lett. 75(13), 2598.
1

Hemmer, P. R., D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar,
and P. Kumar, 1995, Optics Letters 20, 982. 55

Hlidek, P., J. Bok, J. Franc, and R. Grill, 2001, Journal of Applied Physics 90(3),
1672. 28

Honold, A., L. Schultheis, J. Kuhl, and C. W. Tu, 1989, Physical Review B 40(9),
6442. 15, 30, 37, 50

Huang, D., H. Y. Chu, Y. C. Chang, R. Houdré, and H. Morko, 1988, Physical
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