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Information-Theoretic Upper Bounds on the Capacity
of Large Extended Ad Hoc Wireless Networks

Olivier Lévêque and İ. Emre Telatar, Member, IEEE

Abstract—We derive an information-theoretic upper bound on
the rate per communication pair in a large ad hoc wireless network.
We show that under minimal conditions on the attenuation due to
the environment and for networks with a constant density of users,
this rate tends to zero as the number of users gets large.

Index Terms—Ad hoc networks, capacity, cut-set bound, eigen-
values, random matrices.

I. INTRODUCTION

THE feasability of large ad hoc wireless networks from an
information-theoretic point of view is a subject of both

mathematical and practical interest. An important issue is the
evaluation of the capacity of such networks. In the seminal work
of Gupta and Kumar [1], it has been shown that under some
assumptions, the transport capacity of such (planar) networks
scales like where is the number of users and is the area
occupied by the network. The assumptions made in [1] state in
particular that only point-to-point communications are allowed
in the network and that interference is treated as noise. Even if
these assumptions are quite realistic regarding state of the art
wireless communications, the question remains whether the re-
sult obtained in there, more precisely the upper bound, can be
confirmed from an information-theoretic point of view, that is,
without any particular assumption on the way communications
take place. A first confirmation of this result from an informa-
tion-theoretic point of view has been obtained in [2]. It was,
however, assumed in there that signals are strongly attenuated
over distance (power decay of order with ).

The fact that the transport capacity scales with implies
in particular that if there are order pairs in the network willing
to establish communication at a common rate and if we as-
sume that the pairs are chosen at random, without any consid-
eration on the users’ respective locations (so the average dis-
tance between paired users is of order ), then the maximum
achievable decreases like as gets large. Our aim in the
present paper is to give an information-theoretic proof of the fact
that in this particular scenario (and for a uniformly distributed
network with a constant density of users), the maximum achiev-
able tends to zero under a minimal assumption on the attenu-
ation function (power decay of order with ).
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We would like to point out that our result does not say any-
thing about the transport capacity of the network in general.
Moreover, our upper bound is not as tight as the behavior
found in [1], [2] under stronger assumptions.

Our results apply to -dimensional networks (see also [3] for
an extension of the results of [1] to three dimensions). We also
consider the model where an additional exponential factor is
present in the attenuation function (as also considered in [2]).
Section II is devoted to the study of uniformly distributed net-
works. In Section III, we consider the particular situation of a
“regular” network, where the users are placed on a grid.

II. UNIFORMLY DISTRIBUTED NETWORKS

The network we consider consists of an even number of
users independently and uniformly distributed in the -dimen-
sional region

of volume , therefore, expanding with the number of
users (when , is the interval and when ,

is the rectangle ).1 Note that because of
this assumption of an “extended” network, the density of users
remains constant as increases.

Let us divide these users into two arbitrary groups of
users and assume that each user of the first group wishes to es-
tablish (one-way) communication with a correspondent chosen
at random in the second group (without any consideration on
their respective locations).2 We assume that there is no fixed in-
frastructure that helps relaying communications, but we also as-
sume no restriction on the kind of help the users can give to each
other; in particular, any user may act as a relay for the commu-
nicating pairs. We further assume that in order to establish com-
munication, each user has a device of power . The attenuation
of the transmitted signals over distance is governed by the func-
tion given by3

(1)

1The fact that the region 
 is rectangular, and not square, is of little im-
portance since we are only interested in the asymptotic behavior of the network
capacity.

2It could be raised here that this situation does not take place in a real network;
however, the argument developed hereafter holds even if only a constant fraction
of the users wish to establish communication without any consideration on their
respective locations.

3One could raise again an objection here: without any constraint on the min-
imum distance between users, the above attenuation function may take arbi-
trarily large values. Because of our assumption of “extended” network, however,
points are likely to be sufficiently far apart form each other.

0018-9448/$20.00 © 2005 IEEE



LÉVÊQUE AND TELATAR: INFORMATION-THEORETIC UPPER BOUNDS ON THE CAPACITY OF LARGE EXTENDED AD HOC WIRELESS NETWORKS 859

Note that describes the decay of the amplitude of the elec-
tric field and not that of the power. This model of decay is ac-
cepted as a standard one in wireless communications. The case

and describes the decrease of the electric field in
empty space. Because of canceling reflections, the coefficient
is usually taken to be greater than for terrestrial transmissions,
whereas a nonzero exponential factor takes into account ab-
sorption in the air.

Let now be the maximum achievable rate per communica-
tion pair in the network. We prove in the following that tends
almost surely to zero as gets large, under the assumption that
either or . In the
particular case , our result says more precisely that

when and , and that

when (see Theorems 2.5 and 2.10). We therefore see that
in the case , the bound obtained is quite distant from the

bound of [1], especially when is small.
As a first step, we divide the domain into two equal parts

separated by the hyperplane , where denotes the th
coordinate of . Statistically, there are about users on
the left-hand side of the domain; moreover, about half of these
are transmitters and half of these transmitters wish to establish
communication with a receiver on the right-hand side of the
domain. In total, there are therefore about communications
which need to cross the imaginary boundary from left to right,
and it is easy to see that as gets large, deviations from the
average are of order much smaller than with high probability.

In order to obtain an upper bound on , we make a se-
ries of optimistic assumptions: we first assume that only the
above communications need to be established. We
then introduce additional “mirror” users that help relaying
communications (where the mirror location of is

). We see that there are now ex-
actly users on each side of the domain, which are moreover
independently and uniformly distributed on each side. There
is, however, a more important reason for introducing these
“mirror” users: it brings a helpful symmetry in the problem, as
we shall see later (Remark 2.1). On the other hand, doubling the
number of users has no influence on the asymptotic behavior
of the capacity.

Let us further assume that all the users on the left-hand side
can share instantaneous information and even distribute their
power resources among themselves in order to establish com-
munication in the most efficient way with the users on the right-
hand side, which in turn are able to distribute the received in-
formation instantaneously among themselves. We also assume
that the user locations are known to all users. Following the ar-
gument of [4, Theorem 14.10.1], we obtain the following upper
bound on the sum of the rates of communications going from
left to right:

where denotes the set of users’ locations on the left-hand side
of and those on the right-hand side;
denotes the messages sent by the users in , those received
by the users in , and those sent back by the users in
(which takes into account the effect induced by some eventual
feedback).

In our setting, we have the following formal relation between
and :

(2)

where is the matrix whose entries
are given by , with given by (1), and is
independent additive white Gaussian noise. From this relation,
we deduce that

where we have used the fact that is independent from the other
variables and that conditioning reduces entropy.

From now on, we will adopt the following notations (since
we know that there are exactly users on each side):

where we assume that forms a pair of “mirror” users for
each . With this notation, the channel model (2)
becomes

where and is a vector
of independent circularly symmetric complex Gaussian random
variables with unit variance. Under the power constraint

(arising from the fact that the users are assumed to be able to
distribute their power resources among themselves), the mu-
tual information is maximum when

is a jointly Gaussian vector with some covariance
matrix , so

By unitary transformation of the matrix (see, e.g., [5]), one
finally obtains

(3)
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where are the singular values of the matrix (in decreasing
order and repeated by multiplicity). Let us recall that about
communications need to be established from left to right and
that we wish to achieve the same common rate for all these
communications. In order to prove that tends to zero as
gets large, it is therefore sufficient to prove that the capacity
defined in (3) grows sublinearly in , that is, decreases to zero
when divided by .

Note finally that and for
, so the matrix is symmetric; it has therefore real

eigenvalues and the singular values are equal to .

A. No Absorption Case

In this subsection, we assume that , i.e., there is no
absorption which creates an exponential decay of the power over
the distance. It is shown in the Appendix that if

and , then is a nonnegative definite matrix,
so its eigenvalues are also nonnegative (and equal to ).

We can, therefore, obtain the following successive upper
bounds on . Noting first that for all , we obtain

Since , we further obtain

The computation of the asymptotic behavior of the eigenvalues
is not an easy task. We are therefore going to use the fol-

lowing majorization argument: from [6, p. 218, Theorem 9.B.1],
we know that the eigenvalues majorize the diagonal elements
of , that is,

(4)

and

(5)

On the other hand, by [6, p. 64, Proposition 3.C.1], we know
that the function

is Schur-concave (recall [6, p. 54, Definition 3.A.1]: a
Schur-concave funtion is a function such
that as long as
majorizes in the sense defined above). We there-
fore conclude that

Moreover, , so

(6)

Remark 2.1: Note that the preceding majorization argument
does not work in general if we replace the eigenvalues by
the singular values : this is because the singular values of the
matrix satisfy (4) but not (5). This explains why we need to
be nonnegative definite, and motivate the introduction of mirror
users.

In order to obtain an upper bound on the average behavior of
, we need the following technical lemma.

Lemma 2.2: For any and , there exists a
constant such that for all sufficiently large , we have

where denotes the minimum value of and .
Proof: Let us define and compute

Replacing by its value and checking separately the two cases
and leads then to the conclusion.

This lemma allows us to deduce the following.

Proposition 2.3: There exists a constant (possibly
depending on ) such that for all sufficiently large

so is sublinear in if .
Proof: Set (which need not be an integer). First

note that

So we obtain by Lemma 2.2 that for sufficiently large

and this concludes the proof.

There remains to prove that the sublinear behavior of in
takes place almost surely. We prove this by showing that the
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deviation of from its average is indeed almost surely sub-
linear in .

Proposition 2.4: Fix . Then for any , we have

almost surely

Proof: What we are going to use here is Hoeffding’s in-
equality (see [7]). We first note that is the sum of inde-
pendent random variables

However, each of these random variables is unbounded, since
can be arbitrarily close to zero. We are going to show that

with a certain scaling factor, they are all bounded away from
zero with high probability as goes to infinity, and that under
the condition that they are effectively bounded away from zero,

concentrates around its mean with a deviation of order less
than for any . Let us then fix and compute the
probability that any of the is smaller than . De-
noting by the vector whose first component is minimal
(in absolute value), we obtain by the union bound that

and this probability is arbitrarily small for any . On the
other hand, under the condition that

the remain independent and identically distributed (i.i.d.)
random variables, as the following calculation shows. Let

; we then have

since the are independent. Moreover, under the condition
that , the random variables are bounded

We can, therefore, apply Hoeffding’s inequality [7] which states
that for all and sufficiently large

and replacing by in the preceding inequality gives

In conclusion, we have

Choosing , we therefore obtain that

so by the Borel–Cantelli lemma, we have for any and

infinitely often

which implies the result.

We summarize the results obtained so far in the following
theorem.

Theorem 2.5: If (that is, when
) and there is no absorption (that is, ), then the

maximum achievable rate per communication pair in a large
uniformly distributed network decreases almost surely to zero
as the number of users gets large. More precisely, under the
above assumption, there exist a constant such that for
sufficiently large

almost surely

Note that the last estimate comes from the fact that

and Propositions 2.3 and 2.4.

Remark 2.6: As a by-product, the preceding analysis also
gives an upper bound on the maximal amount of information
that can be carried from one part of the network to the other.
This amount is bounded above by , which in turn is bounded
above by , almost surely for sufficiently
large .
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B. Case With Absorption

In the following, we assume that . Starting from (3), we
follow the lines of the preceding subsection: using the fact that

, we have

Now, since are the eigenvalues of the matrix , repeating
the majorization argument of Section II-A gives

Moreover, since is decreasing, we have

So we finally obtain

(7)

We need now the following technical lemma, similar to
Lemma 2.2.

Lemma 2.7: For any , there exists a constant
such that for all sufficiently large , we have

Proof: The proof follows the lines of that of Lemma 2.2;
set (which is smaller than for sufficiently large

) and compute

Replacing by its value then proves the lemma.

From this, we deduce the following upper bound on the av-
erage behavior of .

Proposition 2.8: There exists a constant (possibly
depending on or ) such that for all sufficiently large

so is sublinear in .

Proof: Set . First note that

So we obtain by Lemma 2.7 that for sufficiently large

and this concludes the proof.

As before, there remains to prove that the sublinear behavior
of in takes place almost surely. We prove this using the
following concentration result.

Proposition 2.9: Fix , . Then for any , we
have

almost surely

Proof: The proof is identical to that of Proposition 2.4, so
we do not repeat it here.

We summarize the results obtained so far in the following
theorem.

Theorem 2.10: If there is absorption (that is, ), then
the maximum achievable rate per communication pair in a
large uniformly distributed network decreases almost surely to
zero as the number of users gets large. More precisely, under the
above assumption, there exists a constant such that for
sufficiently large

almost surely

Note that the last estimate comes from the fact that

and Propositions 2.8 and 2.9.

III. REGULAR NETWORKS

Let us now consider the case where the network is a regular
network in the sense that the users are placed on a regular grid
inside . For simplicity, we will assume that there are users
on each side and that for some integer . The positions
of the users on the left- and the right-hand side of the region
are therefore given by

and

where and denote from now
on multiple indices ranging from to . For
notational simplicity, we will go on writing for an
enumeration of all the multiple indices.
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We consider that these users wish to form communi-
cation pairs, choosing their correspondent at random. An argu-
ment similar to that developed in the previous section shows
that there will be about communications needing to cross
the imaginary boundary from left to right. Repeating
then the argument of the previous section leads to the following
upper bound on the maximum achievable rate per communica-
tion pair in the network:

where

Here, are the singular values of the matrix , whose entries
are determinisitic in the present context.

A. No Absorption Case

Let us assume that . We will show in the following a
better result than that of Section II-A, in the sense that we do not
need any more the assumption that , but this re-
quires us to be a little more careful in the majoration procedure.
Let us first note that for any fixed vector , we have

by the same majorization argument as that of Section II-B.
Moreover, since is decreasing, we have

(recall that , , and
where is an integer). Let us compute

This leads to the following upper bound:

which can be rewritten as

This maximization problem has the well-known “water-filling”
solution

where satisfies the constraint

(8)

and denotes the positive part of . We need now the
following two technical lemmas.

Lemma 3.1: Let and satisfy (8). There exists then
a constant (possibly depending on ) such that for all
sufficiently large , we have

Proof: Equation (8) implies that

where . Computing this last expression gives

Since is increasing on the domain where it is positive, we then
obtain that , where satisfies the equation

This equation in turn implies that

so

and

since . Now, since

we obtain that for sufficently large , there exists (de-
pending on ) such that

This implies finally that

which concludes the proof.

Lemma 3.2: For any , we have
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Proof: Let us simply compute

This allows us to establish the following proposition.

Proposition 3.3: Let . There exists then a constant
(possibly depending on ) such that for all sufficiently

large , we have

So is sublinear in when .
Proof: From the preceding analysis, we have the fol-

lowing upper bound on :

where satisfies the constraint (8). Let denote the smallest
integer such that

We then obtain

by Lemma 3.2. On the other hand, by Lemma 3.1, there exists
such that

for sufficiently large , which in turn implies

and this completes the proof.

This proposition leads directly to the following theorem.

Theorem 3.4: If and there is no absorption (that is,
), then the maximum achievable rate per communica-

tion pair in a large regular network decreases almost surely to
zero as the number of users gets large.

We obtain here the same result as the one obtained for uni-
formly distributed networks, without assuming that the matrix

is nonnegative definite, that is, without the assumption that
.

B. Case With Absorption

In the case where there is absorption (that is, ), we
follow the lines of Section II-B and obtain easily

by Lemma 2.7, so this proves the following theorem.

Theorem 3.5: If there is absorption (that is, ), then the
maximum achievable rate per communication pair in a large
regular network decreases almost surely to zero as the number
of users gets large.

IV. CONCLUSION AND PERSPECTIVES

We have proved that under minimal assumptions (that is, with
a power decay of order with or in
the presence of absorption), the maximum achievable rate per
communication pair in a large extended ad hoc network has to
decrease to zero as the number of users gets large. However, we
have seen that our scaling law is not as tight as the one obtained
in [1], [2]. In order to get a better result, a precise study of the
behavior of the singular values is necessary.

APPENDIX

THE MATRIX IS NONNEGATIVE DEFINITE IN THE

NO-ABSORPTION CASE

Let us first consider the one-dimensional case (with ).
In this case, since , the entries of the matrix are
given by

where is the Euler Gamma function. This implies that is
nonnegative definite, since

Let us now consider the higher dimensional case together with
the assumption that . We have the expression for
the entries of the matrix

so using the fact that the Fourier transform of
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is given by (see [8, Formulas I.2.7 and I.18.29])

where is the modified Bessel function of second kind and of
order , we obtain that

Since by [9, Formula 9.6.23], we have

for , we obtain that the matrix whose entries are
given by

is nonnegative definite if

that is,

So under the same assumption, is a convex combination of
products of nonnegative definite matrices, it is therefore itself
nonnegative definite.
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