Circumventing the problem of the scale: discrete choice models with multiplicative error terms

Mogens Fosgerau and Michel Bierlaire

Danish Transport Research Institute
Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne

Introduction

- Random utility models:

$$
\begin{aligned}
P(i \mid \mathcal{C}) & =\operatorname{Pr}\left(U_{i} \geq U_{j} \forall j \in \mathcal{C}\right) \\
& =\operatorname{Pr}\left(\mu V_{i}+\varepsilon_{i} \geq \mu V_{j}+\varepsilon_{j} \forall j \in \mathcal{C}\right)
\end{aligned}
$$

- ε_{i} i.i.d. across individuals, so the scale is normalized.
- As a consequence, the scale is confounded with the parameters of V_{i}.
- The scale is directly linked with the variance of U_{i}

Introduction

- The scale may vary from one individual to the next
- The scale may vary from one choice context to the next
- SP/RP data
- Linear-in-parameter: $V_{i}=\mu \beta^{\prime} x_{i}$
- Even if β is fixed, $\mu \beta$ is distributed

Introduction

Proposed solutions:

- Deterministically identify groups and estimate different scale parameters (introduces non linearities)
- Assume a distribution for μ : Bhat (1997); Swait and Adamowicz (2001); De Shazo and Fermo (2002); Caussade et al. (2005); Koppelman and Sethi (2005); Train and Weeks (2005)

Multiplicative error

Our proposal:

- RUM with multiplicative error

$$
U_{i}=\mu V_{i} \varepsilon_{i} .
$$

where

- μ is an independent individual specific scale parameter,
- $V_{i}<0$ is the systematic part of the utility function, and
- $\varepsilon_{i}>0$ is a random variable, independent of V_{i} and μ.

Multiplicative error

- ε_{i} are i.i.d. across individuals
- Potential heteroscedasticity is captured by the individual specific scale μ.
- Sign restriction on V_{i} : natural if, for instance, generalized cost

Choice probability

The scale disappears

$$
\begin{aligned}
P(i \mid \mathcal{C}) & =\operatorname{Pr}\left(U_{i} \geq U_{j}, j \in \mathcal{C}\right) \\
& =\operatorname{Pr}\left(\mu V_{i} \varepsilon_{i} \geq \mu V_{j} \varepsilon_{j}, j \in \mathcal{C}\right) \\
& =\operatorname{Pr}\left(V_{i} \varepsilon_{i} \geq V_{j} \varepsilon_{j}, j \in \mathcal{C}\right),
\end{aligned}
$$

Taking logs

$$
\begin{aligned}
P(i \mid \mathcal{C}) & =\operatorname{Pr}\left(V_{i} \varepsilon_{i} \geq V_{j} \varepsilon_{j}, j \in \mathcal{C}\right) \\
& =\operatorname{Pr}\left(-V_{i} \varepsilon_{i} \leq-V_{j} \varepsilon_{j}, j \in \mathcal{C}\right) \\
& =\operatorname{Pr}\left(\ln \left(-V_{i}\right)+\ln \left(\varepsilon_{i}\right) \leq \ln \left(-V_{j}\right)+\ln \left(\varepsilon_{j}\right), j \in \mathcal{C}\right. \\
& =\operatorname{Pr}\left(-\ln \left(-V_{i}\right)-\ln \left(\varepsilon_{i}\right) \geq-\ln \left(-V_{j}\right)-\ln \left(\varepsilon_{j}\right),\right.
\end{aligned}
$$

Choice probability

We define

$$
-\ln \left(\varepsilon_{i}\right)=\left(c_{i}+\xi_{i}\right) / \lambda,
$$

where

- c_{i} is the intercept,
- λ is the scale, constant across the population, as a consequence of the i.i.d. assumption on ε_{i}
- ξ_{i} are random variables with a fixed mean and scale

Choice probability

- $P(i \mid \mathcal{C})=$
$\operatorname{Pr}\left(-\lambda \ln \left(-V_{i}\right)+c_{i}+\xi_{i} \geq-\lambda \ln \left(-V_{j}\right)+c_{j}+\xi_{j}, j \in \mathcal{C}\right)$,
which is now a classical RUM with additive error.
- Important: contrarily to μ, the scale λ is constant across the population
- V_{i} must be normalized for the model to be identified. Indeed, for any $\alpha>0$,

$$
-\lambda \ln \left(-\alpha V_{i}\right)+c_{i}=-\lambda \ln \left(-V_{i}\right)-\lambda \ln (\alpha)+c_{i}
$$

Choice probability

- When V_{i} is linear-in-parameters, it is sufficient to fix one parameter to either 1 or -1 .
- e.g. normalize the cost coefficient to 1. Others become willingness-to-pay indicators.

Discussion

- Fairly general specification
- Free to make assumptions about ξ_{i}
- Parameters inside V_{i} can be random
- We may obtain MNL, GEV and mixtures of GEV models.
- c_{i} may depend on covariates, such that it is also possible to incorporate both observed and unobserved heterogeneity both inside and outside the log (examples in the paper).

Discussion

- If random parameters are involved, one must ensure that $P\left(V_{i} \geq 0\right)=0$.
- How? The sign of a parameter can be restricted using, e.g., an exponential.
- For deterministic parameters: bounds constraints
- Maximum likelihood estimation is complicated in the general case.
- Taking logs provides an equivalent specification with additive independent error terms

Discussion

- Classical softwares can be used
- However, even when the V s are linear in the parameters, the equivalent additive specification is nonlinear.
- OK with Biogeme

Case study: value of time in Denmark

- Danish value-of-time study
- SP data
- involves several attributes in addition to travel time and cost

Case study: value of time in Denmark

Model 1: Additive specification

$$
\left.\begin{array}{rlll}
V_{i}=\lambda(& - \text { cost } & +\beta_{1} \text { ae } & +\beta_{2} \text { changes } \\
& +\beta_{3} \text { headway } & +\beta_{4} \text { inVehTime } & +\beta_{5} \text { waiting }
\end{array}\right),
$$

Model 1: Multiplicative specification

$$
\begin{array}{lcll}
V_{i}=-\lambda \log (& \text { cost } & -\beta_{1} \text { ae } & -\beta_{2} \text { changes } \\
- & \beta_{3} \text { headway } & -\beta_{4} \text { inVehTime } & \left.-\beta_{5} \text { waiting }\right)
\end{array}
$$

Model 1: additive

Variable number	Description	Robust Coeff. Asympt. estimate std. error		t-stat	p-value
1	ae	-2.00	0.211	-9.46	0.00
2	changes	-36.1	6.89	-5.23	0.00
3	headway	-0.656	0.0754	-8.71	0.00
4	in-veh. time	-1.55	0.159	-9.76	0.00
5	waiting time	-1.68	0.770	-2.18	0.03
6	λ	0.0141	0.00144	9.82	0.00
		Number of observations $=3455$			
			$\mathcal{L}(0)$	$=$	394.824
			$\mathcal{L}(\hat{\beta})$	$=$	970.846
		$-2[$	(0) $-\mathcal{L}(\hat{\beta})]$	$=$	7.954
			ρ^{2}	$=$	77
			$\bar{\rho}^{2}$	$=0$	75

Model 1: multiplicative

Variable		Robust			
number	Description	Coeff. estimate	Asympt. std. error	t-stat	p-value
1	ae	-0.672	0.0605	-11.11	0.00
2	changes	-5.22	1.54	-3.40	0.00
3	headway	-0.224	0.0213	-10.53	0.00
4	in-veh. time	-0.782	0.0706	-11.07	0.00
5	waiting time	-1.06	0.206	-5.14	0.00
6	λ	5.37	0.236	22.74	0.00

Number of observations $=3455$

$$
\begin{aligned}
\mathcal{L}(0) & =-2394.824 \\
\mathcal{L}(\hat{\beta}) & =-1799.086 \\
-2[\mathcal{L}(0)-\mathcal{L}(\hat{\beta})] & =1191.476 \\
\rho^{2} & =0.249 \\
\bar{\rho}^{2} & =0.246
\end{aligned}
$$

Model 1: result

- Same number of parameters
- Significant improvement of the fit: 171.76, from -1970.846 to -1799.086

Model 2: taste heterogeneity

- Additive specification:

$$
V_{i}=\lambda\left(-\operatorname{cost}-e^{\beta_{5}+\beta_{6} \xi} Y_{i}\right)
$$

where

- $Y_{i}=$
inVehTime $+e^{\beta_{1}} \mathrm{ae}+e^{\beta_{2}}$ changes $+e^{\beta_{3}}$ headway $+e^{\beta_{4}}$ waiting
- $\xi \sim N(0,1)$
- Multiplicative specification

$$
V_{i}=-\lambda \log \left(\operatorname{cost}+e^{\beta_{5}+\beta_{6} \xi} Y_{i}\right),
$$

Model 2: additive

Variable		Robust number					Description	estimate	Asympt. std. error	t-stat	p-value
1	ae	0.0639	0.357	0.18	0.86						
2	changes	2.88	0.373	7.73	0.00						
3	headway	-0.999	0.193	-5.17	0.00						
4	waiting time	-0.274	0.433	-0.63	0.53						
5	scale (mean)	0.331	0.178	1.86	0.06						
6	scale (stderr)	0.934	0.130	7.19	0.00						
7	λ	0.0187	0.00301	6.20	0.00						

Number of observations $=3455$
Number of individuals $=523$
Number of draws for SMLE = 1000

$$
\begin{aligned}
\mathcal{L}(0) & =-2394.824 \\
\mathcal{L}(\hat{\beta}) & =-1925.467 \\
\bar{\rho}^{2} & =0.193
\end{aligned}
$$

Model 2: multiplicative

Robust

Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	ae	0.0424	0.0946	0.45	0.65
2	changes	2.24	0.239	9.38	0.00
3	headway	-1.03	0.0983	-10.48	0.00
4	waiting time	0.355	0.207	1.72	0.09
5	scale (mean)	-0.252	0.106	-2.38	0.02
6	scale (stderr)	1.49	0.123	12.04	0.00
7	λ	7.04	0.370	19.02	0.00

Number of observations $=3455$
Number of individuals $=523$
Number of draws for SMLE $=1000$
$\mathcal{L}(0)=-2394.824$
$\mathcal{L}(\widehat{\beta})=-1700.060$
$\bar{\rho}^{2}=0.287$

Model 2: result

- Same number of parameters
- Significant improvement of the fit: 225.764, from -1925.824 to -1700.060

Observed and unobs. heterogeneity

- Additive specification

$$
V_{i}=\lambda\left(-\operatorname{cost}-e^{W_{i}} Y_{i}\right)
$$

where

- Y_{i} is defined as before
- $W_{i}=$
β_{5} highlnc $+\beta_{6} \log (\mathrm{inc})+\beta_{7}$ lowlnc
$+\beta_{8}$ missingInc $+\beta_{9}+\beta_{10} \xi$
- $\xi \sim N(0,1)$.

Observed and unobs. heterogeneity

- Multiplicative specification:

$$
V_{i}=-\lambda \log \left(\cos t+e^{W_{i}} Y_{i}\right)
$$

Results:

- Again large improvement of the fit with the same number of parameters
- Additive: -1914.180
- Multiplicative: -1675.412
- Difference: 238.777

Summary: train data set

Number of observations
 Number of individuals

Model Additive Multiplicative Difference

$$
\begin{array}{rrrr}
1 & -1970.85 & -1799.09 & 171.76 \\
2 & -1925.824 & -1700.06 & 225.764 \\
3 & -1914.12 & -1674.67 & 239.45
\end{array}
$$

Summary: bus data set

Number of observations: 7751
Number of individuals: 1148
Model Additive Multiplicative Difference

$$
\begin{array}{rrrr}
\hline 1 & -4255.55 & -3958.35 & 297.2 \\
2 & -4134.56 & -3817.49 & 317.07 \\
3 & -4124.21 & -3804.9 & 319.31
\end{array}
$$

Summary: car data set

Number of observations: 8589 Number of individuals: 1585

Model Additive Multiplicative Difference

1	-5070.42	-4304.01	766.41
2	-4667.05	-3808.22	858.83
3	-4620.56	-3761.57	858.99

Swiss value of time (SP)

- No improvement with fixed parameters
- Small improvement for random parameters

	Additive	Multiplicative	Diff.
Fixed param.	-1668.070	-1676.032	-7.96
Random param.	-1595.092	-1568.607	26.49

Swissmetro (SP)

- Nested logit
- 16 variants of the model
- Alternative Specific Socio-economic Characteristics (ASSEC)
- Error component (EC)
- Segmented travel time coefficient (STTC)
- Random coefficient (RC): the coefficients for travel time and headway are distributed, with a lognormal distribution.

	RC	EC	STTC	ASSEC	Additive	Multiplicative	Difference
1	0	0	0	0	-5188.6	-4988.6	200.0
2	0	0	0	1	-4839.5	-4796.6	42.9
3	0	0	1	0	-4761.8	-4745.8	16.0
4	0	1	0	0	-3851.6	-3599.8	251.8
5	1	0	0	0	-3627.2	-3614.4	12.8
6	0	0	1	1	-4700.1	-4715.5	-15.4
7	0	1	0	1	-3688.5	-3532.6	155.9
8	0	1	1	0	-3574.8	-3872.1	-297.3
9	1	0	0	1	-3543.0	-3532.4	10.6
10	1	0	1	0	-3513.3	-3528.8	-15.5
11	1	1	0	0	-3617.4	-3590.0	27.3
12	0	1	1	1	-3545.4	-3508.1	37.2
13	1	0	1	1	-3497.2	-3519.6	-22.5
14	1	1	0	1	-3515.1	-3514.0	1.1
15	1	1	1	0	-3488.2	-3514.5	-26.2
16	1	1	1	1	-3465.9	-3497.2	-31.3

Concluding remarks

- Error term does not have to be additive
- With multiplicative errors, an equivalent additive formulation can be derived by taking logs
- Multiplicative is not systematically superior
- In our experiments, it outperforms additive spec. in the majority of the cases
- In quite a few cases, the improvement is very large, sometimes even larger than the improvement gained from allowing for unobserved heterogeneity.

Concluding remarks

- Model with multiplicative error terms should be part of the toolbox of discrete choice analysts

Thank you!

