Circumventing the problem of the scale: discrete choice models with multiplicative error terms

Mogens Fosgerau and Michel Bierlaire

Danish Transport Research Institute

Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne

Introduction

• Random utility models:

$$P(i|\mathcal{C}) = \Pr(U_i \ge U_j \ \forall j \in \mathcal{C})$$

=
$$\Pr(\mu V_i + \varepsilon_i \ge \mu V_j + \varepsilon_j \ \forall j \in \mathcal{C})$$

- ε_i i.i.d. across individuals, so the scale is normalized.
- As a consequence, the scale is confounded with the parameters of V_i .
- The scale is directly linked with the variance of U_i

Introduction

- The scale may vary from one individual to the next
- The scale may vary from one choice context to the next
 - SP/RP data
- Linear-in-parameter: $V_i = \mu \beta' x_i$
- Even if β is fixed, $\mu\beta$ is distributed

Introduction

Proposed solutions:

- Deterministically identify groups and estimate different scale parameters (introduces non linearities)
- Assume a distribution for μ: Bhat (1997); Swait and Adamowicz (2001); De Shazo and Fermo (2002); Caussade et al. (2005); Koppelman and Sethi (2005); Train and Weeks (2005)

Multiplicative error

Our proposal:

• RUM with multiplicative error

$$U_i = \mu V_i \varepsilon_i.$$

where

- μ is an independent individual specific scale parameter,
- $V_i < 0$ is the systematic part of the utility function, and
- $\varepsilon_i > 0$ is a random variable, independent of V_i and μ .

Multiplicative error

- ε_i are i.i.d. across individuals
- Potential heteroscedasticity is captured by the individual specific scale μ .
- Sign restriction on V_i: natural if, for instance, generalized cost

The scale disappears

$$P(i|\mathcal{C}) = \Pr(U_i \ge U_j, j \in \mathcal{C})$$

= $\Pr(\mu V_i \varepsilon_i \ge \mu V_j \varepsilon_j, j \in \mathcal{C})$
= $\Pr(V_i \varepsilon_i \ge V_j \varepsilon_j, j \in \mathcal{C}),$

Taking logs

$$P(i|\mathcal{C}) = \Pr(V_i \varepsilon_i \ge V_j \varepsilon_j, j \in \mathcal{C})$$

= $\Pr(-V_i \varepsilon_i \le -V_j \varepsilon_j, j \in \mathcal{C})$
= $\Pr(\ln(-V_i) + \ln(\varepsilon_i) \le \ln(-V_j) + \ln(\varepsilon_j), j \in \mathcal{C})$
= $\Pr(-\ln(-V_i) - \ln(\varepsilon_i) \ge -\ln(-V_j) - \ln(\varepsilon_j), j \in \mathcal{C})$
= $\Pr(-\ln(-V_i) - \ln(\varepsilon_i) \ge -\ln(-V_j) - \ln(\varepsilon_j), j \in \mathcal{C})$

We define

 $-\ln(\varepsilon_i) = (c_i + \xi_i)/\lambda,$

where

- c_i is the intercept,
- λ is the scale, constant across the population, as a consequence of the i.i.d. assumption on ε_i
- ξ_i are random variables with a fixed mean and scale

• $P(i|\mathcal{C}) =$

 $\Pr(-\lambda \ln(-V_i) + c_i + \xi_i \ge -\lambda \ln(-V_j) + c_j + \xi_j, j \in \mathcal{C}),$

which is now a classical RUM with additive error.

- Important: contrarily to μ , the scale λ is constant across the population
- V_i must be normalized for the model to be identified. Indeed, for any $\alpha > 0$,

$$-\lambda \ln(-\alpha V_i) + c_i = -\lambda \ln(-V_i) - \lambda \ln(\alpha) + c_i$$

- When V_i is linear-in-parameters, it is sufficient to fix one parameter to either 1 or -1.
- e.g. normalize the cost coefficient to 1. Others become willingness-to-pay indicators.

Discussion

- Fairly general specification
- Free to make assumptions about ξ_i
- Parameters inside V_i can be random
- We may obtain MNL, GEV and mixtures of GEV models.
- c_i may depend on covariates, such that it is also possible to incorporate both observed and unobserved heterogeneity both inside and outside the log (examples in the paper).

Discussion

- If random parameters are involved, one must ensure that $P(V_i \ge 0) = 0$.
- How? The sign of a parameter can be restricted using, e.g., an exponential.
- For deterministic parameters: bounds constraints
- Maximum likelihood estimation is complicated in the general case.
- Taking logs provides an equivalent specification with additive independent error terms

Discussion

- Classical softwares can be used
- However, even when the Vs are linear in the parameters, the equivalent additive specification is nonlinear.
- OK with Biogeme

Case study: value of time in Denmark

- Danish value-of-time study
- SP data
- involves several attributes in addition to travel time and cost

Case study: value of time in Denmark

Model 1: Additive specification

$$\begin{split} V_i &= \lambda (\begin{array}{ccc} - & \cos t & +\beta_1 \text{ ae} & +\beta_2 \text{ changes} \\ &+ & \beta_3 \text{ headway} & +\beta_4 \text{ inVehTime} & +\beta_5 \text{ waiting} \end{array}), \end{split}$$

Model 1: Multiplicative specification

 $V_i = -\lambda \log(\cos t -\beta_1 \text{ ae} -\beta_2 \text{ changes} -\beta_3 \text{ headway} -\beta_4 \text{ inVehTime} -\beta_5 \text{ waiting})$

Model 1: additive

RANSP-OR

		Robust		
/ariable		Coeff. Asympt.		
Description	estimate	std. error	t-stat	<i>p</i> -value
ae	-2.00	0.211	-9.46	0.00
changes	-36.1	6.89	-5.23	0.00
headway	-0.656	0.0754	-8.71	0.00
in-veh. time	-1.55	0.159	-9.76	0.00
waiting time	-1.68	0.770	-2.18	0.03
λ	0.0141	0.00144	9.82	0.00
	Numb	Number of observa		= 3455
		$\mathcal{L}(0)$	=	-2394.824
		$\mathcal{L}(\hat{eta})$	=	-1970.846
	$-2[\mathcal{L}$	$(0) - \mathcal{L}(\hat{\beta})]$	=	847.954
		$ ho^2$	=	0.177
		$ar{ ho}^2$	=	0.175
	ae changes headway in-veh. time waiting time	Descriptionestimateae -2.00 changes -36.1 headway -0.656 in-veh. time -1.55 waiting time -1.68 λ 0.0141 Numb	Coeff.Asympt.Descriptionestimatestd. errorae-2.000.211changes-36.16.89headway-0.6560.0754in-veh. time-1.550.159waiting time-1.680.770 λ 0.01410.00144L(0) $\mathcal{L}(\hat{\beta})$ $-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})]$ ρ^2	Coeff. Asympt. Description estimate std. error t-stat ae -2.00 0.211 -9.46 changes -36.1 6.89 -5.23 headway -0.656 0.0754 -8.71 in-veh. time -1.55 0.159 -9.76 waiting time -1.68 0.770 -2.18 λ 0.0141 0.00144 9.82 λ 0.0141 0.00144 9.82 $-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})]$ = $\mathcal{L}(\hat{\beta})$ = $-2[\mathcal{L}(0) - \mathcal{L}(\hat{\beta})]$ = ρ^2 =

Model 1: multiplicative

RANSP-OR

			Robust		
Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	std. error t -stat p -v	
1	ae	-0.672	0.0605 -11.1		0.00
2	changes	-5.22	1.54	-3.40	0.00
3	headway	-0.224	0.0213	.0213 -10.53	
4	in-veh. time	-0.782	0.0706	706 -11.07	
5	waiting time	-1.06	0.206 -5.1		0.00
6	λ	5.37	0.236	22.74	0.00
		Num	ber of observ	ations =	3455
		$\mathcal{L}(0) = -2394.824$			
			$\mathcal{L}(\hat{eta})$	= -	-1799.086
		-2[1]	$\mathcal{L}(0) - \mathcal{L}(\hat{\beta})]$	= 1	191.476

FEDERALE DE LAUSANNE Circumventing the problem of the scale: discrete choice models with multiplicative error terms – p.17/31

0.249

0.246

 ρ^2

 $\bar{\rho}^2$

=

=

Model 1: result

- Same number of parameters
- Significant improvement of the fit: 171.76, from -1970.846 to -1799.086

Model 2: taste heterogeneity

• Additive specification:

$$V_i = \lambda(-\operatorname{cost} - e^{\beta_5 + \beta_6 \xi} Y_i)$$

where

inVehTime $+e^{\beta_1}$ ae $+e^{\beta_2}$ changes $+e^{\beta_3}$ headway $+e^{\beta_4}$ waiting

- $\xi \sim N(0,1)$
- Multiplicative specification

$$V_i = -\lambda \log(\operatorname{cost} + e^{\beta_5 + \beta_6 \xi} Y_i),$$

Circumventing the problem of the scale: discrete choice models with multiplicative error terms - p.19/31

Model 2: additive

			Robust			
Variable		Coeff.	Asympt.			
number	Description	estimate	std. error	t-stat	<i>p</i> -value	
1	ae	0.0639	0.357	0.18	0.86	
2	changes	2.88	0.373	7.73	0.00	
3	headway	-0.999	0.193	-5.17	0.00	
4	waiting time	-0.274	0.433	-0.63	0.53	
5	scale (mean)	0.331	0.178	1.86	0.06	
6	scale (stderr)	0.934	0.130	7.19	0.00	
7	λ	0.0187 0.00301 6.2		6.20	0.00	
	Number of observations = 3455					
	Number of individuals = 523					
		Number of draws for SMLE = 1000				
		$\mathcal{L}(0)$) = -23	394.824		

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Model 2: multiplicative

			Robust		
Variable		Coeff.	Asympt.		
number	Description	estimate	std. error	<i>t</i> -stat	<i>p</i> -value
1	ae	0.0424	0.0946	0.45	0.65
2	changes	2.24	0.239	9.38	0.00
3	headway	-1.03	0.0983	-10.48	0.00
4	waiting time	0.355	0.207	1.72	0.09
5	scale (mean)	-0.252	0.106	-2.38	0.02
6	scale (stderr)	1.49	0.123	12.04	0.00
7	λ	7.04	0.370	19.02	0.00
	Number of observations = 3455				
	Number of individuals = 523				

Number of draws for SMLE = 1000

0.287

 $\mathcal{L}(0) = -2394.824$

 $\mathcal{L}(\hat{\beta}) \quad = \quad -1700.060$

=

 $\bar{\rho}^2$

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Circumventing the problem of the scale: discrete choice models with multiplicative error terms - p.21/31

Model 2: result

- Same number of parameters
- Significant improvement of the fit: 225.764, from -1925.824 to -1700.060

Observed and unobs. heterogeneity

• Additive specification

$$V_i = \lambda(-\mathsf{cost} - e^{W_i}Y_i)$$

where

- Y_i is defined as before
- $W_i =$

 $\beta_5 \text{ highInc} + \beta_6 \log(\text{inc}) + \beta_7 \log(\text{lowInc}) + \beta_8 \min(\beta_8 + \beta_9 + \beta_{10}\xi)$

• $\xi \sim N(0,1)$.

Observed and unobs. heterogeneity

• Multiplicative specification:

$$V_i = -\lambda \log(\mathbf{cost} + e^{W_i} Y_i).$$

Results:

- Again large improvement of the fit with the same number of parameters
- Additive: -1914.180
- Multiplicative: -1675.412
- Difference: 238.777

Summary: train data set

	3455		
	523		
Model	Additive	Difference	
1	-1970.85	-1799.09	171.76
2	-1925.824	-1700.06	225.764
3	-1914.12	-1674.67	239.45

Circumventing the problem of the scale: discrete choice models with multiplicative error terms - p.25/31

Summary: bus data set

	7751		
	1148		
Model	Additive	Difference	
1	-4255.55	-3958.35	297.2
2	-4134.56	-3817.49	317.07
3	-4124.21	-3804.9	319.31

Summary: car data set

	8589				
	1585				
Model	Model Additive Multiplicative				
1	-5070.42	-4304.01	766.41		
2	-4667.05	-3808.22	858.83		
3	-4620.56	-3761.57	858.99		

Circumventing the problem of the scale: discrete choice models with multiplicative error terms - p.27/31

Swiss value of time (SP)

- No improvement with fixed parameters
- Small improvement for random parameters

	Additive	Multiplicative	Diff.
Fixed param.	-1668.070	-1676.032	-7.96
Random param.	-1595.092	-1568.607	26.49

Swissmetro (SP)

- Nested logit
- 16 variants of the model
 - Alternative Specific Socio-economic Characteristics (ASSEC)
 - Error component (EC)
 - Segmented travel time coefficient (STTC)
 - Random coefficient (RC): the coefficients for travel time and headway are distributed, with a lognormal distribution.

	RC	EC	STTC	ASSEC	Additive	Multiplicative	Difference
1	0	0	0	0	-5188.6	-4988.6	200.0
2	0	0	0	1	-4839.5	-4796.6	42.9
3	0	0	1	0	-4761.8	-4745.8	16.0
4	0	1	0	0	-3851.6	-3599.8	251.8
5	1	0	0	0	-3627.2	-3614.4	12.8
6	0	0	1	1	-4700.1	-4715.5	-15.4
7	0	1	0	1	-3688.5	-3532.6	155.9
8	0	1	1	0	-3574.8	-3872.1	-297.3
9	1	0	0	1	-3543.0	-3532.4	10.6
10	1	0	1	0	-3513.3	-3528.8	-15.5
11	1	1	0	0	-3617.4	-3590.0	27.3
12	0	1	1	1	-3545.4	-3508.1	37.2
13	1	0	1	1	-3497.2	-3519.6	-22.5
14	1	1	0	1	-3515.1	-3514.0	1.1
15	1	1	1	0	-3488.2	-3514.5	-26.2
16	1	1	1	1	-3465.9	-3497.2	-31.3

Concluding remarks

- Error term does not have to be additive
- With multiplicative errors, an equivalent additive formulation can be derived by taking logs
- Multiplicative is not systematically superior
- In our experiments, it outperforms additive spec. in the majority of the cases
- In quite a few cases, the improvement is very large, sometimes even larger than the improvement gained from allowing for unobserved heterogeneity.

Concluding remarks

 Model with multiplicative error terms should be part of the toolbox of discrete choice analysts

Thank you!

