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Abstract

This is a short paper on different proofs for special cases of a

conjecture about Minkowski sums of polytopes.

1 Introduction

Any face of a Minkowski sum of polytopes can be decomposed uniquely into
a sum of faces of the summands. We will say that the decomposition is exact

when the dimension of the sum is equal to the sum of the dimensions of the
summands. When all facets have an exact decomposition, we will say the
summands are relatively in general position.

This is our main conjecture:

Conjecture 1 Let P1 and P2 be d-dimensional polytopes relatively in general

position, and P = P1 + P2 their Minkwoski sum. Then

d−1∑

k=0

(−1)d−1−kk(fk(P ) − fk(P1) − fk(P2)) = 0
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Note at the form is rather similar to Euler’s Equation:

d−1∑

k=0

(−1)d−1−kfk(P ) = 1 − (−1)d

By using Euler’s Equation, we can write the conjecture slightly differently:

Corollary 1 Let P1 and P2 be d-dimensional polytopes relatively in general

position, and P = P1 + P2 their Minkwoski sum. Then

d−1∑

k=0

(−1)d−1−k(k + a)(fk(P ) − fk(P1) − fk(P2)) = −a + a(−1)d

The conjecture has an interesting application when used in conjunction
with this theorem:

Theorem 1 Let P be a perfectly centered polytope. A subset H of P + P ∗

is a nontrivial face of P + P ∗ if and only if H = G + F D for some ordered

nontrivial faces G ⊆ F of P .

A polytope and its dual satisfy the general position condition posed by the
main conjecture, which makes it a general statement about lattices of poly-
topes, or at least lattices of polytopes which can be made perfectly centered.
We have as yet no idea whether some polytopes can’t be made perfectly
centered or all of them can.

2 Proof for particular cases

Here is the proof a few few special cases.

2.1 Proof for zonotopes sums

Zonotopes f -vectors are completely known. Since the sum of two zonotopes
is again a zonotope, it is possible to prove the following:

Theorem 2 Let Zm1

d and Zm2

d be two d-dimensional zonotope in generated

by m1 respectively m2 segments in general position, then the main conjecture

is true for their Minkowski sum.

Proof. As stated in [3] the f -vector of Zm
d is given by:

fk(Z
m
d ) = 2

(
m

k

) d−k−1∑

h=0

(
m − k − 1

h

)
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Using the identity k

(
m

k

)

= m

(
m − 1
k − 1

)

, and defining d′ = d − 1, k′ =

k − 1 and m′ = m − 1, we can write:

d−1∑

k=0

(−1)d−1−kkfk(Z
m
d ) =

d−1∑

k=1

(−1)d−1−kk2

(
m

k

) d−k−1∑

h=0

(
m − k − 1

h

)

=

d′−1∑

k′=0

(−1)d′−1−k′

m2

(
m′

k′

) d′−k′−1∑

h=0

(
m′ − k′ − 1

h

)

=

m

d′−1∑

k′=0

(−1)d′−1−k′

fk′(Zm′

d′ )

Since Zm′

d′ is a polytope, Euler’s formula tells us that the alternating sum of
its f -vector is equal to 1 − (−1)d′

, and so

d−1∑

k=0

(−1)d−1−kkfk(Z
m
d ) = m(1 + (−1)d)

Obviously, (m1 + m2)(1 + (−1)d) − m1(1 + (−1)d) − m2(1 + (−1)d) = 0

2.2 Proof for nesterov roundings of perfectly centered

polytopes

We have managed to have proof for the particular case of perfectly centered
polytopes summed with their own dual. We will use for this the Dehn-
Sommerville relations for extended f -vectors:

Lemma 1 Let P be an Eulerian poset of rank d, S ⊂ {0, . . . , d−1}, {i, k} ⊆
S ∪ {−1, d}, i < k − 1, and S contains no j so that i < j < k. Then

k−1∑

j=i+1

(−1)j−i−1fS∪j(P ) = fS(P )(1 − (−1)k−i−1).

These relations have been proved in [1]. It has also been proved in [4]
that convex polytopes lattices are Eulerian.
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For convenience, we will sometime use the following notations:

fa,b,c := f{a,b,c} fa,a,b = fa,b

(We can define fa,a,b as the number of chains of three faces F1, F2 and F3 of
respective dimension a, a and b, so that F1 ⊆ F2 ⊆ F3. This is obviously
equal to fa,b.)

If we examine the special case of D-S relations where S = {i, k} ⊆
{−1, . . . , d}, we can write the following equation:

Lemma 2
k∑

j=i

(−1)jfi,j,k(P ) = 0

Using Thm 1, since G and F D are subsets of orthogonal spaces, we can
write a formula for the f -vector of P + P ∗ using the extended f -vector of P .

Theorem 3 Let P be a perfectly centered polytope, then the f -vector of P +
P ∗ can be written as:

fk(P + P ∗) =
k∑

i=0

fi,i+d−1−k, ∀k = 0, . . . , d − 1

Proof. Let P be a perfectly centered polytope. For every k, the sumber of
k-faces of P +P ∗ is equal to the number of pairs of faces (F, G) of P , F ⊆ G

so that dim(F )+ dim(GD) = k, which means dim(F )+ d− 1− k = dim(G).
Which is the number of chains of two non-trivial faces of dimensions i and
i + d − 1 − k.

Theorem 4 Let P be a perfectly centered polytope. Then the conjecture is

true for the Minkowski sum P + P ∗.

Proof. Let P be a perfectly centered polytope. We have that

d−1∑

k=0

(−1)d−1−kkfk(P ) = −

d−1∑

i=0

(−1)d+iifi,d(P )

By using k′ = d − 1 − k:

d−1∑

k=0

(−1)d−1−kkfk(P
∗) = −

d−1∑

k′=0

(−1)k′

(d − 1 − k′)f−1,k′(P )
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d−1∑

k=0

(−1)d−1−kkfk(P + P ∗) =

d−1∑

k=0

k∑

i=0

(−1)d−1−kkfi,i+d−1−k(P )

We will change the sum to replace k by k′ = i + d − 1 − k:

=

d−1∑

i=0

d−1∑

k′=i

(−1)k′−i(i + d − 1 − k′)fi,k′(P )

=
d−1∑

i=0

d−1∑

k′=i

(−1)k′+iifi,k(P ) + (−1)k′+i(d − 1 − k′)fi,k(P )

=

d−1∑

i=0

d−1∑

k′=i

(−1)k′+iifi,k(P ) +

k′

∑

i=0

d−1∑

k′=0

(−1)k′+i(d − 1 − k′)fi,k(P )

Composing the three, we get:

d−1∑

k=0

(−1)d−1−kkfk(P + P ∗) − fk(P ) − fk(P
∗) =

d−1∑

i=0

d∑

k=i

(−1)k+iifi,k(P ) +
k∑

i=−1

(−1)k′+i

d−1∑

k′=0

(d − 1 − k′)fi,k(P )

=
d−1∑

i=0

i

d∑

k=i

(−1)k+ifi,k,d(P )

︸ ︷︷ ︸

0

+
d−1∑

k=0

(d − 1 − k)
k∑

i=−1

(−1)k+if−1,i,k(P )

︸ ︷︷ ︸

0

= 0

By Dehn-Sommerville relations (2).

2.3 Old proofs

I include here old proofs which have been made useless by 4
We will use for some proofs the Binomial Theorem:

Theorem 5
d∑

k=0

akb(d−k)

(
d

k

)

= (a + b)d

and a variant of the latter :
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Theorem 6
d∑

k=0

kakbd−k

(
d

k

)

= ad(a + b)d−1

Proof.
d∑

k=0

kakbd−k

(
d

k

)

=

d∑

k=1

akbd−kk
d!

k!d − k!
=

d∑

k=1

ak−1bd−kad
d − 1!

k − 1!d − k!
=

ad

d−1∑

k=0

akbd−1−k

(
d − 1

k

)

= ad(a + b)d−1

Here is the proof for the Nesterov rounding of simplices:

Theorem 7 Let ∆d be the d-dimensional simplex, then the main conjecture

is true for the Minkowski Sum of ∆d and its dual ∆∗
d.

Proof.

As stated in [2] the f -vector of the Nesterov Rounding of a simplex is
given by:

fk(∆d + ∆∗
d) =

(
d + 1
k + 2

)
(
2k+2 − 2

)
, for 0 ≤ k ≤ d − 1.

So we can write:

d−1∑

k=0

(−1)d−1−k(k + 2)fk(∆d + ∆∗
d) =

d−1∑

k=0

(−1)d−1−k(k + 2)
(
2k+2 − 2

)
(

d + 1
k + 2

)

.

Using the identity (k + 2)

(
d + 1
k + 2

)

= (d − k)

(
d + 1
k + 1

)

and by using

d′ = d + 1 and k′ = k + 1, we can write

=

d′−1∑

k′=1

(−1)d′−1−k′

(d′ − k′)
(

2k′+1 − 2
)(

d′

k′

)
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=

d′

∑

k′=0

(−1)d′−1−k′

(d′ − k′)
(

2k′+1 − 2
) (

d′

k′

)

.

Using k′′ = d′ − k′, we get

= 2

d′

∑

k′′=0

(−1)k′′−1k′′
(

2d′−k′′

− 1
) (

d′

k′′

)

Using the Binomial Theorem, we get

= −2(−1)d′ = 2(d + 1).

We have that fk(∆d) = fk(∆
∗
d) =

(
d + 1
k + 1

)

.

d−1∑

k=0

(−1)d−1−k(k + 2)

(
d + 1
k + 1

)

=

d′−1∑

k′=1

(−1)d′−1−k′

(k′ + 1)

(
d′

k′

)

=

(d′ + 1) − (−1)d′−1 +

d′

∑

k′=0

(−1)d′−1−k′

(k′ + 1)

(
d′

k′

)

︸ ︷︷ ︸

0

= (d + 2) − (−1)d

And so,

d−1∑

k=0

(−1)d−1−k(k + 2)(fk(∆d + ∆∗
d) − fk(∆d) − fk(∆

∗
d) =

2(d + 1) − 2
(
(d + 2) − (−1)d

)
= −2 + 2(−1)d

Here is the proof for the Nesterov rounding of cubes:

Theorem 8 Let �d be the d-dimensional cube, then the main conjecture is

true for the Minkowski Sum of �d and its dual �
∗
d.

Proof. As stated in [2] the f -vector of the Nesterov Rounding of a simplex
is given by:

fk(�d + �
∗
d) =

(
d

k + 1

)

2d−k−1
(
3k+1 − 1

)
, for 0 ≤ k ≤ d − 1.
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So we can write:

d−1∑

k=0

(−1)d−1−k(k +1)fk(�d +�
∗
d) =

d−1∑

k=0

(−2)d−1−k(k +1)(3k+1 − 1)

(
d

k + 1

)

Using the identity (k +1)

(
d

k + 1

)

= d

(
d − 1

k

)

and by using d′ = d− 1,

we can write

= d

d′

∑

k=0

(−2)d′−k(k + 1)(3k+1 − 1)

(
d′

k

)

.

And using 5 and 6, we get:

= d
(

3 · 1 − (−1)d′

)

= 3d + (−1)dd

We have that
d−1∑

k=0

(−1)d−1−k(k + 1)fk(�d) =

d−1∑

k=0

(−1)d−1−k(k + 1)2d−k

(
d

k

)

=

−
d−1∑

k=0

(−2)d−k(k + 1)

(
d

k

)

=

−

d∑

k=0

(−2)d−k(k + 1)

(
d

k

)

+ (d + 1)

Using 5 and 6, we get:

= −(d(−1)d−1 + (−1)d) + (d + 1) = (d − 1)(−1)d + (d + 1)

We also have that

d−1∑

k=0

(−1)d−1−k(k + 1)fk(�
∗
d) =

d−1∑

k=0

(−1)d−1−k(k + 1)2k+1

(
d

k + 1

)

Using the identity (k +1)

(
d

k + 1

)

= d

(
d − 1

k

)

and by using d′ = d− 1,

we can write

= 2d

d′

∑

k=0

(−1)d′−k2k

(
d′

k

)

︸ ︷︷ ︸

1

= 2d
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And so,

d−1∑

k=0

(−1)d−1−k(k + 1)(fk(�d + �
∗
d) − fk(�d) − fk(�

∗
d) =

3d + (−1)dd − 2d − ((d − 1)(−1)d + (d + 1)) = −1 + (−1)d

Here is the proof for the Nesterov rounding of 4-dimensional perfectly
centered polytopes:

Theorem 9 Let P be a 4-dimensional perfectly centered polytope. Then the

conjecture is true for the Minkowski sum P + P ∗.

Proof. As stated in [2], the f -vector of the faces of the Nesterov Rounding
of a perfectly centered polytope P can be determined by the face lattice of
P :

Theorem Let P be a perfectly centered polytope. A subset H

of P +P ∗ is a nontrivial face of P +P ∗ if and only if H = G+F D

for some ordered nontrivial faces G ⊆ F of P .

So in 4 dimensions, we will have

F3(P + P ∗) = {F + F D : F non-trivial face of P}

F2(P + P ∗) = {F + GD : F ⊂ G, dim(F ) + 1 = dim(G)}

F1(P + P ∗) = {F + GD : F ⊂ G, dim(F ) + 2 = dim(G)}

And so we have the following:

f3(P + P ∗) − f3(P ) − f3(P
∗) =

(f0(P ) + f1(P ) + f2(P ) + f3(P )) − f3(P ) − f0(P ) = f1(P ) + f2(P )

f2(P + P ∗) − f2(P ) − f2(P
∗) =

(f0,1(P ) + f1,2(P ) + f2,3(P )) − f2(P ) − f1(P ) = f1(P ) + f2(P ) + f1,2(P )

f1(P + P ∗) − f1(P ) − f1(P
∗) =

(f0,2(P ) + f1,3(P )) − f1(P ) − f2(P ) = 2f1,2(P ) − f1(P ) − f2(P )

Again, we have that

3(f3(P + P ∗) − f3(P ) − f3(P
∗))

−2(f2(P + P ∗) − f2(P ) − f2(P
∗))

+(f1(P + P ∗) − f1(P ) − f1(P
∗)) = 0.
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