
Performance Analysis of Self Limiting Epidemic
Forwarding

Technical Report LCA-REPORT-2006-127
Alaeddine El Fawal, Jean-Yves Le Boudec, and Kave Salamatian

EPFL, I&C
CH-1015 Lausanne, Switzerland

{alaeddine.elfawal,jean-yves.leboudec,kave.salamatian}@epfl.ch

Self limiting epidemic forwarding is a method of epidemic information dissemination in wireless ad-hoc networks that
achieves congestion control by limiting spread (i.e. the number of nodes that receive a given message) and injection rate in
order to preserve a meaningful service. We analyze the performance of various methods for spread control: on one hand, the
classical method, which consists in decrementing the TTL of a packet when it is transmitted, on the other hand, two methods
based on “aging”, where the TTL of a packet may be decremented while it is waiting for transmission in the epidemic buffer.
The aging methods are: (selective aging) decrement TTL of a waiting packet when a duplicate is received and (global aging)
decrement when any packet is received. The performance metrics are based on injection rates of messages, on amount of
redundant information and on spread. We use detailed, realistic simulation for medium scale networks (up to 800 nodes); for
networks of any size, we use an analytical method based on fluid approximation and solution of a fixed point problem. We
find that the classical method does not perform well. Selective aging improves the performance, and global aging performs
much better; it manages to control the spread so that the rate of injection remains good with fixed parameters across a wide
range of settings.

I. INTRODUCTION

Epidemic forwarding has been proposed for use in wireless ad-hoc (i.e. infrastructure less) networks to disseminate infor-
mation in broadcast mode [8], [11], [19], [20]. The principle is that nodes repeat with some probability the information the
heard from others, thus propagating fresh information around. It is designed to operate in quickly varying environments, where
mobility and self-organization make the classical methods based on distributions trees non practical. It can be used to support
routing, resource discovery protocols, or applications such as chatting in a traffic jam, coupon advertisements [10], or pocket
switched networks [18].

The performance of epidemic forwarding depends heavily on the control of the forwarding factor (i.e. the probability that
a node repeats a given message). There is a tradeoff between amount of redundant information and delivery ratio. Various
mechanisms have been proposed in [11], [19], [20] to reach satisfactory trade-offs; they differ in the assumptions they make
on the information required about one node’s neighborhood. These references assume that the semantics of the service requires
that all nodes receive all information, as is typical for example for disseminating routing information.

In contrast, we follow the approach in [8] and are interested in an epidemic service where the number of sources (and
recipients) is large, such as the population of a highway system. Broadcasting to all in such a setting is simply not possible
as the broadcast capacity does not scale with the population [14]. Thus, we must limit the spread of epidemic forwarding
if we want sources to have a constant throughput as the network scale. One might argue that this defeats the purpose of an
epidemic service, but this is not always true, as there are applications (e.g. coupons, chatting in a jam) for which, in contrast,
the semantics of local scope broadcast makes sense. It also follows that we care more for spread (absolute number of nodes
that receive a message) than delivery ratio (see Section II for a definition of our performance metrics).

A natural way (“classical TTL”) to limit the spread of packets is by means of the TTL field naturally present in IP packets:
the TTL of a packet is decremented when it is transmitted, and a packet with TTL==0 cannot be relayed; thus setting a small
value at the source (the “max TTL” value) limits the spread. However, as we show later, it is not easy, or even feasible, to find
a good value for max TTL, when the number of one hop neighbors varies. Further, in extremely dense cases (such as a traffic
jam on highway, with 802.11 range values) even the smallest possible value of max TTL is too large. We consider alternative
methods, based on “aging”, i.e. decrementing the TTL of a packet while it is waiting for transmission in the epidemic buffer.
We are in particular interested in two methods: the former (selective aging) decrements the TTL of a waiting packet by some
amount K1 for every received duplicate of this packet; the latter (global aging) decrements the TTL of all waiting packets by
some (smaller) amount K2 for any received packet. Note that the TTL field of a transmitted IP packet is an 8 bits integer, but
this constraint does not have to apply when the packet is stored in a node, in particular, the aging decrement can be less than
1 (but the decimal part of the TTL is lost when the packet is transmitted). See Section III for more details.
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The goal of this paper is to evaluate the performance of these different options for controlling the spread. i.e., when to kill
packets. We are in particular interested in knowing whether it is possible to assign constant values to the parameters such that
the system works well in a wide range of situations.

We evaluate the performance on networks up to 800 nodes using a Java implementation of the epidemic forwarding system,
over a simulated mobile ad-hoc network, using JIST-SWANS (Section V). We also use an analysis method that applies to
networks of any size. The method is inspired by the analysis of particle systems. We write the system evolution equations for a
Markov process that represents the states of all nodes; we cannot solve this system exactly, (as is classical in such situations),
but we use a fluid approximation, which, in this case, can be justified as a scaling limit. The resulting system for the stationary
regime is a set of non linear equations. For networks up to 800 nodes we solve the equations numerically, compare the results
to those of the simulation, and find a reasonably good match. We also apply the method to analyze networks of unlimited size;
here we assume that nodes are regularly spaced over an infinite grid, in 1 or 2 dimensions. We reduce the system of evolution
equations to a system of smaller dimensions (order of 100), and we find its stationary point by reducing it to a convergent
fixed point problem.

We find the following results. First, we verify that spread control is necessary; without it, a message propagates to the
entire network and thus all sources compete for a fixed non scalable capacity. Second, spread control with classical TTL does
not perform well. Third, selective aging improves over classical TTL, but global aging performs much better and manages to
control the spread so that the rate of injection remains good with fixed parameters across a wide range of settings.

The rest of the paper is organized as follows. In Section II gives our performance metrics. In Section III we describe in
detail the options and mechanisms for spread control and other system assumptions. In Section IV we explain our analytical
method. The results of our performance analysis are presented in Section V; the state of the art is discussed in Section VI,
and Section VII concludes the paper.

II. PERFORMANCE METRICS

The primary performance metrics we use are:
• spread (unitless): the number of nodes that receive a given message
• spread factor (unitless : the number of times that a given message is transmitted (cumulated over all nodes)
• rate of successful injection (in messages / second): the number of messages per second that a node considers successful

(using the implicit acknowledgement method described in Section III)
• buffer usage (in messages): number of messages in epidemic buffer, i.e., the transmission of which is pending.

We also use the following derived metrics:
• geo-coverage (in m or m2): the ratio spread / node density. This measures the geographical extent of the epidemic service.

The unit depends on the node distribution model. In linear scenarios, the density is in nodes per meter and geo-coverage
is in meters; otherwise it is in m2.

III. SYSTEM MODEL

In this section we describe the hypotheses we make about the epidemic forwarding system.

A. General Setting

Every node that participates in the self limiting epidemic forwarding service has an application that generates fresh packets,
and an “epidemic buffer”, in which packets received from other nodes, or issued by the application at this node, are stored
before retransmission. Data is also consumed by the application (e.g. displayed on a screen), but this is not modeled here.

In the context of this paper, the functions of the epidemic forwarding system can be classified as (1) spread control (2)
control of the forwarding factor, i.e. scheduling packets from the epidemic buffer for transmission by the MAC layer and (3)
adaptation of the rate of injection of fresh packets by the applications. We describe our options for (1) in detail in the next
section. Though we focus on the mechanisms for limiting the spread, we still need to make assumptions about (2) and (3);
this is done in Section III-C.

B. Spread control

We consider the following alternative methods for limiting the spread of packets.
1) Classical TTL: This is the method that comes by default with the Internet Protocol (IP). When a packet is created by

a source and placed into the epidemic buffer, it receives a TTL value equal to some positive constant “max TTL”. When the
packet is accepted for transmission by the MAC layer, the TTL field of the transmitted packet is equal to the value of the TTL
field in the packet in the epidemic buffer, minus 1. The TTL field in the packet stored in the epidemic buffer is unchanged.

When a packet created by some other node is received for the first time at this node, the packet is delivered to the application,
and the value of the TTL is screened. If it is equal to 0, it cannot be retransmitted and the packet is discarded. Else (TTL≥ 1),
the packet is stored in the epidemic buffer, with TTL equal to the value present in the received packet. When and if the packet
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is later accepted for transmission by the MAC layer, the transmitted TTL field is equal to the stored TTL minus 1, and the
stored TTL is unchanged, as above.

There is an issue when a duplicate of an existing packet is received, as is common with epidemic forwarding. In theory, there
are 4 possible strategies: (1) keep the existing stored TTL (2) adopt the received TTL (3) keep the largest of the received and
stored TTLs and (4) keep the smallest. However strategies (2) to (4) are not practical as they are not resilient to simple bugs
or attacks: with (2) and (3) a packet could keep a maximum TTL value for ever; with (4) a system could inject packets with
TTL=1 and destroy existing packets. Therefore, only strategy (1) is implemented in practice and this is the one we consider
in the rest of this paper.

Classical TTL is used in existing discovery protocols. It has the interesting feature that, if all nodes use the same value for
max TTL, they can infer their distances in number of hops.

Used with epidemic forwarding, classical TTL control the spread by limiting the number of retransmissions at successive
nodes. Limitation of the number of retransmissions at the same node is performed by the control of the forwarding factor
(see Section III-C). We will also see that we assume that nodes control the retransmission of their own packets by examining
whether they receive a copy back from some neighbor. For this to work, we need to impose max TTL≥ 2 in the rest of this
paper (i.e. every packet should be able to be relayed at least once).

A potential problem, confirmed by our simulation and analysis, is that Classical TTL does not adapt to the degree of
connectivity of a node. Without further controls, a packet is multiplied exponentially with a basis roughly proportional to the
degree of a node. This degree can vary dramatically without notice (for example on a highway).

2) Classical TTL + Receive Count: This is essentially the method proposed in [17]. In addition to its TTL field, a packet
stored in the epidemic buffer has a counter “Receive Count” incremented by 1 when a duplicate of this packet is received.
Initially, i.e. when the packet is created by the application or received for the first time, the counter is 0. When the counter
reaches a maximum value, the packet is discarded from the epidemic buffer. There is no relation between TTL and Receive
Count. In particular, when a packet is transmitted, the value of Receive Count is lost.

This method improves on classical TTL by discarding packets that are probably not worth transmitting. We assume in
Section III-C that some mechanism is in place to limit the forwarding factor, so, in practice, a packet that was received a
number of times has a very small chance of being accepted by the scheduler. As a result, the only benefit we expect from this
method is to reduce the buffer occupancy compared to Classical TTL.

3) Stored TTL: This method is a variant of Classical TTL, which consists in decrementing the stored TTL when there is
an indication that some node received the transmission (see Section III-C). This might improve on Classical TTL when nodes
are very mobile.

4) Aging: This method was proposed in [8] in a different but essentially equivalent form. We give here a presentation that
combines different options in one single framework. The method uses the TTL field like Classical TTL and its variants above,
but the TTL of a packet may be decremented while it is stored in the epidemic buffer, depending on receive and send events.
Formally, we have the following.

1) Every packet in the epidemic buffer has an “age” field, which is a fixed decimal positive number less than 256. The
age field can be coded as a 32 or 64 bit fixed point decimal number; it replaces the stored TTL field. When a packet is
created by the application, age = 0.

2) When a packet, created by some other node, is received by this node for the first time, its age is set to the complement
to 255 of the received TTL:
age= 255− TTL.

3) When a packet is transmitted, its TTL (which must fit in 8 bits) is set to the rounded value of the complement to 255
of the stored age, decremented by a fixed amount K0:

transmitted TTL = b255 − age − K0c (1)

When there is an indication that some node received the transmission (see Section III-C), the stored age is incremented
in the same way: age = age +K0

4) A packet can be transmitted only if (1) returns a positive TTL; it follows that a packet is discarded from the epidemic
buffer whenever its age reaches or exceed 256 −K0.

5) When a duplicate packet is received, the received TTL is ignored but the stored age is incremented:
age = age+K1

6) When any packet is received, the stored age of all packets in the epidemic buffer is incremented by K1:
age = age+K2

The method has three nonnegative constants K0, K1 and K2. In order to understand perhaps more easily what this method
does, assume for a moment that K1 = K2 = 0, so that only items 1 to 4 above are relevant. In this case, the transmitted TTL
decremented by K0 (and the stored age is incremented by the same amount) when a transmission occurs, and the maximum
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TTL set at the source is 255; this is the same as “Classical TTL + Receive Count”, with max TTL approximately equal to
255
K0

and the stored TTL equivalent to age.
Back to the general case, the effect of K1 and K2 in items 5 and 6 is to increment the age when a packet is received. This is

a fundamental difference with Classical TTL and its variants: the age of a packet is affected not only by transmissions of this
packet at this node, but also by transmissions from other nodes (this is called “homeostasis” in [8], in reference to biological
processes that aim at keeping the size of a population bounded).

We set K0 = 25 in the rest of the paper, unless otherwise specified, which corresponds to a maximum hop count of 8. For
K1 and K2 we consider in the sequel three special cases:

• selective aging: K1 > 0 and K2 = 0. The age of a packet increases as duplicates are received. We consider values of K1

in the range 25 − 75, so a packet is eliminated from the epidemic buffer after a few transmissions or receptions.
• global aging: K1 = 0 and K2 > 0. The age of a packet increases for any reception event. We consider much smaller

values for K2, since we expect the epidemic buffer to hold much more than 1 packet. We consider values of K2 in the
range 0.3 − 1.5. Note that it is because K2 is small that we need to introduce the age attribute instead of simply using
the stored TTL.

• hybrid aging: this is a combination of selective and global aging (K1 > 0 and K2 > 0). We take the same ranges for K1

and K2 as above.
We expect aging to be more adaptive than Classical TTL and its variants; for example, in a very dense case, aging should
discard packets well before Classical TTL (since transmissions have a large coverage, nodes receive many packets), and the
opposite should be true in sparse situations. This is indeed confirmed by our results in Section V. It is less obvious how
the three aging options compare. We will see in Section V that they perform similarly, in the sense that for a given network
condition and a given value of K1 there is a corresponding value of K2 such that selective and global aging performs about
the same. However, the optimal correspondence changes with the network condition, and this can be exploited by hybrid aging
to perform even better.

Another aging method based on elapsed time is proposed in [8], with the aim to avoid keeping packets forever in situations
where connectivity may be delayed a lot (hours or more). We leave the study of this delay tolerance aspect outside the scope
of this paper.

C. Other functions

In this section we describe functions that are not the main focus of our analysis but that need to be implemented. We use
the model in [8] as a basis as it is the only one, to the best of our knowledge, that was designed for large scales, and other
models can be approximately mapped to this one.

1) Control of Forwarding Factor: A packet in the epidemic buffer is retransmitted with a probability that depends on its
“virtual rate”; it is equal to c0a

RbS where c0 is a constant (inverse of a time), R [resp. S] is the number of times this packet or
a duplicate was received [resp. sent] and a and b are unitless constants less than 1. Thus the virtual rate of a packet decreases
exponentially with any receiving or sending event of the same packet. A scheduler decides which packet is selected next for
transmission by the MAC layer; it serves packets per IP source fairly but with a rate not exceeding its virtual rate. The constant
c0 is equal to ηR0 where R0 is the nominal bit rate of the MAC layer and η is the fraction of time that the MAC layer spends
serving epidemic packets (as opposed to packets of other, non epidemic applications). As a first approximation, the parameter η
allows to separate the services; it is outside the scope of this paper to evaluate the impact of self-limiting epidemic forwarding
on other services and vice-versa, and therefore, without loss of generality, we take η = 1. The parameters a and b control the
probability that a packet is retransmitted (the “forwarding factor”). We take a = b = 0.15 as in [8].

2) Control of Injection Rate: The packets generated by the source at this node are placed into the epidemic buffer, where
they compete with the other packets for transmission (but with a high probability of being transmitted since their virtual rate
is larger, having R = S = 0). The source rate is controlled by a windowing system : the number of outstanding packets the
source is allowed to have in the epidemic buffer at this node is limited to at most 2 [8]; a packet is deleted from the epidemic
buffer when a duplicate is received, which serves as implicit acknowledgement.

3) MAC Layer Assumptions: We assume the MAC layer is 802.11; in its standard configuration, its broadcast performance is
poor, as the RTS/CTS mechanisms (that aims to avoid collisions) cannot be used. We assume that we use the pseudo-broadcast
proposed in [13], by which a packet is sent to the MAC address of a neighbor (with RTS/CTS), but can be promiscuously
copied by all systems within range. This effectively solves much of the performance issue, but not all due to mobility. We
therefore also use the “send pending” method of [8]: a packet is sent in pseudo-broadcast mode if a neighbor’s MAC address
was recently refreshed, else it is sent in broadcast mode (without RTS/CTS), but additional heuristics are used to detect if the
transmission was successful (indication of neighbor activity, reception of duplicate).

4
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IV. ANALYSIS

A. Dynamical Equations for a Continuous Time Markov Chain

We now describe the analytical method we use. It is driven by the desire to model networks of any size, as is suitable
for highway scenarios. The communication system under study could be seen as a dynamical system where local interactions
between state variables drive the global behavior of the system to an eventually stationary global state. Each event in the
communication system might results in state transitions. When the size of the communication system is large, the cause
of possible state transition increases and the system follows approximately a continuous time Markov chain. This is only
approximate, and we verify its accuracy against medium scale simulations. The starting point is the following well known
result.

Theorem 1 (Forward Equation [3]): Consider a continuous time Markov Chain Y(t) defined over a finite state space S.
For any function f() of the state y:

∂
�
{f(Y(t))}

∂t
=

�
(

X

r

hr(Y(t)) (f(Y(t) + ∆r) − f(Y(t)))

)

where the summation is over all possible state transitions r, hr(y) is the rate of transition r when the state vector is y;
y + ∆r is a symbolic notation for the state after transition r has occurred.
The term

∑

r hr(y)(f(y + ∆r)− f(y)) is called the drift of function f . When applied to f() = the indicator function of the
set {y0}, the forward equation gives the well known equation for the time dependent probabilities, which is often called the
“master equation” [9].

In our case the state of the process can be mapped to a subset of Z
d for some d, and by letting f(y) = yi for i = 1 to d one

would get equations for the mean of y. However, the right-handside is non linear in y and a direct use of the Forward Equation
is difficult. For large scale systems, a deterministic approximation may work, depending on scaling properties of the system
[3], [7]. We show in the next subsection that such a fluid limit exists for a model of our system. The ODE is then obtained
from the Forward Equation by removing the expectation, listing all possible transitions and computing their contribution to
the drift.

B. An ODE Model of Self-Limiting Epidemic Forwarding

We first derive the forward equation for a model of our system.
1) State Variables: Assume there are N node i ∈ {1, . . . , N} and there are at most M messages k ∈ {1, . . . ,M} that can

exist in this network. For each node i and each message k we have a state vector

Sik(t) = (Xk
i (t), Nk

i (t),Mk
i (t), Ak

i (t))

Xk
i is a Boolean equal to 1 if the message k have been received by node i; N k

i contains the number of received copy of the
message; Mk

i contains the number of sent copy of the message; Ak
i contains the age of the message. We add to these state

variables, the value Dk
i that is a Boolean equal to 1 if the message is dead. The death of a message is a function of the age

of the packet, Dk
i = f(Ak

i ). In all rigour, we should use a function Dk
i = � {

Ak
i
>Amax

}. However, this poses problems for the
solution of ODEs. Instead, we approximate the threshold function by a simple linear function that is 0 below Amax − 1 and 1
above Amax: Dk

i = min
(

max(Ak
i − Amax + 1, 0), 1)

)

.
2) State evolution equations: For the system under study only one event leads to state transitions: the emission of a message

by a node. Consider first the case where the number of messages sent over the network are finite; we will relax this assumption
in Section IV-C. Let’s assume that emission of message k at node i occurs at rate Rk

i (t) (that will be described later) and that
this message is received by a node j in neighborhood of i at rate Rk

ij(t) ≤ Rk
i (t). These rates might be time varying function

of the state vector X(t). In particular they will depend of the level of activity at MAC layer. Obviously Rk
i (t) > 0 only when

the node i have received the message k (Xk
i = 1) and that this message have not died (Dk

i = 0). The forward equation is
rewritten to derive the set of ODEs governing the dynamic of the system :

∂
� ˘

Xk
i (t)

¯

∂t
=

�
8

<

:

�
˘

Xk
i
(t)=0

¯

X

j∈Ni(t)

R
k
i (t)

9

=

;

∂
� ˘

Nk
i (t)

¯

∂t
=

�
8

<

:

X

j∈Ni(t)

R
k
i (t)

9

=

;

∂
� ˘

Mk
i (t)

¯

∂t
=

� 
R

k
i (t)

�
˘

Xk
i
(t)=1, Dk

i
(t)=0

¯

ff
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∂
� ˘

Ak
i (t)

¯

∂t
= E

8

<

:

�
˘

Xk
i
(t)=0

¯

0

@

X

j∈Ni(t)

R
k
ji(t)(A

k
j (t) + K0)

1

A+

�
˘

Xk
i
(t)=1,Dk

i
(t)=0

¯

0

@K2

X

l∈M

X

j∈Ni(t)

R
l
j(t)+

K1

X

j∈Ni(t)

R
k
j (t) + K0R

k
i (t)

1

A

9

=

;

In these equations we assume that the neighborhood of a node i denoted as Ni(t) might be variable in time as it will be in
the context of node mobility. Coefficient K0, K1 and K2 are coefficients of the aging of packets as defined previously. The
above stated equations are very general and valid for all type of MAC layers. Specific MAC layer details will affect the precise
form of the rate terms Rk

i (t) and Rk
ji(t) as a function of the global state of the communication system.

3) Rate Function: The rate of transmission of message k by node i (Rk
i ) is resulting from three effects : the virtual

rate vRate
k
i , the scheduling mechanism implemented in the node and the MAC layer used. The virtual rate is defined as

vRate
k
i (t) = R0a

Nk
jk(t)bMk

j (t). The scheduler effect could be described easily by the following relation

R
k∗
j (t) = min

 

vRate
k
j ,

vRate
k
j

P

l∈Mj
vRate

l
j

!

j ∈ Mi

where Mi is the set of messages in node i that are still alive.
The sending rate (Rk

i )as well as the reception rate (Rk
ij) will also depend on the characteristics of the MAC layer. One could

expect the transmission and reception rate to be related to the overall transmission rate in the neighborhood of the receiver :

Rk
i (t) = Rk∗

i (t)f





∑

l∈Mj

∑

j∈Ni(t)

Rl∗
j





Rk
ij(t) = Rk∗

i g





∑

l∈Mj

∑

j∈Ni(t)

Rk∗
ij





where the precise form of the decreasing function f() and g()depends on the MAC layer used. As we are assuming in this
work an IEEE 802.11 MAC layer, we could use the approximation the broadcast mode of IEEE 802.11 protocol as a p-
persistent CSMA mechanism proposed in [5] to approximate f and g. The difference between the IEEE 802.11 protocol and
the p-persistent resides in the way of selection of the back-off interval after a collision. Instead of binary exponential back-off
as in IEEE 802.11, the p persistent approach samples its back-off interval size from a geometric distribution with parameter p.
Probability p depends on the mean size of contention window. In [5] a formula for ρ, the capacity of an IEEE 802.11 network,
as a function of p (persistence probability), the number of nodes M in the environment and message size is derived (formula
8 in [5]).This formula is validated with simulations and shown to be a good approximation of real behavior of IEEE 802.11.
Moreover a procedure is presented in the same reference to derive the value of the p parameter as a function of source number
and a formula is provided evaluating the probability of collision � rob

{

coll
}

(in lemma 3) as a function of M and p(M).
Using these results the function f and g had been assigned as :

g(x) = min{1,
ρ(p,M)

x
} , f(x) =

g(x)

1 − � rob
{

coll
}

4) ODE: In this section we take a fluid limit to replace the equations in Section IV-B.2 by ODEs. The scaling limit is
obtained by replacing the original system by one where transitions occur N times faster, but make jumps N time smaller.
This amounts to replacing the packets by bits of infinitely divisible fluid. In the limit of N going to ∞ the system becomes
deterministic, with evolution equations given by the following theorem.

Theorem 2: Let Y N be the process corresponding to the scaling parameter N just described, with values in R
d for some

d, and where the state Y N (t) is the collection of all random variables appearing in the left handside of the equation in
Section IV-B.2. Assume the process has some (non random) initial condition Ȳ0. Let Ȳ (t) be the deterministic, unique solution
of the ODE below, (Ȳ (t) is the collection of all variables appearing in the left handside) with initial condition Ȳ0. Then for
very t ≥ 0

lim
N→∞

sup
0≤s≤t

∥

∥Y N (t) − Ȳ (t)
∥

∥ = 0 almost surely.

Note that the norm in the theorem can be any norm since we are in finite dimension.
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Proof. We use the scaling result in [6], Theorem 6.4 page 456. We need first to imbed the original, non scaled system into
Z

d for some integer d, which is easily done if all jumps (change of states) are integer. Now this is true for the X,N and M
components of the state, but not necessarily for the A components because K0 to K2 are not necessarily integers. However,
they are decimal, so we can always multiply everything by some constant (independent of N ) so that all jumps are integer.

Second, we need to verify that
∑

r

|∆r| sup
y∈K

hr(y) < ∞

for any bounded area K, where hr(y) is the rate of transition r, ∆r is the change of state that results from transition r, and
the transitions are enumerated such that there is one transition per possible ∆r. But in our case this follows from the fact that,
on any bounded area K of the state space, there is only a finite number of such transitions.

Last, the mapping F () defined by the right handside of the equation must be Lipschitz continuous, i.e. for every compact
set K there must exist a bound mk such that ‖F (y) − F (y′)‖ ≤ mK ‖y − y′‖ for any y,y′ ∈ K. A sufficient condition
for Lipschitz continuity on compact sets is that the function has a continuous differential (we say it is class C1). There is a
small technicality here because of the min and max functions involved in the definition of the R and D terms, which are not
differentiable everywhere. We first show that the min and the max functions are Lipschitz continuous. This follows from the
inequality, valid for any numbers a, b, a′, b′:

|min(a, b) − min(a′, b′)| ≤ max (|a − a′|, |b − b′|)

which shows that the function of two real variables (a, b) 7→ min(a, b) is Lipschitz-continuous (with constant 1 with respect
to the l∞ norm in R

2). The same is true for max as max(a, b) = −min(−a,−b). Now it is sufficient to show Lipschitz
continuity for each of the coordinates of F () separately, i.e. for any of the lines of the equation below. Each coordinate of
F () is a class C1 function of the state variables and of functions that can be expressed as the minimum or maximum class
C1 functions of the state variable. The desired property follows from the fact that the composition of Lipschitz continuous
functions is Lipschitz continuous. �

The ODE used in the theorem is the following:
∂X̄k

i (t)

∂t
= (1 − X̄

k
i (t))

X

j∈N i(t)

R̄
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ji(t)(1 − D̄
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j (t))X̄k
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i (t)
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ji(t)(1 − D̄
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j (t))X̄k

j (t)
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j (t))(Āk
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1
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X̄
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k
i (t))
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@K1

X

j∈N i(t)

R̄
k
ji(t)X̄

k
j (t)(1 − D̄

k
j (t))+

K2

X
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X

j∈N i(t)

R̄
l
ji(t)X̄

l
j(t)(1 − D̄

l
j(t)) + K0R̄

k
i (t)

1

A

where the D̄ and R̄ variables depend on the deterministic state variables X̄, N̄ , M̄ , Ā in the same way as as the random
variables D,R depend on the X,N,M and A variables.

This dynamical system has two stable equilibrium points. One is when R̄k
j (t) = 0 and the second is when all messages in

all nodes die D̄k
j = 1. Two mechanisms drive the system to equilibrium: the message killing mechanism that drives all nodes

to the dead state and the inhibition mechanism that drives the transmission rate to 0.
C. Transient and steady state analysis

With the ODE we presented, the transient behavior of the Self-Limiting Epidemic Forwarding could be predicted for any
set of parameters and any scenario defined by an adjacency matrix A(t) (that could vary in time because of mobility) and an
initial state of the system

Sk
i (0) = (Xk

i (0),Mk
i (0), Nk

i (0), Ak
i (0))
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for i = 1, . . . , N and j = 1, . . . ,M . (The source of message k is set to node i by setting (Xk
i (0) = 1,Mk

i (0) = 0, Nk
i (0) =

0, Ak
i (0) = 0)) However, this analysis could not be used when sources generate a constant flow of messages, as the size of the

state space explodes, when we represent every message as an entity. For such realistic situations, the steady state of the system
is the main interest. Fortunately we could extend the transient equations to the steady state through the following heuristic.

We now extend the model and assume that a source generate packets with a rate λ. Because of the killing mechanism the
lifetime of any clone of a packet is finite. We represent any source of rate λ as a collection of h virtual, parallel mini-sources,
each with rate λ

h
. Let’s define the virtual system such that, when one of the h mini-sources emits a packet, all previous packets

of this mini-source are instantly discarded from all nodes in the network. This is clearly an ideal system; however, if the original
system is stable and h is large, the virtual system should be close to the real one, since packets then have a finite lifetime.
Let’s choose the number h such that the lifetime of a packet in the system is smaller than h

λ
, such that when a new message

is generated by a mini-source, all previous messages and clones generated by this source are dead. We need therefore to keep
only one state vector (containing 4 variables) per mini-source. Moreover one could observe that all mini-sources situated in
the same nodes will converge to the same steady state as they are not distinguishable. This means that for a network of N
states and M sources, the steady state analysis needs to solve 4 × N × M state equations.

Using such a value of h, we now assume that renewals happens with a rate λ
h

at each mini-source packet. A renewal of a
message generated in source k results in a state transition that sets in all nodes the states relative to this mini-source to zero,
(Xk

i = 0,Mk
i = 0, Nk

i = 0, Ak
i = 0). Only the source k itself will stay with Xk

k = 1. By augmenting the transient equation
with the above transition, we can derive a set of ODEs in exactly the same way as before. The steady state can be derived by
setting the right-hand side of the system of ODE to 0 leading to the following fixed point equation :

λ
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+K0

X
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R̄
k
j (∞)X̄k

j (∞)(1 − D̄
k
j (∞))

1

A (1 − D̄
k
i (∞))

(3)

where the ∞ relates to the steady state. The parameter h is chosen such that h
λ

is larger than the packet lifetime. However,
if a too large value of h is chosen it will not change the attained steady state. We can therefore keep increasing h until the
obtained steady state converges to a stable point.
D. Scaling behavior

We analyzed so far the dynamic of a network of node containing a finite number of nodes with a known topology (described
by the Adjacency matrix A(t)). The size of the state space of the dynamical system to analyze was 4×N ×M . Nevertheless
we also want to analyze situation when we have millions of nodes that are also potential sources, i.e. M and N are very large.
Here the proposed steady state analysis is not enough and we need to add some assumptions. Let’s assume then that the nodes
are sitting over an infinite regular grid with regular connectivity pattern (for example each node is connected with all nodes at
a distance less than K hops in the grid) and each node contains a source generating packets with a rate λ (with h mini-sources
as before). Because of the regular and symmetric structure of the grid the steady state behavior for any node and any source
is identical. The steady state vector of source messages of source k at node i (Sk

i (∞)) depends only on the distance of the
node i to the source node k, i.e. Sk

i (∞) = F(|i− k|) where the function f is a decreasing function converging to 0 that have
a value significantly larger than 0 only in a finite number of points. Let’s call this number of points L. This shows that the
steady state behavior of an infinite grid of nodes and sources can be analyzed through the equation (2) by replacing any term
of Sk

i (∞) by its counterpart in the function F. This leads to a fixed point system with only 4 × L equations.
E. Parameter Choice

The steady state obtained through the above equations depends on the parameters a, b, K0 to, K2. As we explained in the
introduction we are not analyzing here the incidence of the inhibition parameters a and b, and we are mainly interested on the
effect of K0 to K2 and λ.
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The transient behavior is expected to highly depends on the value of auto-inhibition and inter-inhibition factors a and b but
their impact on the steady state should be lower but it should be mainly governed by the parameters K1 to K2 that defines
the killing process.

The parameter K2 has a strong homeostatic property as they control the global number of packets that exists in the network.
Let n(t) be the global number of packets in the network. With global aging, the dynamic equation governing this number is
∂n(t)

∂t
= Msλ−K2n(t) and at equilibrium we have n∞ = Msλ

K2

where Ms is the spread factor. We could therefore expect that
the overall number of packets in the network to be strongly related to K2 and λ where a and b affect the spread factor Ms.
But this spread factor could be mainly derived using the transient analysis as it is defined as the number of copy sent over the
network for any injected packet. We will illustrate this point in the next section.

V. PERFORMANCE ANALYSIS RESULTS

In this section we describe the main results we find by applying the analytical model as well as detailed simulations.

A. Setting

Our simulations are carried out through JIST-SWANS [2], an open source simulator for ad hoc networks. The MAC layer
is a very accurate implementation of 802.11b in DCF mode with the basic rate of 1 Mbps since we transmit in broadcast
(pseudo broadcast). As for the radio, we use the capture effect to approach the real WIFI cards, which all implement it [16].
We consider fading channels with free space path-loss.

In our simulations, we consider the model in [8] since it is the only one, to the best of our knowledge, that was designed
for wide range of settings (e.g. large scale, sparse, dense, mobility). Further, it supports the aforementioned spread control
methods explicitly which makes dealing with them easier.

Beside a static scenario that we use to validate the ODE model, we applied the full protocol of [8] to the vehicular network.
We use an extension of JIST-SWANS called STRAW [4], which simulates the vehicular traffic and provides a mobility model
based on the operation of real vehicular traffic. We simulate vehicles on a n urban road with tow lanes in each direction
and a speed limit of 80Km/h. We show only results for the two extreme cases: Very sparse and very dense. Corresponding
densities are 2.5 vehicles/Km and 400 vehicles/Km respectively. Intermediate results are omitted since they have the same
interpretation and they can be deducted by analogy. The transmission range is around 300 m [1], which is typical for outdoor
line of site (LOS) communication of vehicular networks.

Each node has a greedy application that injects fresh packets into the epidemic buffer whenever it is allowed (see sect.3.3.3)
and thus it achieves the maximum rate allowed by the scheduler according to the network conditions.

B. Spread control is needed

We argued in the introduction that spread control is needed to ensure that the transmission rate of any user is satisfactory.
Formally speaking, let λ be the user application rate (generating new information to forward), FF the forwarding factor (the
number of time a node forward a message), N the number of nodes receiving messages sent by user application (the spread)
and R0 the available transmission rate over the channel, which includes self packets from node owner application and foreign
data coming from other nodes. In a hypothetical symmetric network where self packets are transmitted only once and foreign
packets forwarded FF times we have:

λ + FF ∗ λ ∗ N = R0 ⇔ λ =
R0

1 + FF ∗ N

So the rate-spread trade-off is obvious.
One could ask if an aging mechanism is really needed, and if we cannot use just the control of the forwarding factor, in

the form of the simple inhibition mechanism described in Section III-C.1 to limit the spread (without any age transferred with
the packet in form of a TTL or any other mean). To analyse this, we simulated a linear grid of node each with a single hop
connectivity and we used different value of inhibition values a and b to see if for a specific value we would have a limited
spread. We do not observe such a limited spread for any value of a and b (unless the trivial case where a = b = 0 where the
spread is limited to its source). The reason is that without information about the past history of a packet, copies of a message
at different nodes are indistinguishable, and therefore the packet will have the same chance to be propagated at any node of
the network, as the neighborhood is not different. We show in figure 1 the propagation over time of a single message sent at
time t = 0 for a node in the middle of a linear grid. A point in this graph means that the message has been received by the
node sitting at this x coordinates. One can see that the spread is not limited and that only the speed of the spread is controlled
by the inhibition parameters. We need therefore to transmit along with the packet, some information about the past history of
packet to make packets that should not be forwarded distinguishable, and eventually to kill packets. In forthcoming sections
we evaluate the performance of the different schemes presented in Section III.
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Fig. 1. Propagation of a message in a linear grid with single hop connectivity where nodes use the inhibition mechanism with a = b = 0.15.

C. Validation of the Fixed Point Approach

Before going further we have first to validate the ODE model and the fixed point approach described in section IV. Let
us first give some idea about the complexity of running the ODE model. As explained previously in section IV-D the scaling
steady state is obtained through finding the fixed point of a non linear system of dimension 4 × L. Four our analysis we
assumed a grid of N × N nodes leading to L = N 2. We have analyzed scenarios with N = 100 leading to a system of
L = 10000 equations. Using Matlab software, finding a stable fixed point for such a system needed around 3 minutes on a
single 3 Ghz processor. Alternatively doing one run of simulation using JIST/SWANS for a 800 nodes scenario can take up
to 20 hours and should be repeated to get a consistent estimate through averaging. This motivates the use of the theoretical
model in place of simulation for large scale systems.

Finding the fixed point state give results as presented in Fig. 2. For all the setting analyzed here a value of h, i.e. number
of mini-sources equal to 30 was enough to make the system converging to a stable steady state behavior.

However as the theoretical model is based on some simplification we could expect to have some discrepancy between the
model and simulation results. To evaluate these difference we have compared performance metric obtained using the ODE
model as well as using JIST/SWAN java simulator. We are presenting here one result of this validation tests that is typical.

We have analyzed a rectangular grid of nodes each containing an information source sending at a rate λ. We assume a
connectivity of k = 1, 2, 6 hops for each node in the grid, i.e. if the transmission range is assumed to be constant this means
an increase in the density of nodes as k2. The simulation scenario consists of a grid of 24× 24 nodes (because of simulation
complexity we have restrained ourself to this network size, as it contains 576 nodes), with parameter values a = b = 0.15,
K0 = 25 and K2 = 1. The results are compared in Fig. 3. The comparison show a good adequation between the results.
We can see that the theoretical model has a tendency to overestimate the spread. This is because of the optimistic MAC
layer model we are using (see section IV-B.3). As the number of competing sources increases (for a neighborhood size of
6) the MAC layer model behaves better and the obtained results are tighter for the function Rk

ij , but the approximation on
collision probability become worse and that explains the discrepancy observed on the spread factor value Ms. There exists
also a difference between the value of saturation rate obtained through simulation and what predicted by the theoretical model.
This come from the approximative approach that is used to obtain the saturation rate in the theoretical approach.

All in all even if the theoretical model does not give a precise quantitative prediction it is able to capture the qualitative
properties of the large scale network. The results presented in this section are typical of what could be expected through the
theoretical model. We therefore use the results obtained through the fixed point model to evaluate the large scale properties of
Self Limiting Epidemic Forwarding schemes.

We can also validate the homeostasis property described in section IV-E. This validation is done in Fig. 4. The figure shows
clearly the relation between spread factor (Ms) and λ as Ms ∝ 1

λ
. The neighborhood size have a effect on the global number

of packet in the network n∞ as seen on the curve. The Fig.4 shows also despite change in density of node the spread remains
constant. If we assume that the communication range of a node is constant, increasing the connectivity pattern from 1 hop to
6 hops means an increase of density. We could therefore expect to have a a geo-coverage decrease when k goes from 1 to 6.
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Fig. 2. State values obtained through fixed point approach for a scenario with K0 = 30 and K2 = 1 and a = b = 0.15. The surface shown contains
clockwise from upper-left, the probability of receiving message send by source in the middle, X̄j(∞); the mean number of copy of message received, N̄j(∞);
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D. Controlling Spread Factor is More Efficient Than Classical TTL

In this section we will first answer the question of sufficiency of Classical TTL to limit the spread of epidemic forwarding
and its ability to guarantee at the same time a reasonable transmission rate. For this purpose we have first run two simulation
campaigns with two scenario in a vehicular network (see section V-A). In the first scenario we have a sparse highway with
a density of 2.5 cars/km; in the second scenario we are in a traffic jam with a high density of cars, 400 cars/km. We have
tested over these two scenarios two variants of a forwarding scheme using an inhibition mechanism as described in section
III-C.1. In the first variant we show results for the Classical TTL variant called “stored age” as ı̀t is the one that performs
better among all Classical TTL variants (see Section V-B), and in the second variant we are use hybrid aging. We compare
the two variants over different values of their parameters. The results are shown in Fig. 5. The comparison of the two variants
for the sparse scenario shows that :

• For the classical TTL a geo-coverage of about 2.2 km is reached at a cost of around 300 to 250 sent packets per message
(based on TTL decrement). This leads to a buffer size of around 5000 packets and a transmission rate of around 0.7
packets/sec, which increases with higher TTL decrement at each hop.

• The hybrid aging method reaches a transmission rate of 2 pkts/sec and a geo-coverage slightly lower than the classical
TTL (1.8 Km) but with a much lower cost: 120 packets sent per message and a buffer size equal to between 100 and
80. The value of the parameter K2 has an important effect on the queue size as expected (a larger value of K2 results in
faster packet death). The spread factor Ms is not too sensitive to K2. This is also expected as Ms depend mainly on the
parameter a and b.

In the dense scenario with traffic jam, things are even clearer.
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Fig. 3. Comparison of the theoretical fixed Point model with results obtained by JIST/SWANS simulation.

• Classical TTL achieves a very low transmission rate of one packet every 1000 sec, but still consumes 800 transmission
for transmitting one packet ! In this situation the geo-coverage falls to 1.1 km.

• The hybrid aging method succeeds in sustaining a larger rate (between 0.1 to 0.3 packets/secs) at the cost of 30
transmissions per message and a buffer occupation that goes from 20 to 10 packets.

This medium scale simulation shows that using a stored age approach is not enough to limit the spread in particular in dense
situation, but in comparison the aging approach is able to manage a large spectrum of situation going from sparse to dense
scenarios. One could expect that the use of classical TTL will give result that are worse than the stored age as this latter
scheme is an improvement over classical TTL.

We also make a simulation of the selective aging scheme. The results are presented in Fig. 6. It can be seen an improvement
compared to the classical TTL (or stored age alone) however a larger improvement is achieved through the use of global
aging mechanism. This could be explained by the fact that in high traffic the time period between the reception of copies of a
particular message can be very large. We also find, as expected from this result, (results not shown) that the difference between
global aging and hybrid aging is marginal.

To validate these finding in the large scale we do the same analysis on an infinite two dimensional grid. To simulate the
change of neighbor density we do our analysis with two neighborhood size k = 1 and k = 6. The results are presented in Fig.
7.

The obtained results are qualitatively similar to what we got from JIST/SWANS simulation. It appears that on the infinite
grid, the aging mechanism show more robust behavior to density change than the classical TTL.

VI. STATE OF THE ART

Epidemic forwarding has been an active area of research during recent years. Most of the authors in this area have identified
limiting the spread of diffusion as a major challenge. Different solutions to deal with this problem have been proposed. In
[20] a basic epidemic forwarding scheme is presented that use a fixed and predetermined value of TTL to limit the spread of
diffusion. The proposed scheme use also content negotiation prior to information diffusion to ensure that redundant information
is not sent.

A large class of papers have dealt with the spread of messages through inhibitory mechanisms to reduce the spread factor.
As explained in section III-B inhibitory mechanism are not enough to limit the spread and death mechanisms are needed.
Nevertheless, reducing the spread through the use of IP TTL is implicit in most epidemic forwarding papers and could be

12



Technical Report LCA-REPORT-2006-127

0,1 1 10
10

1

10
2

10
3

10
4

λ (pkts/sec)

S
p

re
ad

0,1 1 10
10

−2

10
0

10
2

10
4

λ (pkts/sec)

S
p

re
ad

 f
ac

to
r,

 M
s

Neighborhood size=1
Neighborhood size=2
Neighborhood size=4
Neighborhood size=6

Fig. 4. Performance metrics (spread and Spread factor) obtained by fixed point method for an infinite grid with different connectivity pattern (k = 1, . . . , 6)
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used in these papers. In [19] the forwarding factor is reduced through defining localized dominating sets that will ensure
that messages are broadcast only when the list of neighbors that might need the message is not empty. However this scheme
assumes that each node has knowledge of the position of its neighboring nodes. In [11] a probabilistic forwarding scheme
named Gossip-based is presented. This scheme forwards a received packet with a fixed probability. Adaptive versions of
Gossip-based forwarding are also proposed that adapt the forwarding probability to neighborhood size, in order to prevent the
spread from dying. In [21] a broadcast mechanism is presented that uses two neighborhood coverage conditions to decide if
a node should forward a message. The neighborhood coverage conditions are based on k-hop connectivity information that
are hard to gather in a mobile environment. In [17] an inhibition mechanism is proposed that prevents a packet from being
forwarded if a fixed number of copy of this same packet have been received.

In [15] an epidemiological model is applied to the study of a simple information diffusion mechanism. The approach followed
in this paper bears similarity with ours. However, we present in this paper a more methodological derivation of the ODEs that
could be easily extended to other scenarios, whereas the approach followed in [15] is a direct fitting of an epidemiological
model to a simple single source problem.

As self limiting epidemic forwarding supports also mobility, it is related to the Delay Tolerant Network literature. However,
two points are frequently cited in the DTN literature that reduce the interest for epidemic mechanism in DTNs. First, buffer
overflows and inefficient use of the transmission media that is inherent to simplistic epidemic forwarding have discouraged its
application. Epidemic forwarding has only been proposed in [12] in the context of sparse network where TTL based spread
control is still efficient. In this paper a transport layer overlay architecture for sparse mobile networks is proposed that use a
gossip-based inhibition mechanism. The goal of this paper is similar to our aims however we develop here a larger perspective
on spread control that could be used in the context of DTNs.

VII. CONCLUSION

We have analyzed the performance of various spread limitation mechanisms for epidemic forwarding. We found that solely
relying on the classical TTL mechanism is not adequate; in contrast, an aging mechanisms that decrements the TTL field of
stored packets by small amounts based on packet receptions is needed. Among the variants of aging, global aging performs
well.
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Fig. 7. Comparison of the performance of stored TTL schemes with global aging method. The results are obtained using the fixed point approach for two
scenarios. The first with a neighborhood size of 1 and the second with a neighborhood size of 6.
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