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Abstract

A functional integration approach – whose main ingredient is the Hubbard-Strato-
novich transformation – for the quantum nonrelativistic many-fermion problem
is investigated.

With this method, the ground state energy correponds to a systematic expan-
sion in powers of a small parameter related to the number of fermions. It is a
functional of a potential determined by a self-consistent equation. The semiclas-
sical Hartree energy is obtained at lowest order of the expansion, the exchange
energy at first order, and the correlation energy at second order.

This approach is applied to large neutral atoms, for which the correlation
energy is computed.

This approach is also applied to many-electron quantum dots with harmonic
confinement. The self-consistent equation is solved as a function of a small param-
eter depending on the confinement strength. The Hartree and exchange energies
are computed in powers of this parameter, and the correlation energy is computed
at lowest order. The energy oscillations, arising from the Hartree energy, are also
evaluated; they are related to the periodic orbits of the classical dynamics of the
self-consistent potential.

Keywords: Semiclassical quantum physics, quantum dots, large atoms, cor-
relation energy.
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Version abrégée

Une approche par l’intégrale fonctionnelle – dont le principal ingrédient est la
transformation de Hubbard-Stratonovich – est investiguée pour le problème quan-
tique non relativiste d’un système avec grand nombre de fermions.

Par cette méthode, l’énergie de l’état fondamental correspond à un développe-
ment en puissance d’un petit paramètre relié au nombre de fermions. C’est
une fonctionnelle d’un potentiel déterminé par une équation autoconsistante.
L’énergie de Hartree semiclassique est obtenue à l’ordre le plus bas du développe-
ment, l’énergie d’échange au premier ordre, et l’énergie de corrélation au deuxième
ordre.

Cette approche est appliquée aux atomes neutre avec grand nombre d’électrons,
pour lesquels l’énergie de corrélation est calculée.

Cette approche est aussi appliquée aux boîtes quantiques avec grand nombre
d’électrons, avec confinement harmonique. L’équation autoconsistante est résolue
comme fonction d’un petit paramètre relié à l’intensité du confinement. Les én-
ergies de Hartree et d’échange sont calculées en puissance de ce paramètre, et
l’énergie de corrélation est évaluée à l’ordre le plus bas. Les termes oscillants de
l’énergie, provenant de l’énergie de Hartree, sont également évalués; ils sont reliés
aux orbites périodiques de la dynamique classique du potentiel autoconsistant.

Mots-clés: Physique quantique semiclassique, boîtes quantiques, atomes lourds,
énergie de corrélation.
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Introduction

The study of the atom is intimately related to the study of matter, which has
been fascinating people for many centuries. The question of its existence goes
back – in western culture – to the ancient Greeks, for whom it was a philosophical
question. The presocratic philosophers, in the Vth century BC (mainly Leucip-
pus, Democritus, and later Epicurus), created atomism: all physical objects are
constituted of atoms and void. Both are never created and never ending. Void
creates space, in which atoms evolve. The packings and scatterings of these atoms
are responsible for the sensations we feel. The atoms correspond to the small-
est possible division of matter, the word describing it being ατoµoζ (atomos) in
ancient Greek, and this word gave the name to the current atom.

At the time it was impossible to verify experimentally the discreteness of
matter, and this theory was rejected by Aristotle (in the IVth century BC), who
thought that matter was continuous. His ideas dominated through the middle
ages in Europe.

In the XVIth and XVIIth centuries, atomists (among them Galileo Galilei) met
some success, and atomism really came back in the XVIIth century with Descartes
and Gassendi in France, and Boyle in England.

In the XVIIIth century, experiments in chemistry led Lavoisier to postulate
that nothing is created, nothing is lost, all is transformed. They model substance
as constituted of elements, and the organization of these elements is modified
during a chemical reaction to provide other substances.

During the same period, and following Descartes, Bernouilli (and also Her-
mann and Euler), suppose that gas is made of particles. They develop a kinetic
theory of gases, which leads to results (for pressure and temperature) in agree-
ment with experiment.

Another field of study, at this time, is crystallography: natural crystals present
particular geometries, and to explain it, Haüy claims that these geometries are the
consequence of an elementary piece (which is however not, at this time, related
to atoms).

In the XIXth century, more experiments and postulates allow these three do-
mains to have a common explanation: the existence of atoms and molecules. John
Dalton, first, assumes that substance is made of spherical objects, the atoms,
which are different for different elements. In parallel to this work, Gay-Lussac
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2 Introduction

observes that during a chemical reaction, the ratios between the volumes in play
are small integers. He too deduces that substance is made of discrete objects. A
few years later, Avogadro is the first to make a clear distinction between atoms
and molecules. Herapath develops a kinetic theory of gases to explain phase tran-
sitions. The kinetic theory of gases is improved mainly by Clausius, Maxwell, and
Boltzmann, who provide the basis of statistical mechanics. During this century,
crystallography also makes progress, and is related to the atomic point of view
through the work of Delafosse, Pasteur, and Bravais. The elementary pieces
consist of a lattice on which there are molecules.

Though there were strong arguments for the existence of atoms, the atomic
point of view was still a subject of controversy. One of Einstein’s papers of his
miraculous year 1905 is considered the paper ending this controversy. He explains
the brownian motion (observed by Brown in the XIXth century): pollen grains
suspended in water have constant, apparently random, motion, and Einstein ex-
plained this motion by collisions with molecules of water, themselves moving
because of thermal agitation.

A systematic classification of atoms, with increasing masses, is done by Mende-
leïev, who identifies periodicities in properties of atoms. It leads to the periodic
table of the elements, from which Mendeleïev predicts the existence of new atoms,
which will be verified later. The periodicities of these properties could only be
understood with quantum mechanics, as will be explained later in this chapter.

The atomistic point of view was then generally accepted. But the structure
of the atom was not clearly understood. Electrodynamics was already known,
and Thomson’s experiments (at the end of the XIXth century) decompose the
atom, leading to the discovery of the electron. A few years later, Rutherford
projects alpha particles (which are positively charged) on gold foils, and observes
that while the majority crosses, some are deviated and even come back. His
conclusion is that matter is mainly empty, and that there are very concentrated
clusters of positive charges. He derives a model for the atom, which consists of a
positive nucleus with electrons orbiting around, like planets around the sun. This
model is however in contradiction with one consequence of electrodynamics, the
Bremsstrahlung: any accelerated charge loses energy by radiation. The electrons
of a classical atom, having a centripetal acceleration due to the nucleus, should
lose energy and crash very quickly on the nucleus. Classical physics can therefore
not explain the stability of atoms. Moreover, the experiments show that the
energy levels of atoms are quantized. This problem was solved with Bohr’s model,
which is the same kind of system, with certain orbits allowed only. He did not
give an explanation to this quantization.

The problem of the stability of atoms could only be solved with the discovery
of quantum mechanics, whose history is closely related to the history of atoms.
The electron is described by a wave function, whose square corresponds to a
probability of presence of the electron. The theoretical problem, describing the
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hydrogen atom, was solved analytically in quantum theory, and led to results in
very good agreement with experimental data. For the treatment of other atoms,
with more than one electron, the statistical properties (the wave function is an-
tisymmetric under the exchange of particles, leading to Fermi-Dirac statistics)
of electrons have to be taken into account. The computation of various proper-
ties of the atoms can be done analytically both for the hydrogen atom, and for
atoms with a number of electrons tending to infinity. In between, approximation
methods were developed to compute them, the main method being Hartree-Fock
(described in chapter 1). But these numerical resolutions imply simplifications,
and effects like correlation energy (which will be discussed below) are left out.
The stability of atoms (and matter) was proven by Lieb in the 1970’s, in the
framework of quantum mechanics.

The quest for a deep understanding of matter led physicists to the current
model, the standard model, a quantum field theory which describes the nucleus
as constituted of protons and neutrons, which are constituted of quarks. We will
not develop this theory in this introduction.

Since the eighties, technical developments in semiconductor physics allowed
the creation of quantum dots, also called artificial atoms. A quantum dot consists
of a set of electrons evolving in a bi-dimensional plane (a quantum well), and
confined to a small region by an external potential, in the same way electrons of
an atom are confined by the potential created by the nucleus. Quantum dots are
of great importance both for scientific research and industrial applications.

In the case of an atom, the parameters like electron mass, confinement strength,
electronic interaction strength, are fixed. In the case of quantum dots, these pa-
rameters are controllable through the choice of the semiconductor material –
which allows a modification of the (effective) mass and the (effective) electronic
interaction – and the strength and shape of the confinement. This allows a more
systematic study. Moreover, the typical length, energy, and magnetic field in
quantum dots are such that we can explore domains which are impossible to
reach with atoms in a laboratory setting. For example, there are new effects
found for atoms submitted to a huge magnetic field (of the order of 105 Tesla),
which are impossible to produce in laboratory setting. But such strong magnetic
fields exist in neutron stars, and this is why astrophysicists are interested in the
properties of atoms in these regimes. This regime is attained for quantum dots
in magnetic fields of the order of 1 Tesla, which are easily produced. The study
of quantum dots can therefore lead to a better understanding of the behaviour of
atoms in neutron stars.

Quantum dots have also important – existing and potential – technological
applications, mainly due to their interesting transport and optical properties.
There are potential applications in diode lasers, amplifiers, and biological sensors.
Quantum dots are already used as blue lasers for DVD players.

Other very promising applications are in solar cells, where quantum dots based
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cells seem to have better efficiency than the current cells.
The quantum properties of quantum dots make them a hopeful candidate for

q-bits in quantum computing. One possibility consists of having several dots, with
one electron per dot. If they are close enough, their spins become automatically
entangled, and they play the role of the q-bits.

The many-body problem is not limited to the study of atoms and artificial
atoms. It appears in numerous situations, among them nuclear physics, where
the particles studied are nucleons (protons and neutrons), chemistry, where the
particles studied may be molecules, as well as biology, where the particles studied
are large molecules.

Some effects in many-body systems are of great importance, although they
are very weak. Among them, the correlation energy and the energy oscillations,
which are discussed below.

Correlation energy

The correlation energy, which is defined as the energy beyond the Hartree-Fock
approximations, is weak, but has deep physical consequences in some systems.
The correlation energy explains, for example, the stability of certain systems,
and, more exotically, the color of certain metals. This energy is negative, the
Hartree-Fock energy being an upper limit to the true ground state energy.

For large atoms, it was proven by Teller’s theorem (Teller, 1962) that the
Thomas-Fermi energy (which is the asymptotic energy for atoms and molecules)
is unstable under the decomposition of a big molecule into any smaller ones: it is
the no-binding theorem. It is therefore necessary to go beyond the Thomas-Fermi
model, and pay particular attention to the correlation energy.

The correlation energy of the neutral atom has been obtained experimentally
for up to 18 electrons, as shown in Figure 1 (data is from Clementi (1963a,b);
Chakravorty et al. (1993)). This data corresponds to the difference between ex-
perimental and numerical Hartree-Fock data, where some effects (like relativistic
effects) are dropped – further details are given in chapter 3.

With so little data, it seems difficult to state that the correlation energy is
a linear function of N , as resulting from our computations. If it were linear, a
linear interpolation of this data provides, in Hartree,

−Ecorr ' 0.043N. (1)

Energy oscillations

A basic model of atoms consists of a system of independent particles evolving in
the potential created by the nucleus at the origin. The Fermi-Dirac statistics is
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Figure 1: Experimental correlation energy as a function of N
for the neutral atom.

therefore such that the electrons fill the first energy levels of the spectrum of the
hydrogen atom.

The radial symmetry of this system (combined with an accidental degeneracy
and the spin degeneracy) implies degeneracies, that is the electrons fill shells.
The energy of a shell is En = − 1

n2 in Rydberg, and its degeneracy is 2n2. The
two first shells (which contain 2 and 8 atoms respectively) are explained by the
mentioned model. It is however too simple to explain the next shells, as can be
seen in the periodic table of the elements.

The physical and chemical consequences of this shell structure are huge: it
explains why the noble gases, their shells being completely filled, almost never
interact; it explains the tendency of atoms to bind together (in order to "fill"
their shells) to form molecules, which explains the existence of many molecules
and chemical reactions.

This shell structure is observable in the ionization energy of neutral atoms: the
atoms with filled shells are more stable, their ionization energy is therefore bigger
than for other atoms. This can be characterized mathematically (as was done by
Englert and Schwinger (1985a)). As shown in Figure 2 (experimental data from
NIST – National Institute of Standards and Technology), the ionization energy

shows variations. The same function, multiplied by N
1
3 , as shown in Figure 2

as a function of N
1
3 , shows a very interesting property: a periodicity, which led

Englert and Schwinger (1985a) to compute the ground state energy of neutral

atoms, and to identify these periodicities in the parameter N
1
3 .

Quantum dots (seen as artificial atoms) have the same properties: by con-
sidering a system of independent particles evolving in an external potential as a
basic model, the energy levels correspond to those of a two-dimensional harmonic
oscillator. These energies are Enρ,m = 2nρ + |m|+1

.
= n+1 in appropriate units,

and the degeneracy is 2n. In this case, a quantum dot can be treated in the same
way as an atom, as it was done by Kouwenhoven et al. (2001), from which Figure
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Figure 2: Ionization energy of neutral atoms as a function of
N , and ionization energy multiplied by N

1
3 as a function of N

1
3 .

3 is taken.

Figure 3: Periodic table of quantum dots constructed by analogy
with the periodic table of atoms, with typical electronic configu-
rations shown above.

This model is discussed in more detail in chapter 4. The values for which
the shells are filled show a periodicity as a function of

√
N , as predicted by our

computations done with a refined model.
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Structure of the thesis

Some preliminary knowledge is required to understand this thesis: the reader
should be familiar with quantum mechanics. A good book on this topic is "Quan-
tum mechanics" by Schwinger (2001). The reader should also know functional
integration over real and Grassmann variables. A nice book on functional inte-
gration is "Path integrals in quantum mechanics, statistics, polymer physics, and
financial markets" by Kleinert (2004). For the Grassmann variables we recom-
mend "Quantum many-particle systems" by Negele and Orland (1988), where the
formalism we need is developed, and from which our notations are taken.

The thesis is divided in two parts: in part I, we develop the general method
for the computation of the ground state energy of many-fermion systems, and
compute the correlation energy for both atoms and quantum dots with the men-
tioned method. In part II, we proceed to the computation of the ground state
energy of quantum dots (with radial symmetry), as an application of the method
developed in part I.

Part I is organized as follows: we start with an introduction (chapter 1),
where we define and discuss the model of the atom, and discuss the existing
results on the subject. In chapter 2 we develop the new method, and obtain, for
the ground state energy, the Hartree energy at lowest order, the exchange energy
at first order, and the correlation energy at second order. These energies are
expressed as functionals of a potential, which satisfies a self-consistent equation.
The correlation energy is computed in chapter 3 for both atoms and quantum
dots.

Part II is organized as follows: we start with an introduction (chapter 4),
where we define and discuss the model of the quantum dot, and discuss the exist-
ing results (both theoretical and experimental) on the subject. In chapter 5 we
proceed to a semiclassical Hartree-Fock development, with a specific discussion
for its application to quantum dots. We derive the equation for the self-consistent
potential, and obtain the Hartree and exchange energies as functionals of this po-
tential. As this approach does not contain energy oscillations, those are obtained
with the development of another approach, done in chapter 6, where the energy
oscillations are related to the periodic orbits of the classical dynamics in the self-
consistent potential. In chapter 7 we solve the self-consistent equation to find the
density, which does not depend on N – after a scaling – but depends on a (small)
parameter p related to the strength of the confining potential. The limit p → 0
has an analytical solution, and the numerical solution is obtained in the small p
regime, as a function of this parameter. In chapter 8, this solution is introduced
in the Hartree, exchange, and correlation energies to obtain the smooth part of
the energy of quantum dots. This smooth energy is a polynomial of N and p.
We also compute the energy oscillations at lowest order, using the self-consistent
potential at lowest order (for which we have an analytical solution). The smooth
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and oscillating energies are compared to experimental results.
The thesis ends with the conclusion and perspectives.



Part I

Many-fermion systems and

semiclassical atoms

9





Chapter 1

Introduction

Contents
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The objective of this chapter is to describe atoms, to describe and discuss its
modeling, and to present existing approximations for the treatment of N -fermion
systems, and theoretical results on the computation of the ground state energy
of atoms.

We qualitatively describe an atom, before discussing its modeling. We discuss
the existing results for the asymptotic smooth energy, as well as the theoretical
treatment of the energy oscillations.

1.1 Atom description

As explained in the general introduction, it took a long time until the current
understanding of the atom was reached. This model consists of a nucleus, con-
stituted of A neutrons (no charge) and Z protons (positive charge), and a cloud
of N electrons. For a neutral atom, as we will consider, N = Z.

The typical size of the nucleus is 10−15m
.
= 1 fermi, and the typical size of

the atom is 10−10m
.
= 1 Angström, which makes a ratio of 105 between the sizes

of the nucleus and the atom.

The masses of a neutron and a proton are very similar (1.67 · 10−27kg) while
the mass of an electron is much smaller (9.11 · 10−31kg). The ratio is of the order
of 103.

11
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In the atomic nucleus, the forces in play are the so called weak and strong
interactions, and the energy excitations are of the order of 1MeV . The electrons
are submitted to electrostatic interactions, and the energy excitations are of the
order of 1Ry ∼ 10eV , which corresponds to a ratio of 105 between the excitation
energies.

1.2 The model

Considering the typical size of an atom, we will work in the framework of quan-
tum mechanics (further considerations will allow us to work in the semiclassical
regime).

The ratio between the masses of protons and electrons is so high that we will
consider the protons to have an infinite mass, their position therefore being fixed.

Moreover, the ratio between the size of the nucleus and the electron cloud is
so high that we will consider the nucleus to be a point, located at the origin.

The ratio between the energy excitations of the nucleus and the electrons is
so high that we will only take the excitations due to the electrons into account.

We will consider that the atom is in the vacuum. Moreover we will neglect the
gravitational interaction, as well as relativistic effects (even though Figure 1.2(a)
shows that, for N large, they are not negligible). We will consider the classical
electromagnetic field.

Based on these concepts, the system consists of a set of N electrons with
mutual electronic interaction, evolving in three dimensions, and subjected to a
confining potential produced by electrostatic interactions with the N protons
located at the origin. The hamiltonian of this system is

H̃ = − ~2

2m

N∑

i=1

∆̃i −
N∑

i=1

e2N

|x̃i|
+

1

2

N∑

i,j=1,i6=j

e2

|x̃i − x̃j|
, (1.1)

where m is the electron mass, e
.
= q√

4πε0
, while q is the charge of an electron and

ε0 the dielectric constant (in the vacuum).
This hamiltonian is written in the (arbitrary) MKSA units. It is however

more comfortable to work in atomic units. The energy unit is the Hartree (which
equals two times the Rydberg)

EH = 2Ry =
me4

~2
= 27.2eV, (1.2)

and the length unit is the Bohr radius

a0 =
~2

me2
= 0.53Å. (1.3)
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The energy unit can be expressed in terms of the length unit

EH =
e2

a0

. (1.4)

The new variables are, writing them with a hat,

Ĥ =
H̃

EH
, x̂ =

x̃

a0

,
∂k

∂x̂k
= ak0

∂k

∂x̃k
. (1.5)

The hamiltonian now has the very simple form

Ĥ = −1

2

N∑

i=1

∆̂i −
N∑

i=1

N

|x̂i|
+

1

2

N∑

i,j=1,i6=j

1

|x̂i − x̂j|
. (1.6)

This hamiltonian will be the starting point of our developments. The confining
potential will be generalized to an arbitrary one, and the ground state energy of
such a system will be computed for a large number of electrons in chapter 2.

1.3 Theoretical approaches of the N-body prob-

lem

The N -body problem (we will always consider fermions) cannot be solved exactly,
and different approximation methods were developed to study properties of N -
body systems. We will describe some of them.

The Thomas-Fermi model is a mean-field theory: the N -body system is sim-
plified to a one-body system: one particle feels the average interaction from the
other particles. The density is then computed through a self-consistent equation.
This approach is adapted for a system with a large number of particles (and be-
comes exact in the limit of an infinite number of particles). One advantage of this
approach is that we only deal with the density (a function of d variables), and
not with a wave function of an N particle system (a function of dN variables).

Another approach is the Hartree-Fock approximation: it consists of writing
the wave function as a product of one-particle wave functions, and finding the
wave function which minimizes the energy. The hamiltonian itself depends on
the wave function and the solution has to be found iteratively, numerically. It is
possible to consider a simple product of wave functions (Hartree approximation)
or an antisymmetrized product of wave functions (Hartree-Fock). As it is numer-
ically demanding, this approach is best suited for systems with a low number of
particles.

The semiclassical Hartree-Fock approach (as developed in detail in chapter 5)
consists of considering the wave function to be an antisymmetrized product of
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wave functions. These are one-particle wave functions, the N first eigenfunctions
of a one-particle hamiltonian, whose potential is determined self-consistently.
More precisely, it is determined by minimizing the energy of the system in the
semiclassical framework. This framework allows the expression of the potential as
a function of the density, which leads to a self-consistent equation for the density.
The energy can then be expressed as a functional of the density. At lowest order,
this approach yields the Thomas-Fermi model. The advantage is that through a
perturbative expansion, it can be extended beyond Thomas-Fermi.

The last approach we describe is the density functional theory (DFT). It is
based on the Hohenberg-Kohn theorem, which states that there is a one to one
correspondence between the ground state wave function and the ground state
density, and that this density minimizes the ground state energy. However, this
theorem does not provide the energy as a functional of the density, and approxi-
mations have to be made.

1.4 Theoretical results – atoms

The different techniques for the treatment of the N -body problem were very often
developed to solve the problem of the atom. This is what Thomas (1927) and
Fermi (1927) did independently. They used a mean-field theory: the many-body
problem is simplified in a way that it becomes a one-body problem, and the elec-
tron considered is submitted to a mean-field potential, consisting of the confining
potential, plus the mean potential the electron cloud produces. It therefore pro-
vides a self-consistent equation for this potential. This mean-field approach is
now known as the Thomas-Fermi model. It was done rigorously by Lieb (see,
for example, (Lieb, 1976)), who proved that the ground state energy obtained
with the Thomas-Fermi model is asymptotically equal to the quantum ground
state energy in the limit of an infinite number of electrons Z. The energy is
proportional to Z

7
3 .

This model was improved and many physicists provided smooth corrections
(that is corrections in inverse powers of Z

1
3 ): Scott (1952) was the first to propose

a Z
6
3 correction due to the innermost core electrons (where the confining potential

is huge). Earlier, Dirac (1930) added the contribution of the exchange energy (of

the order of Z
5
3 ), and von Weiszäcker (1935) the gradient contribution to the

kinetic energy. These corrections provide the asymptotic ground state energy.
A modification was done by Englert and Schwinger (1985b), who did the most
comprehensive work on the topic. They worked in what we call the semiclassical
Hartree-Fock model (as will be developed in detail in chapter 5), which provides,
at lowest order, the Thomas-Fermi model. It also provides smooth corrections,
given by inverse powers of Z

1
3 . The innermost core electrons were treated outside

this model, because the confining potential is divergent at the origin. It provides
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a term of the order of Z
6
3 , as obtained by Scott. They obtain the exchange

energy, like Dirac, but also a new term arising from quantum corrections to the
kinetic energy, which are of the order Z

5
3 . They obtain results which are in very

good agreement with the reference solution (which are Hartree-Fock simulations,
as there are no experimental results for Z > 28, up to which Hartree-Fock and
experimental results agree very well), as shown in Figure 1.1, taken from (Englert
and Schwinger, 1984). The final result provides the smooth energy (expressed in
atomic units):

−Esmooth
1
2
Z2

= 1.537Z
1
3 − 1 + 0.540Z− 1

3 . (1.7)

Figure 1.1: Comparison of calculations of the total binding en-
ergy. Crosses are Hartree-Fock (HF) data; curve (a) is Thomas-
Fermi (TF) energy; curve (b) is TF with corrections of relative
order Z− 1

3 ; curve c is TF with corrections of relative order Z− 2
3 .

These smooth corrections were rigorously made by Feffermann and Seco,
whose work is summarized in (Feffermann and Seco, 1997). They proved that
Schwinger’s correction is correct.

So far we have discussed the smooth contribution to the energy. But what
about oscillatory terms? The energy oscillations were studied in detail by Englert
and Schwinger (1985a) (computations are developed in more detail in (Englert,
1988)). The energy oscillations were computed analytically in the semiclassical
Hartree-Fock approach and were compared to numerical Hartree-Fock results,
considered as a reference solution. Comparison with experimental data is not
easy: real atoms include relativistic effects. To verify the reference solution,
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Hartree-Fock simulations are compared to experimental results in Figure 1.2(a)
for up to Z = 20. On this figure, relativistic numerical results are shown, and
are in good agreement with experimental results (although not exact, numerical
simulations being obtained by a simplification of the real problem). On the same
figure, Hartree-Fock simulations (which are, of course, non relativistic) are shown.
We observe that they are in very good agreement with relativistic results up to
Z

1
3 = 2. We also observe that the energy oscillations are a non relativistic effect.

This is why Hartree-Fock results are a reference solution, and are used to validate
semiclassical Hartree-Fock results. The comparison is shown in Figure 1.2(b), and
we observe that the energy oscillations obtained this way are in good agreement
with the reference solution. The oscillations are quasi-periodic functions of Z

1
3 ,

and their magnitude is of the order of Z
4
3 .

(a) Binding-energy oscillations. Stars
are experimental values for Z =
1, . . . , 20. Curve (a) shows non rel-
ativistic HF oscillations. Curve (b)
shows relativistic simulations.

(b) Comparison of semiclassical pre-
dictions for the nonrelativistic binding-
energy oscillations (curve (a)) with the
HF prediction (curve (b)).

Figure 1.2: Energy oscillations

Feffermann and Seco (1997) tried to establish these oscillating terms rigorously
but they could not prove it completely. They could prove that there are oscillating
terms of the order of Z

4
3
+ 1

6 , and of a period of the order of Z
1
3 , but they could

not prove that the remaining terms (called the error terms) are of lower order in
Z.



Chapter 2

Ground state energy of a

many-fermion system

Contents

2.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Partition Function . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Propagator . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Self-consistent equation . . . . . . . . . . . . . . . . . 28

2.2.3 Final partition function . . . . . . . . . . . . . . . . . 29

2.3 Ground state pressure . . . . . . . . . . . . . . . . . . 30

2.3.1 P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.5 Total pressure . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Ground state energy . . . . . . . . . . . . . . . . . . . 45

2.5 Ground state pressure in the semiclassical limit . . . 46

2.5.1 Semiclassical density of states . . . . . . . . . . . . . . 46

2.5.2 Semiclassical correction p2 . . . . . . . . . . . . . . . . 47

2.5.3 Total semiclassical pressure . . . . . . . . . . . . . . . 57

2.6 Semiclassical energy . . . . . . . . . . . . . . . . . . . . 57

The objective of this chapter is to obtain a formula for the ground state energy
of a system of many fermions, with a new approach using functional integration
over Grassmann variables, up to a certain order in a small parameter (given by
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18 2. Ground state energy of a many-fermion system

an inverse power of the number of electrons N). All developments are done in d
dimensions.

This new formalism is developed in this chapter, and will be used in part II
with an application to quantum dots.

We start this chapter by proceeding to a scaling of the energy and length,
in order to see that we can work in the semiclassical regime. We proceed to
the developments, whose main ingredient is the use of the Hubbard-Stratonovich
transform. We then establish a formula for the grand-canonical partition function,
from which we compute the pressure, as an expansion in an inverse power of
N . We find that the lowest order term corresponds to the semiclassical Hartree
pressure, while the first order provides the exchange term (their sum is therefore
semiclassical Hartree-Fock). We then compute the second order corrections and
find new terms. We take the limit of zero temperature to obtain the ground state
pressure, from which we deduce, by a Legendre transformation, the energy of the
ground state. The new corrections are universal, in the sense that they depend on
the dimension of the system only, not on the specific properties of the problem.

The grand-canonical partition function is

Q(β, µ) = TrFe
−β(H−µN), (2.1)

where TrF is the trace over the Fock space of fermions, which will be explained
later in this section. The pressure is

PGC(β, µ) =
1

β
lnQ(β, µ). (2.2)

From this point we need some thermodynamics to obtain the energy of the system.
The free energy is obtained from the pressure (which is the opposite of the grand
potential) by a Legendre transformation with regards to µ:

F = E − TS = −P + µN. (2.3)

In the zero temperature limit, the term with entropy S vanishes, and the energy
is equal to the free energy.

The grand-canonical description corresponds to a system of particles in con-
tact with a heat and particle reservoir. We however consider a physical system
with a fixed number of particles N , in the ground state. In the grand-canonical
ensemble the number of particles N is not fixed, there is a mean value NGC(β, µ).
In the zero temperature limit, we evaluate this mean value as a function of µ,
leading to N(µ). We then impose this function to be an integer

N(µ) = N. (2.4)

This relation gives µ as a function of N .
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A similar treatment could be done in the canonical ensemble, by writing the
canonical partition function using

δN,M =

∫ π

−π

dθ

2π
e(iθ+βµ)(M−N). (2.5)

The canonical partition function is then written as

QC =
∞∑

M=1

∫ π

−π

dθ

2π
e(iθ+βµ)(M−N)Tre−βHM =

∫ π

−π

dθ

2π
e−(iθ+βµ)NQGC(β, µ+

iθ

β
).

(2.6)
In the large N limit, the chemical potential is evaluated with a saddle point
integration over θ, which leads to the same relation between N and µ, at lowest
order, than what we find in the grand-canonical formalism. It remains to be
verified if this relation is the same at higher orders.

Let’s note that the usual Hartree Fock approach (used in Lieb (1976), for
example) also makes use of the grand canonical ensemble: an energy functional
is minimized, under the constraint

∫
ddxρ(x) = N , making a chemical potential

appear as a Lagrange multiplier.

2.1 Scaling

The general hamiltonian of a system of N interacting fermions is, in appropriate
units,

Ĥ = −
N∑

i=1

∆̂i

2
+

N∑

i=1

V̂ext(x̂i) +
1

2

N∑

i,j=1,i6=j
V̂ (x̂i, x̂j), (2.7)

where V̂ext is the external confining potential, and V̂ is the interacting potential,
which will only depend on the interparticle distance:

V̂ (x̂i, x̂j) = V̂ (|x̂i − x̂j|), (2.8)

and is therefore symmetric.
What does "appropriate units" mean? It means that we are working in a

system of units in which all the fundamental constants of the system (~,m, the
confining potential constant, the interaction potential constant e) are set to 1,
as it was done in equation (1.6) for the atoms. This can be performed for any
system, and will be done in chapter 5 in the case of quantum dots.

To identify our framework we perform relevant scalings. Let’s proceed to the
scaling of the length unit

x̂ 7→ x
.
=

x̂

Nλ
⇒ ∂k

∂x̂ki
7→ ∂k

∂xki
= Nkλ ∂

k

∂x̂ki
, (2.9)
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as well as the scaling of the energy

Ĥ 7→ H
.
=

Ĥ

Nγ
. (2.10)

We now want to find optimal values for λ and γ. The new hamiltonian H is

H = − 1

N (γ+2λ)

N∑

i=1

∆i

2
+

N∑

i=1

1

Nγ
V̂ext(N

λxi) +
1

2

N∑

i,j=1,i6=j

1

Nγ
V̂ (Nλxi, N

λxj).

(2.11)
To proceed further we need some information on the confining and interacting
potentials. We need to know how they scale. For simplification we will consider
a special case: the three-dimensional electron-electron interaction:

V (xi,xj) =
1

|xi − xj|
. (2.12)

Let’s note that this will be the interaction in the two cases we will study later
(atom and quantum dot).

The energy (2.11) becomes

H = − 1

N (γ+2λ)

N∑

i=1

∆i

2
+

N∑

i=1

1

Nγ
V̂ext(N

λxi) +
1

2

1

Nγ+λ

N∑

i,j=1,i6=j

1

|xi − xj|
. (2.13)

The main idea of considering a large number of particles N is that one particle
(the particle i) will feel the mean energy of all others, which will be

1

Nγ+λ

N∑

j=1,j 6=i

1

|xi − xj|
︸ ︷︷ ︸

O(N)

. (2.14)

This mean energy will be of the order of 1 if

γ + λ = 1. (2.15)

This is the first condition on these parameters. The second one will be obtained
by imposing the density to be normalized to N . We know from usual semiclassical
results that the density is given by ρ ∼ 1

~d , where ~2 is the prefactor of ∆
2

, which is
~ = 1

N
γ
2 +λ

in our problem. Let’s suppose that this value is small, which allows us

to work in the semiclassical regime. This hypothesis will be verified a posteriori.
Moreover we want the density to be of the order of N for an N -particle system.
This leads to the second condition:

dγ + 2dλ = 2. (2.16)
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These two conditions lead to

{
γ = 2 − 2

d
,

λ = 2
d
− 1.

Returning to the hamiltonian (2.13) we find

H = − 1

N
2
d

N∑

i=1

∆i

2
+

N∑

i=1

1

N2− 2
d

V̂ext(N
2
d
−1xi) +

1

2

1

N

N∑

i,j=1,i6=j

1

|xi − xj|
. (2.17)

As supposed for the calculation, we are in the semiclassical regime: the prefactor
of ∆

2
is 1

N
2
d

� 1.

Let’s have a look at the case of the neutral atom. In this case the dimension
is d = 3, and the confining potential V̂ext(x̂) = N

|x̂| . Applying the scaling we find

Vext(x) = 1

N2− 2
d

V̂ext(N
2
d
−1x) = 1

|x| . The scaling is perfect, in the sense that N has

totally disappeared from the confining potential. For the atom we have ~ = N
1
3 ,

and the length scale is of the order of N
1
3 . These are well-known results.

The case of quantum dots is treated in a similar way. It is a two-dimensional
system (as will be explained later), the interacting potential is the same, and the
confining potential is sometimes modeled as V̂ (x̂) = 1

2
κN x̂2. The factor N is

"unnatural": the confining potential should not, a priori, depend on the number
of electrons. We introduce it however, in order to have a system which scales as
we want. We will justify this approach later (we can consider either (N, κ) or

(N, k = κN), where k would be the real confining strength). We find ~ = N
1
2 ,

and the length scale is of the order of N0 = 1. (We will see later that this length
scale depends on κ, which, in the end, depends itself on N . We will find that the
length scale is finally of the order of N

1
2 .)

We want to determine the energy of the following hamiltonian (writing
1

N2− 2
d

V̂ext(N
2
d
−1x)

.
= Vext(x)):

H = −ε2
N∑

i=1

∆i +
N∑

i=1

Vext(xi) +
1

2

1

N

N∑

i,j=1,i6=j

1

|xi − xj|
, (2.18)

where ε2 = 1

2N
2
d

. We note ~
.
= ε to avoid a wrong physical interpretation.

2.2 Partition Function

As explained in the introduction, we first express the grand-canonical partition
function. It consists of considering a system whose particle number is not fixed.
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The second quantization is therefore best adapted, and the hamiltonian (2.18)
becomes, in the {|x〉} representation, including the spin σ:

Ĥ =
s∑

σ=1

∫

ddxψ̂†(x, σ)[−ε2∆ + Vext(x)]ψ̂(x, σ)

+
1

2

1

N

s∑

σ,σ′=1

∫

ddx

∫

ddyψ̂†(x, σ)ψ̂†(y, σ′)V (x,y)ψ̂(y, σ′)ψ̂(x, σ), (2.19)

where ψ̂†(x, σ), ψ̂(x, σ) are the creation and annihilation operators of the state
|x, σ〉. The spin σ does not influence the energy; it only has an effect on the
degeneracy of states. We consider a spin which can take an arbitrary number of
values s. For the electrons we will take s = 2.

The grand-canonical partition function is given by the trace

Q(β, µ) = TrFe
−β(Ĥ−µN̂), (2.20)

where N̂ =
∑s

σ=1

∫
ddxψ̂†(x, σ)ψ̂(x, σ) is the operator which counts the number

of particles. F is the Fock space (for fermions), which consists of all the pos-
sible antisymmetrized quantum states of N particles, N varying from 0 to ∞:
F = ⊕∞

N=0FN , where FN is the space of states of an N -particle system. It is con-
structed from the one-particle Hilbert space H by antisymmetrizing its N -tensor
product: FN = A

(
H⊗N).

There are various techniques to evaluate this partition function. We will per-
form the Fock space integration by using functional integration over Grassmann
variables, which are anticommuting variables. This approach consists of integrat-
ing over the set of all coherent states of the system, which forms a (overcomplete)
basis. The coherent states have the strange property of not being states with
a fixed number of particles (they are not eigenvectors of N̂). Moreover, in the
case of fermions, they do not even belong to the Fock space, which thus has to
be extended. They also imply the necessity to introduce a new kind of object,
the Grassmann variables. A good explanation is given in the book of Negele and
Orland (1988), from which our notations are taken.

Using functional integration over Grassmann variables we find

Q(β, µ) =

∫

Dψ?Dψe−S[ψ?,ψ], (2.21)
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where the action is

S[ψ?, ψ] =
s∑

σ=1

∫

ddxdtψ?(x, σ, t)
[
∂t + (−ε2∆ + Vext(x)) − µ

]
ψ(x, σ, t)

+
1

2

1

N

s∑

σ1,σ2=1

∫

ddx1dt1d
dx2dt2ψ

?(x1, σ1, t1)ψ
?(x2, σ2, t2)

×V (x1,x2)δ(t1 − t2)ψ(x2, σ2, t2)ψ(x1, σ1, t1).

(2.22)

The integration over the positions (x,x1,x2) runs over the entire space and the
integration over the imaginary times (t, t1, t2) from 0 to β.

The boundary conditions are antiperiodic:

ψ(x, σ, 0) = −ψ(x, σ, β) (2.23)

in a continuous description of the problem.
Let’s note that the integration is

∫

Dψ?Dψ =

∫ s∏

σ=1

Dψ?(·, σ, ·)Dψ(·, σ, ·). (2.24)

We integrate over s fields, each corresponding to a given value of the spin.
If the action S were quadratic in (ψ?, ψ), an exact solution could be found.

Hence, using an integration equality for the second term, we will express this
action as a quadratic form in those fields. This integration equality, known as
the Hubbard-Stratonovich transform, is

e−
1
2
(ρ| V

N
|ρ) =

∫
Dφe−N

2
(φ|V −1|φ)+i(ρ|φ)

∫
Dφe−N

2
(φ|V −1|φ)

, (2.25)

where we used the notation

(f |A |g) .
=

∫

ddx1dt1d
dx2dt2f(x1, t1)A(x1, t1,x2, t2)g(x2, t2) (2.26)

and

(f | g) .
=

∫

ddxdtf(x, t)g(x, t), (2.27)

the real scalar product.
This equality is very well known in field theory and was already applied to

systems of fermions by Blaizot and Orland (1981) and Rebei and Hitchon (2003),
even to the specific problem of atoms by Dietz et al. (1982). In a non continuous
formulation this equality states that the Fourier transform of a gaussian is a
gaussian.
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In this formula φ is a real variable, and ρ is chosen

ρ(x, t) =
s∑

σ=1

ψ?(x, σ, t)ψ(x, σ, t) (2.28)

and has the physical interpretation of a density. The integral operator V is

V (x1, t1,x2, t2) = V (x1,x2)δ(t1 − t2), (2.29)

its inverse being simply

V −1(x1, t1,x2, t2) = V −1(x1,x2)δ(t1 − t2). (2.30)

Introducing equality (2.25) in equation (2.21) we find

Q =
1

N

∫

DφDψ?Dψe−S[φ,ψ?,ψ], (2.31)

where the action is

S[φ, ψ?, ψ] =
N

2
(φ|V −1 |φ) +

s∑

σ=1

∫

ddxdtψ?(x, σ, t)
[
∂t +

+(−ε2∆ + Vext(x)) − µ− iφ(x, t)
]
ψ(x, σ, t),

(2.32)

and the normalization constant

N =

∫

Dφe−N
2

(φ|V −1|φ). (2.33)

The action is now a quadratic form in the Grassmann variables, its exact calcula-
tion could be performed. However, we would then have to evaluate a complicated
expression of φ with a gaussian measure, which would be hard to treat. This is
why we proceed, taking advantage of the large factor N of the gaussian measure,
to the change of variables

φ(x, t) 7→ θ(x, t), φ(x, t)
.
=
θ(x, t)√

N
+ iW (x), (2.34)

where the shift will be useful for canceling terms out, W (x) being determined
self-consistently later.

In these new variables, the partition function (2.31) becomes

Q =
1

N

∫

DθDψ?Dψe−S[θ,ψ?,ψ], (2.35)
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where the action is

S[θ, ψ?, ψ] =
1

2
(θ|V −1 |θ) + i

√
N (θ|V −1 |W ) − N

2
(W |V −1 |W )

+
s∑

σ=1

∫

ddxdtψ?(x, σ, t)

[

∂t + (−ε2∆ + Vext(x) +W (x))

−µ− i
θ(x, t)√

N

]

ψ(x, σ, t),

(2.36)

and the normalization constant is

N =

∫

Dθe− 1
2
(θ|V −1|θ). (2.37)

The integration over the Grassmann variables can now be performed exactly.
Writing

1

N

∫

Dθe− 1
2
(θ|V −1|θ)f(θ)

.
= 〈f(θ)〉θ,V −1 , (2.38)

we obtain

Q = e
N
2

(W |V −1|W )

〈

e−i
√
N(θ|V −1|W ) det s

(

K − iθ√
N

)〉

θ,V −1

, (2.39)

where K is the integral operator with the kernel

K(x1, t1x2, t2)
.
= δ(t1 − t2)δ(x1 − x2)

(

∂t1 +
(
−ε2∆1 + Vext(x1) +W (x1)

)

︸ ︷︷ ︸
.
=h(x1)

−µ
)

,

(2.40)
and θ is seen as a diagonal operator, whose kernel is

θ(x1, t1,x2, t2) = δ(t1 − t2)δ(x1 − x2)θ(x1, t1). (2.41)

The expression (2.39) is a very good starting point for a perturbative expansion
using the small parameter 1√

N
. We use

det s
(

K − i
θ√
N

)

= det sK det s
(

11 − i√
N
K−1θ

)

= det sKe
sTr ln

(

11− i√
N
K−1θ

)

= det sK exp

(

− is√
N

Tr
(
K−1θ

)
+

s

2N
Tr
(
K−1θ

)2
)

× exp

(
is

3N
3
2

Tr
(
K−1θ

)3 − s

4N2
Tr
(
K−1θ

)4
+ O

(

N− 5
2

))

.

(2.42)
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The first term of the expansion will be used to compensate exactly the term
linear in θ of the action of the partition function (2.39). This will lead to the
self-consistent equation, which determines W .

The second term will be treated perturbatively, using the gaussian measure
for the real variables θ. Its treatment is the one-loop expansion. The third term
will not contribute: the measure is gaussian, hence at this order, an odd term in
θ will be zero. The fourth term will also be treated perturbatively, using Wick’s
theorem. It corresponds to the two-loop expansion.

2.2.1 Propagator

Before proceeding to these developments, let’s determine the inverse operator
K−1. It is a propagator, we note it G. More precisely it is the propagator of a one-
body problem of fermions, with the hamiltonian (written in second quantization)

ĥ =

∫

ddxψ̂†(x, σ)[−ε2∆ + Vext(x) +W (x)]ψ̂(x, σ). (2.43)

Let’s note that it is the hamiltonian of the system with fixed spin σ. In the
following developments, the spin indices will be implicit.

We can already anticipate our results by giving a physical interpretation of
W : it will correspond to the mean field potential.

h is a one-body hamiltonian, whose eigenvectors {ψα}α≥1 clearly form a basis
of the one-particle quantum states. A detailed study in the book of Negele and
Orland (1988) leads to the result

Gα,β(t1, t2) = 〈ψα|G(t1, t2)|ψβ〉

= e−(eα−µ)(t1−t2)

[

θ(t1 − t2 − ε) − 1

(eβ(eα−µ) + 1)

]

δα,β

= 〈ψα|
∑

γ

e−(eγ−µ)(t1−t2)

[

θ(t1 − t2 − ε) − 1

(eβ(eγ−µ) + 1)

]

|ψγ〉〈ψγ|ψβ〉

= 〈ψα|e−(h−µ)(t1−t2)

[

θ(t1 − t2 − ε) − 1

(eβ(h−µ) + 1)

]

|ψβ〉

= 〈ψα|e−(h−µ)(t1−t2) [θ(t1 − t2 − ε) − fβ(h− µ)] |ψβ〉, (2.44)

where we introduced a small parameter ε → 0 to deal with the discontinuity
problem at times t1 = t2. We introduced the Fermi-Dirac distribution

fβ(e− µ)
.
=

1

eβ(e−µ) + 1
. (2.45)

In an operator description, this result is

G(t1, t2) = e−(h−µ)(t1−t2) [θ(t1 − t2 − ε) − fβ(h− µ)] . (2.46)
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It leads to

G(x1, t1,x2, t2)= 〈x1|G(t1, t2)|x2〉
= 〈x1|

∑

α

e−(eα−µ)(t1−t2) [θ(t1 − t2 − ε) − fβ(eα − µ)]|ψα〉〈ψα|x2〉

=
∑

α

e−(eα−µ)(t1−t2) [θ(t1 − t2 − ε) − fβ(eα − µ)]ψ?α(x2)ψα(x1).

(2.47)

Hence, if t1 > t2 the propagator will be

G(x1, t1,x2, t2) =
∑

α

e−(eα−µ)(t1−t2) [1 − fβ(eα − µ)]ψ?α(x2)ψα(x1), (2.48)

for t1 < t2

G(x1, t1,x2, t2) = −
∑

α

e−(eα−µ)(t1−t2)fβ(eα − µ)ψ?α(x2)ψα(x1), (2.49)

and for t1 = t2 = t

G(x1, t,x2, t) = −
∑

α

fβ(eα − µ)ψ?α(x2)ψα(x1) = −ρσFD(x2,x1), (2.50)

where ρσFD(x2,x1) is the two-body density matrix, with the Fermi-Dirac statistics,
for particles with fixed spin σ. The total two-body density matrix is

ρFD(x2,x1) =
s∑

σ=1

ρσFD(x2,x1) = sρσFD(x2,x1), (2.51)

because ρσFD(x2,x1) is independent of σ.
For times t1 = t2 = t and positions x1 = x2 = x we find

G(x, t,x, t) = −
∑

α

fβ(eα − µ)ψ?α(x)ψα(x) = −ρσFD(x), (2.52)

where ρσFD(x) is the fermion density with the Fermi-Dirac statistics, for particles
with fixed spin σ. The total density is

ρFD(x) =
s∑

σ=1

ρσFD(x) = sρσFD(x). (2.53)

In the zero temperature limit, using

fβ(e− µ)
β→∞−→ θ(µ− e), (2.54)
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we obtain

G(x1, t,x2, t)
β→∞−→ −ρσ(x2,x1), G(x, t,x, t)

β→∞−→ −ρσ(x), (2.55)

which are the two-body density matrix and the density of a system of N particles
in the ground state, for particles with fixed spin σ. The total density matrix is

ρ(x2,x1) =
s∑

σ=1

ρσ(x2,x1) = sρσ(x2,x1). (2.56)

The density ρσ(x) is normalized to N
s

, and the total density is given by

ρ(x) =
s∑

σ=1

ρσ(x) = sρσ(x). (2.57)

We will also use the result

[1 − fβ(e− µ)]
β→∞−→ θ(e− µ). (2.58)

Let’s finally note that, when evaluated at equal times t1 = t2, the propagator
is time-independent.

2.2.2 Self-consistent equation

Introducing (2.42) in the partition function (2.39) we determine W such that the
term linear in θ is eliminated.

To proceed we still need to have an explicit expression of the following objects
(using (2.41) and (2.52)):

Tr(Gθ) =

∫

ddx1dt1d
dx2dt2G(x1, t1,x2, t2)θ(x2, t2,x1, t1)

=

∫

ddxdtG(x, t,x, t)θ(x, t) = −
∫

ddxdtρσFD(x)θ(x, t), (2.59)

and

(θ|V −1 |W ) =

∫

ddx1dt1d
dx2dt2θ(x1, t1)V

−1(x1,x2)δ(t1 − t2)W (x2)

=

∫

ddx1d
dx2dtθ(x1, t)V

−1(x1,x2)W (x2). (2.60)

It leads to the following self-consistent equation:

i
√
N

∫

ddxdt







−
∫

ddyV −1(x,y)W (y) +
1

N
sρσFD(x)
︸ ︷︷ ︸

=ρFD(x)







θ(x, t) = 0. (2.61)
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We impose this result to be verified for any function θ, hence the self-consistent
equation is ∫

ddyV −1(x,y)W (y) =
1

N
ρFD(x). (2.62)

Applying V on the left we find

W (x) =
1

N

∫

ddyV (x,y)ρFD(y). (2.63)

This is a self-consistent equation for W : the density ρ is the density of a one-body
problem, with a one-body hamiltonian h depending itself on W (equation (2.43)).
Let’s replace W in this hamiltonian by its calculated value:

h =

∫

ddxψ̂†(x)

[

−ε2∆ + Vext(x) +
1

N

∫

ddyV (x,y)ρFD(y)

]

ψ̂(x). (2.64)

The interpretation of this term is now completely clear: it consists of the mean
potential produced by the other electrons, acting on an electron.

2.2.3 Final partition function

Let’s replace W by its expression (2.63) in

(W |V −1 |W ) =
1

N2
(ρFD|V |ρFD) =

β

N2

∫

ddxddyV (x,y)ρFD(x)ρFD(y),

(2.65)
where we performed explicitly the integration over the imaginary times (which
provides a factor β).

We can now write the partition function (2.39), using (2.42) and (2.65). More-
over we do not write the term cubic in θ (which will not contribute at this order,
as it is a gaussian process):

Q = det sKe
β

2N

∫
ddxddyV (x,y)ρFD(x)ρFD(y)

〈

e
s

2N
Tr(Gθ)2− s

4N2 Tr(Gθ)4+O(N−3)
〉

θ,V −1
.

(2.66)

The remaining term is of the order of N3, because the term of order N
5
2 is an

odd power of θ (θ5).
The term we have to evaluate with the gaussian measure contains a term

which is an exponential of a quadratic form in θ. Let’s write it explicitly:

sTr(Gθ)2 = s

∫

ddx1dt1d
dx2dt2G(x1, t1,x2, t2)G(x2, t2,x1, t1)θ(x1, t1)θ(x2, t2)

.
= (θ|Γ |θ) , (2.67)

where we defined

Γ(x1, t1,x2, t2) = sG(x1, t1,x2, t2)G(x2, t2,x1, t1). (2.68)
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The partition function can now be written as

Q = det sK
︸ ︷︷ ︸
.
=Q1

e
β

2N

∫
ddxddyV (x,y)ρFD(x)ρFD(y)

︸ ︷︷ ︸
.
=Q2

∫
Dθe− 1

2
(θ|V −1− Γ

N
|θ)

∫
Dθe− 1

2
(θ|V −1|θ)

︸ ︷︷ ︸
.
=Q3

×
〈

e−
s

4N2 Tr(Gθ)4+O(N−3)
〉

θ,(V −1− Γ
N )

︸ ︷︷ ︸
.
=Q4

. (2.69)

2.3 Ground state pressure

Introducing the partition function (2.69) in (2.2) we observe that the ground state
pressure is a sum of four contributions:

P (N) = lim
β→∞

1

β
lnQ =

4∑

i=1

Pi =
4∑

i=1

lim
β→∞

1

β
lnQi. (2.70)

Let’s discuss and develop these four terms separately.

2.3.1 P1

The first contribution to the pressure, P1, is

P1 = lim
β→∞

1

β
det sK, (2.71)

where K is the operator
K = ∂t + h− µ, (2.72)

with h the one-body hamiltonian

h(x) = −ε2∆ + V (x) +
1

N

∫

ddyV (x,y)ρFD(y). (2.73)

This pressure is simply the pressure of a system of free fermions, submitted to a
mean-field potential. Due to the factor ε� 1, the pressure can be treated in the
semiclassical regime. This will be done in chapter 5 in the case of quantum dots.
The limit of zero temperature implies ρFD → ρ.

Let’s note that the nature of the potential (in which only ρ(x) is involved, not
ρ(x,y)) is such that there is no exchange term. This exchange term will arise
from the perturbative treatment1.

1However, the exchange energy could arise from a one-body approach. A quite similar
method including this exchange term was done by Dietz et al. (1982).
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For β � 1, the determinant of K can be written as (Negele and Orland, 1988)

det sK =
∏

α

(
1 + e−β(eα−µ)

)s '
∏

{α|eα<µ}
e−βs(eα−µ)

∏

{β|eβ>µ}
1 = e−β

∑

{α|eα<µ} s(eα−µ),

(2.74)
where eα are the eigenvalues of the one-body operator h.

The pressure is therefore

P1 = −s





N/s
∑

α=1

eα



+ µN. (2.75)

A detailed treatment of this term, in the semiclassical limit, for a two-dimensional
system, will be done in chapter 6 for the application to quantum dots.

2.3.2 P2

The second contribution to the pressure, P2, is

P2 = lim
β→∞

1

β
ln e

β
2N

∫
ddxddyV (x,y)ρFD(x)ρFD(y)

=
1

2N

∫

ddxddyV (x,y)ρ(x)ρ(y). (2.76)

The interpretation of this term is simple: it corresponds to the opposite of the
self-energy of the electrons. This self-energy is counted twice in P1, it therefore
has to be subtracted here.

The lowest order terms correspond to the Hartree approximation: it consists
of the mean-field energy, without the exchange energy. Hence our approach (in
which the expansion in inverse powers of N is controlled) shows that the dominant
contribution is the semiclassical Hartree approximation. Let’s note that it was
proven by Lieb (1976) and Lieb et al. (1995) that the Hartree approximation is
exact in the limit N → ∞ for atoms as well as for dots.

These results (P1 +P2) can be obtained through another approach, as will be
done later (see chapter 5), where we proceed to a semiclassical treatment of these
terms.



32 2. Ground state energy of a many-fermion system

2.3.3 P3

The third contribution to the pressure, P3, is obtained from Q3, which we expand
in powers of N−1 (by evaluating explicitly these gaussian integrals):

Q3 =

∫
Dθe− 1

2
(θ|V −1− Γ

N
|θ)

∫
Dθe− 1

2
(θ|V −1|θ)

=

(

det(V −1)

det(V −1 − Γ
N

)

) 1
2

=
1

(
det(11 − 1

N
V Γ)

) 1
2

= exp

{

−1

2
Tr ln

(

11 − 1

N
V Γ

)}

= exp

{
1

2N
Tr(V Γ) +

1

4N2
Tr(V Γ)2 + O(N−3)

}

. (2.77)

The contribution to the pressure is therefore

P3 = lim
β→∞

1

β
lnQ3 = lim

β→∞

1

β

(
1

2N
Tr(V Γ) +

1

4N2
Tr(V Γ)2 + O(N−3)

)

. (2.78)

We have to calculate these terms explicitly. The first one is

Tr(V Γ) = s

∫

ddx1dt1d
dx2dt2V (x1,x2)δ(t1 − t2)G(x2, t2,x1, t1)G(x1, t1,x2, t2)

= s

∫

ddx1d
dx2dtV (x1,x2)ρ

σ
FD(x1,x2)ρ

σ
FD(x2,x1)

= βs

∫

ddx1d
dx2V (x1,x2)ρ

σ
FD(x1,x2)ρ

σ
FD(x2,x1), (2.79)

where we used the expression (2.50) for the propagator.
This term leads to the pressure

P 1
3 =

s

2N

∫

ddxddyV (x,y)ρσ(x,y)ρσ(y,x)

=
1

2sN

∫

ddxddyV (x,y)ρ(x,y)ρ(y,x). (2.80)

The spin degeneracy was inserted in the density to obtain the total density. A
factor 1

s
appears.

The physical interpretation of this term is simple: it is the exchange energy
of the system (with the right prefactor 1

2s
, as established in chapter 5 in the
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semiclassical Hartree-Fock developments). Hence, up to this order, the energy
of the system is the Hartree-Fock energy. Our calculations therefore show that
the semiclassical Hartree-Fock approach is exact up to a certain order in inverse
powers of N .

Our approach shows that the Hartree-Fock approach is correct. But with
this approach we can go beyond this, by calculating the next corrections. We
will calculate corrections up to the order N−2. The first one arises from Q3. To
calculate it we have to evaluate

Tr(V Γ)2 = s2

∫ 4∏

i=1

ddxidtiV (x1,x2)δ(t1 − t2)G(x2, t2,x3, t3)G(x3, t3,x2, t2)

×V (x3,x4)δ(t3 − t4)G(x4, t4,x1, t1)G(x1, t1,x4, t4)

= s2

∫ 4∏

i=1

ddxidt1dt2V (x1,x2)G(x2, t1,x3, t2)G(x3, t2,x2, t1)

×V (x3,x4)G(x4, t2,x1, t1)G(x1, t1,x4, t2). (2.81)

We replace the propagator by its expression (2.47), and integrate over the imag-
inary times, separating the contributions for t1 > t2 and t2 < t1.

We have

I =

∫ β

0

dt1

∫ β

0

dt2G(x2, t1,x3, t2)G(x3, t2,x2, t1)G(x1, t1,x4, t2)G(x4, t2,x1, t1)

=

∫ β

0

dt1

∫ t1

0

dt2G(x2, t1,x3, t2)G(x3, t2,x2, t1)G(x1, t1,x4, t2)G(x4, t2,x1, t1)

+

∫ β

0

dt1

∫ β

t1

dt2G(x2, t1,x3, t2)G(x3, t2,x2, t1)G(x1, t1,x4, t2)G(x4, t2,x1, t1)

.
= I1 + I2, (2.82)

with

I1 =
∑

α,β,γ,δ

∫ β

0

dt1

∫ t1

0

dt2e
−(eα+eγ−eβ−eδ)(t1−t2) [1 − fβ(eα − µ)] fβ(eβ − µ)

× [1 − fβ(eγ − µ)] fβ(eδ − µ)ψ?α(x3)ψα(x2)

×ψ?β(x2)ψβ(x3)ψ
?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4).

(2.83)

We have to separate the terms eα + eγ 6= eβ + eδ and eα + eγ = eβ + eδ.
Using the result

∫ β

0

dt1

∫ t1

0

dt2e
−λ(t1−t2) =

β

λ
+
e−λβ − 1

λ2
, (2.84)
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we find

I1 =
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

β

(eα + eγ − eβ − eδ)
[1 − fβ(eα − µ)] fβ(eβ − µ)

× [1 − fβ(eγ − µ)] fβ(eδ − µ)ψ?α(x3)ψα(x2)

×ψ?β(x2)ψβ(x3)ψ
?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4) (2.85)

+
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

eβ(eβ+eδ−2µ) − eβ(eα+eγ−2µ)

(eα + eγ − eβ − eδ)2
fβ(eα − µ)

×fβ(eβ − µ)fβ(eγ − µ)fβ(eδ − µ)ψ?α(x3)ψα(x2)

×ψ?β(x2)ψβ(x3)ψ
?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4) (2.86)

+
β2

2

∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
[1 − fβ(eα − µ)] fβ(eβ − µ) [1 − fβ(eγ − µ)] fβ(eδ − µ)

×ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x3)ψ

?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4),

(2.87)

where we used the explicit expression of the Fermi-Dirac distribution (2.45).
We evaluate I2 in the same way. Using the result

∫ β

0

dt1

∫ β

t1

dt2e
−λ(t1−t2) = −β

λ
+
eλβ − 1

λ2
, (2.88)

we find

I2 =
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

−β
(eα + eγ − eβ − eδ)

fβ(eα − µ) [1 − fβ(eβ − µ)]

×fβ(eγ − µ) [1 − fβ(eδ − µ)]ψ?α(x3)ψα(x2)

×ψ?β(x2)ψβ(x3)ψ
?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4) (2.89)

+
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

eβ(eα+eγ−2µ) − eβ(eβ+eδ−2µ)

(eα + eγ − eβ − eδ)2
fβ(eα − µ)fβ(eβ − µ)

×fβ(eγ − µ)fβ(eδ − µ)ψ?α(x3)ψα(x2)

×ψ?β(x2)ψβ(x3)ψ
?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4) (2.90)

+
β2

2

∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
fβ(eα − µ) [1 − fβ(eβ − µ)] fβ(eγ − µ) [1 − fβ(eδ − µ)]

×ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x3)ψ

?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4).

(2.91)

Summing I1 and I2 we see that the terms (2.86) and (2.90) cancel out.
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Let’s treat the remaining terms, by proceeding to the change of the summation
indices (α, γ) ↔ (β, δ) in (2.89), and replacing eβ + eδ by eα + eγ in (2.91). We
find

I =
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

β

(eα + eγ − eβ − eδ)
[1 − fβ(eα − µ)]

×fβ(eβ − µ) [1 − fβ(eγ − µ)] fβ(eδ − µ)

×
(

ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x3)ψ

?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4)

+ψ?α(x2)ψα(x3)ψ
?
β(x3)ψβ(x2)ψ

?
γ(x1)ψγ(x4)ψ

?
δ (x4)ψδ(x1)

)

+β2
∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
[1 − fβ(eα − µ)] fβ(eβ − µ) [1 − fβ(eγ − µ)] fβ(eδ − µ)

×ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x3)ψ

?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4).

(2.92)

Taking the zero temperature limit (using (2.54) and (2.58)) we find

I =
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

β

(eα + eγ − eβ − eδ)
θ(eα − µ)

×θ(µ− eβ)θ(eγ − µ)θ(µ− eδ)

×
(

ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x3)ψ

?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4)

+ψ?α(x2)ψα(x3)ψ
?
β(x3)ψβ(x2)ψ

?
γ(x1)ψγ(x4)ψ

?
δ (x4)ψδ(x1)

)

+β2
∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
θ(eα − µ)θ(µ− eβ)θ(eγ − µ)θ(µ− eδ)ψ

?
α(x3)ψα(x2)

×ψ?β(x2)ψβ(x3)ψ
?
γ(x4)ψγ(x1)ψ

?
δ (x1)ψδ(x4).

(2.93)

In order to use a continuous description of the energy, we introduce the density
of states

ρσ(e; x,y)
.
=
∑

α

δ(e− eα)ψ
?
α(x)ψα(y). (2.94)

An expression of this density of states will be obtained as a function of the self-
consistent potential in the semiclassical limit.

Introducing the density of states into the expression for I, using the indices
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(α, β, γ, δ) 7→ (e1, e2, e3, e4), we find

I = β

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×
(

ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4)

+ρσ(e1,x2,x3)ρ
σ(e2,x3,x2)ρ

σ(e3,x1,x4)ρ
σ(e4,x4,x1)

)

+β2

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4δ(e1 + e3 − e2 − e4)

×ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4).

(2.95)

The second term of (2.95) is zero, because e1 + e3 > 2µ while e2 + e4 < 2µ, the
constraint e1 + e3 = e2 + e4 is therefore never satisfied.

Introducing the result (2.95) in (2.81) we find a contribution to the pressure
P3 which is, using (2.78)

P 2
3 =

s2

4N2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×
(

ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4)

+ρσ(e1,x2,x3)ρ
σ(e2,x3,x2)ρ

σ(e3,x1,x4)ρ
σ(e4,x4,x1)

)

×V (x1,x2)V (x3,x4).

(2.96)

For the second term we proceed to the change of the integration variables (x1,x2)
↔ (x4,x3) and use the symmetry of the potential V to finally obtain

P 2
3 =

s2

2N2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4)

×V (x1,x2)V (x3,x4).

(2.97)

2.3.4 P4

The last term we need to evaluate will be calculated using Wick’s theorem. The
reference measure will be (V −1− Γ

N
). However, as we are interested in calculations

up to the order of N−2, we will not consider the contribution arising from the
term Γ

N
. Therefore, the measure term we will consider is V −1.
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Using a cumulant expansion we find, from (2.69):

Q4 =
〈

e−
s

4N2 Tr(Gθ)4+O(N−3)
〉

θ,(V −1− Γ
N )

= e
− s

4N2 〈Tr(Gθ)4〉
θ,V −1+O(N−3)

. (2.98)

This expression leads to the pressure

P4 = − lim
β→∞

s

4βN2

〈
Tr(Gθ)4

〉

θ,V −1 + O(N−3). (2.99)

We therefore have to evaluate

〈
Tr(Gθ)4

〉

θ,V −1=

〈∫ 4∏

i=1

ddxidtiG(x1, t1,x2, t2)G(x2, t2,x3, t3)G(x3, t3,x4, t4)

×G(x4, t4,x1, t1)θ(x1, t1)θ(x2, t2)θ(x3, t3)θ(x4, t4)

〉

θ,V −1

=

∫ 4∏

i=1

ddxidtiG(x1, t1,x2, t2)G(x2, t2,x3, t3)G(x3, t3,x4, t4)

×G(x4, t4,x1, t1) 〈θ(x1, t1)θ(x2, t2)θ(x3, t3)θ(x4, t4)〉θ,V −1 .

(2.100)

Let’s establish the Wick’s theorem’s result we need. We introduce the generating
functional and use a usual equality (the fact that the Fourier transform of a
gaussian is a gaussian)

〈
e(j| θ)

〉

θ,V −1 = e
1
2
(j|V |j), (2.101)

take its functional derivative with respect to j(x1, t1), j(x2, t2), j(x3, t3), j(x4, t4),
and evaluate at j = 0. We find

〈θ(x1, t1)θ(x2, t2)θ(x3, t3)θ(x4, t4)〉θ,V −1

= +V (x1,x2)δ(t1 − t2)V (x3,x4)δ(t3 − t4)

+V (x1,x3)δ(t1 − t3)V (x2,x4)δ(t2 − t4)

+V (x1,x4)δ(t1 − t4)V (x2,x3)δ(t2 − t3).

(2.102)
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We can introduce this result in (2.100) to find

〈
Tr(Gθ)4

〉

θ,V −1 =

∫ 4∏

i=1

ddxidtiG(x1, t1,x2, t2)G(x2, t2,x3, t3)

×G(x3, t3,x4, t4)G(x4, t4,x1, t1)

×
(

V (x1,x2)δ(t1 − t2)V (x3,x4)δ(t3 − t4)

+V (x1,x3)δ(t1 − t3)V (x2,x4)δ(t2 − t4)

+V (x1,x4)δ(t1 − t4)V (x2,x3)δ(t2 − t3)
)

(2.103)

=

∫ 4∏

i=1

ddxidt1dt2G(x1, t1,x2, t1)G(x2, t1,x3, t2)

×G(x3, t2,x4, t2)G(x4, t2,x1, t1)

×V (x1,x2)V (x3,x4)

+

∫ 4∏

i=1

ddxidt1dt2G(x1, t1,x2, t2)G(x2, t2,x3, t1)

×G(x3, t1,x4, t2)G(x4, t2,x1, t1)

×V (x1,x3)V (x2,x4)

+

∫ 4∏

i=1

ddxidt1dt2G(x1, t1,x2, t2)G(x2, t2,x3, t2)

×G(x3, t2,x4, t1)G(x4, t1,x1, t1)

×V (x1,x4)V (x2,x3).

(2.104)

The third term is equal to the first one, which can be seen by proceeding to the
permutation of the integration variables: (x1,x2,x3,x4) 7→ (x2,x3,x4,x1), and
using the symmetry of V . We find

〈
Tr(Gθ)4

〉

θ,V −1 = 2

∫ 4∏

i=1

ddxidt1dt2G(x1, t1,x2, t1)G(x2, t1,x3, t2)

×G(x3, t2,x4, t2)G(x4, t2,x1, t1)

×V (x1,x2)V (x3,x4)

+

∫ 4∏

i=1

ddxidt1dt2G(x1, t1,x2, t2)G(x2, t2,x3, t1)

×G(x3, t1,x4, t2)G(x4, t2,x1, t1)

×V (x1,x3)V (x2,x4).(2.105)
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We will evaluate these two terms separately. Remembering that when evaluated
at same times the propagator is time-independent, we have to calculate

J1 .
=

∫ β

0

dt1

∫ β

0

dt2G(x2, t1,x3, t2)G(x4, t2,x1, t1) (2.106)

and

J2 .=

∫ β

0

dt1

∫ β

0

dt2G(x1, t1,x2, t2)G(x2, t2,x3, t1)G(x3, t1,x4, t2)G(x4, t2,x1, t1).

(2.107)
Let’s start with the determination of J1. In the same way as previously, we
replace the propagator by its expression (2.47), and integrate over the imaginary
times, separating the contributions for t1 > t2 and t1 < t2. Let’s calculate

J1 =

∫ β

0

dt1

∫ β

0

dt2G(x2, t1,x3, t2)G(x4, t2,x1, t1)

=

∫ β

0

dt1

∫ t1

0

dt2G(x2, t1,x3, t2)G(x4, t2,x1, t1)

+

∫ β

0

dt1

∫ β

t1

dt2G(x2, t1,x3, t2)G(x4, t2,x1, t1)

.
= J1

1 + J1
2 , (2.108)

with

J1
1 = −

∑

α,β

∫ β

0

dt1

∫ t1

0

dt2e
−(eα−eβ)(t1−t2) [1 − fβ(eα − µ)] fβ(eβ − µ)

×ψ?α(x3)ψα(x2)ψ
?
β(x1)ψβ(x4).

(2.109)

We have to separate the terms eα 6= eβ and eα = eβ.
Using the result (2.84) we find

J1
1 = −

∑

{α,β|eα 6=eβ}

β

(eα − eβ)
[1 − fβ(eα − µ)] fβ(eβ − µ)

×ψ?α(x3)ψα(x2)ψ
?
β(x1)ψβ(x4) (2.110)

−
∑

{α,β|eα 6=eβ}

(
eβ(eβ−µ) − eβ(eα−µ)

)

(eα − eβ)2
fβ(eα − µ)fβ(eβ − µ)

×ψ?α(x3)ψα(x2)ψ
?
β(x1)ψβ(x4) (2.111)

−β
2

2

∑

{α,β|eα=eβ}
[1 − fβ(eα − µ)] fβ(eβ − µ)ψ?α(x3)ψα(x2)ψ

?
β(x1)ψβ(x4).

(2.112)
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We evaluate J1
2 in the same way. Using the result (2.88) we find

J1
2 =

∑

{α,β|eα 6=eβ}

β

(eα − eβ)
fβ(eα − µ) [1 − fβ(eβ − µ)]

×ψ?α(x3)ψα(x2)ψ
?
β(x1)ψβ(x4) (2.113)

−
∑

{α,β|eα 6=eβ}

(eβ(eα−µ) − eβ(eβ−µ))

(eα − eβ)2
fβ(eα − µ)fβ(eβ − µ)

×ψ?α(x3)ψα(x2)ψ
?
β(x1)ψβ(x4) (2.114)

−β
2

2

∑

{α,β|eα=eβ}
fβ(eα − µ) [1 − fβ(eβ − µ)]ψ?α(x3)ψα(x2)ψ

?
β(x1)ψβ(x4).

(2.115)

Summing J1
1 and J1

2 we see that the term (2.111) and (2.114) cancel out.
Let’s consider the remaining terms, by proceeding to the change of the sum-

mation indices α↔ β in (2.113), and replacing eβ by eα in (2.115). We find

J1 = −
∑

{α,β|eα 6=eβ}

β

(eα − eβ)
[1 − fβ(eα − µ)] fβ(eβ − µ)

×
(
ψ?α(x3)ψα(x2)ψ

?
β(x1)ψβ(x4) + ψ?α(x1)ψα(x4)ψ

?
β(x3)ψβ(x2)

)

−β2
∑

{α,β|eα=eβ}
[1 − fβ(eα − µ)] fβ(eβ − µ)ψ?α(x3)ψα(x2)ψ

?
β(x1)ψβ(x4).

(2.116)

Taking the zero temperature limit (using (2.54) and (2.58)) we find

J1 = −
∑

{α,β|eα 6=eβ}

β

(eα − eβ)
θ(eα − µ)θ(µ− eβ)

×
(
ψ?α(x3)ψα(x2)ψ

?
β(x1)ψβ(x4) + ψ?α(x1)ψα(x4)ψ

?
β(x3)ψβ(x2)

)

−β2
∑

{α,β|eα=eβ}
θ(eα − µ)θ(µ− eβ)ψ

?
α(x3)ψα(x2)ψ

?
β(x1)ψβ(x4).

(2.117)

Introducing the density of states (2.94), and using the indices (α, β) 7→ (e1, e2)
for the continuous description of the energy, we find

J1 = −β
∫ ∞

µ

de1

∫ µ

0

de2
1

(e1 − e2)

(

ρσ(e1,x3,x2)ρ
σ(e2,x1,x4)

+ρσ(e1,x1,x4)ρ
σ(e2,x3,x2)

)

−β2

∫ ∞

µ

de1

∫ µ

0

de2δ(e1 − e2)ρ
σ(e1,x3,x2)ρ

σ(e2,x1,x4). (2.118)
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The second term of (2.118) is zero, because e1 > µ while e2 < µ, the constraint
e1 = e2 is therefore never satisfied.

Introducing the result (2.118) in (2.105), and using (2.50), we find a contri-
bution to the pressure P4 which is, using (2.99)

P 1
4 =

s

2N2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2
1

(e1 − e2)

× (ρσ(e1,x3,x2)ρ
σ(e2,x1,x4) + ρσ(e1,x1,x4)ρ

σ(e2,x3,x2))

×ρσ(x1,x2)ρ
σ(x3,x4)V (x1,x2)V (x3,x4).

(2.119)

For the second term we proceed to the change of the integration variables (x1,x4)
↔ (x3,x2) to finally obtain

P 1
4 =

s

N2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2
1

(e1 − e2)
ρσ(e1,x3,x2)ρ

σ(e2,x1,x4)

×ρσ(x1,x2)ρ
σ(x3,x4)V (x1,x2)V (x3,x4).

(2.120)

We still have to determine J2. We replace the propagator by its expression (2.47),
and integrate over the imaginary times, separating the contributions for t1 > t2
and t1 < t2.

We have

J2 =

∫ β

0

dt1

∫ β

0

dt2G(x1, t1,x2, t2)G(x2, t2,x3, t1)G(x3, t1,x4, t2)G(x4, t2,x1, t1)

=

∫ β

0

dt1

∫ t1

0

dt2G(x1, t1,x2, t2)G(x2, t2,x3, t1)G(x3, t1,x4, t2)G(x4, t2,x1, t1)

+

∫ β

0

dt1

∫ β

t1

dt2G(x1, t1,x2, t2)G(x2, t2,x3, t1)G(x3, t1,x4, t2)G(x4, t2,x1, t1)

.
=J2

1 + J2
2 , (2.121)

with

J2
1 =

∑

α,β,γ,δ

∫ β

0

dt1

∫ t1

0

dt2e
−(eα+eγ−eβ−eδ)(t1−t2) [1 − fβ(eα − µ)] fβ(eβ − µ)

× [1 − fβ(eγ − µ)] fβ(eδ − µ)ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4).

(2.122)

We have to separate the terms eα + eγ 6= eβ + eδ and eα + eγ = eβ + eδ.
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Using the result (2.84) we find

J2
1 =

∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

β

(eα + eγ − eβ − eδ)
[1 − fβ(eα − µ)] fβ(eβ − µ)

× [1 − fβ(eγ − µ)] fβ(eδ − µ)ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4) (2.123)

+
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

eβ(eβ+eδ−2µ) − eβ(eα+eγ−2µ)

(eα + eγ − eβ − eδ)2
fβ(eα − µ)fβ(eβ − µ)

×fβ(eγ − µ)fβ(eδ − µ)ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4) (2.124)

+
β2

2

∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
[1 − fβ(eα − µ)] fβ(eβ − µ) [1 − fβ(eγ − µ)]

×fβ(eδ − µ)ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4). (2.125)

We evaluate J2
2 in the same manner. Using the result (2.88) we find

J2
2 =

∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

−β
(eα + eγ − eβ − eδ)

fβ(eα − µ) [1 − fβ(eβ − µ)]

×fβ(eγ − µ) [1 − fβ(eδ − µ)]ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4) (2.126)

+
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

eβ(eα+eγ−2µ) − eβ(eβ+eδ−2µ)

(eα + eγ − eβ − eδ)2
fβ(eα − µ)fβ(eβ − µ)

×fβ(eγ − µ)fβ(eδ − µ)ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4) (2.127)

+
β2

2

∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
fβ(eα − µ) [1 − fβ(eβ − µ)] fβ(eγ − µ)

× [1 − fβ(eδ − µ)]ψ?α(x2)ψα(x1)

×ψ?β(x3)ψβ(x2)ψ
?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4). (2.128)

Summing J2
1 and J2

2 we see that the term (2.124) and (2.127) cancel out.

Let’s consider the remaining terms, by proceeding to the change of the sum-
mation indices (α, γ) ↔ (β, δ) in (2.126), and replacing eβ + eδ by eα + eγ in
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(2.128). We find

J2 =
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

β

(eα + eγ − eβ − eδ)
[1 − fβ(eα − µ)]

×fβ(eβ − µ) [1 − fβ(eγ − µ)] fβ(eδ − µ)

×
(

ψ?α(x2)ψα(x1)ψ
?
β(x3)ψβ(x2)ψ

?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4)

+ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x1)ψ

?
γ(x1)ψγ(x4)ψ

?
δ (x4)ψδ(x3)

)

+β2
∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
[1 − fβ(eα − µ)] fβ(eβ − µ) [1 − fβ(eγ − µ)] fβ(eδ − µ)

×ψ?α(x2)ψα(x1)ψ
?
β(x3)ψβ(x2)ψ

?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4).

(2.129)

Taking the zero temperature limit (using (2.54) and (2.58)) we find

J2 =
∑

{α,β,γ,δ|eα+eγ 6=eβ+eδ}

β

(eα + eγ − eβ − eδ)
θ(eα − µ)

×θ(µ− eβ)θ(eγ − µ)θ(µ− eδ)

×
(

ψ?α(x2)ψα(x1)ψ
?
β(x3)ψβ(x2)ψ

?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4)

+ψ?α(x3)ψα(x2)ψ
?
β(x2)ψβ(x1)ψ

?
γ(x1)ψγ(x4)ψ

?
δ (x4)ψδ(x3)

)

+β2
∑

{α,β,γ,δ|eα+eγ=eβ+eδ}
θ(eα − µ)θ(µ− eβ)θ(eγ − µ)θ(µ− eδ)

×ψ?α(x2)ψα(x1)ψ
?
β(x3)ψβ(x2)ψ

?
γ(x4)ψγ(x3)ψ

?
δ (x1)ψδ(x4).

(2.130)

Introducing the density of states (2.94), and using the indices (α, β, γ, δ) 7→
(e1, e2, e3, e4) for the continuous description of the energy, we find

J2 = β

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×
(

ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4)

+ρσ(e1,x3,x2)ρ
σ(e2,x2,x1)ρ

σ(e3,x1,x4)ρ
σ(e4,x4,x3)

)

(2.131)

+β2

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4δ(e1 + e3 − e2 − e4)

×ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4).

(2.132)
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The second term of (2.132) is zero, because e1 + e3 > 2µ while e2 + e4 < 2µ, the
constraint e1 + e3 = e2 + e4 is therefore never satisfied.

Introducing the result (2.132) in (2.105) we find a contribution to the pressure
P4 which is, using (2.99)

P 2
4 = − s

4N2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×
(

ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4)

+ρσ(e1,x3,x2)ρ
σ(e2,x2,x1)ρ

σ(e3,x1,x4)ρ
σ(e4,x4,x3)

)

×V (x1,x3)V (x2,x4).

(2.133)

For the second term we proceed to the change of the integration variables
(x1,x2,x3,x4) 7→ (x2,x3,x4,x1), and e1 ↔ e3 to finally obtain

P 2
4 = − s

2N2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4)

×V (x1,x3)V (x2,x4).

(2.134)

2.3.5 Total pressure

The total ground state pressure, up to the order N−2, is

P = p0 + p1N
−1 + p2N

−2 + O(N−3) + µN, (2.135)

where

p0 = −s
N/s
∑

i=1

ei +
1

2N

∫

ddx

∫

ddyV (x,y)ρ(x)ρ(y),

p1 =
1

2s

∫

ddxddyV (x,y)ρ(x,y)ρ(y,x),

(2.136)
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p2 =
s2

2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4)

×V (x1,x2)V (x3,x4)(2.137)

+s

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2
1

(e1 − e2)
ρσ(e1,x3,x2)ρ

σ(e2,x1,x4)

×ρσ(x1,x2)ρ
σ(x3,x4)V (x1,x2)V (x3,x4) (2.138)

−s
2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4)

×V (x1,x3)V (x2,x4).(2.139)

2.4 Ground state energy

The ground state energy is immediately obtained from the ground state pressure
using equation (2.3). We find

E(N) = e0 + e1N
−1 + e2N

−2 + O(N−3), (2.140)

where

e0 = s

N/s
∑

i=1

ei −
1

2N

∫

ddx

∫

ddyV (x,y)ρ(x)ρ(y),

e1 = − 1

2s

∫

ddxddyV (x,y)ρ(x,y)ρ(y,x),

e2 = −s
2

2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4)

×V (x1,x2)V (x3,x4)

−s
∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2
1

(e1 − e2)
ρσ(e1,x3,x2)ρ

σ(e2,x1,x4)

×ρσ(x1,x2)ρ
σ(x3,x4)V (x1,x2)V (x3,x4)

+
s

2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4)

×V (x1,x3)V (x2,x4).

(2.141)
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2.5 Ground state pressure in the semiclassical

limit

We have obtained an expression of the ground state energy of a system of N
fermions. To extract explicit results from this expression we work in the large N
limit. This allows us to work in the frame of semiclassical physics and obtain ex-
plicit expressions for the sum of the N first eigenvalues, as well as for the electron
density (solution of the self-consistent equation). These expressions are specific
to the dimension of the system considered and have to be treated separately for
the two- and three-dimensional cases. They also depend on the external poten-
tial, which is why we will treat in detail some particular cases later (see the case
of quantum dots in part II).

It is possible to use the semiclassical values of the densities of states (2.94)
to compute the corrections p2. Let’s note that this density of states depend on
the semiclassical density, which is the solution of the self-consistent equation and
depends therefore on the specific dimension and external potential of the problem.
But we will see that these terms are actually independent of this density. This
result implies the universality of these corrections.

2.5.1 Semiclassical density of states

Before evaluating the different terms of p2 we simplify them by using the relation

1

α
=

∫ ∞

0

dte−αt, α > 0 (2.142)

in order to separate the variables e1, e2, e3 and e4.
We will therefore have to evaluate semiclassically

ρσ(x,x + εr) =
1

(2πε)d

∫

ddkeikrθ(µ− (k2 + V (x))),

ρσ(e; x,x + εr) =
1

(2πε)d

∫

ddkeikrδ(e− (k2 + V (x))), (2.143)

which leads to
∫ µ

0

deeteρσ(e; x,x + εr) =
1

(2πε)d

∫

ddkeikret(k
2+V (x))θ((µ− V (x)) − k2),

∫ ∞

µ

dee−teρσ(e; x,x + εr) =
1

(2πε)d

∫

ddkeikre−t(k
2+V (x))θ(k2 − (µ− V (x))).

(2.144)

These objects can now be introduced in p2 to obtain explicit semiclassical expres-
sions of the corrections to the pressure.
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Let’s note that all these objects are non zero only if evaluated for positions
separated by a length of the order of ε, which will be used later.

In our applications we will also use the Fourier representation of the electron-
electron interaction to take advantage of its translation invariance (V (xi,xj) =
V (|xi − xj|).

We have

V (x) =
1

(2π)d

∫

ddkeikxV̂ (k) ⇒ V̂ (k) =

∫

ddxe−ikxV (x). (2.145)

We will only consider the 3-dimensional electron-electron interaction V (x) = 1
|x| :

V (x) =
1

|x| ⇒ V̂ (k) =
Sd

|k|d−1
,

{
S2 = 2π,
S3 = 4π.

(2.146)

Another equality we will use in the computations is an integral representation
of the delta function

∫

ddxeikx = (2π)dδ(x). (2.147)

2.5.2 Semiclassical correction p2

Let’s evaluate the first term (2.137) of p2, corresponding to the renormalisation
term. Using (2.144), as well as proceeding to the change of variables

x2 7→ r2, εr2 = x2 − x1, εdddr2 = ddx2,

x3 7→ r3, εr3 = x3 − εr2 − εr1, εdddr3 = ddx3,

x4 7→ r4, εr4 = x4 − x1, εdddr4 = ddx4, (2.148)

this term becomes

p1
2 =

s2

2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x3,x2)ρ
σ(e2,x2,x3)ρ

σ(e3,x4,x1)ρ
σ(e4,x1,x4)

×V (x1,x2)V (x3,x4)



48 2. Ground state energy of a many-fermion system

=
s2

2
ε3d
∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

×
∫ ∞

µ

de1e
−te1ρσ(e1; x1 + εr2 + εr3,x1 + εr2)

×
∫ µ

0

de2e
te2ρσ(e2; x1 + εr2,x1 + εr2 + εr3)

×
∫ ∞

µ

de3e
−te3ρσ(e3; x1 + εr4,x1)

∫ µ

0

de4e
te4ρσ(e4; x1,x1 + εr4)

×V (x1,x1 + εr2)V (x1 + εr2 + εr3,x1 + εr4)

=
s2

2

ε−d

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddki

×e−t(k2
1+V (x1+εr2+εr3))et(k

2
2+V (x1+εr2))e−t(k

2
3+V (x1+εr4))et(k

2
4+V (x1))

×ei[r3(k2−k1)+r4(k4−k3)]V (x1,x1 + εr2)V (x1 + εr2 + εr3,x1 + εr4)

×θ(k2
1 − (µ− V (x1 + εr2 + εr3)))θ((µ− V (x1 + εr2)) − k2

2)

×θ(k2
3 − (µ− V (x1 + εr4)))θ((µ− V (x1)) − k2

4).

(2.149)

At this stage we take the semiclassical limit. In this limit we know that the
density matrix ρ(ek,xi,xj) is non zero only if |xj − xi| ' ε (more exactly, the
decrease is exponential). This implies that r3 and r4 are of the order of 1, and
therefore xi + εrj ' xi, j = 3, 4. The treatment of r2 is more delicate: the
decrease is not exponential in this case, as x1 are x2 are not separated by a
density matrix, but by the electronic interaction.

Using moreover the translation invariance of V (V (xi,xj) = V (|xi − xj|)),
this term becomes

p1
2 =

s2

2

ε−d

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddkie
−t(k2

1−k2
2+k2

3−k2
4)

×ei[r3(k2−k1)+r4(k4−k3)]V (εr2)V (εr4 − εr3 − εr2)

×θ(k2
1 − (µ− V (x1 + εr2)))θ((µ− V (x1 + εr2)) − k2

2)

×θ(k2
3 − (µ− V (x1)))θ((µ− V (x1)) − k2

4).

(2.150)

Let’s introduce the Fourier transform (2.145) of V , use the scaling property
V (εr) = 1

ε
V (r), and integrate over r3, r4 using the delta function (2.147):

p1
2 =

s2

2

ε−(d+2)

(2π)6d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddkid
dq1d

dq2V̂ (q1)V̂ (q2)

×e−t(k2
1−k2

2+k2
3−k2

4)ei[r2(q1−q2)+r3(k2−k1−q2)+r4(k4−k3+q2)]



2.5. Ground state pressure in the semiclassical limit 49

×θ(k2
1 − (µ− V (x1 + εr2)))θ((µ− V (x1 + εr2)) − k2

2)

×θ(k2
3 − (µ− V (x1)))θ((µ− V (x1)) − k2

4).

=
s2

2

ε−(d+2)

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2

∫ 4∏

i=1

ddkid
dq1d

dq2V̂ (q1)V̂ (q2)

×e−t(k2
1−k2

2+k2
3−k2

4)eir2(q1−q2)δ(k2 − k1 − q2)δ(k4 − k3 + q2)

×θ(k2
1 − (µ− V (x1 + εr2)))θ((µ− V (x1 + εr2)) − k2

2)

×θ(k2
3 − (µ− V (x1)))θ((µ− V (x1)) − k2

4).

(2.151)

We make use of the delta functions to integrate over k1,k3, and we integrate over
t:

p1
2 =

s2

4

ε−(d+2)

(2π)4d

∫

ddx1d
dr2

∫

ddk2d
dk4d

dq1d
dq2V̂ (q1)V̂ (q2)

× eir2(q1−q2)

q2
2 + q2(k4 − k2)

θ((k2 − q2)
2 − (µ− V (x1 + εr2)))

×θ((µ− V (x1 + εr2)) − k2
2)θ((k4 + q2)

2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
4).

(2.152)

We used the result

k2
1 − k2

2 + k2
3 − k2

4 = 2[q2
2 + q2(k4 − k2)]. (2.153)

This result remains to be understood. In particular one may be tempted to
neglect the terms εr2 in the integral, to obtain a delta function when integrating
over r2. As we will see in further developments, this leads to the same term as
in the jellium model, for which a lot of research was performed. In doing so, we
find, introducing the delta function (2.147):

p1
2 =

s2

4

ε−(d+2)

(2π)4d

∫

ddx1d
dr2

∫

ddk2d
dk4d

dq1d
dq2V̂ (q1)V̂ (q2)

× eir2(q1−q2)

q2
2 + q2(k4 − k2)

θ((k2 − q2)
2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
2)θ((k4 + q2)

2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
4)
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=
s2

4

ε−(d+2)

(2π)3d

∫

ddx1

∫

ddk2d
dk4d

dq1d
dq2V̂ (q1)V̂ (q2)

× δ(q1 − q2)

q2
2 + q2(k4 − k2)

θ((k2 − q2)
2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
2)θ((k4 + q2)

2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
4).

(2.154)

The delta function is used to integrate over q1, and we use the symmetry of V̂ .
Writing q2 = q we find

p1
2 =

s2

4

ε−(d+2)

(2π)3d

∫

ddx1

∫

ddk2d
dk4d

dqV̂ (q)V̂ (q)

× 1

q2 + q(k4 − k2)
θ((k2 − q)2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
2)θ((k4 + q)2 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
4).

(2.155)

Using the expression (2.146) for the Fourier transform of the potential, we find

p1
2 =

s2

4

S2
d

ε(d+2)(2π)3d

∫

ddx1

∫

ddk2d
dk4d

dq
1

q2(d−1)

1

q2 + q(k4 − k2)

×θ((k2 − q)2 − (µ− V (x1)))θ((µ− V (x1)) − k2
2)

×θ((k4 + q)2 − (µ− V (x1)))θ((µ− V (x1)) − k2
4).

(2.156)

We can separate the integration over x1 from the other variables by the change
of variables

k2 7→ k′
2,

√

µ− V (x)k′
2 = k2, ddk2 = (µ− V (x))

d
2 ddk′

2,

k4 7→ k′
4,

√

µ− V (x)k′
4 = k4, ddk4 = (µ− V (x))

d
2 ddk′

4,

q 7→ q′,
√

µ− V (x)q′ = q, ddq = (µ− V (x))
d
2 ddq′. (2.157)

With this change of variables the contribution to the pressure becomes

p1
2 =

s2

4

S2
d

ε(d+2)(2π)3d

∫

ddx(µ− V (x))
d
2

︸ ︷︷ ︸
.
=C

∫

ddk2d
dk4d

dq
1

q2(d−1)

× 1

q2 + q(k4 − k2)
θ((k2 − q)2 − 1)θ(1 − k2

2)

×θ((k4 + q)2 − 1)θ(1 − k2
4).

(2.158)
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The entire N -dependence of this term is contained in part C. It can be established
by replacing (µ − V (x)) by the density, using the lowest order relation between
(µ − V (x)) and ρ(x). This relation can be obtained by integrating over k in
(2.143), with r = 0:

ρ(x) = sρσ(x) =
s

(2πε)d

∫

ddkθ(µ− (k2 + V (x)))

=
sSd

(2πε)d

∫
√
µ−V (x)

0

dkk(d−1)

=
sSd

(2πε)dd
(µ− V (x))

d
2 . (2.159)

We have therefore

C =
s

4

Sdd

ε2(2π)2d

∫

ddxρ(x)
︸ ︷︷ ︸

=N

=
s

4

Sdd

(2π)2d

N

ε2

=
s

2

Sdd

(2π)2d
N1+ 2

d =

{
1

4π3N
2 , d = 2,

3
16π5N

5
3 , d = 3,

(2.160)

and p1
2 becomes

p1
2 = N1+ 2

d
s

2

Sdd

(2π)2d

∫

Λ

ddkddk′ddq
1

q2(d−1)

1

q2 + q(k′ − k)
, (2.161)

where the integration domain Λ is such that

|k − q| > 1 |k′ − q| > 1, |k| < 1, |k′| < 1. (2.162)

When returning to the energy, and proceed to the inverse scaling of the energy, the
final expression we have to integrate corresponds to that of the jellium model.
This is why this integral was already studied (in (Gell-Mann and Brueckner,
1957)) for three-dimensional systems. It is divergent, and an infinite number of
selected terms (the "ring diagrams") has to be taken into account to obtain a finite
contribution, which is computed using the Random Phase Approximation. Our
problem is however different from the jellium model: the density is not uniform,
and is not infinitely extended. This is why we believe that our term may not be
divergent. We believe that the approximations that led us to this result are too
strong.

Let’s evaluate the second term (2.138) of p2. Using (2.143), and (2.144), as
well as proceeding to the change of variables

x2 7→ r2, εr2 = x2 − x1, εdddr2 = ddx2,

x3 7→ r3, εr3 = x3 − x1, εdddr3 = ddx3,

x4 7→ r4, εr4 = x4 − x1, εdddr4 = ddx4, (2.163)
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this term becomes

p2
2 = s

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2
1

(e1 − e2)
ρσ(e1; x3,x2)ρ

σ(e2; x1,x4)

×ρσ(x1,x2)ρ
σ(x3,x4)V (x1,x2)V (x3,x4)

= ε3ds

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ ∞

µ

de1e
−te1ρσ(e1; x1 + εr3,x1 + εr2)

×
∫ µ

0

de2e
te2ρσ(e2; x1,x1 + εr4)ρ

σ(x1,x1 + εr2)ρ
σ(x1 + εr3,x1 + εr4)

×V (x1,x1 + εr2)V (x1 + εr3,x1 + εr4)

=
ε−ds

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddki

×e−t(k2
1+V (x1+εr3))et(k

2
2+V (x1))ei[r2(k1+k3)−r3(k1+k4)+r4(k2+k4)]

×θ(k2
1 − (µ− V (x1 + εr3)))θ((µ− V (x1)) − k2

2)

×θ((µ− V (x1)) − k2
3)θ((µ− V (x1 + εr3)) − k2

4)

×V (x1,x1 + εr2)V (x1 + εr3,x1 + εr4).

(2.164)

Taking the semiclassical limit ε� 1, which implies xi + εrj ' xi, we find, using
the translation invariance of V (V (x1,x2) = V (|x1 − x2|),

p2
2 =

ε−ds

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddkie
−t(k2

1−k2
2)

×ei[r2(k1+k3)−r3(k1+k4)+r4(k2+k4)]V (εr2)V (ε|r3 − r4|)
×θ(k2

1 − (µ− V (x1)))θ((µ− V (x1)) − k2
2)

×θ((µ− V (x1)) − k2
3)θ((µ− V (x1)) − k2

4).

(2.165)

Let’s introduce the Fourier transform (2.145) of V , use the scaling property
V (εr) = 1

ε
V (r), and integrate over r2, r3, r4 using the delta functions (2.147):

p2
2 =

ε−(d+2)s

(2π)6d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddkid
dq1d

dq2e
−t(k2

1−k2
2)

×ei[r2(k1+k3+q1)−r3(k1+k4+q2)+r4(k2+k4+q2)]V̂ (q1)V̂ (q2)

×θ(k2
1 − (µ− V (x1)))θ((µ− V (x1)) − k2

2)

×θ((µ− V (x1)) − k2
3)θ((µ− V (x1)) − k2

4)
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=
ε−(d+2)s

(2π)3d

∫ ∞

0

dt

∫

ddx1

∫ 4∏

i=1

ddkid
dq1d

dq2e
−t(k2

1−k2
2)V̂ (q1)V̂ (q2)

×δ(k1 + k3 + q1) δ(k1 + k4 + q2)δ(k2 + k4 + q2)
︸ ︷︷ ︸

=δ(k1+k4+q2)δ(k1+k2)

θ(k2
1 − (µ− V (x1)))

×θ((µ− V (x1)) − k2
2)θ((µ− V (x1)) − k2

3)θ((µ− V (x1)) − k2
4).

(2.166)

We integrate over q1, q2,k2, and use the parity of V̂ to find

p2
2 =

ε−(d+2)s

(2π)3d

∫ ∞

0

dt

∫

ddx1

∫

ddk1d
dk3d

dk4V̂ (k1 + k3)V̂ (k1 + k4)

× θ(k2
1 − (µ− V (x1)))θ((µ− V (x1)) − k2

1)
︸ ︷︷ ︸

=0

×θ((µ− V (x1)) − k2
3)θ((µ− V (x1)) − k2

4)

= 0. (2.167)

This contribution therefore vanishes in the semiclassical limit.

Let’s evaluate the third term (2.139) of p2. Using (2.143), and (2.144), as well as
proceeding to the change of variables

x2 7→ r2, εr2 = x2 − x1, εdddr2 = ddx2,

x3 7→ r3, εr3 = x3 − x1, εdddr3 = ddx3,

x4 7→ r4, εr4 = x4 − x1, εdddr4 = ddx4, (2.168)

this term becomes

p3
2 = −s

2

∫ 4∏

i=1

ddxi

∫ ∞

µ

de1

∫ µ

0

de2

∫ ∞

µ

de3

∫ µ

0

de4
1

(e1 + e3 − e2 − e4)

×ρσ(e1,x2,x1)ρ
σ(e2,x3,x2)ρ

σ(e3,x4,x3)ρ
σ(e4,x1,x4)

×V (x1,x3)V (x2,x4)

= −ε
3ds

2

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ ∞

µ

de1e
−te1ρσ(e1; x1 + εr2,x1)

×
∫ µ

0

de2e
te2ρσ(e2; x1 + εr3,x1 + εr2)

∫ ∞

µ

de3e
−te3ρσ(e3; x1 + εr4,x1 + εr3)

×
∫ µ

0

de4e
te4ρσ(e4; x1,x1 + εr4)V (x1,x1 + εr3)V (x1 + εr2,x1 + εr4)
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= −s
2

ε−d

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddki

×e−t(k2
1+V (x1+εr2))et(k

2
2+V (x1+εr3))e−t(k

2
3+V (x1+εr4))et(k

2
4+V (x1))

×ei[r2(−k1+k2)+r3(−k2+k3)+r4(−k3+k4)]

×V (x1,x1 + εr3)V (x1 + εr2,x1 + εr4)

×θ(k2
1 − (µ− V (x1 + εr2)))θ((µ− V (x1 + εr3)) − k2

2)

×θ(k2
3 − (µ− V (x1 + εr4)))θ((µ− V (x1)) − k2

1).

(2.169)

Taking the semiclassical limit ε � 1, which implies xi + εrj ' xi, and using the
symmetry of V , we find

p3
2 = −s

2

ε−d

(2π)4d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddkiV (ε|r3|)V (ε|r4 − r2|)

×e−t(k2
1−k2

2+k2
3−k2

4)ei[r2(−k1+k2)+r3(−k2+k3)+r4(−k3+k4)]

×θ(k2
1 − (µ− V (x1)))θ((µ− V (x1)) − k2

2)

×θ(k2
3 − (µ− V (x1)))θ((µ− V (x1)) − k2

4).

(2.170)

Let’s introduce the Fourier transform (2.145) of V , use the scaling property
V (εr) = 1

ε
V (r), and integrate over r2, r3, r4 using the delta functions (2.147):

p3
2 = −s

2

ε−(d+2)

(2π)6d

∫ ∞

0

dt

∫

ddx1d
dr2d

dr3d
dr4

∫ 4∏

i=1

ddkid
dq1d

dq2V̂ (q1)V̂ (q2)

×e−t(k2
1−k2

2+k2
3−k2

4)ei[r2(−k1+k2−q2)+r3(−k2+k3+q1)+r4(−k3+k4+q2)]

×θ(k2
1 − (µ− V (x1)))θ((µ− V (x1)) − k2

2)

×θ(k2
3 − (µ− V (x1)))θ((µ− V (x1)) − k2

4)

= −s
2

ε−(d+2)

(2π)3d

∫ ∞

0

dt

∫

ddx1

∫ 4∏

i=1

ddkid
dq1d

dq2e
−t(k2

1−k2
2+k2

3−k2
4)V̂ (q1)V̂ (q2)

×δ(−k1 + k2 − q2)δ(−k2 + k3 + q1)δ(−k3 + k4 + q2)

×θ(k2
1 − (µ− V (x1)))θ((µ− V (x1)) − k2

2)

×θ(k2
3 − (µ− V (x1)))θ((µ− V (x1)) − k2

4).

(2.171)

We integrate over 6d variables in Fourier space, and there are 3d delta functions.
We will therefore have 3d variables left.

We have

δ(−k1+k2−q2)δ(−k3+k4+q2) = δ(q2+k1−k2)δ(−k1+k2−k3+k4). (2.172)
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We integrate over q1, q2,k4 and proceed to the change of variables

(k1,k2,k3) 7→ (k, q+, q−), (2.173)

k =
k1 + k3

2
,

q− = k2 −
k1 + k3

2
,

q+ =
−k1 + k3

2
, (2.174)

ddk1d
dk2d

dk3 = 2dddkddq+ddq−. (2.175)

The old variables become

k1 = k − q+,

k3 = k + q+,

k2 = k + q−,

k4 = k1 − k2 + k3 = k − q−,

q1 = k2 − k3 = q− − q+,

q2 = −k1 + k2 = q+ + q−. (2.176)

We establish
k2

1 + k2
3 − k2

2 − k2
4 = 2(q2

+ − q2
−). (2.177)

The contribution to the pressure becomes

p3
2 = −2(d−1) ε

−(d+2)s

(2π)3d

∫ ∞

0

dt

∫

ddx

∫

ddkddq+ddq−e
−2t(q2

+−q2
−)

×V̂ (q− − q+)V̂ (q+ + q−)

×θ((k − q+)2 − (µ− V (x)))θ((µ− V (x)) − (k + q−)2)

×θ((k + q+)2 − (µ− V (x)))θ((µ− V (x)) − (k − q−)2).

(2.178)

Integrating over t, and replacing V̂ by its value (2.146), we find

p3
2 = −2(d−2) ε

−(d+2)S2
ds

(2π)3d

∫

ddxddq+ddq−
1

(q2
+ − q2

−)

× 1

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

×
∫

ddkθ((k − q+)2 − (µ− V (x)))θ((µ− V (x)) − (k + q−)2)

×θ((k + q+)2 − (µ− V (x)))θ((µ− V (x)) − (k − q−)2),

(2.179)
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where we used the equality

(q+ − q−)2(q+ + q−)2 = (q2
+ + q2

−)2 − 4(q+q−)2. (2.180)

We can separate the integration over x and k, q+, q− by the change of variables

k 7→ k′,
√

µ− V (x)k′ = k, ddk = (µ− V (x))
d
2 ddk′,

q+ 7→ q′
+,

√

µ− V (x)q′
+ = q+, ddq+ = (µ− V (x))

d
2 ddq′

+,

q− 7→ q′
−,

√

µ− V (x)q′
− = q−, ddq− = (µ− V (x))

d
2 ddq′

−. (2.181)

With this change of variables the contribution to the pressure becomes

p3
2 = −2(d−2) ε

−(d+2)S2
ds

(2π)3d

∫

ddx(µ− V (x))
d
2

∫

ddq+ddq−
1

(q2
+ − q2

−)

× 1

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

×
∫

ddkθ((k − q+)2 − 1)θ(1 − (k + q−)2)

×θ((k + q+)2 − 1)θ(1 − (k − q−)2)

.
= − 2(d−2) ε

−(d+2)S2
ds

(2π)3d

∫

ddx(µ− V (x))
d
2

︸ ︷︷ ︸
.
=C′

∫

ddq+ddq−
1

(q2
+ − q2

−)

× 1

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

fd(q+, q−, q+q−).

(2.182)

The function fd has a geometrical interpretation: it corresponds to the surface
contained in two hyperspheres of radius one and of center ±q−, minus their
intersection with hyperspheres of radius one and of center ±q+.

The entireN -dependence of this term is contained in part C ′. ItsN -dependence
can be established by replacing (µ − V (x)) by the density, using the relation
(2.159). We find

C ′ =
2(d−2)Sdd

ε2(2π)2d

∫

ddxρ(x)
︸ ︷︷ ︸

=N

=
2(d−2)Sdd

(2π)2d

N

ε2

=
2(d−1)Sdd

(2π)2d
N1+ 2

d =

{
1

2π3N
2 , d = 2,

3
4π5N

5
3 , d = 3,

(2.183)

and p3
2 becomes

p3
2 = −N1+ 2

d
2(d−1)Sdd

(2π)2d

∫

ddq+ddq−
1

(q2
+ − q2

−)

fd(q+, q−, q+q−)

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

.

(2.184)
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2.5.3 Total semiclassical pressure

The ground state pressure in the semiclassical limit is therefore

P = pSC0 + pSC1 N−1 + pSC2 N−2 + O(N−3) + µN, (2.185)

where

pSC0 = −s
N/s
∑

i=1

eSCi +
1

2N

∫

ddxddyV (x,y)ρSC(x)ρSC(y),

pSC1 =
1

2s

∫

ddxddyV (x,y)ρSC(x,y)ρSC(y,x),

pSC2 = p1
2 −N1+ 2

d
2(d−1)Sdd

(2π)2d

∫

ddq+ddq−
1

(q2
+ − q2

−)

× fd(q+, q−, q+q−)

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

.

(2.186)

The eigenvalues ei are evaluated semiclassically, as well as the self-consistent
density and potential, evaluated with the use of the self-consistent equation (2.63).
This will be done in detail for the quantum dots later (see part II).

2.6 Semiclassical energy

The semiclassical energy is immediately obtained from the semiclassical pressure
using equality (2.3). We find

E = eSC0 + eSC1 N−1 + eSC2 N−2 + O(N−3), (2.187)

where

eSC0 = s

N/s
∑

i=1

eSCi − 1

2N

∫

ddxddyV (x,y)ρSC(x)ρSC(y),

eSC1 = − 1

2s

∫

ddxddyV (x,y)ρSC(x,y)ρSC(y,x),

eSC2 = e12 +N1+ 2
d
2(d−1)Sdd

(2π)2d

∫

ddq+ddq−
1

(q2
+ − q2

−)

× fd(q+, q−, q+q−)

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

,

(2.188)
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where e12 = −p1
2.

Let’s proceed to a discussion of this result. The lowest order term, eSC0 , corre-
sponds to the Hartree energy: it consists of the sum of the N lowest eigenvalues of
a single particle system, submitted to a potential obtained with the self-consistent
equation (2.63), plus an additional term, the opposite of the self-energy of the
electrons. The interpretation is the following: it consists of approximating the
system by a system of independent particles, respecting the Fermi-Dirac statis-
tics by filling the N lowest energy eigenstates of a single-particle hamiltonian. In
this system, the self-energy of the electrons is counted twice, and this is why the
second term of eSC0 corresponds to the opposite of this self-energy, and therefore
cancels the term in excess. The Hartree energy can be expanded in the semi-
classical regime, to obtain an expansion around a small parameter, given by an
inverse power of N . This was done by Englert and Schwinger (1985b) for the
atom, and we do it in chapter 5 for the quantum dot, with a more detailed study
of the sum of the eigenvalues in chapter 6.

The first order term, eSC1 , corresponds to the exchange energy. This result is
equal to that we obtain in the semiclassical Hartree development, as is done in
chapter 5.

The sum of these two first terms correspond to semiclassical Hartree-Fock
results.

The second order term, eSC2 , corresponds to the first correction beyond the
semiclassical Hartree-Fock model. It is the lowest order of the correlation energy,
and this is why it is particularly interesting.

Let’s evaluate the orders in N of these terms. To proceed to these evaluations,
we need to know the orders ei = O(1), ρ = O(N). Moreover, the density matrix
is such that ρ(x,y) 6= 0 only if |y−x| ' ε. Changes of variable will be performed
to establish the order of the terms we computed. We are interested in the order
of magnitude of the physical energy, which is obtained from E by the inverse of
the scaling (2.10): Ê = N2− 2

dE. Moreover, the small parameter is ε ' N− 1
d .

The order of
∑N

i=1 ei is N (as it consists of a sum of N terms of the order of

1). It provides a contribution of N3− 2
d to the ground state energy, which is N

7
3

for d = 3 dimensions, and N2 for d = 2 dimensions. To compute the self-energy
of the electrons, we use ρ = O(N) to obtain a term of the order of N . Proceeding
to the inverse scaling we find that its contribution to the ground state energy is
N3− 2

d , which is the same as the sum of the eigenvalues. These orders in N are
well-known results.

In the case of quantum dots, let’s note that there is a second parameter, in
addition to N , which has to be taken into account. It is the strength of the
confining potential, κ, which fixes the length scale. This is why a more compre-
hensive treatment has to be done, with a scaling depending on this parameter.
This is done in chapter 5 for a parabolic quantum dot, where we find that the
Thomas-Fermi energy is of the order of N2

L?
, where L? = O(κ−

1
3 ), and leads finally
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to an asymptotic energy of the order of N
3
2 (depending however on how we model

the confining potential, as discussed in chapter 4).

To establish the order of the exchange energy, eSC1 , we proceed to the change
of variable y 7→ r, εr = y. This implies ddy = εdddr and V (εr) = O(ε−1). The

energy is therefore of the order of N−1eSC1 ' Nεd−1 = N
1
d . The contribution to

the ground state energy is therefore N2− 2
d
+ 1

d = N2− 1
d . It is

N
5
3 in d = 3 dimensions, and N

3
2 in d = 2 dimensions.

In the case of a parabolic quantum dot, we find that the exchange energy is

of the order of N
3
2

L?
' N .

We made explicit the order of one part of eSC2 . We find N−2eSC2 = O(N−1+ 2
d ),

its contribution to the ground state being therefore N2− 2
dN−1+ 2

d = N . The order
of the other part of eSC2 still has to be determined.

The order of this correction is independent of the dimension of the system. In
the case of atoms, there are more important corrections to the ground state energy
arising from the semiclassical Hartree-Fock development (of the order of N

4
3 ),

which corresponds to corrections to eSC0 . These corrections are therefore contained
in our developments, but are out of reach analytically. It is therefore not necessary
to take this term into account for the computation of the ground state energy
of atoms. But is it useless to compute this term? No. The term we compute
is the main term of the correlation energy. There are numerical simulations,
with very high accuracy, computed in the Hartree-Fock model, that is without
correlations. The correlation energy can therefore be isolated, by subtracting the
numerical Hartree-Fock results to the experimental energy. We obtain this way
the correlation energy, and our results can be compared to experimental data.

This result deserves a comment: as written in Lieb (1976), in the Thomas-
Fermi approximation, the electrons of the outer region of the atom are not con-
sidered. If the theory is applied to molecules, this implies the no-binding theorem
(due to Teller (1962)), which states that the Thomas-Fermi energy is unstable
under the decomposition of a big molecule into any smaller ones. Moreover, Lieb
(1976) writes that the binding energy is of the order of N , which is precisely the
order of the correction we computed. This correction corresponds to the first
term including correlation effects. These terms may therefore correspond to the
binding energy. The application of our formalism to molecules may answer this
question.

In the case of quantum dots, as we will see later, this correction has to be
taken into account for the computation of the ground state energy for consistency.
As said earlier, we have to proceed to a scaling of the length, which depends on
an external parameter, as will be done in chapter 5. By proceeding to this scaling
we find that this correction is (in this case, too) of the order of N , independent
of the new length scale, for the parabolic quantum dot.

One part of the energy eSC2 will be computed in chapter 3, for the two- and
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three-dimensional cases, to obtain quantitative results.
We computed the first and second orders of the perturbative expansion of the

ground state energy. While we do not compute higher orders corrections, there
is no conceptual difficulty in doing so.
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The objective of this chapter is to compute new corrections to the ground state
energy of quantum dots and large atoms, a term including correlation effects.

In chapter 2 we developed a new approach to compute, with a systematic
expansion around a small parameter, the ground state energy of a many-fermion
system. We apply this method to the problem of the quantum dot and the atom
in this chapter.

The semiclassical Hartree-Fock approach was already applied to atoms (En-
glert, 1988), this is why we focus on the new corrections. We compute one term of
the corrections, which is, as established in chapter 2, universal and depends on the
dimension of the system only. To compute this new contribution to quantum dots
and atoms, we compute this term for the two- and three-dimensional problems,
which reduces to the computation of multiple integrals, computed numerically.

The expression we have to compute is written in equation (2.188). The ex-
pression in the d-dimensional case is

ÊSC
2 = N

2(d−1)Sdd

(2π)2d

∫

ddq+ddq−
1

(q2
+ − q2

−)

fd(q+, q−, q+q−)

((q2
+ + q2

−)2 − 4(q+q−)2)
(d−1)

2

︸ ︷︷ ︸
.
=∆d

, (3.1)
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where the function fd is defined by

fd(q+, q−, q+q−) =

∫

ddkθ((k − q+)2 − 1)θ(1 − (k + q−)2)

×θ((k + q+)2 − 1)θ(1 − (k − q−)2)

=

∫

ddkθ(k2 + q2
+ − 2|kq+| − 1)θ(1 − k2 − q2

− − 2|kq−|).
(3.2)

To compute this integral numerically, we simplify it to the maximum. Let’s
separate the integration variables in the radial and angular parts:

q± = q±ê±, |ê±| = 1, k = kê, |ê| = 1

⇒ ddq± = q
(d−1)
± dq±dê±, ddk = k(d−1)dkdê. (3.3)

We obtain

∆d =

∫

dq+dq−dê+dê−
qd−1
+ qd−1

−
(q2

+ − q2
−)

1

((q2
+ + q2

−)2 − 4(q+q−ê+ê−)2)
(d−1)

2

×
∫

dkkd−1dêθ(k2 + q2
+ − 2kq+|êê+| − 1)θ(1 − k2 − q2

− − 2kq−|êê−|).
(3.4)

There is an invariance under the variation of ê, which is why we integrate over
these variables, and fix ê = ên, the nth direction. The integration provides a
factor Sd.

Moreover we perform the change of variables

(q+, q−) 7→ (x, α), q+ = kx cos
α

2
, q− = kx sin

α

2
, dq+dq− =

k2x

2
dxdα. (3.5)

The integration limits are x ∈ [0,∞[, α ∈ [0, π]. Using usual trigonometric
relations we find, after computation,

∆d =
Sd
2d

∫
dx

x
dα

sin(d−1) α

cosα

∫

dê+dê−
1

(
1 − sin2 α(ê+ê−)2

) (d−1)
2

×
∫

dkk(d−1)θ(A+ − 1

k2
)θ(

1

k2
− A−),

(3.6)

where {
A+ = 1 + x2 cos2 α

2
− 2x cos α

2
|en+|,

A− = 1 + x2 sin2 α
2

+ 2x sin α
2
|en−|.

(3.7)
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The integration over k can be performed, proceeding to the change of variable
k 7→ y = 1

k2 , we find

∫

dkk(d−1)θ(A+ − 1

k2
)θ(

1

k2
− A−) = θ(A+ − A−)

1

2

∫ A+

A−

dyy−(1+ d
2
)

= θ(A+ − A−)
1

d

[

A
− d

2
− − A

− d
2

+

]

. (3.8)

The condition θ(A+ − A−) is

A+ − A− = x2 cosα− 2x(cos
α

2
|en+| + sin

α

2
|en−|) ≥ 0 (3.9)

and can be written as

x ≥ 2
cos α

2
|en+| + sin α

2
|en−|

cosα
.
= x0 ≥ 0. (3.10)

The numerator of the expression above is always positive (α ∈ [0, π]), while the
denominator is negative for π

2
< α < π. This implies a new condition on the

integration domain of α, which becomes α ∈ [0, π
2
]. The condition applies also to

the integration over x. Returning to (3.6) we find

∆d =
Sd
2dd

∫ π
2

0

dα
sin(d−1) α

cosα

∫

dê+dê−
1

(
1 − sin2 α(ê+ê−)2

) (d−1)
2

×
∫ ∞

x0

dx

x

[

A
− d

2
− − A

− d
2

+

]

. (3.11)

Let’s mention that x0 is positive for any values of α, en+, e
n
− in the range of inte-

gration.

This expression can be further simplified. For the integration over x, let’s
consider separately the contributions of A− and A+, and write, for simplicity,
s±

.
= |en±|. We write A± by completing the square of the expression:

{
A+ = 1 + x2 cos2 α

2
− 2x cos α

2
s+ = 1 − s2

+ + (x cos α
2
− s+)2,

A− = 1 + x2 sin2 α
2

+ 2x sin α
2
s− = 1 − s2

− + (x sin α
2

+ s−)2.
(3.12)

To compute the first contribution we have to evaluate

∫
dx

x

θ(A+ − A−)

A
d
2
−

=

∫
dx

x

θ(x cosα− 2(cos α
2
s+ + sin α

2
s−))

(
1 − s2

− + (x sin α
2

+ s−)2
) d

2

. (3.13)
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Proceeding to the change of variable x 7→ x sin α
2
, and using trigonometric rela-

tions, we find

∫
dx

x

θ((x+ s−) cosα− (sinαs+ + s−))

(1 − s2
− + (x+ s−)2)

d
2

=

∫
dx

(x− s−)

θ(x cosα− (sinαs+ + s−))

(1 − s2
− + x2)

d
2

,

(3.14)

where we proceeded to the change of variable x 7→ x + s−. The contribution to
∆d is therefore

∆−
d =

Sd
2dd

∫ π
2

0

dα
sin(d−1) α

cosα

∫

dê+dê−
1

(
1 − sin2 α(ê+ê−)2

) (d−1)
2

×
∫

dx

(x− s−)

θ(x cosα− (sinαs+ + s−))

(1 − s2
− + x2)

d
2

. (3.15)

To compute the second contribution we have to evaluate

∫
dx

x

θ(A+ − A−)

A
d
2
+

=

∫
dx

x

θ(x cosα− 2(cos α
2
s+ + sin α

2
s−))

(
1 − s2

+ + (x cos α
2
− s+)2

) d
2

. (3.16)

Proceeding to the change of variable x 7→ x cos α
2
, and using trigonometric rela-

tions, we find

∫
dx

x

θ((x− s+) cosα− (s+ + sinαs−))

(1 − s2
+ + (x− s+)2)

d
2

=

∫
dx

(x+ s+)

θ(x cosα− (s+ + sinαs−))

(1 − s2
+ + x2)

d
2

,

(3.17)

where we proceeded to the change of variable x 7→ x−s+. When introduced in ∆d,
the symmetry allows the exchange of the variables s+ ↔ s−. The contribution to
∆d is therefore

∆+
d = − Sd

2dd

∫ π
2

0

dα
sin(d−1) α

cosα

∫

dê+dê−
1

(
1 − sin2 α(ê+ê−)2

) (d−1)
2

×
∫

dx

(x+ s−)

θ(x cosα− (s− + sinαs+))

(1 − s2
− + x2)

d
2

. (3.18)
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Combining (3.15) and (3.18) we find

∆d =
Sd
2dd

∫ π
2

0

dα
sin(d−1) α

cosα

∫

dê+dê−
1

(
1 − sin2 α(ê+ê−)2

) (d−1)
2

×
∫

dx
θ(x cosα− (sinαs+ + s−))

(1 − s2
− + x2)

d
2

[
1

x− s−
− 1

x+ s−

]

. (3.19)

Introducing this result in (3.1) we find

ÊSC
2 = N

S2
d

2(2π)2d

∫ π
2

0

dα
sin(d−1) α

cosα

∫

dê+dê−
1

(
1 − sin2 α(ê+ê−)2

) (d−1)
2

×
∫

dx
θ(x cosα− (sinαs+ + s−))

(1 − s2
− + x2)

d
2

[
1

x− s−
− 1

x+ s−

]

.

(3.20)

From now we work in the specific d = 2 and d = 3 dimensions.

3.1 Universal correction in d = 2 dimensions

As mentioned in chapter 2, the term we compute is universal and only depen-
dent on the dimension of the problem. Let’s compute the correction for a two-
dimensional system, in order to apply it to quantum dots in part II.

In this case, the angular integration is

ê± = (sinφ±, cosφ±), dê± = dφ±, φ± ∈ [−π, π]. (3.21)

The correction to the energy becomes

ÊSC
2 =

N

2(2π)2

∫ π
2

0

dα
sinα

cosα

∫ π

−π
dφ+

∫ π

−π
dφ−

1
(
1 − sin2 α cos2(φ+ − φ−)

) 1
2

×
∫

dx
θ(x cosα− (sinα| cosφ+| + | cosφ−|))

(1 − cos2 φ− + x2)

×
[

1

x− | cosφ−|
− 1

x+ | cosφ−|

]

.

(3.22)

Before developing this expression, let’s note that the symmetries with regards
to (φ+, φ−) imply that the integration over φ± ∈ [−π, π] is equal to four times
the integration over φ± ∈ [−π

2
, π

2
]. These new integration limits allow us to drop
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the absolute values (cosφ± ≥ 0). We therefore have to evaluate, using moreover
1 − cos2 φ− = sin2 φ−:

ÊSC
2 =

N

2π2

∫ π
2

0

dα tanα

∫ π
2

−π
2

dφ+

∫ π
2

−π
2

dφ−
1

(
1 − sin2 α cos2(φ+ − φ−)

) 1
2

×
∫

dx
θ(x cosα− (sinα cosφ+ + cosφ−))

(
sin2 φ− + x2

)

×
[

1

x− cosφ−
− 1

x+ cosφ−

]

.

(3.23)

Let’s integrate over x. The integration is

∫

dx
θ(x cosα− (sinα cosφ+ + cosφ−))

(
x2 + sin2 φ−

)

[
1

x− cosφ−
− 1

x+ cosφ−

]

=

∫ ∞

x0

dx
1

(
x2 + sin2 φ−

)

[
1

x− cosφ−
− 1

x+ cosφ−

]

= 2 cosφ−

∫ ∞

x0

dx
1

(
x2 + sin2 φ−

)
1

(x2 − cos2 φ−)

= 2 cosφ−

[
∫ ∞

x0

dx
1

(x2 − cos2 φ−)
−
∫ ∞

x0

dx
1

(
x2 + sin2 φ−

)

]

,

(3.24)

where we redefined x0 = sinα cosφ++cosφ−
cosα

. This lower integration limit is larger
than cosφ−, the first integrand being therefore not divergent. We treat separately
these two integrations.

The first one is

2 cosφ−

∫ ∞

x0

dx

(x2 − cos2 φ−)
= ln

(x0 + cosφ−)

(x0 − cosφ−)
. (3.25)

Replacing x0 by its value, and using trigonometric properties, this term becomes

− ln tan
α

2
− ln

(cos α
2

cosφ+ + sin α
2

cosφ−)

(sin α
2

cosφ+ + cos α
2

cosφ−)
. (3.26)

The second term is antisymmetric under the exchange φ+ ↔ φ−, while the rest of
(3.23) is symmetric, as well as the integration limits. This means that this term
will not contribute, and will be neglected from now.
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The second integration is

2 cosφ−

∫ ∞

x0

dx

(x2 + sin2 φ−)
= 2

cosφ−
| sinφ−|

∫ ∞

x0
| sin φ−|

dx

(x2 + 1)

= 2
cosφ−
| sinφ−|

[
π

2
− arctan

x0

| sinφ−|

]

=
2

| tanφ−|

[
π

2
− arctan

(sinα cosφ+ + cosφ−)

cosα| sinφ−|

]

,

(3.27)

where we proceeded to the change of variable x 7→ x| sinφ−|.
The correction (3.23) to the energy is therefore

ÊSC
2 =

N

2π2

∫ π
2

0

dα tanα

∫ π
2

−π
2

dφ+

∫ π
2

−π
2

dφ−
1

(
1 − sin2 α cos2(φ+ − φ−)

) 1
2

×
[

− ln tan
α

2
− 2

| tanφ−|

[
π

2
− arctan

(sinα cosφ+ + cosφ−)

cosα| sinφ−|

]]

.
= ÊSC

2a + ÊSC
2b .

(3.28)

For the first term, we can integrate over φ+ and φ− to obtain

ÊSC
2a = − N

2π2

∫ π
2

0

dα tanα

∫ π
2

−π
2

dφ+

∫ π
2

−π
2

dφ−
ln tan α

2
(
1 − sin2 α cos2(φ+ − φ−)

) 1
2

= −N

2π

∫ π
2

0

dα tanα

∫ π
2

−π
2

dφ+

ln tan α
2

(
1 − sin2 α cos2 φ+

) 1
2

= −N
π

∫ π
2

0

dα tanα ln tan
α

2
K(sin2 α), (3.29)

where we used the result

∫ π
2

−π
2

dθ
1√

x− cos2 θ
= 2

K
(

1
x

)

√
x
. (3.30)

The integral is computed numerically with Mathematica. We extract the asymp-
totic behaviour at the integration limits and compute them analytically, the rest
being computed numerically. We find

ÊSC
2a = +

N

π
2.8776 = 0.9160N. (3.31)
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For the second term, the symmetries in the variables (φ+, φ−) are such that the
integration over φ− ∈ [−π

2
, π

2
] is twice the integration over φ− ∈ [0, π

2
]. We

separate the integration on φ+ < 0, and on φ+ > 0. We use Matlab to integrate
numerically and find

∫ π
2

0

dα

∫ 0

−π
2

dφ+

∫ π
2

0

dφ−
tanα

tanφ−

1
(
1 − sin2 α cos2(φ+ − φ−)

) 1
2

×
[
π

2
− arctan

(sinα cosφ+ + cosφ−)

cosα sinφ−

]

= 1.5201, (3.32)

and

∫ π
2

0

dα

∫ π
2

0

dφ+

∫ π
2

0

dφ−
tanα

tanφ−

1
(
1 − sin2 α cos2(φ+ − φ−)

) 1
2

×
[
π

2
− arctan

(sinα cosφ+ + cosφ−)

cosα sinφ−

]

= 2.4357. (3.33)

This leads to

ÊSC
2b = −2N

π2
3.9558 = −0.8016N. (3.34)

The whole contribution to the energy is therefore

ÊSC
2 = 0.1144N. (3.35)

After having done these computations, a bibliographical research led us to note
that this integral appears in the problem of the two-dimensional jellium model at
high density: the correlation energy of a uniform high density electron gas, with
a positive background, was computed first in three dimensions by Gell-Mann and
Brueckner (1957). The two-dimensional analog term was computed in (Isihara
and Ioriatti, 1980). The result is the same as ours.

3.2 Universal correction in d = 3 dimensions

Let’s compute the correction for a three-dimensional system, in order to apply
this result to the atoms.

In this case, the angular integration is

ê± = (cosφ± sin θ±, sinφ± sin θ±, cos θ±), dê± = sin θ±dφ±dθ±,

φ± ∈ [−π, π], θ± ∈ [0, π]. (3.36)



3.2. Universal correction in d = 3 dimensions 69

The correction to the energy becomes

ÊSC
2 =

N

23π4

∫ π
2

0

dα
sin2 α

cosα

∫ π

0

dθ+

∫ π

0

dθ−

∫ π

−π
dφ+

∫ π

−π
dφ−

sin θ+ sin θ−
(
1 − sin2 α(ê+ê−)2

)

×
∫

dx
θ(x cosα− (sinα| cos θ+| + | cos θ−|))

(1 − cos2 θ− + x2)
3
2

×
[

1

x− | cos θ−|
− 1

x+ | cos θ−|

]

,

=
N

(2π)4

∫ π
2

0

dα
sin2 α

cosα

∫ π

0

dθ+

∫ π

0

dθ−

∫ π

−π
dφ+

∫ π

−π
dφ− sin θ+ sin θ−

×
(

1

(1 − sinα(ê+ê−))
+

1

(1 + sinα(ê+ê−))

)

×
∫

dx
θ(x cosα− (sinα| cos θ+| + | cos θ−|))

(1 − cos2 θ− + x2)
3
2

×
[

1

x− | cos θ−|
− 1

x+ | cos θ−|

]

.

(3.37)

Let’s replace the scalar product by

ê+ê− = (cosφ+ cosφ− + sinφ+ sinφ−) sin θ+ sin θ− + cos θ+ cos θ−

= cos(φ+ − φ−) sin θ+ sin θ− + cos θ+ cos θ− (3.38)

and integrate over the variables φ±. We proceed to the change of variables
φ+ 7→ φ = φ+ − φ−, make use of the periodicity of the cosine, implying that
the integration bounds do not depend on φ−. Its integration is therefore trivial
and provides 2π. The parity of the cosine implies moreover that the integration
over φ ∈ [−π, π] is equal to twice the integration over φ ∈ [0, π]. The integrations
over φ are of the form

∫ π

0

dφ
1

(A− −B cosφ)
,

∫ π

0

dφ
1

(A+ +B cosφ)
, (3.39)

with A± = 1 ± sinα cos θ+ cos θ−, and B = sinα sin θ+ sin θ−. The conditions
A± > B are satisfied, and the integrations therefore yield

π
√

A2
± −B2

. (3.40)
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Using this formula we obtain, after computation,

∫ π

−π
dφ+

∫ π

−π
dφ−

(
1

(1 − sinα(ê+ê−))
+

1

(1 + sinα(ê+ê−))

)

= (2π)2

[

1
(
1 − 2 sinα cos θ+ cos θ− − sin2 α(1 − cos2 θ+ − cos2 θ−)

) 1
2

+
1

(
1 + 2 sinα cos θ+ cos θ− − sin2 α(1 − cos2 θ+ − cos2 θ−)

) 1
2

]

.

(3.41)

This expression is invariant under the change cos θ+ 7→ − cos θ+, as well as
cos θ− 7→ − cos θ−. This means that it depends on their absolute value only.
The integrand in (3.37) therefore depends on the absolute value of cos θ± only.
The integral over θ+ ∈ [0, π], θ− ∈ [0, π] is therefore equal to 4 times the same
integral over θ+ ∈ [0, π

2
], θ− ∈ [0, π

2
]. In this interval the absolute values can be

dropped, the values being always positive.

We proceed to the change of variables θ± 7→ s± = cos θ±, sin θ±dθ± = ds±.
With these new variables, and using (3.41), the energy (3.37) becomes

ÊSC
2 =

N

π2

∫ π
2

0

dα
sin2 α

cosα

∫ 1

0

ds+

∫ 1

0

ds−g(α, s+, s−)

×
∫

dx
θ(x cosα− (sinαs+ + s−))

(1 − s2
− + x2)

3
2

[
1

x− s−
− 1

x+ s−

]

,

(3.42)

where

g(α, s+, s−)
.
=

1
(
1 − 2 sinαs+s− − sin2 α(1 − s2

+ − s2
−)
) 1

2

+
1

(
1 + 2 sinαs+s− − sin2 α(1 − s2

+ − s2
−)
) 1

2

. (3.43)

Let’s integrate over x, from x0
.
= sinαs++s−

cosα
to infinity. This integration yields

h(α, s+, s−)
.
=

∫ ∞

x0

dx
1

(1 − s2
− + x2)

3
2

[
1

x− s−
− 1

x+ s−

]

= 2s−

∫ ∞

x0

dx
1

(1 − s2
− + x2)

3
2

1

(x2 − s2
−)
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=
2s−

1 − s2
−

[

x0
√

1 − s2
− + x2

0

− 1

]

+

[

ln

(
1 − s−
1 + s−

)

+ ln

(
x0 + s−
x0 − s−

)

+ ln

(

1 − s2
− + s−x0 +

√

1 − s2
− + x2

0

1 − s2
− − s−x0 +

√

1 − s2
− + x2

0

)]

. (3.44)

The integral has been reduced to the following

ÊSC
2 =

N

π2

∫ π
2

0

dα

∫ 1

0

ds+

∫ 1

0

ds−
sin2 α

cosα
g(α, s+, s−)h(α, s+, s−). (3.45)

and is evaluated numerically. This numerical integration shows no difficulty (there
are no convergence problems), and is evaluated using Matlab. We find, in Hartree

ÊSC
2 =

N

π2
0.23864 = 0.024179N. (3.46)

After having done these computations, a bibliographical research led us to note
that this integral appears in the problem of the jellium model at high density:
the correlation energy of a uniform high density electron gas, with a positive
background, was computed first by Gell-Mann and Brueckner (1957). They find
that one contribution to this energy is the same as that we computed, and this
integral was solved analytically by Onsager et al. (1966). They find, in Hartree

ÊSC
2 =

(
1

6
ln(2) − 3

4π2
ζ(3)

)

N = 0.024179N. (3.47)

We can understand the fact that our results are the same as those found for the
jellium model in the following way: due to the semiclassical regime, only local
values are in play. This means that, around x, the system behaves as if it were
uniform, with a "local chemical potential" (µ − V (x)). The integration over x

then provides the factor N . This discussion holds for the two-dimensional case,
too.

At this stage, it is interesting to compare qualitatively this result to experi-
mental data. The first point to mention is that this contribution to the correlation
energy is positive and should be overcompensated by the other contribution: the
true ground state energy is less than the Hartree-Fock energy (which is an approx-
imation providing an energy larger than the true energy, as explained in chapter
5). The correlation energy has therefore to be negative.

Experimental results can be found in (Clementi, 1963a,b; Chakravorty et al.,
1993), but only up to N = 18 electrons, for which our theory is not justified (we
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work in the large N -limit). The experimental ground state energy is the sum
of all the ionization potentials. Hartree-Fock energy is subtracted to it, which
provides the correlation energy. This data is corrected by taking into account the
effects due to the nuclear motion, Breit and Dirac relativistic corrections, finite
nuclear radius corrections, and quantum electrodynamical corrections (the Lamb
shift). Results for the neutral atom are presented in Figure 1. It is difficult to

state if it behaves as N
4
3 (as many people think) or as N . If it behaved as N , a

linear interpolation of this data provides, in Hartree

−Ecorr ' 0.043N. (3.48)

Our results have therefore the right order of magnitude, but let’s recall that our
theory is justified in the large N -limit only.

Let’s finally note that numerical efforts are made to compute the correla-
tion energy. A numerical method which shows analogies with our work is the
Moller-Plesset perturbative approach (see for example (Helgaker et al., 2000)).
It consists of proceeding beyond a self-consistent Hartree-Fock approach, up to
a given order. Another self-consistent approach, known as the GW approxima-
tion, and developed in (Hedin, 1965), consists of computing the self-energy of the
electrons. This approach was applied to the electron gas (Holm and Barth, 1998;
Garcia-Gonzalez and Godby, 2001), to atoms (Dahlen and Barth, 2004), and to
molecules (Dahlen et al., 2005). The interest of this approach is that it could be
used for systems with many particles, unlike other computation approaches which
can be used for systems with few particles only. It is considered by the authors
of these computations as a possible alternative to density functional theory.

One of the main differences between these two methods is that the GW ap-
proach makes use of resummation of graphs. A comparison between these two
approaches is done in (Holleboom and Snĳders, 1990).
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The objective of this chapter is to describe quantum dots, to describe and
discuss their modeling, and to present existing results on the computation of the
ground state energy.

After having developed a technique for the computation of the ground state
energy of many-fermion systems in chapter 2, we apply it to quantum dots. This
is why we describe in detail what a quantum dot is, then develop the semiclassical
Hartree-Fock model in chapter 5 and apply it to quantum dots. As this model
does not include energy oscillations, they are treated separately by another devel-
opment in chapter 6. To use the expressions obtained this way, we have to solve
the self-consistent equation, which is done in chapter 7, before we use the result in
chapter 8 to obtain the semiclassical energy, which we compare to experimental
results.

4.1 Quantum dot description

The technology of solid state physics allows the creation of quantum wells: elec-
trons are constrained in a plane, which induces the quantization of energy levels

75
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in the third direction. It is possible to constrain the electrons in one further di-
mension, leading to one-dimensional objects called quantum wires. Constraining
the electrons in the third dimension leads to a zero-dimensional object which is
called a quantum dot, or an artificial atom.

There are different kinds of quantum dots, which have to be treated the-
oretically in different ways. We will describe two types of dots to which our
calculations can apply.

The first kind of quantum dot is called a vertical quantum dot. It consists of
growing a succession of very thin layers on a wafer. Let’s describe the dots ob-
tained by Tarucha’s group as an example. As shown in Figure 4.1 (from (Kouwen-
hoven et al., 2001)), the dot is on a GaAs layer, which acts as a source of elec-
trons. On it there is a thin layer of AlGaAs, then the dot, which is a layer of
In0.05Ga0.95As, then a thin layer of AlGaAs, and finally a large layer of GaAs,
acting as a drain. A voltage difference is created between the source and the
drain. The AlGaAs layers act as barriers to constrain the electrons in the dot.
They act here as insulators: the bandgap of AlGaAs is bigger than the bandgap
of InGaAs, the electrons in the dot therefore feel this gap as an (almost) infinite
potential. Moreover these layers are thin enough that a current can be established
by tunneling. The current established this way is vertical to the dot, which is
why these quantum dots are called vertical quantum dots. These dots can have
different shapes: circular, triangular, square. The dots which are best adapted
to our work are circular quantum dots.

(a) (b)

Figure 4.1: Schematic representation of a vertical quantum dot
(a) and electron micrograph of the dot (b).

The second kind of quantum dots we will describe is called a lateral quantum
dot. We consider the dots constructed by Marcus’s group, used for example in
(Folk et al., 1996). It consists of using a quantum well, by wrapping a GaAs
layer by two AlGaAs layers. Electrons can then move "freely" (they actually
have an effective mass) in the GaAs layer and therefore form a two-dimensional
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electron gas. With lithographic techniques, electrostatic gates are patterned on
this system, and this constrains the electrons in a small region of the quantum
well. A schematic picture is shown in Figure 4.2 (from (Alhassid, 2000)). To feed
the dot with electrons, the potential is modified to bring electrons from the source,
and the electrons can move to the drain (see figure). The current established this
way is lateral to the dot, which is why this kind of dots is called lateral quantum
dots.

Figure 4.2: Schematic representation and picture of a lateral
quantum dot.

A measurement technique of the energy of quantum dots will be described
later in this chapter.

4.2 The model

The problem consists of studying properties of a quantum dot containing N
electrons. The typical sizes (10 − 1000nm) of these systems are such that the
study has to be done in the theoretical framework of quantum mechanics (further
considerations will allow us to work in the semiclassical regime).

As explained in the preceding section, the quantum dots we consider are a
set of electrons evolving in a very thin layer of a semiconductor. The electron is
described by a wave function which is the product of a wave function depending
on the two dimensions of the plane, x and y, and a wave function depending
on z. The z-direction presents an excitation energy which is about ten times
larger than the excitation energy of the x − y plane. The experimental results
we will use to compare to our theoretical results are such that the wave function
in the z-direction is always in its ground state (see (Kouwenhoven et al., 2001)),
which justifies a two-dimensional model. But if a larger number of electrons were
considered, the excitations in the z-direction would have to be taken into account.

The electrons are not evolving in the vacuum, but in a semiconductor. Solid
state physics theory teaches us that an electron evolving in a semiconductor (that
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is a periodic potential for the electron) has a dispersion relation which is different

from the one in the vacuum (ε(k) = ~
2k2

2m
). The dispersion relation takes place

on bands in the Brillouin zone, and a semiconductor is such that the bands are
either completely filled or completely empty (at zero temperature, which is what
we will consider). An electron in excess (which is the situation of the electron
we introduce in the system) therefore occupies a state in a new band, which
presents a quadratic profile for |k| ≈ 0, different from that in the vacuum. This

quadratic profile allows the definition of an effective massm?: ε(k) = ~
2k2

2m?
+O(k4).

According to Li (2000), in the case of In0.05Ga0.95As (which the quantum dot we
will consider is made of), this effective mass is m? ≈ 0.064m, where m is the mass
of an electron.

The electronic interaction is also influenced by the fact that the electrons are
not in a vacuum. The electron-electron interaction in matter is

V (xi,xj) =
e2

ε|xi − xj|
=

e2?
|xi − xj|

, (4.1)

where e = q√
4π

, with q the electronic charge (expressed in the MKSA units), and
ε is the dielectric constant of the environment. This constant can be viewed as
a modification of the electron charge due to the semiconductor. According to Li
(2000), in the case of In0.05Ga0.95As, this constant is e? ≈ 0.283e. The environ-
ment also has other effects on the electronic interaction: since the background
consists of positive and negative charges (globally neutral, however), there is a
screening effect, which implies that the real long distance potential is lower than
the usual electronic interaction. Moreover, the electrons are expanded in the z-
direction, which means that the real short distance potential is lower than the
usual electronic interaction. All this was modeled by McEuen et al. (1992) by a
potential of the kind

V (xi,xj) = e2?

(

1

(|xi − xj|2 + δ2
+)

1
2

− 1

(|xi − xj|2 + δ2
−)

1
2

)

, (4.2)

where δ− > δ+ > 0. In the review (Reimann, 2002), Reimann writes that this
difference in the electron-electron interaction is the main effect due to the third
dimension of the system. In our problem, however, we consider the usual electron-
electron interaction (4.1), with the influence of the background in the interaction
constant only. The fact that we have a two-dimensional system with a three-
dimensional electronic interaction has a very deep consequence for our develop-
ments: we cannot make use of the Poisson equation to make the self-consistent
equation a differential equation, instead of an integral one, as will be established
later.

In order to be able to model our system we still have to define a confinement
potential. It may depend on the kind of quantum dot we consider. The lateral
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quantum dots, whose confinement potential is established with electrodes, can
have almost any kind of confinement. In particular they can have a parabolic
confinement Vext(x) = 1

2
kx2, where the confinement strength can be set experi-

mentally. The other kind of quantum dots, the vertical quantum dots, can have
different shapes, as already discussed. In the case of circular dots, a parabolic
confinement potential seems to be a good model: many numerical simulations us-
ing this model are in very good agreement with experimental results. Moreover,
some typical effects, like the shell structure, correspond to the effects observed
in a quantum dot with parabolic confinement. Hence a quantum dot with few
electrons is well modeled with a parabolic confinement. But with this model,
the density increases with the number of electrons, which is not observed in ex-
periments, where the density is more or less constant. The model has to be
modified to a constant density model, which is obtained by making the confine-
ment strength N -dependent. The mean density is ρ ' N

R2 , where R is the radius
of the dot. We will establish in chapter 7 that, at lowest order, this radius is

R '
(
N
k

) 1
3 . The mean density is therefore ρ ' N

1
3k

2
3 . For this density to be

independent of N , we have to impose k = k′

N
1
2
. This is the model proposed in

(Koskinen et al., 1997), and is the model we will use.
Let’s note that a sophisticated numerical work done by Bednarek et al. (2003),

which takes into account the whole system (the electrons and the dot), leads
to a confinement constant which is almost independent of N . However, these
simulations were done for a low number of electrons only.

Square-shaped quantum dots are also sometimes modeled as systems with cir-
cular symmetry, with a parabolic confinement potential. This is due to numerical
simulations done by Kumar et al. (1990), which show that the effective poten-
tial is close to a circular potential, even for a few number of electrons. As we
are looking for very weak effects such as energy oscillations (which are different
for systems with radial symmetry or not), we will not use experimental results
obtained with square-shaped quantum dots.

Our model is now complete, having defined the effective dimension of the
system, an effective mass for the kinetic energy term, an interaction and a con-
finement potential. The hamiltonian of the system is, writing it with a tilde

H̃ = − ~2

2m?

N∑

i=1

∆̃i +
N∑

i=1

Ṽext(x̃i) +
1

2

N∑

i,j=1,i6=j

e2?
|x̃i − x̃j|

. (4.3)

This hamiltonian is written in the (arbitrary) MKSA units. It is however more
comfortable to work in modified atomic units. We proceed in the same way as
for the atom. The energy unit is the modified Hartree

E? =
m?e

4
?

~2
≈ 6.39 · 10−3E0 ≈ 11.2meV, (4.4)



80 4. Introduction

and the length unit is the modified Bohr radius

a? =
~2

m?e2?
≈ 194a0 ≈ 10.3nm. (4.5)

The energy unit can be expressed in terms of the length unit

E? =
e2?
a?
. (4.6)

The new variables are, writing them with a hat:

Ĥ =
H̃

E?
, x̂ =

x̃

a?
,

∂k

∂x̂k
= ak?

∂k

∂x̃k
. (4.7)

The hamiltonian has now the very simple form

Ĥ = −1

2

N∑

i=1

∆̂i +
N∑

i=1

V̂ext(x̂i) +
1

2

N∑

i,j=1,i6=j

1

|x̂i − x̂j|
, (4.8)

where we defined V̂ext(x̂) = Ṽext(a?x̂)
E?

.
Let’s note that the modified atomic units, which are the natural units of

In0.05Ga0.95As quantum dots, are very different than for atoms (whose natural
units are the atomic units).

Let’s finally note that the size of the quantum dot, expressed in the modified
Bohr radius, will be very large (as computations will show later). This means that
the quantum effects (which are present at sizes of the order of the modified Bohr
radius) will be weak, and this is one argument for working in the semiclassical
regime. Stronger arguments, based on the number of electrons only, will be
developed later, when we will proceed to a new scaling depending on N .

4.3 A basic model: the harmonic oscillator

By analogy with the case of the atom, where the shell structure, and consequently
the periodic table of the elements, is well reproduced by the energy levels of the
hydrogen atom, we proceed the same way for the quantum dots, by developing the
basic two-dimensional harmonic oscillator. This corresponds to the case where
the electron-electron interaction is neglected.

The energy levels of the two-dimensional harmonic oscillator are easily ob-
tained by separating it into two one-dimensional harmonic oscillators. We can
proceed in another way, in order to make use of the radial symmetry, by express-
ing the problem in polar coordinates. An exact development can be found, for
example, in (Schwinger, 2001). It leads to the following energy levels:

Enρ,m =
√
k (2nρ + |m| + 1) , nρ = 0, 1, 2, . . . , m = 0,±1,±2, . . . (4.9)
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nρ and m are the radial and quantum numbers respectively.
There are degenerate states, and it is these degenerate states that form the

shells.
An interesting result we can derive from this simple model is the number of

electrons a shell contains. The first shell contains 2 electrons ((n,m) = (0, 0),
with the spin degeneracy), the second shell contains 4 electrons ((n,m) = (0,±1),
with the spin degeneracy). The nth shell has nn = 2n electrons, which means that
the shell fillings occur at

Nn = 2
n∑

k=1

k = n(n+ 1). (4.10)

We will establish later that the energy oscillations are a quasi-periodic function
of

√
N . We will moreover establish that this function is dominated by a single

periodic function of
√
N , of period 1.0376, and with peaks occuring at about

0.5, 1.5, 2.5, and so on. These values are represented, in our harmonic oscillator
model, by shell fillings. These are listed in table 4.1.

n Nn

√
Nn

1 2 1.41
2 6 2.45
3 12 3.46
4 20 4.47
5 30 5.48
6 42 6.48
7 56 7.48
8 72 8.49
9 90 9.49
10 110 10.49

Table 4.1: Shell fillings, their corresponding number of elec-
trons N , and the square root of N .

There is a remarkable periodicity in the filled shells, in very good agreement
with the results we develop in chapter 8 with a more realistic model.

The shells are characterized by the fact that all the electrons of a shell have
a given energy, the electrons of the nth shell having an energy of n

√
k. This fact

corresponds to what is called a degeneracy. It is moreover possible to characterize
a shell in another way: let’s compute the quadratic mean distance of a particle
in a state (n,m) from the center, which is

〈r2〉 − 〈r〉2
︸︷︷︸

0

= 〈ψn,m|r2|ψn,m〉. (4.11)
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The wave function of this state is:

ψnρ,m(r, θ) = k
1
4
eimθ√

2π

√

nρ!

(nρ + |m|)!e
− 1

2

√
k

2
r2





√√
k

2
r





|m|

L|m|
nρ

(√
k

2
r2

)

. (4.12)

The angular part plays no role, and its integration in (4.11) provides a factor of
2π. Introducing (4.12) in (4.11), we find, after computation

〈r2〉 =
4√
k

n!

(n+ |m|)!

∫ ∞

0

drr3+2|m|e−r
2 (
L|m|
n (r2)

)2
=

2√
k
(2n+ |m| + 1). (4.13)

Unsurprisingly, we find that the more energy the state has, the higher its quadratic
mean distance is. The electrons belonging to the same shell are therefore at the
same mean distance from the center, and this is a way to characterize a shell.
Within this shell picture, we could introduce an electron-electron interaction be-
tween the electrons of the different shells, and obtain this way an approximation
of the ground state energy. This is what Englert (1988) did for the hydrogen
atom. He obtained a surprisingly good approximation of the ground state energy
of the atom.

We may ask if the energy oscillations we observe are related to the shell fill-
ings. As noted by Englert (1988), in the case of the atom, and more generally for
three-dimensional systems, two quantum numbers characterize the shells, and it
is therefore difficult to observe a structure in these oscillations. Conversely, for a
quantum dot, and in general for two-dimensional systems, the energy is character-
ized by a single quantum number (for the hamonic oscillator, the energy depends
on the single quantum number (2nρ + |m|)). The study of two-dimensional sys-
tems presents the advantage to answer whether the energy oscillations are related
to shell fillings or not. If it is, the oscillations must be such that their peaks oc-
cur at shell fillings. And as mentioned above, our computations show that the
oscillations are dominated by one term of period 1.0376

√
N , and with peaks in

very good agreement with those obtained in Table 4.1. This shows a link between
energy oscillations and shell fillings, which can be observed in two-dimensional
systems only.

4.4 Experimental methods

To compare the results provided by these theoretical models to experimental ones
we need a method to proceed to the measures we are interested in, which is in our
case, the ground state energy. We describe one of these methods (which was used
to measure the results we use), because we think it may be part of the discussion
of our results.
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This method makes use of Coulomb blockade. The dot is fed by a source
of electrons, and electrons can leave the dot to a drain. A voltage difference
between the source and the drain can establish a current in the dot. This dot
can be coupled strongly or weakly to the source and to the drain. The first case
corresponds to open quantum dots, the second one to closed quantum dots. As
we are interested in isolated quantum dots, this is best approached with a closed
one. A schematic of this system is shown in Figure 4.3.

(a) (b) (c)

Figure 4.3: Schematic representation of a quantum dot. In
(a), there are (N − 1) electrons; in (b), a tunneling current is
established; in (c), there are N electrons.

The source is on the left and the drain on the right of the dot. The barriers
represent the potential needed for the electrons to tunnel from one system to
another. The higher they are the less the systems are coupled. The potential
V + δV of the source is slightly higher than the potential V of the drain. The
dot is characterized by energy levels µ(N). At low temperature, if δV < (µ(N)−
µ(N−1)), the variation of the potential V will modify the number of electrons in
the dot, one by one. If there are (N−1) electrons in the dot, and if V +δV < µ(N),
there is no electron transfer. If V + δV > µ(N) > V , an electric current arises,
and if µ(N) < V this electric current stops. We therefore observe electric current
peaks at given values of the potential, as shown by experimental results of Meirav
et al. (1990) in Figure 4.4.

With an increasing temperature the widths of these peaks will increase and
they will progressively vanish, until the signal becomes continuous, as shown on
the same figure.

These experimental results provide the chemical potential µ(N). From the
chemical potential we can easily obtain the total energy of the system, which is
E(N) =

∑N
k=1 µ(k). More detailed explanations can be found in the reviews of

Ashoori (1996) and Reimann (2002).
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Figure 4.4: Coulomb Blockade peaks, and their temperature
dependence.

4.5 Experimental results

The experimental results we need for comparison are the ground state energy as
a function of N , for many electrons. The results which are the most relevant
to our work are, to our knowledge, those from Tarucha, which can be found in
(Kouwenhoven et al., 2001). They are reproduced in Figure 4.5. Results were
obtained for circular vertical quantum dots. They show results for up to 41
electrons, and these results are presented as the function ∆2(N), where ∆2(N) =
µ(N + 1) − µ(N).

Figure 4.5: Addition energy as a function of the number of
electrons.

From these values we deduce the chemical potential µ(N), from which we
deduce the ground state energy E(N). The results we obtain are shown in Figure
4.6.
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Figure 4.6: Experimental ground state energy as a function of
the number of electrons N .

As will be established later (see chapter 8), the asymptotic behaviour of the

ground state energy is given by E ∼ N
5
3k

1
3 = N

3
2k′

1
3 , where k′ = k√

N
is a constant,

as explained earlier in this chapter.

In order to compare our results to experimental results, we need to know the
numerical value of the confinement strength, k′. It is obtained in the follow-
ing way: we know that in the limit N → ∞, the energy divided by N

3
2 tends

to a constant, which is 1.06k′
1
3 , as established in our developments. In these

developments we also establish that E(N)

N
3
2

can be expanded as a polynomial of

N− 1
2 . This is why we represent E(N)

N
3
2

as a function of N− 1
2 in Figure 4.7, and

proceed to a polynomial fitting. The 0th order of this polynomial corresponds to
lim

N− 1
2 →0

E(N)

N
3
2

. We find 7.7 meV . Dividing it by 11.2 meV (which is the energy

unit of this dot, a modified Hartree), and equating it to 1.06k′
1
3 , we find

k′ = 0.27 (4.14)

in the modified atomic units.

4.6 Theoretical results – asymptotic limit

A rigorous study of the asymptotic limit of the ground state energy of quantum
dots with many electrons was done by Lieb et al. (1995). They studied the dot
in a perpendicular magnetic field B and found three distinct regimes. We will
restrict our discussion to the B = 0 regime. They prove that the ground state
energy is a functional of the density, the density being solution of a self-consistent
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Figure 4.7: Experimental ground state energy divided by N
3
2 ,

as a function of N− 1
2 , for N = 2 to 41, compared to a polynomial

fitting.

equation. This result is expressed in the following theorem. Let

ETF [ρ, Vext] =
π

2

∫

d2xρ2(x) +

∫

d2xρ(x)Vext(x) +
1

2

∫

d2x

∫

d2y
ρ(x)ρ(y)

|x − y|
(4.15)

be the Thomas-Fermi energy functional. Then there exists one unique density
ρTF which minimizes the energy functional under the constraint

∫
d2xρ(x) =

N , whose energy is ETF (N, Vext). For an external potential of the order of N
(Vext(x) = Nvext(x)), this minimal energy is related to the quantum energy
EQ(N,B, Vext) by

lim
N→∞

EQ(N,B, Vext)

ETF (N, Vext)
= 1, if

B

N
−→ 0. (4.16)

Let

EC [ρ, Vext] =

∫

d2xρ(x)Vext(x) +
1

2

∫

d2x

∫

d2y
ρ(x)ρ(y)

|x − y| (4.17)

be the classical energy functional. Then there exists one unique density ρC which
minimizes the energy functional under the constraint

∫
d2xρ(x) = N , whose

energy is EC(N, Vext). For an external potential of the order of k (Vext(x) =
kvext(x), vext being of the order of 1), and for a homogeneous external potential
(Vext(λx) = λsVext(x), s ≥ 1), this minimal energy is related to the quantum
energy EQ(N,B, Vext) by

lim
N→∞

EQ(N, 0, Vext)

EC(N, Vext)
= 1, if

k

N
−→ 0. (4.18)
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This last asymptotic limit corresponds to the case where the kinetic energy is
negligible compared to the other energies. The situation κ

.
= k

N
� 1 is often ob-

served experimentally, and the asymptotic limit is therefore a good starting point
for theoretical developments (and this is what we used in our calculations). Let’s
finally note that all these limits converge uniformly, which allows a perturbative
treatment (for N � 1, κ� 1).

A perturbative treatment also applies to the case of a small perpendicular
magnetic field (B � 1), which will not be studied in this thesis.

Shikin et al. (1991) were, to our knowledge, the first to find a solution for the
asymptotic limit κ→ 0, in the case of a parabolic confining potential. They found
a solution to the self-consistent equation (where µ is the chemical potential)

1

2
Nκx2 +

∫

ddy
ρ(y)

|x − y| = µ. (4.19)

obtaining the self-consistent density. It is

ρC(x) =
3

2π

N

R2

√

1 − x2

R2
, R =

(
3π

4κ

) 1
3

, µ =

(
3π

4

) 2
3

Nκ
1
3 . (4.20)

Introducing it in the energy functional one easily finds the ground state energy:

EC =
3

5

(
3π

4

) 2
3

N2κ
1
3 . (4.21)

An exact solution of the general self-consistent equation (including the kinetic
energy) does not exist, to our knowledge.

To obtain exact results, research was done by replacing the three-dimensional
electron-electron interaction by the two-dimensional one, that is V (x) = − ln |x|.
This allows the use of the Poisson equation, which simplifies the problem. This
was done by Sinha et al. (2000) and independently by Pino (1998). They obtained
the asymptotic ground state energy for a number of electrons tending to infinity.
Corrections to this asymptotic limit were obtained by Dalessi and Kunz (2003) in
a master thesis. This approach is interesting because everything can be treated
analytically, but it presents more an academic interest than a physical one, due
to the fact that the electron-electron interaction is not the real one.

4.7 Theoretical results – energy oscillations

Not only the main (and smooth) asymptotic energy has been studied until now.
Research has been done on the oscillatory behaviour of the energy, in very different
ways, and using sometimes a different language. We proceed to a short description
of the main approaches we found in the literature.



88 4. Introduction

Considerable numerical effort was done to understand the electronic structure
of quantum dots. We will specifically discuss the research done to obtain the
addition spectrum, which corresponds experimentally to the Coulomb blockade
peak spacings. The spacing between the (N − 1)th and the N th peaks is, in our
language, simply (µ(N) − µ(N − 1)). There are many experimental results, see
for example Tarucha’s results (Tarucha et al., 1996). They show "magic numbers"
for 2, 6, 12 and 20 electrons, corresponding to filled shells of a two-dimensional
harmonic oscillator, as shown in Figure 4.5.

We mention two numerical results obtained by modeling the dot as a two-
dimensional system with a harmonic confining potential, for up to 25-30 electrons.
The first was obtained by Macucci et al. (1997), using a self-consistent potential
approach, and including the exchange and correlation effects. The results are
shown in Figure 4.8(a). The second was obtained by Reimann et al. (1999),
using Spin Density Functional Theory. Their results are very similar to the
experimental ones, reproducing the "magic numbers" perfectly. Results are shown
in Figure 4.8(b). Numerical results were also obtained for up to 400 electrons by
Jiang et al. (2003b,a); they were interested in the statistical behaviour of the
peak spacings, which is discussed below.

(a) Addition energy as a function of the num-
ber of electrons, obtained by self-consistent
calculations, for a dot with a radius of 90nm,
and with a parabolic confinement of strength
~ω = 4meV (solid dots), 3meV (solid
squares), and 2.5meV (empty squares).

(b) Addition energy as a function of
the number of electrons, obtained with
SDFT calculations (solid line), com-
pared to Tarucha’s results.

Figure 4.8: Addition energy as a function of N .

As explained previously, one method to measure the ground state energy con-
sists of using the Coulomb Blockade. The distribution of the peak spacings was
extensively studied, both experimentally and theoretically. A chaotic behaviour
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is expected due to the impurities and irregularities of the dot, and a simple model
of independent particles with constant interaction leads to an RMT model and
the (normalized) peak spacing distribution is the Wigner surmise. However, the
experimental results do not agree with RMT predictions: the fluctuations are
considerably larger than expected, and the distribution is gaussian. Similar re-
sults were obtained for GaAs dots by Sivan et al. (1996), an extensive study was
done by Patel et al. (1998), and finally Simmel et al. (1997) obtained the same
results for silicon dots. The distribution of (normalized) Coulomb blockade peak
spacings is shown in Figure 4.9, the figure is from Patel et al. (1998).

Figure 4.9: Normalized Coulomb blockade peak spacings distri-
bution (bars), obtained with ∼ 4300 peaks, and from 3 different
devices. The solid curve corresponds to a gaussian shape.

The mismatching with theoretical predictions was explained by the fact that
the electron density is too high, the electronic interaction therefore has to be taken
into account beyond the constant interaction approach. The gaussian distribution
was confirmed by Hartree-Fock calculations for random hamiltonians with an
interaction term by Levit and Orgad (1999), Walker et al. (1999), and Cohen
et al. (1999). A theoretical model including (random) interactions studied by
Alhassid et al. (2000) models a crossover from a Wigner surmise distribution at
low density, to a gaussian distribution at high density.

But is it justified to consider a chaotic quantum dot? An extensive numeri-
cal work was done by Jiang et al. (2003b,a), where they used refined numerical
techniques (in the framework of Spin Density Functional Theory) to compute the
ground state energy of a quantum dot, with symmetric and chaotic confinement
potentials, for dots containing up to 400 electrons. As shown in Figure 4.10, they
found, in both symmetric and chaotic potentials, that the peak-spacing distri-
bution has an almost gaussian shape. They distinguish the cases N odd and N
even, and observe differences. Moreover the symmetric case has a broader distri-
bution than the chaotic one. But there seems to be no clear answer whether the
experimental dots have a symmetric confining potential or not.
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Figure 4.10: Distributions of normalized peak spacing for even
(solid) and odd (dashed) N , for a symmetric, and an asymmetric
potential, obtained with density functional calculations.

The energy oscillations are also treated in another work, done by Reimann
et al. (1996). They consider a dot with a fixed number of electrons (about 1000),
submitted to a magnetic field, and whose radius can be varied by modifying
the external electrostatic potential. In this case the two parameters are the
radius and the magnetic field. They measured the conductance, which shows
clearly an oscillatory behaviour. This is explained by the variation of the density
of states (at the Fermi surface) as a function of the radius and the magnetic
field. This density of states can be easily related to the ground state energy (by
integrating two times over the density of states, as will be done in chapter 6).
The theoretical approach used to explain these experimental oscillations is done
in the framework of semiclassical physics, using the periodic orbit theory. They
consider the cases of a circular billiard (high density, the self-consistent potential
does not depend on the confinement) and of a harmonic oscillator (low density,
the self-consistent potential is the confining potential, the other electrons do not
modify it). As shown in Figure 4.11, the high-density model is qualitatively
similar to the experimental results, which confirms both the existence of these
oscillations, and that the self-consistent potential is, in good approximation, that
of a circular billiard.



4.7. Theoretical results – energy oscillations 91

(a) (b)

Figure 4.11: Oscillations of the density at the Fermi surface,
as a function of the magnetic field and the radius of the dot. (a)
is the experimental result, (b) is obtained using the periodic orbit
theory for a circular billiard.
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The objective of this chapter is to develop the semiclassical approach and
apply it to the problem of a quantum dot.

In chapter 2 we developed a new approach for the treatment of many-fermion
systems. At lowest orders we established that the semiclassical Hartree-Fock ap-
proach was correct. We therefore develop this approach to obtain the ground state
energy of quantum dots. As this approach does not contain energy oscillations,
we use another approach in chapter 6 to obtain them. Moreover this approach
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needs the solution of a self-consistent equation, which is done in chapter 7, before
the self-consistent potential obtained this way is used in chapter 8 to obtain the
ground state energy of quantum dots.

In this chapter, we proceed first by a description of the Hartree-Fock approach,
then proceed to a relevant scaling, to justify the use of a semiclassical approach.
We then develop the semiclassical Hartree-Fock theory; we compute the density
matrix in this theory, proceed to an inverse Laplace transform, and proceed to
some integrations to obtain the semiclassical density, and from it the integrated
density of states, to finally derive the Hartree energy. The Hartree-Fock energy
is obtained by adding perturbatively the lowest order of the exchange energy.
The energy is obtained as a functional of a potential, solution of a self-consistent
equation.

5.1 Hartree-Fock

The semiclassical Hartree-Fock development is very general and this is why we will
work in arbitrary dimension d, except when the specific dimension is mentioned.
We will eventually discuss the particular cases d = 3, and d = 2 in more detail.

The hamiltonian we consider is given in equation (2.7) with the three-dimen-
sional electron-electron interaction. For the quantum dots problem, it corre-
sponds to the hamiltonian (4.8), which is the hamiltonian expressed in the mod-
ified atomic units. It is

Ĥ = −
N∑

i=1

∆̂i

2
+

N∑

i=1

V̂ext(x̂i) +
1

2

N∑

i,j=1,i6=j

1

|x̂i − x̂j|
. (5.1)

Let’s consider the ground state |Ψ̂0〉. We approximate it as a product of one-
particle wave functions, taking into account the Fermi-Dirac statistics (we will
write it as an equality and call the new wave function the ground state):

〈x̂1, . . . , x̂N |Ψ̂0〉 =
1√
N !

∑

π∈Perm(N)

(−1)πψ̂π(1)(x̂1)ψ̂π(2)(x̂2) . . . ψ̂π(N)(x̂N). (5.2)

The one-particle wave functions have to be determined such that the ground state
energy Ê0 (which is the quantity that interests us) is best approximated by the
energy of the new wave function.

To derive such a condition we know that the hamiltonian (5.1) is self-adjoint
and hence, by the spectral theorem, its eigenfunctions {|Ψ̂k〉}k≥0 provide a basis

for N -particle wave functions. Any N -particle wave function |Φ̂〉 can therefore
be written as

|Φ̂〉 =
∑

k≥0

ck|Ψ̂k〉, (5.3)
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with the normalization condition
∑∞

k=0 |ck|2 = 1.

The energy of this state |Φ̂〉 is therefore

〈Φ̂|Ĥ|Φ̂〉 =
∑

k,k′

c?kck′〈Ψ̂k| Ĥ|Ψ̂k′〉
︸ ︷︷ ︸

=Êk′ |Ψ̂k′ 〉

=
∑

k,k′

c?kck′Êk′ 〈Ψ̂k|Ψ̂k′〉
︸ ︷︷ ︸

=δk,k′

=
∑

k

|ck|2Êk ≥ Ê0.

(5.4)
The ground state energy is therefore best approached by minimizing the energy
we obtain with the Ansatz (5.2).

We now need an intuitive approach to build the one-particle functions. The
Fermi-Dirac statistics implies that these functions have to be orthogonal (they are

even orthonormal): 〈ψ̂i|ψ̂j〉 = δi,j. This is why we build them from a one-particle

operator Ĥ = − ∆̂
2

+ V̂ , by considering the N first eigenfunctions and eigenvalues
of this operator:

(

−∆̂

2
+ V̂ (x̂)

)

ψ̂i(x̂) = êiψ̂i(x̂). (5.5)

With this procedure, the wave functions are now functionals of the potential
V̂ . The ground state energy is therefore a functional of this potential, and the
minimization condition becomes a minimization with regards to this "parameter"
V̂ .

Let’s rewrite the ground state energy with this potential V̂ .

Ê0 = 〈Ψ̂0|Ĥ|Ψ̂0〉

= 〈Ψ̂0| −
1

2

N∑

i=1

∆̂i +
N∑

i=1

V̂ (x̂i)|Ψ̂0〉

+〈Ψ̂0|
N∑

i=1

V̂ext(x̂i) +
1

2

N∑

i,j=1,i6=j

1

|x̂i − x̂j|
−

N∑

i=1

V̂ (x̂i)|Ψ̂0〉

=
N∑

i=1

êi +

∫

ddx̂
(

V̂ext(x̂) − V̂ (x̂)
) N∑

i=1

ψ̂?i (x̂)ψ̂i(x̂)

︸ ︷︷ ︸

=ρ̂(x)

+
1

2

∫

ddx̂

∫

ddŷ
1

|x̂ − ŷ|
N∑

i,j=1,i6=j
ψ̂?i (x̂)ψ̂?j (ŷ)

(

ψ̂i(x̂)ψ̂j(ŷ) − ψ̂i(ŷ)ψ̂j(x̂)
)

=
N∑

i=1

êi +

∫

ddx̂

(

V̂ext(x̂) +
1

2

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| − V̂ (x̂)

)

ρ̂(x̂)

−1

2

∫

ddx̂

∫

ddŷ
1

|x̂ − ŷ|
N∑

i,j=1,i6=j
ψ̂?i (x̂)ψ̂?j (ŷ)ψ̂i(x̂)ψ̂j(ŷ). (5.6)
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Using the definition ρ̂(x̂, ŷ) =
∑N

i=1 ψ̂
?
i (ŷ)ψ̂i(x̂) we can write the ground state

energy as

Ê0 =
N∑

i=1

êi +

∫

ddx̂

(

V̂ext(x̂) +
1

2

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| − V̂ (x̂)

)

ρ̂(x̂)

−1

2

∫

ddx̂

∫

ddŷ
1

|x̂ − ŷ| ρ̂(ŷ, x̂)ρ̂(x̂, ŷ). (5.7)

We have to minimize this energy, with regards to the potential V̂ . To proceed we
neglect the exchange term. It will be established a posteriori that, for N � 1,
this approximation is valid. The energy is then

Ê0 =
N∑

i=1

êi +

∫

ddx̂

(

V̂ext(x̂) +
1

2

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| − V̂ (x̂)

)

ρ̂(x̂). (5.8)

To minimize this functional, let’s look how the first term is modified by the change
V̂ 7→ V̂ + δV̂ . For this let’s consider it changes as ψ̂i 7→ ψ̂i + δψ̂i, êi 7→ êi + δêi.
To establish it let’s compute (without writing the x̂ dependence)

êi + δêi =

∫

ddx̂
(

ψ̂?i + δψ̂?i

)

(êi + δêi)
(

ψ̂i + δψ̂i

)

=

∫

ddx̂
(

ψ̂?i + δψ̂?i

)
(

−∆̂

2
+ V̂ + δV̂

)
(

ψ̂i + δψ̂i

)

= êi +

∫

ddx̂ψ̂?i δV̂ ψ̂i + êi

∫

ddx̂
(

ψ̂?i δψ̂i + δψ̂?i ψ̂i

)

+O(δψ̂?i δψ̂i, δψ̂
?
i δêi, δêiδψ̂i). (5.9)

The last term is of the order of O(δψ̂?i δψ̂i), because of the normalization condition:

1 =

∫

ddx̂(ψ̂?i + δψ̂?i )(ψ̂i + δψ̂i) = 1 +

∫

ddx̂(δψ̂?i ψ̂i + ψ̂?i δψ̂i + δψ̂?i δψ̂i), (5.10)

hence ∫

ddx̂(δψ̂?i ψ̂i + ψ̂?i δψ̂i) = −
∫

ddx̂δψ̂?i δψ̂i. (5.11)

We finally obtain the result

δêi =

∫

ddx̂δV̂ (x̂)ψ̂?i (x̂)ψ̂i(x̂). (5.12)

Summing over the N first eigenvalues we find

δ

(
N∑

i=1

êi

)

=
N∑

i=1

δêi =

∫

ddx̂δV̂ (x̂)
N∑

i=1

ψ̂?i (x̂)ψ̂i(x̂) =

∫

ddx̂δV̂ (x̂)ρ̂(x̂).

(5.13)
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We have to determine how the other terms of (5.8) are modified by a change of
V̂ . We define δρ̂ such that V̂ 7→ V̂ + δV̂ implies ρ̂ 7→ ρ̂ + δρ̂. The last terms of
the ground state energy become

δ

(∫

ddx̂

(

V̂ext(x̂) +
1

2

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| − V̂ (x̂)

)

ρ̂(x̂)

)

= −
∫

ddx̂δV̂ (x̂)ρ̂(x̂) +

∫

ddx̂
(

V̂ext(x̂) − V̂ (x̂)
)

δρ̂(x̂) +

∫

ddŷ
δρ̂(x̂)ρ̂(ŷ)

|x̂ − ŷ|

= −
∫

ddx̂δV̂ (x̂)ρ̂(x̂) +

∫

ddx̂

(

V̂ext(x̂) +

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| − V̂ (x̂)

)

δρ̂(x̂).

(5.14)

Summing (5.13) and (5.14) we find

δÊ0 =

∫

ddx̂

(

V̂ext(x̂) +

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| − V̂ (x̂)

)

δρ̂(x̂). (5.15)

Hence the ground state energy Ê0 is minimized with regards to the potential V̂
if δÊ0 = 0. This condition is satisfied for any (small) modification of V̂ if the
potential is

V̂ (x̂) = V̂ext(x̂) +

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ| . (5.16)

This result is not surprising. It provides a potential which corresponds to the
mean-field potential: the particles feel the external potential and the mean electron-
electron interaction produced by the other particles.

This relation is not enough: the density ρ̂ has to be related to the potential.
This is done through the relation (5.5), which we are unable to use analytically.
Instead we will use a semiclassical approximation which will be valid for N � 1.
Let’s note that the relation (5.5) could easily be used numerically.

We can now return to the ground state energy (5.7) (including now the ex-
change energy):

Ê0 =
N∑

i=1

êi −
1

2

∫

ddx̂

∫

ddŷ
ρ̂(x̂)ρ̂(ŷ)

|x̂ − ŷ| − 1

2

∫

ddx̂

∫

ddŷ
ρ̂(x̂, ŷ)ρ̂(ŷ, x̂)

|x̂ − ŷ| . (5.17)

This formulation of the ground state energy can have a physical interpretation:
the first term contains the electron-electron interaction counted twice, one time
for each electron. Hence we have to subtract it, which explains the second term.

This theory can be generalized to a theory which includes the exchange term
for the determination of the self-consistent potential V̂ . It is however more dif-
ficult to give a physical interpretation of such a potential. The equation for the
eigenfunctions ψ̂i and eigenvalues êi is obtained by minimizing the ground state
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energy, taking into account the orthonormal constraints of the wave functions,
by means of Lagrange parameters. After diagonalization these parameters cor-
respond to the eigenvalues of a Schrödinger equation, and play the same role as
the eigenvalues established previously. Detailed developments can be found in
(Martin and Rothen, 2004). The equation we obtain is

(

−∆̂

2
+ V̂ext(x̂) +

∫

ddŷ
ρ̂(ŷ)

|x̂ − ŷ|

)

ψ̂i(x̂) −
∫

ddŷ
ρ̂(x̂, ŷ)

|x̂ − ŷ| ψ̂i(ŷ) = êiψ̂i(x̂).

(5.18)
The total energy becomes

Ê0 =
N∑

i=1

êi −
1

2

(∫

ddx̂

∫

ddŷ
ρ̂(x̂)ρ̂(ŷ)

|x̂ − ŷ| −
∫

ddx̂

∫

ddŷ
ρ̂(x̂, ŷ)ρ̂(ŷ, x̂)

|x̂ − ŷ|

)

.

(5.19)
We observe that the sign of the exchange energy has changed between formulas
(5.17) and (5.19). This is explained by the fact that, in the first case, the sum
∑N

i=1 êi does not take into account the exchange energy. In the second case this
term includes twice the exchange energy, this is why we have to subtract it from
the total energy.

5.1.1 Scaling

From the formula for the ground state energy, we want to extract the N depen-
dence as well as identify which quantities are small, in order to identify which
asymptotic limit to study.

We already changed the units of our problem. We chose the modified atomic
units, which allowed us to write the ground state energy in an elegant way. How-
ever these units are not necessarily the natural ones of the system. In the problem
of quantum dots, there is a parameter, independent of N , the strength of the con-
fining potential. This is why we have to take it into account when proceeding to
a scaling, as it will have an influence on the size of the system, and therefore on
its typical length scale. The scaling will be therefore slightly different from that
we performed in the general study of chapter 2.

Let’s proceed to a scaling of the length, x̂ 7→ x̂
L?

, where L? is a characteristic
length of the system, whose N dependence will be established a posteriori. The
length is denoted by a star to remind us that it is expressed in modified atomic
units.

The new wave functions will still be normalized to 1 but the new density ρ is
defined such that it is of the order of O(1), in order to quickly identify the orders
of the final expression of the energy (in chapter 2 the density was normalized to
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N , but there is no fundamental difference):

x̂ 7→ x =
x̂

L?
, ddx = L−d

? ddx̂,
∂k

∂xki
= Lk?

∂k

∂x̂ki
. (5.20)

We have then

1 =

∫

ddx̂ψ̂?i (x̂)ψ̂i(x̂) = Ld?

∫

ddxψ̂?i (L?x)ψ̂i(L?x). (5.21)

In order to have normalized wave functions we impose
∫

ddxψ?i (x)ψi(x) = 1. (5.22)

From (5.21), the functions ψi are therefore

ψi(x) = L
d
2
? ψ̂i(L?x). (5.23)

The densities are defined as

ρ(x,y) =
1

N

N∑

i=1

ψ?i (y)ψi(x), (5.24)

ρ(x) =
1

N

N∑

i=1

ψ?i (x)ψi(x). (5.25)

With this scaling, and the division by N , equation (5.18) becomes
(

− 1

2NL2
?

∆ +
V̂ext(L?x)

N
+

1

L?

∫

ddy
ρ(y)

|x − y|

)

ψi(x)

− 1

L?

∫

ddy
ρ(x,y)

|x − y|ψi(y) =
êi
N
ψi(x). (5.26)

Multiplying it by L? we finally obtain
(

− 1

2NL?
∆ +

V̂ext(L?x)
N
L?

+

∫

ddy
ρ(y)

|x − y|

)

ψi(x)

−
∫

ddy
ρ(x,y)

|x − y|ψi(y) =
êi
N
L?

ψi(x).(5.27)

Let’s define ε2 = 1
2NL?

, ei = êi
N
L?

, and Vext(x) = V̂ext(L?x)
N
L?

. The equation we look at

is now
(

−ε2∆ + Vext(x) +

∫

ddy
ρ(y)

|x − y|

)

ψi(x) −
∫

ddy
ρ(x,y)

|x − y|ψi(y) = eiψi(x).

(5.28)
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Let’s write the ground state energy (5.17) in terms of these new variables. We
find

Ê0 =
N

L?

N∑

i=1

ei −
N2

2L?

∫

ddx

∫

ddy
(ρ(x)ρ(y) + ρ(x,y)ρ(y,x))

|x − y| . (5.29)

5.1.2 Chemical potential versus electron number

In our developments it will be more convenient to work with the chemical po-
tential µ instead of the number of electrons N (which are thermodynamically
conjugated), which means that we will change from the canonical to the grand
canonical ensemble. This chemical potential is defined as the energy such that
the energy levels ei are filled until this value.

Moreover we take into account a degeneracy factor s, which is the degeneracy
due to the spin of the electron: s = 2. We conserve this letter throughout the
computations, and replace s by its number at the end of the computations. This
degeneracy is not contained in our hamiltonian, this is why we have to add it.

The relation between N and µ is given by

N(µ) = s

∞∑

i=1

θ(µ− ei), (5.30)

where θ is the Heaviside step function.
This immediately defines the chemical potential µ as a function of the number

of electrons N , by the implicit equation

N = N(µ). (5.31)

We can also write the energy

s

N∑

i=1

ei = s

∞∑

i=1

eiθ(µ− ei) (5.32)

as well as the electron density

ρ(x,y) =
s

N

N∑

i=1

ψ?i (y)ψi(x) =
s

N

∞∑

i=1

ψ?i (y)ψi(x)θ(µ− ei), (5.33)

ρ(x) =
s

N

N∑

i=1

ψ?i (x)ψi(x) =
s

N

∞∑

i=1

ψ?i (x)ψi(x)θ(µ− ei). (5.34)

At this stage we introduce the density ρ(e; x,y), whose importance will become
clear later. It is defined by

ρ(e; x,y) = s

∞∑

i=1

ψ?i (y)ψi(x)δ(e− ei), (5.35)
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ρ(e; x) = s

∞∑

i=1

ψ?i (x)ψi(x)δ(e− ei). (5.36)

ρ(x,y) and ρ(x) can be related to ρ(e; x,y) and ρ(e; x) respectively:

ρ(x,y) =
s

N

∞∑

i=1

ψ?i (y)ψi(x)θ(µ− ei)

=
1

N

∫ µ

de s
∞∑

i=1

ψ?i (y)ψi(x)δ(e− ei)

=
1

N

∫ µ

deρ(e; x,y), (5.37)

ρ(x) =
s

N

∞∑

i=1

ψ?i (x)ψi(x)θ(µ− ei)

=
1

N

∫ µ

de s
∞∑

i=1

ψ?i (x)ψi(x)δ(e− ei)

=
1

N

∫ µ

deρ(e; x). (5.38)

The energy can be formulated with the density of states ρ(e) and the integrated
density of states N(e), which are very usual objects in quantum chaos, and which
are defined by

ρ(e) = s

∞∑

i=1

δ(e− ei), N(e) = s

∞∑

i=1

θ(e− ei) ⇒ ρ(e) =
d

de
N(e). (5.39)

The density of states can be obtained from the density ρ(e; x), using the normal-
ization of the wave functions

∫
ddxψ?i (x)ψi(x) = 1:

ρ(e) = s
∞∑

i=1

δ(e− ei) =

∫

ddx s
∞∑

i=1

ψ?i (x)ψi(x)δ(e− ei) =

∫

ddxρ(e; x), (5.40)

while the integrated density of states can be obtained from the density ρ(x):

N(µ) = s
∞∑

i=1

θ(µ− ei) =

∫

ddx s
∞∑

i=1

ψ?i (x)ψi(x)θ(µ− ei) = N

∫

ddxρ(x).

(5.41)
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The energy (5.32) can then be written as

s
∞∑

i=1

eiθ(µ− ei) =

∫ ∞
deθ(µ− e)e s

∞∑

i=1

δ(e− ei)

︸ ︷︷ ︸

=ρ(e)

=

∫ µ

deeρ(e)

=

∫ µ

dee
d

de
N(e) = eN(e)|µ −

∫ µ

deN(e)

= µN −
∫ µ

deN(e), (5.42)

where we proceeded to an integration by parts.

5.1.3 Ground state energy

With this formalism, the ground state energy (5.29) can be written

Ê0 =
N2

L?

(

µ− 1

N

∫ µ

deN(e) − 1

2

∫

ddx

∫

ddy
(ρ(x)ρ(y) + ρ(x,y)ρ(y,x))

|x − y|

)

.

(5.43)
Having extracted the N and L? dependencies, let’s simplify the problem by con-
sidering only the energy E0 = L?

N2 Ê0:

E0 = µ− 1

N

∫ µ

deN(e) − 1

2

∫

ddx

∫

ddy
(ρ(x)ρ(y) + ρ(x,y)ρ(y,x))

|x − y| . (5.44)

The self-consistent potential in these new variables, defining it as V (x) = L?

N
V̂ (L?x),

where we defined V̂ in (5.16), is given by

V (x) = Vext(x) +

∫

ddy
ρ(y)

|x − y| . (5.45)

It is now necessary to proceed to some discussion. Throughout this development
we have considered that the external potential divided by N is of the order of
O(1), which is not the case in quantum dots, since this potential is an external
condition and does not necessarily depend on N . However this study is more
general and we will consider at the end the case where the external potential
divided by N is small. More precisely, the potential will depend on a parameter,
let’s say k, and we will consider the limit κ

.
= k

N
� 1. This limit will be considered

independently of the limit N � 1. The factor κ depends on the strength of the
external potential, but also on N . It is representative of the electron density in
the dot. The ground state energy has a uniform convergence in the limit κ→ 0,
as shown in (Lieb et al., 1995). Let’s note that instead of κ we will consider L? as
a parameter of the system, which is directly related to the density of the system,
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as we will see below, and which, in the specific case of homogeneous potentials,
will be related to k explicitly in the asymptotic limit.

Let’s add a comment about the small parameter ε. This parameter plays the
role of the usual ~

2

2m
in quantum mechanics. Very powerful tools were developed

to study the asymptotic behaviour when this parameter is small. But small
compared to what? This parameter is not dimensionless, it therefore has to be
compared to other physical values, which are characteristic of the physical system.
Then "~ small" means ~ � S, where S is the biggest action of the system (~ has
the dimensions of an action). This regime is called the semiclassical limit, because
the limit ~ → 0 corresponds asymptotically to classical physics.

In our case we proceeded to a scaling, and the equation we obtained is di-
mensionless. In particular the parameter ε is dimensionless (L? = L

a?
has no

dimension). Let’s recall that ε is defined by

ε2 =
1

2

1

NL?
. (5.46)

This parameter is characterized by two independent ones: N and L?. The length
L? contains information about the density of the system, which is proportional
to N

L2
?
. If L? � N

1
2 the system is diluted, hence it is not surprising that we are

working in the semiclassical regime. Conversely, if L? � N
1
2 , the density is high.

In this case it is not obvious whether the semiclassical regime is valid or not:
there is a competition between the two parameters L? and N . Looking at (5.46)
we see that the condition on L? in order to work in the semiclassical regime is
L? � 1

N
.

The low density semiclassical regime is therefore given by

L? � N
1
2 , (5.47)

while the high density semiclassical regime is given by

1

N
� L? � N

1
2 . (5.48)

The lower bound corresponds to the semiclassical regime limit, while the upper
bound corresponds to the high density regime limit.

On what does L? depend? It depends, first, on the number of electrons N , but
also on another parameter of the system, the strength of the external potential.
This can be physically understood by the fact that if the confinement potential is
strong, the electrons will be confined in a small region and the density will be high.
In our developments we will consider two parameters, N and L? independently.

How large is L?? In order to give numerical values of this length, we will
develop the semiclassical limit of this problem, and determine, from this, its N
dependence in the different regimes. Moreover a particular case of physical inter-
est, the parabolic confinement, will be considered, and experimental estimations
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of the confinement potential strength will be discussed, which will allow us to
obtain an estimation of the length L?. After this discussion we will see that the
experimental conditions are such that the semiclassical limit can be used.

At this stage we can already discuss qualitatively the length scale in the case of
a homogeneous potential of degree p, that is such that kV̂ext(λx̂) = kλpV̂ext(x̂),
where k represents the strength of the potential. We want that in equation
(5.28), all the terms are of the order of O(1), except the parameter ε. We already
extracted the L? dependence of the electron-electron interaction, we still have to
impose that the external potential is of the order of O(1), which will impose a
condition on the length scale. Returning to the initial definition of the external
potential, we find (working in the modified atomic units)

kVext(x) =
kL?
N

V̂ext(L?x) =
kL

(p+1)
?

N
V̂ext(x) = O(1). (5.49)

Hence the length scale is defined by kL
(p+1)
?

N
' 1, therefore

L? '
(
N

k

) 1
(p+1)

. (5.50)

In the specific case of the two-dimensional harmonic potential V̂ext(x̂) = 1
2
kx̂2 we

find

L? '
(
N

k

) 1
3

. (5.51)

From this result we can determine the asymptotic limit of the ground state energy
(5.43) with regards to N :

Ê0 '
N2

L?
' N

5
3k

1
3 . (5.52)

In some cases (as will be the case for the experimental data we will use), the
strength "constant" depends on N ; we have typically k = k′√

N
, which leads to the

asymptotic energy

Ê0 '
N2

L?
' N2 k

′ 1
3

N
1
2

= N
3
2k′

1
3 . (5.53)

We may ask if it is possible to measure experimentally the ground state energy of
a quantum dot. Actually it is. We discussed the experimental results in chapter
4.

5.2 Semiclassical Hartree-Fock

Our starting point in this section will be the self-consistent equation (5.45).
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In order to obtain an equation for V , the density ρ has to be related to the
potential V . This will be done in the semiclassical regime, using equation (5.28)
(and neglecting the exchange term):

(
−ε2∆ + V (x)

)
ψi(x) = eiψi(x), (5.54)

and we will work in the semiclassical limit

ε� 1. (5.55)

This equation will allow us to write ρ[V ] as an asymptotic expansion in powers
of ε2, where ρ is defined by equation (5.34).

We will also compute the density ρ(x,y), which will allow us to compute the
exchange energy. This density has been defined in (5.33).

We cannot proceed to an asymptotic expansion of the density in powers of
ε2. We have to consider the expansion of the density matrix, from which we will
compute the density ρ(x,y). This density matrix is

e−βH(x,y) = 〈x|e−βH |y〉, (5.56)

which can be easily computed in the framework of semiclassical physics, in an
asymptotic expansion in powers of ε.

Let’s see how these two objects are related (taking into account the spin
degeneracy s):

e−βH(x,y) = 〈x|s
∞∑

i=1

e−βei|ψi〉〈ψi|y〉 = s

∞∑

i=1

ψ?i (y)ψi(x)e−βei

=

∫ ∞
de s

∞∑

i=1

ψ?i (y)ψi(x)δ(e− ei)e
−βe =

∫ ∞
deρ(e; x,y)e−βe,

(5.57)

where the last equality comes from the definition (5.35). Let’s note that ρ(e; x,y)
is a distribution, not a usual function.

The density is then obtained from ρ(e; x,y) by equality (5.37).
From equation (5.57) we see that ρ(e; x,y) is the inverse Laplace transform

of the density matrix e−βH(x,y). Hence, we can obtain ρ(x,y) by comput-
ing e−βH(x,y) semiclassically, applying the inverse Laplace transform to obtain
ρ(e; x,y), then integrating over e and dividing by N to obtain ρ(x,y).

5.2.1 Density matrix

The density matrix will be computed at lowest order in ε using functional inte-
gration. We will discuss our approach as in the real time case (the density matrix



106 5. Semiclassical Hartree-Fock development

corresponds to the propagator e−
i
~
Ht), and compute it directly in the imaginary

time. The semiclassical approach is much more intuitive in real time.
We will consider the trajectory of a classical free particle from x at time 0 to

y at time 1. This trajectory is given by

xcl(t) = (1 − t)x + ty. (5.58)

The quantum effects, which consist of quantum fluctuations around the classical
path, are computed exactly. We find, writing H0 = −ε2∆, and considering the
spin degeneracy s:

e−βH0(x,y) = s〈x|eβε2∆|y〉 = s

(
1

4πβε2

) d
2

e
− 1

4βε2
(y−x)2

, (5.59)

which is a well-known result (see for example (Kleinert, 2004)).
In the semiclassical limit, which in our case is the limit ε � 1, the potential

is treated perturbatively around the classical trajectory of the free particle, using
the cumulant expansion with a gaussian measure arising from the quantum fluctu-
ations. Normalizing the imaginary time to 1 we find (writing x(t) = xcl(t)+δx(t),

and introducing δy(t) = δx(t)

ε
√

2β
):

e−βH(x,y) = s〈x|eβε2∆−βV (x)|y〉

= s

∫

x(0)=x,x(1)=y

Dxe
−
∫ 1
0 dt

(

1
2

ẋ2(t)

2βε2
+βV (x(t))

)

= s

(
1

4πβε2

) d
2

e
− 1

4βε2
(y−x)2

×
∫

δx(0)=δx(1)=0
Dδxe−

∫ 1
0 dt

(

1
2

δẋ2(t)

2βε2
+βV (xcl(t)+δx(t))

)

∫

δx(0)=δx(1)=0
Dδxe−

∫ 1
0 dt 1

2
δẋ2(t)

2βε2

= s

(
1

4πβε2

) d
2

e
− 1

4βε2
(y−x)2

×
∫

δy(0)=δy(1)=0
Dδye−

∫ 1
0 dt( 1

2
δẏ2(t)+βV (xcl(t)+ε

√
2βδy(t)))

∫

δy(0)=δy(1)=0
Dδye−

∫ 1
0 dt 1

2
δẏ2(t)

= s

(
1

4πβε2

) d
2

e
− 1

4βε2
(y−x)2

〈

e−β
∫ 1
0 dtV (xcl(t)+ε

√
2βδy(t))

〉

0
. (5.60)

The measure is a gaussian measure, arising from the normalized quantum fluctu-
ations. It is defined by

〈δyi(t)〉0 = 0; 〈δyi(t)δyj(t′)〉0 =

{
δi,jt(1 − t′) , t < t′,
δi,jt

′(1 − t) , t > t′.
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This result can be obtained easily when returning to the discrete version of the
functional integral. Another approach to obtain this result, working in the con-
tinuum, is to invert the operator −∆(t, t′) = −δ(t − t′) ∂

2

∂t2
, which means having

to find G(t′, t′′) such that

−
∫ 1

0

dt′∆(t, t′)G(t′, t′′) = δ(t− t′′). (5.61)

Using the definition of ∆(t, t′) we find

G̈(t′, t′′) = −δ(t′ − t′′), (5.62)

where the dot refers to a derivation with respect to the first variable (t′). Inte-
grating over t′ from 0 to t we obtain

∫ t

0

dt′G̈(t′, t′′) = Ġ(t, t′′) − Ġ(0, t′′) = −
∫ t

0

dt′δ(t′ − t′′) = −θ(t− t′′). (5.63)

Integrating again over t′, from 0 to t, and reminding that G(0, t) = G(1, t) = 0
(the boundary conditions are fixed), we find

∫ t

0

dt′Ġ(t′, t′′) = G(t, t′′) −G(0, t′′) = G(t, t′′)

=

∫ t

0

dt′Ġ(0, t′′) −
∫ t

0

dt′θ(t′ − t′′)

= sĠ(0, t′′) − (t− t′′)θ(t− t′′). (5.64)

Ġ(0, t′′) is computed with the boundary condition:

0 = G(1, t′′) = Ġ(0, t′′) − (1 − t′′) ⇒ Ġ(0, t′′) = (1 − t′′). (5.65)

We finally obtain

G(t, t′) =

{
t(1 − t′) , t < t′,
t′(1 − t) , t > t′.

To compute (5.60) we perform an expansion in powers of ε
√

2β and proceed to a
cumulant expansion:

〈eA1〉0 = e〈A1〉0+ 1
2(〈A2

1〉0−〈A1〉20)+.... (5.66)
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We obtain

−β
∫ 1

0

dtV
(

xcl(t) + ε
√

2βδy(t)
)

= −β
∫ 1

0

dt

(

V (xcl(t))

+ε
√

2β
d∑

i=1

∂

∂xi
V (xcl(t))δyi(t)

+
1

2
2βε2

d∑

i,j=1

∂2

∂xi∂xj
V (xcl(t))δyi(t)δyj(t)

)

+O(ε3), (5.67)

which implies

〈

−β
∫ 1

0

dtV
(

xcl(t) + ε
√

2βδy(t)
)〉

0

= −β
∫ 1

0

dt
(
V (xcl(t)) + βε2∆V (xcl(t))t(1 − t)

)
+ O(ε4)

(5.68)

and

1

2

(〈(

−β
∫ 1

0

dtV
(

xcl(t) + ε
√

2βδy(t)
))2

〉

0

−
〈

−β
∫ 1

0

dtV
(

xcl(t) + ε
√

2βδy(t)
)〉2

0

)

= 2β3ε2
∫ 1

0

dt

∫ t

0

dt′∇V (xcl(t)) · ∇V (xcl(t
′))t′(1 − t) + O(ε4).

(5.69)

The final result for the density matrix is then

e−βH(x,y) = s

(
1

4πβε2

) d
2

e
− 1

4βε2
(y−x)2

e−β
∫ 1
0 dtV (xcl(t))

× exp
(

− β2ε2
∫ 1

0

dt∆V (xcl(t))t(1 − t)
)

× exp
(

2β3ε2
∫ 1

0

dt

∫ t

0

dt′∇V (xcl(t)) · ∇V (xcl(t
′))t′(1 − t)

)

+O(ε4). (5.70)
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5.2.2 Semiclassical density ρ0(x,y)

Let’s proceed to some discussion about this result. The factor e
− (y−x)2

4βε2 implies
that the density matrix vanishes if |y−x| � ε. Let’s define r such that y = x+εr
and compute e−βH(x,x + εr), for ε� 1, at lowest order in ε:

εd
(
e−βH

)

0
(x,x + εr) = s

(
1

4πβ

) d
2

e−
r2

4β e−βV (x), (5.71)

where we used the fact that the classical trajectory is xcl(t) = x + tεr
ε→0→ x.

Using the gaussian relation
∫

dpie
−βp2i +iripi =

√
π

β
e−

r2
i

4β (5.72)

the density matrix (5.71) becomes

(
e−βH

)

0
(x,x + εr) =

1

εd
s

(2π)d

∫

ddpe−βp2+ir·p−βV (x). (5.73)

In order to compute the density ρ(e; x,y) at lowest order, related to the density
matrix by equation (5.57), we write

(
e−βH

)

0
(x,x + εr) =

∫ ∞
deρ0(e; x,x + εr)e−βe

=
1

εd
s

(2π)d

∫ ∞
de

∫

ddpe−βe+ir·pδ(e− (p2 + V (x))).

(5.74)

The density ρ(e; x,x + εr) at lowest order in ε is then

ρ0(e; x,x + εr) =
1

εd
s

(2π)d

∫

ddpeir·pδ(e− (p2 + V (x))). (5.75)

We will rewrite the integral over p by writing it in hyperspherical coordinates, and
perform the integration over p = |p| using the delta function. The hyperspherical
measure is ddp = p(d−1) sin(d−2) θ(d−1) sin(d−3) θ(d−2) . . . sin θ2θ1 dpdθ(d−1) · · · dθ1,
and the basis is chosen such that the scalar product is r · p = rp cos θ(d−1).
Integration over the angles θ(d−2), . . . , θ1 can be performed and we obtain S(d−1) =

2π
(d−1)

2

Γ( (d−1)
2 )

, where S(d−1) is the surface of a (d−2)-dimensional hypersphere of radius

1. This result can be found in (Gradshteyn et al., 2000).
Using the result

δ(e− p2 − V (x)) =

{
1

2
√
e−V (x)

δ(p−
√

e− V (x)), if e > V (x),

0, if e < V (x),



110 5. Semiclassical Hartree-Fock development

the density matrix is written, if e > V (x),

ρ0(e; x,x + εr) = s
S(d−1)

εd
1

(2π)d
1

2
√

e− V (x)

∫ π

0

dθ

∫ ∞

0

dpp(d−1) sin(d−2) θ

×δ(p−
√

e− V (x))eirp cos θ

= s
S(d−1)

εd
1

(2π)d
1

2
(e− V (x))

(d−2)
2

×
∫ π

0

dθ sin(d−2) θeir
√
e−V (x) cos θ.

(5.76)

Using the integral representation of the Bessel function (Gradshteyn et al., 2000)

Jν(x) =

(
x
2

)ν

π
1
2 Γ(ν + 1

2
)

∫ π

0

eix cos θ sin(2ν) θdθ, (5.77)

and introducing this result in (5.76) with ν = (d−2)
2

, and x = r
√

e− V (x) we
obtain, after some computation:

ρ0(e; x,x + εr) =
s

2

(√

e− V (x)

r

) (d−2)
2

1

(2π)
d
2

1

εd
J (d−2)

2

(

r
√

e− V (x)
)

. (5.78)

If e < V (x) the density matrix is 0.
To obtain the density we still have to integrate ρ(e; x,y) over e, from formula

(5.37). To proceed let’s note that ρ(e; x,y) is zero if e < V (x). The integration
is then performed from V (x) to µ:

ρ0(x,x + εr) =
1

N

∫ µ

0

deρ0(e; x,x + εr)

=
1

2

1

r
(d−2)

2

s

(2π)
d
2

1

Nεd

∫ µ

V (x)

de
(√

e− V (x)
) (d−2)

2

×J (d−2)
2

(

r
√

e− V (x)
)

=
1

2

1

r
(d−2)

2

s

(2π)
d
2

1

Nεd

∫ µ−V (x)

0

de′
(√

e′
) (d−2)

2
J (d−2)

2

(

r
√
e′
)

=
1

rd
s

(2π)
d
2

1

Nεd

∫ r
√
µ−V (x)

0

dyy
d
2J (d−2)

2

(y)

=
1

rd
s

(2π)
d
2

1

Nεd

(

r
√

µ− V (x)
) d

2
J d

2

(

r
√

µ− V (x)
)

=
1

r
d
2

s

(2π)
d
2

1

Nεd

(√

µ− V (x)
) d

2
J d

2

(

r
√

µ− V (x)
)

, (5.79)
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where we performed the changes of variables e 7→ e′ = e − V (x) and e′ 7→ y =
r
√
e′. We used the equality (Gradshteyn et al., 2000)

∫ x0

0

dxx(1+n)Jn(x) = x(1+n)J1+n(x). (5.80)

5.2.3 Semiclassical density ρ(e; x) in d = 2 dimensions

We will now focus on the case we are most interested in, the two-dimensional
one. Although a general treatment in arbitrary dimension d is possible, it cannot
always be treated uniformly, we would therefore have to consider some cases
separately, which is not useful for our work. We will keep however the arbitrary
dimension d in our computations when they can be performed uniformly for any
dimension.

The density ρ(x) is related to the density matrix: it corresponds to its diagonal
part:

ρ(x) = ρ(x,x). (5.81)

It is much simpler to compute than the density matrix, because the classical path
is xcl(t) = x, it is independent of the imaginary time t. Hence we will be able to
integrate explicitly over t the terms in (5.70).

Let’s compute e−βH(x,x) explicitly. From expression (5.70) we find

e−βH(x,x) = s

(
1

4πβε2

) d
2

exp

(

− β

∫ 1

0

dtV (x)

)

× exp

(

− β2ε2∆V (x)

∫ 1

0

dtt(1 − t)

)

× exp

(

+ 2β3ε2 (∇V (x))2

∫ 1

0

dt

∫ t

0

dt′t′(1 − t)

)

× exp

(

O(ε4)

)

= s

(
1

4πβε2

) d
2

exp

(

− βV (x) − β2ε2

6
∆V (x)

)

× exp

(

+
β3ε2

12
(∇V (x))2 + O(ε4)

)

= s

(
1

4πβε2

) d
2

e−βV (x)

(

1 − β2ε2

6
∆V (x)

+
β3ε2

12
(∇V (x))2 + O(ε4)

)

=
(
e−βH

)

0
(x,x) + ε2

(
e−βH

)

1
(x,x) + O(ε4). (5.82)
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where we used
∫ 1

0
dtt(1 − t) = 1

6
and

∫ 1

0
dt
∫ t

0
dt′t′(1 − t) = 1

24
.

To compute the density ρ(x), we introduce ρ(e; x), which is related to the
density by equation (5.38). ρ(e; x) is itself related to the density matrix by
relation (5.57).

We expand the density matrix in powers of ε2, as well as the density ρ(e; x):
(
e−βH

)

0
(x,x) + ε2

(
e−βH

)

1
(x,x) + O(ε4)

=

∫ ∞
de
(
ρ0(e; x) + ε2ρ1(e; x)

)
e−βe + O(ε4).

(5.83)

We will define ρ0(e; x) as the inverse Laplace transform of
(
e−βH

)

0
(x,x), and

ρ1(e; x) as the inverse Laplace transform of
(
e−βH

)

1
(x,x). This implies that we

suppose that the ε expansion and the Laplace transform are commutative.

Lowest order

Let’s compute the first term explicitly:

(
e−βH

)

0
(x,x) = s

(
1

4πβε2

) d
2

e−βV (x) =
s

(2π)dεd

∫

ddpe−β(p2+V (x))

=
s

(2π)dεd

∫ ∞

0

de

∫

ddpδ(e− (p2 + V (x)))e−βe, (5.84)

where we used the gaussian identity
∫

ddpe−βp2
=
(
π
β

) d
2
.

The density at lowest order is then

ρ0(e; x) =
s

(2π)dεd

∫

ddpδ(e− (p2 + V (x)))

=
1

2

s

(2π)dεd
1

√

e− V (x)
Sd

∫ ∞

0

dpp(d−1)δ(p−
√

e− V (x))

=
s

2

Sd
(2π)dεd

(√

e− V (x)
)(d−2)

+

=
π

d
2

Γ
(
d
2

)
s

(2π)dεd

(√

e− V (x)
)(d−2)

+
, (5.85)

where we integrated over the angular part of p, making the factor Sd = 2π
d
2

Γ( d
2)

appear, integrating then over p.
The case d = 2 seems special. However this formula is also valid in this case,

as can be seen by replacing d by 2. We obtain (with Γ(1) = 1)

ρ0(e; x) =
s

4πε2
θ(e− V (x)). (5.86)
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First correction

First term Let’s now consider the higher corrections to the density. We first
consider the term

−s
6

(
1

4πε2

) d
2

e−βV (x)β(2− d
2)∆V (x). (5.87)

Here the approach will depend on the dimension d. Let’s consider the two-
dimensional one.

This term is written

− s

24π

1

ε2
e−βV (x)β∆V (x) =

s

24π

1

ε2

(
∂

∂V
e−βV (x)

)

∆V (x)

=
s

24π

1

ε2

∫ ∞

0

de

(
∂

∂V
δ(e− V (x))

)

∆V (x)e−βe.

(5.88)

The contribution to the density is then

s

24π

1

ε2

(
∂

∂V
δ(e− V (x))

)

∆V (x). (5.89)

Second term Let’s now consider the second term of the first correction. It is

s

12

(
1

4πε2

) d
2

e−βV (x)β3− d
2 (∇V (x))2 . (5.90)

As previously, the approach will depend on the dimension. This is why we only
compute the two-dimensional case. We write the term as follows:

s

12

(
1

4πε2

)

e−βV (x)β2 (∇V (x))2

=
s

48π

1

ε2

(
∂2

∂V 2
e−βV (x)

)

(∇V (x))2

=
s

48π

1

ε2

∫ ∞

0

de

(
∂2

∂V 2
δ(e− V (x))

)

(∇V (x))2 e−βe.

(5.91)

The contribution to the density is then

s

48π

1

ε2

(
∂2

∂V 2
δ(e− V (x))

)

(∇V (x))2 . (5.92)
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Final expression

In two dimensions the density ρ(e; x) at order O(ε2) is, from equations (5.86),
(5.89) and (5.92):

ρ(e; x) = ρ0(e; x) + ε2ρ1(e; x) + O(ε4), (5.93)

where

ρ0(e; x) =
s

4πε2
θ(e− V (x)), (5.94)

ρ1(e; x) =
s

4πε2

(
1

6

(
∂

∂V
δ(e− V (x))

)

∆V (x)

+
s

12

(
∂2

∂V 2
δ(e− V (x))

)

(∇V (x))2

)

.

(5.95)

5.2.4 Semiclassical density ρ(x) in d = 2 dimensions

The semiclassical density ρ(x) is obtained from ρ(e; x) by equation (5.38).
We integrate each term of the expansion above separately and obtain

ρ(x) = ρ0(x) + ε2ρ1(x) + O(ε4), (5.96)

where ρ0(x) = 1
N

∫ µ
deρ0(e; x), and ρ1(x) = 1

N

∫ µ
deρ1(e; x).

Lowest order

The lowest order is easily computed:

ρ0(x) =
s

4πNε2

∫ µ

deθ(e− V (x)) =
s

4πNε2
(µ− V (x))+. (5.97)

Let’s compute the lowest order of the density ρ(x) in arbitrary dimension
d, which will be necessary for the computation of the lowest order of the ex-
change energy, which will be done later in this chapter. From equation (5.85), we
integrate over e, and divide by N to obtain

ρ0(x) =
sSd

(2π)dεdN

∫ µ

de (e− V (x))
d
2
−1

+ =
sSd

(2π)dεdNd
(µ− V (x))

d
2
+ . (5.98)

Unsurprisingly, we find the same result as in equation (2.159), except the nor-
malization to 1 instead of N .
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First order

Using the equalities ∂
∂V
δ(e−V (x)) = − ∂

∂e
δ(e−V (x)) and δ(e−V (x)) = ∂

∂e
θ(e−

V (x)), the first order correction is

ρ1(x) =
s

4πNε2

∫ µ

de

(
1

6

(
∂

∂V
δ(e− V (x))

)

∆V (x)

+
1

12

(
∂2

∂V 2
δ(e− V (x))

)

(∇V (x))2

)

=
s

4πNε2

∫ µ

de

(

− 1

6

(
∂

∂e
δ(e− V (x))

)

∆V (x)

+
1

12

∂2

∂e2
δ(e− V (x)) (∇V (x))2

)

=
s

4πNε2

(

−1

6
δ(µ− V (x))∆V (x) +

1

12

∂

∂µ
δ(µ− V (x)) (∇V (x))2

)

=
s

4πNε2
∂

∂µ

(

−1

6
θ(µ− V (x))∆V (x) +

1

12
δ(µ− V (x)) (∇V (x))2

)

.

(5.99)

Keeping in mind that we will perform the integration over x in order to obtain
the integrated density of states, let’s rewrite the second part of this expression:

∂

∂µ
δ(µ− V (x)) (∇V (x))2 = − ∂

∂µ

∂

∂V
(θ(µ− V (x)))∇V (x) · ∇V (x)

= − ∂

∂µ
∇θ(µ− V (x)) · ∇V (x)

= − ∂

∂µ

{

div (θ(µ− V (x))∇V (x))

−θ(µ− V (x))∆V (x)
}

. (5.100)

where we used the identity ∇f · ∇g = div(f∇g) − f∆g.
The first correction to the density becomes

ρ1(x) =
s

4πNε2
∂

∂µ

(

− 1

6
θ(µ− V (x))∆V (x)

− 1

12
{div (θ(µ− V (x))∇V (x)) − θ(µ− V (x))∆V (x)}

)

= − s

48πNε2
∂

∂µ
{θ(µ− V (x))∆V (x) + div (θ(µ− V (x))∇V (x))} .

(5.101)
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Final expression

The final expression for the density is

ρ(x) = ρ0(x) + ε2ρ1(x) + O(ε4), (5.102)

where

ρ0(x) =
s

4πNε2
(µ− V (x))+ (5.103)

and

ρ1(x) = − s

48πNε2
∂

∂µ
{θ(µ− V (x))∆V (x) + div (θ(µ− V (x))∇V (x))} .

(5.104)
Let’s note that µ also depends on ε. This dependence and its consequences will
be discussed in the part concerning the self-consistent equation.

5.2.5 Semiclassical integrated density of states in d = 2
dimensions

From equation (5.41) the integrated density of states is

N(e) = N

∫

d2xρ(x), (5.105)

where the µ dependence has become an e dependence. As in the previous cases we
integrate each term separately, obtaining an expansion of the integrated density
of states in powers of ε2:

N(e) = N0(e) + ε2N1(e) + O(ε4), (5.106)

where

N0(e) = N

∫

d2xρ0(x), (5.107)

N1(e) = N

∫

d2xρ1(x). (5.108)

Lowest order

We find immediately

N0(e) = N

∫

d2xρ0(x) =
s

4πε2

∫

d2x(e− V (x))+. (5.109)
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First correction

Using the divergence theorem and the boundary conditions we find

∫

R2

d2x (div (θ(e− V (x))∇V (x))) =

∫

Ω

d2x (div (θ(e− V (x))∇V (x)))

=

∫

∂Ω

dσ · (θ(e− V (x))∇V (x))

= 0, (5.110)

where Ω = R3. We consider the function θ(e − V (x))∇V (x) as a distribution,
we "smoothen" it, and it becomes zero at infinity.

The first correction is then

N1(e) = N

∫

d2xρ1(x) = − s

48πε2

∫

d2x
∂

∂e
θ(e− V (x))∆V (x)

= − s

48πε2

∫

d2xδ(e− V (x))∆V (x). (5.111)

Final expression

The integrated density of states is therefore

N(e) = N0(e) + ε2N1(e) + O(ε4), (5.112)

where

N0(e) =
s

4πε2

∫

d2x(e− V (x))+, (5.113)

and

N1(e) = − s

48πε2

∫

d2xδ(e− V (x))∆V (x). (5.114)

5.2.6 Semiclassical self-consistent equation

We can now return to the self-consistent equation (5.45) to replace the density
ρ(x) by its semiclassical expression, which is expressed in terms of the potential
V . Before doing this, let’s expand V in powers of ε2:

V (x) = V0(x) + ε2V1(x) + O(ε4). (5.115)

To write the density ρ(x) in powers of ε2 we will also need the chemical potential,
which we expand in powers of ε2:

µ = µ0 + ε2µ1 + O(ε4). (5.116)
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It is defined as a function of N by the implicit equation (5.31). To obtain an
equation for each term of the expansion (5.116) we use the expansion (5.112) of
N(µ). Let’s write the V dependence of N(µ) as NV (µ).

From equation (5.113) we see that N0 depends on V and µ only by (µ− V ).

We write this dependence as N
(µ−V )
0 . Moreover the dependence of N0 is such that

N
(µ−V )
0 = N

(µ0−V0)
0 + ε2N

(µ1−V1)
0 + O(ε4). (5.117)

Further computations show that the modification of the integration domain (when
(µ−V ) changes from (µ0−V0) to (µ0−V0)+ ε2(µ1−V1)) modifies N0 of an order
O(ε4).

Hence the function N(µ) is expanded as follows (returning to the initial no-
tations):

N = N(µ) = NV0
0 (µ0) + ε2

(
NV1

0 (µ1) +NV0
1 (µ0)

)
+ O(ε4). (5.118)

The lowest order defines µ0:
N = NV0

0 (µ0) (5.119)

and the first order defines µ1, as a function of µ0:

NV1
0 (µ1) = −NV0

1 (µ0). (5.120)

Let’s now write the µ and V dependencies of ρ(x) as ρV,µ(x). From (5.103) we

see that ρ0(x) depends on V and µ only by (µ−V ), which we write as ρ
(µ−V )
0 (x).

Moreover the dependence of ρ0(x) is such that

ρ
(µ−V )
0 (x) = ρ

(µ0−V0)
0 (x) + ε2ρ

(µ1−V1)
0 (x) + O(ε4). (5.121)

Further computations show that the modification of the integration domain (when
(µ−V ) changes from (µ0−V0) to (µ0−V0)+ ε2(µ1−V1)) modifies ρ0 by an order
O(ε4).

Hence the function ρ is expanded as follows (returning to the initial notations):

ρV,µ(x) = ρV0,µ0

0 (x) + ε2
(

ρV1,µ1

0 (x) + ρV0,µ0

1 (x)
)

+ O(ε4). (5.122)

Let’s note that the normalization condition is now
∫

d2xρV0,µ0

0 (x) = 1. (5.123)

Having extracted the ε2 dependencies of ρ(x) we can write the self-consistent
equation (5.45):

V0(x) + ε2V1(x) + O(ε4)

= Vext(x) +

∫

d2y

(

ρV0,µ0

0 (y) + ε2
(

ρV1,µ1

0 (y) + ρV0,µ0

1 (y)
))

|x − y| + O(ε4).

(5.124)
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Hence at lowest order we find

V0(x) = Vext(x) +

∫

d2y
ρV0,µ0

0 (y)

|x − y| , (5.125)

and at first order

V1(x) =

∫

d2y

(

ρV1,µ1

0 (y) + ρV0,µ0

1 (y)
)

|x − y| . (5.126)

Writing ρV,µ explicitly using equation (5.102) we find

V0(x) = Vext(x) +
s

4πNε2

∫

d2y
(µ0 − V0(y))+

|x − y| (5.127)

and

V1(x) =
s

4πNε2

∫

d2y

(
(µ1 − V1(y)) − 1

12
δ(µ0 − V0(y))∆V0(y)

)

|x − y| . (5.128)

5.2.7 Hartree energy

We now have all we need to compute the Hartree energy. It corresponds to the
smooth part of the ground state energy of the dot, neglecting (for the moment)
the exchange energy. We compute the energy E0, given by equation (5.44).

As for the previous quantities we expand the energy in powers of ε2:

E0 = E00 + ε2E01 + O(ε4). (5.129)

To do this we have to extract the ε2 dependence of
∫ µ

deN(e). Looking explicitly
at the expansion of N(e) in (5.112), we write:

∫ µ

deN(e) =

∫ µ

de(NV
0 (e) + ε2NV

1 (e)) + O(ε4)

=
1

2

s

4πε2

∫

d2x (µ− V (x))2
+ + ε2

∫ µ

deNV
1 (e) + O(ε4)

=
1

2

s

4πε2

∫

d2x
(
µ0 − V0(x) + ε2 (µ1 − V1(x)) + O(ε4)

)2

+

+ε2
∫ µ

deNV0
1 (e) + O(ε4)
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=
1

2

s

4πε2

∫

d2x (µ0 − V0(x))2
+

+ε2
(

s

4πε2

∫

d2x (µ0 − V0(x))+ (µ1 − V1(x))+

+

∫ µ0

deNV0
1 (e)

)

+ O(ε4)

=

∫ µ0

deNV0
0 (e) + ε2

(
s

4πε2

∫

d2x (µ0 − V0(x))+ (µ1 − V1(x))+

+

∫ µ0

deNV0
1 (e)

)

+ O(ε4). (5.130)

We have

E00 = µ0 −
1

N

∫ µ0

deNV0
0 (e) − 1

2

∫

d2x

∫

d2y
ρV0,µ0

0 (x)ρV0,µ0

0 (y)

|x − y| , (5.131)

and

E01 = µ1 −
s

4πε2N

∫

d2x (µ0 − V0(x))+ (µ1 − V1(x))+ − 1

N

∫ µ0

deNV0
1 (e)

−
∫

d2x

∫

d2y
ρV0,µ0

0 (x)
(

ρV1,µ1

0 (y) + ρV0,µ0

1 (y)
)

|x − y| . (5.132)

Lowest order

We want to compute

E00 = µ0 −
1

N

∫ µ0

deNV0
0 (e) − 1

2

∫

d2x

∫

d2y
ρV0,µ0

0 (x)ρV0,µ0

0 (y)

|x − y| . (5.133)

Returning to the definition (5.113) of N0 and the relation (5.103) between V0 and
ρV0,µ0

0 we establish

1

N

∫ µ0

deNV0
0 (e) =

s

4πε2N

∫ µ0

de

∫

d2x (e− V0(x))+

=
1

2

s

4πε2N

∫

d2x (µ0 − V0(x))2
+

=
1

2

∫

d2xρV0,µ0

0 (x) (µ0 − V0(x))+ . (5.134)

Using the equality (5.125) we can write

1

2

∫

d2x

∫

d2y
ρV0,µ0

0 (x)ρV0,µ0

0 (y)

|x − y| =
1

2

∫

d2xρV0,µ0

0 (x) (V0(x) − Vext(x)) .

(5.135)
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Introducing (5.134) and (5.135) in (5.133), and using the normalization
∫

d2xρV0,µ0

0 (x) = 1, we find

E00 =
1

2

(

µ0 +

∫

d2xVext(x)ρV0,µ0

0 (x)

)

. (5.136)

First order

Let’s compute

E01 = µ1 −
s

4πε2N

∫

d2x (µ0 − V0(x))+ (µ1 − V1(x))+ − 1

N

∫ µ0

deNV0
1 (e)

−
∫

d2x

∫

d2y
ρV0,µ0

0 (x)
(

ρV1,µ1

0 (y) + ρV0,µ0

1 (y)
)

|x − y| . (5.137)

From (5.113) and (5.103) we have

− s

4πε2N

∫

d2x (µ0 − V0(x))+ (µ1 − V1(x))+ = −
∫

d2xρV0,µ0

0 (µ1 − V1(x))+ .

(5.138)
From (5.114) we have

− 1

N

∫ µ0

deNV0
1 (e) =

s

48πε2N

∫ µ0

de

∫

d2xδ(e− V0(x))∆V0(x)

=
s

48πε2N

∫

d2x∆V0(x)θ(µ0 − V0(x)). (5.139)

Using equation (5.126) and the normalization
∫

d2xρV0,µ0

0 (x) = 1 we obtain

µ1 −
∫

d2x

∫

d2y
ρV0,µ0

0 (x)
(

ρV1,µ1

0 (y) + ρV0,µ0

1 (y)
)

|x − y|

=

∫

d2xρV0,µ0

0 (x) (µ1 − V1(x)) .

(5.140)

This term is exactly cancelled by the term (5.138). The first order term is finally

E01 =
s

48πε2N

∫

d2x∆V0(x)θ(µ0 − V0(x)). (5.141)

Final expression

Returning to the energy Ê0 defined by equation (5.43), we find

Ê0 = Ê00 + ε2Ê01 + O(ε4), (5.142)



122 5. Semiclassical Hartree-Fock development

where

Ê00 =
N2

L?

1

2

(

µ0 +

∫

d2xVext(x)ρ0(x)

)

, (5.143)

and

Ê01 =
N2

L?

s

48πε2N

∫

d2x∆V0(x)θ(µ0 − V0(x))

=
N2

12π

∫

d2x∆V0(x)θ(µ0 − V0(x)), (5.144)

where we used the definition (5.46) of ε2, as well as the numerical value of s = 2.
The first term is of the order of O(N

2

L?
), and the second is O( N

L?
).

Let’s add some comments about this result. Concerning technical aspects, it
is very important to notice that this result depends on V0 only, and not on V1. It
remarkably simplifies the calculation of this energy: the self-consistent equation
has to be solved at lowest order only, that is with equation (5.127). We will not
have to solve equation (5.128). In our computations, this is due to the fact that
two terms (whose origin is different) cancel out.

Let’s come back to the quantum dot with a homogeneous external potential
of degree p. The length L? is given by (5.50), which means that the first term is

of order O(N
2p+1
p+1 ) and the second O(N

p
p+1 ).

In the particular case of the parabolic external potential (p = 2) the first term

is of the order of O(N
5
3 ), the second O(N

2
3 ).

In the case where the confinement strength depends on N (k = k′

N
1
2
), the first

term is of the order of O(N
3
2 ), the second O(N

1
2 ).

Equivalence with Thomas-Fermi energy

The ground state energy of quantum dots, for a number of electrons tending to
infinity, is the Thomas-Fermi energy, as shown in (Lieb et al., 1995). It is, in
d = 2 dimensions,

ETF =
π

2

∫

d2xρ2(x) +

∫

d2xVext(x)ρ(x) +
1

2

∫

d2x

∫

d2y
ρ(x)ρ(y)

|x − y| , (5.145)

where ρ is solution to the extremization equation:

V (x) = Vext(x) +

∫

d2y
ρ(y)

|x − y| , ρ(x) =
L?
π

(µ− V (x)). (5.146)

This self-consistent equation is exactly the same as (5.125), with the semiclassical
density (5.103).
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Let’s show that the lowest order of the Hartree energy we computed at (5.142)
is the Thomas-Fermi energy. Starting from expression (5.143) using the self-
consistent equation (5.125), the semiclassical density (5.103) and the normaliza-
tion condition

∫
d2xρV0,µ0

0 (x) = 1, we find (without noting N and L?):

1

2

(

µ0 +

∫

d2xVext(x)ρV0,µ0

0 (x)

)

=
1

2

(

µ0 −
∫

d2xVext(x)ρV0,µ0

0 (x)

)

+

∫

d2xVext(x)ρV0,µ0

0 (x)

=
µ0

2
− 1

2

∫

d2x

(

V0(x) −
∫

d2y
ρV0,µ0

0 (y)

|x − y|

)

ρV0,µ0

0 (x)

+

∫

d2xVext(x)ρV0,µ0

0 (x)

=
1

2

∫

d2x (µ0 − V0(x)) ρV0,µ0

0 (x) +

∫

d2xVext(x)ρV0,µ0

0 (x)

+
1

2

∫

d2x

∫

d2y
ρV0,µ0

0 (x)ρV0,µ0

0 (y)

|x − y|

=
π

2

1

L?

∫

d2x
(

ρV0,µ0

0 (x)
)2

+

∫

d2xVext(x)ρV0,µ0

0 (x)

+
1

2

∫

d2x

∫

d2y
ρV0,µ0

0 (x)ρV0,µ0

0 (y)

|x − y| . (5.147)

The first term is the kinetic energy, the second one is the confinement energy,
the last one is the electron-electron interaction. This result shows that for an
harmonic external potential, when L? ' N

1
3 , the kinetic energy is of the order of

N
4
3 , while the other terms are of the order of N

5
3 . If the confinement strength is

k = k′

N
1
2
, L? ' N

1
2 , and the kinetic energy is of the order of N , while the other

terms are of the order of N
3
2 .

5.2.8 Exchange energy

The exchange energy, computed from the density matrix, in any dimension d, is
given by equation (5.44). It is

Eex
0 = −1

2

∫

ddx

∫

ddy
ρ2

0(x,y)

|x − y| . (5.148)

In fact, in view of the density defined in equation (5.33), where the spin degener-
acy was already taken into account, we have to modify this formula. The correct
formula is derived as follows. Introducing the spin, the exchange energy is

−1

2

∑

α,β

∫

ddx

∫

ddy
∑

σ,σ′

ψ?α(x, σ)ψ?β(y, σ
′)ψβ(x, σ)ψα(y, σ

′)

|x − y| . (5.149)
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The wave function is characterized by two numbers, α = (i, µ), where µ is the
spin index, which takes s values. The wave function is

ψα(x, σ) = ψi(x)δµ,σ. (5.150)

Introducing this function in the exchange energy, we obtain

−1

2

∑

i,j

∫

ddx

∫

ddy
ψ?i (x)ψ?j (y)ψj(x)ψi(y)

|x − y|
∑

µ,ν

∑

σ,σ′

δµ,σδν,σ′δν,σδµ,σ′

︸ ︷︷ ︸

=s

= − 1

2s

∫

ddx

∫

ddy
ρ2

0(x,y)

|x − y| , (5.151)

where we introduced the density (5.33).
Using the result (5.79) and performing the change of variables y 7→ r such

that y = x + εr:

Eex
0 = − 1

2s

∫

ddx

∫

ddy
ρ2

0(x,y)

|x − y|

= −1

2

s

(2π)d
1

N2εd+1

∫

ddx

∫

ddr

(√

µ− V (x)
)d

J2
d
2

(

r
√

µ− V (x)
)

rd+1

= −1

2

s

(2π)d
1

N2εd+1
Sd

∫

ddx

∫ ∞

0

dr

(√

µ− V (x)
)d

J2
d
2

(

r
√

µ− V (x)
)

r2

= −1

2

s

(2π)d
1

N2εd+1
Sd

∫

ddx
(√

µ− V (x)
)d+1

∫ ∞

0

dy
J2

d
2

(y)

y2

︸ ︷︷ ︸

= 1
π

4
(d2−1)

= −1

2

s

(2π)d
1

N2εd+1
Sd

1

π

4

(d2 − 1)

∫

ddx
(√

µ− V (x)
)d+1

+
(5.152)

where we integrated over the angular part of r, and performed the change of
variable r 7→ y = r

√

µ− V (x).
To extract the N dependence of this energy, let’s express the lowest order of

this exchange energy in term of the density (which allows a better control of the
N dependence, because we know that ρ is of the order of O(1), by construction).
Using equality (5.98) for arbitrary dimension d, the exchange energy becomes,
after computation

Eex
0 = −N ( 1

d
−1) 4s

− 1
dd(1+ 1

d
)

S
1
d

d (d2 − 1)

∫

ddxρ
(1+ 1

d
)

0 (x), (5.153)
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The exchange energy of the initial problem Êex
0 is then

Êex
0 = −N

1+ 1
d

L?

4s−
1
dd(1+ 1

d
)

S
1
d

d (d2 − 1)

∫

ddxρ
(1+ 1

d
)

0 (x). (5.154)

Let’s explicitly compute the numerical constant for the two and three dimensional
cases. We find

d = 2 : Êex
0 = −N

3
2

L?

23

3π
1
2 s

1
2

∫

d2xρ
3
2
0 (x) (5.155)

d = 3 : Êex
0 = −N

4
3

L?

3
4
3

2
5
3π

1
3 s

1
3

∫

d3xρ
4
3
0 (x). (5.156)

For the two-dimensional case, the exchange energy is of the order of N
3
2 , which

is less than for the direct energy, which is of the order of N2. This implies that
the fact of neglecting the exchange term in the self-consistent equation (5.28) is
justified a posteriori. Taking this term into account would lead to corrections of
higher order than those in which we are interested.

Let’s now discuss the case of the homogeneous potential of degree s with

strength k, for which the length scale is L? '
(
N
k

) 1
s+1 . For the d dimensional case

the N dependence of the exchange energy is Eex
0 ' N

1
d
+ s

(s+1) .
In particular the case of the quantum dot (d = 2) with harmonic potential

(s = 2) provides Eex
0 ' N

7
6 , which less than the direct energy (which is of the

order of O(N
5
3 )). In the case where the confinement strength is k = k′

N
1
2
, the

length scale is L? ' N
1
2 , and the exchange energy is therefore of the order of

O(N).

In the case of the atom, the typical length scale is of the order L? ' N− 1
3 , as

was established with scalings in chapter 2. The exchange energy is therefore of
the order N

5
3 , which is exactly what other authors, for example Englert (1988),

find. To confirm our result, we see that the numerical constant is correct, as
compared to Englert’s results.
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6.3.2 Computation of limx→0 Sx(e, x) . . . . . . . . . . . . . 167

The objective of this chapter is to obtain the semiclassical energy of a two-
dimensional system of independent particles, submitted to a monotonous growing
potential with radial symmetry. We are especially interested in the lowest order
energy oscillations.

In chapter 5 we obtained the ground state energy of the Hartree-Fock ap-
proach. It is given by a functional of the self-consistent potential. However, with
this procedure we lose some information: as can be established with a careful
analysis of our approximations, the resolution of the energy is of the order of
~ = ε. This implies that we lose information on the details of the energy. Is this
loss important? Actually the effects we miss are weak, but they present a great
interest, because they are oscillating terms, which can be related to the stability
of these systems of fermions. Moreover with these oscillations we can distinguish
integrable from chaotic systems, the oscillations being more important in the
first case. A detailed study of energy oscillations in both chaotic and integrable
systems can be found in (Brack and Bhaduri, 1997).

These reasons lead us to adopt another, more systematic approach, within the
semiclassical framework: we consider a two-dimensional system of N independent
particles, submitted to a monotonous growing potential V with radial symmetry,
and compute the ground state energy, which is the sum of the N first eigenvalues.
This general formula will be used by replacing this potential by the self-consistent
potential at the end (done in chapter 8, the self-consistent potential being itself
computed by solving the self-consistent equation in chapter 7). Moreover, the
smooth part we obtain with this approach allows the verification of the results
obtained in chapter 5.

In this chapter we start by using the radial symmetry to write the problem
in the action-angle variables, before proceeding to a WKB quantization of the
actions. We proceed beyond this quantization, using the work of Feffermann
and Seco (1992). Having obtained this quantization, we compute the integrated
density of states using the Poisson sum formula, and from this, the ground state
energy of this system of independent fermions. The energy consists of a smooth
contribution (which can be related to the results obtained in chapter 5), and
oscillating terms, which are related to the classical dynamics of a particle in the
potential. These expressions are functionals of the potential.

In all the developments, we write ε instead of ~, as the small parameter is
obtained after a scaling, and does not have the physical meaning of ~.
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6.1 Computation of the integrated density of

states

6.1.1 Quantization condition

WKB quantization

Let’s consider a two-dimensional system of independent particles in an isotropic
monotonous growing potential V . Such a system is classically integrable. We can
therefore proceed to the well-known semiclassical quantization.

The classical one particle hamiltonian of the system is

H(p, q) = p2 + V (|q|). (6.1)

A canonical transformation (p, q) 7→ (φ, I) leads to the angle-action variables
and the hamiltonian takes the form

H(p(φ, I), q(φ, I)) = H(I), (6.2)

where H(I) = e is defined by

I1 =
1

π

∫ r2(e,I2)

r1(e,I2)

dr

√

e− V (r) − I2
2

r2

.
= s0(e, I2), (6.3)

where r1, r2 are the classically turning points.
The equations of motion are given by

{

φ̇i = ∂
∂Ii
H(I) = ωi(I) ⇒ φi(t) = ωit+ φi(0), i = 1, 2

İi = − ∂
∂φi
H(I) = 0 ⇒ Ii(t) = cst, i = 1, 2.

The motion is developing on a torus in phase space, the variables I being con-
stants of the motion. ω1 and ω2 are the frequencies. If ω2

ω1
is rational, the motion

is periodic.
The semiclassical quantization, justified by the WKB approximation (at low-

est order in ε), is in our case
{
I1 7→ ε(n+ 1

2
), n ∈ N,

I2 7→ εm, m ∈ Z.

The semiclassically quantized energy levels are therefore defined by

en,m
.
= H(ε(n+

1

2
), εm). (6.4)

The term 1
2

appears for the radial quantum number. For the angular quantum
number, there is no correction term, conversely to the three-dimensional case,
where the Langer correction appears.
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Beyond WKB

The approach we presented is the intuitive semiclassical approach and is called
WKB quantization (and more generally, for an arbitrary number of degrees of
freedom, EBK quantization). This quantization corresponds to the lowest order
of an expansion for ε small, where the general quantization formula is written as

ε(n+
1

2
) = s(e, εm) = s0(e, εm) + ε2s1(e, εm) + O(ε4). (6.5)

Let’s note that the quantization of the angular momentum is exact, not just
semiclassical.

To obtain this quantization condition, there is an approach which provides
WKB at lowest order. It was developed by Dunham (1932) and Bender et al.
(1977) for a one-dimensional problem, and an explicit formal formula on the real
axis is given by Robnik and Salasnich (1997). In this approach, the wave function
is written as ψ(x) = exp

{
i
ε

∑∞
i=0 ε

iσi(x)
}

. We consider analytic continuity x ∈ C.
The nth eigenfunction of the operator H is such that the real axis has n zeroes xi
(ψn(xi) = 0). Hence by considering a contour around these zeroes in the complex
plane, the residue theorem provides the quantization. It yields recursion relations
on the functions σi. For a one-dimensional system, it provides the following formal
quantization condition:

ε

(

n+
1

2

)

=
1

π

∫

dr (e− V (r))
1
2 − ε2

32π

∫

dr

(
∂V (r)

∂r

)2

(e− V (r))−
5
2 + O(ε4)

=
1

π

∫

dr (e− V (r))
1
2 +

ε2

48π

∫

dr

(
∂2V (r)

∂r2

)

(e− V (r))−
3
2 + O(ε4),

(6.6)

where we proceeded to a formal integration by parts. The integration is performed
between the classical turning points r1 and r2. From now on it will be the case if
not otherwise specified.

This quantization is formal: the second term of the right hand side of equation
(6.6) is divergent. An exact formula was given by Feffermann and Seco (1992),
who simply remove the divergent term. The quantization is given by the following
theorem:

ε(n+
1

2
) = φ(en) + ε2ψ(en) + o(ε2), (6.7)

where

φ(e)
.
=

1

π

∫ r2

r1

dr (e− V (r))
1
2 (6.8)

is the usual WKB quantization, and

ψ(e)
.
=

1

48π
lim
δ→0+





∫

e−V >δ

drV ′′(r) (e− V (r))−
3
2 − q(e)δ−

1
2



 , (6.9)
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where

q(e)
.
=

2V ′′(r2(e))

V ′(r2(e))
− 2V ′′(r1(e))

V ′(r1(e))
. (6.10)

This correction is

ψ(e) = − 2

48π
lim
δ→0+

∂

∂e

∫

e−V >δ

drV ′′(r) (e− V (r))−
1
2 . (6.11)

To establish this result, let’s compute the derivative of the integral above (where
the integration limits are the turning points ri, i = 1, 2):

∂

∂e

∫ r2(e−δ)

r1(e−δ)
drV ′′ (e− V )−

1
2 = r2e(e− δ)

V ′′(r2(e− δ))

(e− V (r2(e− δ)))
1
2

−r1e(e− δ)
V ′′(r1(e− δ))

(e− V (r1(e− δ)))
1
2

−1

2

∫

e−V >δ

dr
V ′′(r)

(e− V (r))
3
2

, (6.12)

where rie, i = 1, 2, is the derivative of ri with respect to e. ri(e) is defined by
e − V (ri) = 0, that is ri(e) = V −1(e), therefore, rie(e) = 1

V ′(ri(e))
. Introducing it

into equation (6.12), and using the definition of ri (which is e−V (ri(e− δ)) = δ),
we find (working with δ � 1)

∂

∂e

∫ r2(e−δ)

r1(e−δ)
drV ′′ (e− V )−

1
2 = δ−

1
2
V ′′(r2(e))

V ′(r2(e))
− δ−

1
2
V ′′(r1(e))

V ′(r1(e))

−1

2

∫

e−V >δ

dr
V ′′(r)

(e− V (r))
3
2

. (6.13)

This way we obtain the function ψ, the second quantizaton term. The boundary
terms correspond to the divergence terms given in the quantization theorem.

To apply this theorem to our two-dimensional system we have to simplify
the problem we consider. Let’s use the radial symmetry to transform it into a
one-dimensional problem.

In this problem we have two conserved quantities, the energy H = −ε2∆ +

V (|q|) = −ε2
(
∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2

)

+ V (r) and the square of the angular momen-

tum L2, where L = −iε ∂
∂θ

, because [H,L2] = 0. We have used the usual polar
coordinates (r, θ) defined by (q1, q2) = (r cos θ, r sin θ).

Using the fact that L2 is a constant of the motion, we rewrite the wave func-
tion: ψ(x) = ϕ(r)eimθ, m = 0,±1,±2, . . .. This way, it is an eigenfunction of L2.
The Schrödinger equation (−ε2∆ + V (|x|))ψ(x) = eψ(x) becomes

(

−ε2 ∂
2

∂r2
− ε2

r

∂

∂r
+
ε2m2

r2
+ V (r)

)

ϕ(r) = eϕ(r), (6.14)
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with
∫∞

0
drr|ϕ(r)|2 = 1

2π
. The problem has been reduced to one dimension.

However, we cannot use equation (6.6) to quantize, because the structure of the
equation is not the same. We solve it by defining φ(r)

.
=

√
rϕ(r). The equation

becomes

−ε2 ∂
2

∂r2
φ(r) +

(
ε2(m2 − 1

4
)

r2
+ V (r)

)

φ(r) = eφ(r), (6.15)

with
∫

dr|φ(r)|2 = 1
2π

. Let’s divide this equation by ε2, and redefine ε−2V (r) 7→
V (r), as well as ε−2e 7→ e. This is equivalent to considering ε = 1.

Can we apply Feffermann’s quantization condition? We have made our prob-
lem a one-dimensional one, but the variable r is defined on R+, which makes the
theorem impossible to apply. If m2 > 0, there will be a centrifugal barrier and
the wave function will be zero for r < 0. But a problem remains for m2 = 0.
To avoid it, and apply the quantization theorem, we proceed to the change of
variable r 7→ x, r = eαx, α > 0. The condition r ∈ [0,∞] becomes x ∈ [−∞,∞].
The parameter α will be determined a posteriori. Moreover, we define a new wave
function ψ(x)

.
= e−βxφ(eαx), where β will be determined a posteriori as well.

To write Schrödinger’s equation (6.15) in these new variables, let’s compute

∂2

∂r2
φ(r) =

e(β−2α)x

α2

[
ψ′′(x) + (2β − α)ψ′(x) + (β2 − αβ)ψ(x)

]
. (6.16)

In order to have a one-dimensional Scrödinger-like equation, we have to eliminate
the first derivative, which leads to the following condition on the parameters

2β = α. (6.17)

We find
∂2

∂r2
φ(r) = e−3βx

[
ψ′′(x)

4β2
− ψ(x)

4

]

, (6.18)

and equation (6.15) becomes (with ε = 1, and writing m = λ):

−e−3βx

[
ψ′′(x)

4β2
− ψ(x)

4

]

+ e−3βx

[

λ2ψ(x) − ψ(x)

4

]

+ eβx
[
V (e2βx) − e

]
ψ(x) = 0.

(6.19)
Multiplying by e3βx we find

−ψ
′′(x)

4β2
+ e4βx

[
V (e2βx) − e

]
ψ(x) = −λ2ψ(x). (6.20)

The normalization of the wave function is, using the normalization of the function
φ,

∫

dxψ2(x) =
1

2β

∫
dr

r2
φ2(r). (6.21)
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Is this function square integrable, that is, is this integration finite? In the limit
r → ∞, there will be no divergence (the function φ is square integrable, therefore
φ
r2

is decreasing rapidly. In the limit r → 0, we know that φ decreases expo-
nentially due to the centrifugal barrier, and therefore decreases faster than r−2.
The wave function ψ is therefore a square integrable function and Feffermann’s
theorem can be used.

We have some liberty to set the constant β. Let’s set β = 1
2
. Equation (6.20)

becomes
−ψ′′(x) + f(x)ψ(x) = −λ2ψ(x), (6.22)

where f(x)
.
= e2x (V (ex) − e)

.
= −W (ex).

We have transformed our problem into a new one. We want to determine
the quantization condition of the problem given by equation (6.22). In this new
problem, the role of the energy is played by −λ2, the square angular momentum,
while the real energy plays the role of a parameter. The potential of this new
problem is f(x).

Which values can these parameters take ? The square angular momentum is
limited in the range λ2 ∈ [0, (λe)2], where λe is the maximal classical value the
angular momentum can have, at a fixed energy e. The energy is itself limited by
e ∈ [V0,∞], where V0 = V (0) is the lowest value the classical energy can have.

We can now apply Feffermann’s quantization condition (6.7) to this new prob-
lem. At lowest order we find

φ(−λ2) =
1

π

∫

f<−λ2

dx
(
−λ2 − f(x)

) 1
2

=
1

π

∫ r2

r1

dr

r

(
−λ2 − r2(V (r) − e)

) 1
2

=
1

π

∫ r2

r1

dr

(

e− V (r) − λ2

r2

) 1
2

, (6.23)

where we expressed this condition in the old variables. Let’s note that this first
order term corresponds exactly to the WKB quantization described earlier in this
chapter. It also corresponds to the first order quantization of the "naive" approach
given in equation (6.6).

The second term is

ψ(−λ2) =
1

48π
lim
δ→0+






∫

−λ2−f>δ

dx
f ′′(x)

(−λ2 − f(x))
3
2

− q(−λ2)δ−
1
2




 , (6.24)

where

q(−λ2) =
2f ′′(x2(−λ2))

f ′(x2(−λ2))
− 2f ′′(x1(−λ2))

f ′(x1(−λ2))
. (6.25)
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Let’s express this quantization in the old variables. Using the result

f ′′(x) = r4V ′′(r) + 5r3V ′(r) − 4r2(e− V (r)), (6.26)

the second quantization term becomes

ψ(−λ2) =
1

48π
lim
δ→0+






∫

r2(e−V )−λ2>δ

dr

r

(

rV ′′(r) + 5V ′(r) − 4 (e−V (r))
r

)

(
e− V (r) − λ2

r2

) 3
2

− q(−λ2)δ−
1
2




 .

(6.27)
To make use of this equation, let’s anticipate the next sections and look at what
we are interested in. We want to compute the integrated density of states, and
later the energy of the system. Only the lowest order contribution of this term
has to be considered for consistency. As explained later in this chapter, it is given
by

N1(e) =

∫ λe

−λe

dλψ(−λ2)
.
= Na

1 (e) +N b
1(e)

=
1

48π
lim
δ→0+






∫ λe

−λe

dλ

∫

−λ2−f>δ

dx
f ′′(x)

(−λ2 − f(x)2)
3
2

−
∫ λe

−λe

dλq(−λ2)δ−
1
2




 .

(6.28)

Let’s evaluate the first term of (6.28). We commute the integration over λ and x
to find (using the fact that f = −W < 0)
∫

dxf ′′(x)

∫

λ2<(−f−δ)

dλ
1

(−f(x) − λ2)
3
2

= −
∫

dx
W ′′(x)

W (x)
3
2

∫ √
W−δ

−
√
W−δ

dλ
1

(

1 − λ2

W (x)

) 3
2

= −
∫

dx
W ′′(x)

W (x)

∫ 1−α

−1+α

dy
1

(1 − y2)
3
2

︸ ︷︷ ︸
√

2√
α

+O(α)

= −
√

2

∫

dx
W ′′(x)√
αW (x)

+ O(α)

= − 2√
δ

∫

W>δ

dx
W ′′(x)
√

W (x)
+ O(δ), (6.29)

where we performed the change of variable λ 7→ y = λ√
W (x)

, and defined

α
.
= δ

2W (x)
.
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It leads to the contribution to the integrated density of states

Na
1 (e) = − 1

48π
lim
δ→0+

2√
δ





∫

W>δ

dx
W ′′(x)
√

W (x)
+ O(δ)



 . (6.30)

To evaluate the second term of (6.28), let’s compute

2

∫ λe

−λe

dλ
W ′′(x2(−λ2))

W ′(x2(−λ2))
= 4

∫ λe

0

dλ
W ′′(x2(−λ2))

W ′(x2(−λ2))
, (6.31)

where we used the symmetry of the integrand (depending on λ2 only). To perform
this integration we need to know the meaning of x2(−λ2): it corresponds to the
classical turning point for a given angular momentum λ. Therefore, this turning
point is a monotonous decreasing function of λ, we can therefore perform a change
of variable λ 7→ x2. This relation is defined by

λ =
√

W (x2) ⇒ dλ =
1

2

W ′(x2)
√

W (x2)
dx2, (6.32)

The integration (6.31) becomes

−2

∫ x2(0)

xmax

dx2
W ′′(x2)
√

W (x2)
. (6.33)

The integration is performed from the minimum value of x2 (defined by W (x2) =
(λe)2) to its minimum value (defined by W (x2) = 0) (explaining a change in the
sign of the integral).

The integration

2

∫ λe

−λe

dλ
W ′′(x1(−λ2))

W ′(x1(−λ2))
= 4

∫ λe

0

dλ
W ′′(x1(−λ2))

W ′(x1(−λ2))
(6.34)

is treated exactly the same way: we perform the change of variables

λ =
√

W (x1) ⇒ dλ =
1

2

W ′(x1)
√

W (x1)
dx1, (6.35)

yielding the result

2

∫ xmax

x1(0)

dx1
W ′′(x1)
√

W (x1)
. (6.36)

The integration is performed from the minimum value of x1 (defined by W (x1) =
0) to its maximum value (defined by W (x1) = (λe)2).
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Using (6.33) and (6.36) we find, from (6.28), that N b
1(e) is

N b
1(e) =

1

48π
lim
δ→0+

2√
δ

∫

W>0

dx
W ′′(x)
√

W (x)
. (6.37)

We can now compute the total contribution to the density of states N1(e), which
is

N1(e) =
1

48π
lim
δ→0+

2√
δ

∫

0<W<δ

dx
W ′′(x)
√

W (x)
. (6.38)

We have to make this expression explicit to see that there is a contribution of the
order of 1 in δ to this term. Let’s introduce the value (6.26) of f ′′ to integrate

−
∫

0<r2(e−V )<δ

dr
r3V ′′(r) + 5r2V ′(r) − 4r(e− V (r))

√

r2(e− V (r))
. (6.39)

We can rewrite the numerator of the integrand as

r2∆V (r) + 2r2V ′(r) − 2
d

dr

(
r2(e− V (r))

)
, (6.40)

where we used ∆V (r) = V ′(r) + rV ′′(r) and d
dr

(r2(e− V (r))) = 2r(e− V (r)) −
r2V ′(r). This integral can be decomposed in two parts: the first concerns the
region r ∼ r1, the second one concerns the region r ∼ r2.

Let’s study the first part. The first contribution is

−
∫ r1+α

r1

dr
r2∆V (r)

√

r2(e− V (r))
. (6.41)

r1 is defined by r2
1(e − V (r1)) = 0 ⇒ r1 = 0, α is small. We proceed to the

change of variable
y = r2 ⇒ dy = 2rdr, (6.42)

which leads to

−1

2

∫ δ
(e−V (r1))

0

dy
∆V (r1)

√

(e− V (r1))
= −δ

2

∆V (r1)

(e− V (r1))
3
2

δ→0−→ 0. (6.43)

For δ � 1, we replaced ∆V (r) by ∆V (r1), because its y-dependence is weak.
Therefore this term does not contribute to the integrated density of states.

The second contribution is, proceeding to the same change of variable as
above,

−2

∫ r1+α

r1

dr
r2V ′(r)

√

r2(e− V (r))
= −

δ
(e−V (r1))∫

0

dy
V ′(r1)

√

(e− V (r1))
= −δ V ′(r1)

(e− V (r1))
3
2

δ→0−→ 0.

(6.44)
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This term does not contribute either.
The third contribution is

2

∫ r1+α

r1

dr
d
dr

(r2(e− V (r)))
√

r2(e− V (r))
= 2

∫ δ

0

dy√
y

= 4
√
δ, (6.45)

where we proceeded to the change of variable y = r2(e− V (r)).
Let’s now study the second part of (6.39), that is the integration in the region

r ∼ r2.
The first contribution is

−
∫ r2

r2−α
dr

r2∆V (r)
√

r2(e− V (r))
= −

∫ r2

r2−α
drr

∆V (r)
√

(e− V (r))
. (6.46)

We proceed to the change of variable

y = e− V (r) ⇒ dy = −V ′(r)dr (6.47)

to find (the y-dependence of r∆V (r)
V ′(r) is weak, we replace it by r2∆V (r2)

V ′(r2)
for δ � 1)

−
∫ δ

0

dy√
y

r2∆V (r2)

V ′(r2)
= −2

√
δ
r2∆V (r2)

V ′(r2)
. (6.48)

The second contribution is

−2

∫ r2

r2−α
dr

r2V ′(r)
√

r2(e− V (r))
= −2

∫ r2

r2−α
dr

rV ′(r)
√

e− V (r)
. (6.49)

We proceed to the same change of variable as above and find

−2

∫ δ

r2
2

0

dy√
y
r2 = −4

√
δ. (6.50)

The third contribution is

2

∫ r2

r2−α
dr

d
dr

(r2(e− V (r)))
√

r2(e− V (r))
= −2

∫ δ

0

dy√
y

= −4
√
δ, (6.51)

where we proceeded to the change of variable y = r2(e− V (r)).
Grouping all these terms, the integrated density of states is

N1(e) =
1

48

[
4 − 8 − 2

r2∆V (r2)

V ′(r2)

]
= − 1

12
− 1

24

r2∆V (r2)

V ′(r2)
. (6.52)

The second part can be written as

− 1

48π

∫

d2x∆V (r)δ(e− V (r)). (6.53)
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This is established as follows:

− 1

48π

∫

d2x∆V (r)δ(e− V (r)) = − 1

24

∫ ∞

0

drr∆V (r)
δ(r − r2)

V ′(r2)

= − 1

24

r2∆V (r2)

V ′(r2)
. (6.54)

The energy we obtain from (6.52) is (as will be explained later)

E1(µ) =

∫ µ

deN1(e) = − 1

48π

∫

d2x∆V (x)θ(µ− V (r)) − µ

12
. (6.55)

6.1.2 Integrated density of states

We are interested in computing the integrated density of states

N(e) = s
∞∑

n=0

∞∑

m=−∞
θ(e− en,m), (6.56)

where we included the spin degeneracy s = 2, which will be replaced by its
numerical value at the end.

A similar development was done by Berry and Tabor (1977), who computed
the integrated density of states of an integrable system in d dimensions with this
approach.

From now on the sum will be denoted by
∑

n,m.
An equivalent way of writing (6.56) is:

N(e) = s
∑

n,m

θ(s(e, εm) − ε(n+
1

2
)). (6.57)

Formula (6.57) is the starting point of our calculations. We will proceed to an
ε expansion, extracting the smooth parts as well as the oscillating parts of the
integrated density of states.

It is easily seen from (6.3) that, at lowest order in ε, e is a monotonous
growing function of I2, for all I1. Moreover I1 is a monotonous decreasing (resp.
increasing) function of I2, for I2 > 0 (resp. I2 < 0), and for all e. This allows us
to give a geometrical interpretation of the integrated density of states (6.57): it
is the number of points (n,m) ∈ N × Z contained in the contour H(I1, I2) = e,
as shown in Figure 6.1. Let’s mention that an analogy can be made with Gauss’s
circle problem, a problem in number theory consisting of counting the number
of points on the lattice Z2 enclosed by a large circle. This problem is still open.
It was proven that, for a circle of radius R, this number behaves as N ' CRα,
where 1

2
< α ≤ 46

73
. The higher bound is due to Huxley (1990), and has been

improved continuously since Gauss’s work.
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Figure 6.1: Representation of semiclassical states in the I1, I2
plane. The integrated density of states corresponds to the number
of points enclosed in the energy level curve. The level curve is
that of the self-consistent potential of a quantum dot (see chapter
8).

To proceed from formula (6.57), we will replace the sums by integrations using
the Poisson sum formula, which is

∞∑

m=−∞
exp{2πimx} =

∞∑

p=−∞
δ(x− p). (6.58)

We get

N(e) = s
∞∑

n=0

∞∑

m=−∞
θ(s(e, εm) − ε(n+

1

2
))

= s

∫ ∞

−∞
dx

∫ ∞

0

dν
∞∑

n=−∞

∞∑

m=−∞
δ(m− x)δ(n+

1

2
− ν)θ(s(e, εx) − εν)

= s

∫ ∞

−∞
dx

∫ ∞

0

dν
∞∑

k=−∞

∞∑

j=−∞
(−1)j exp {2πi[kx+ jν]} θ(s(e, εx) − εν)

=
s

ε2

∫ ∞

−∞
dx

∫ ∞

0

dν
∞∑

k=−∞

∞∑

j=−∞
(−1)j exp

{
2πi

ε
[kx+ jν]

}

θ(s(e, x) − ν),

(6.59)

where we have used the equality e−iπ = −1. We integrate ν from 0. Other possible
choices are between −1

2
+ε and 1

2
−ε, ε < 1. The last equality is obtained through

a change of variables.
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We finally obtain the expression

N(e) =
s

ε2

∫ λe

−λe

dx

∫ s(e,x)

0

dν
∞∑

k=−∞

∞∑

j=−∞
(−1)j exp

{
2πi

ε
[kx+ jν]

}

, (6.60)

where λe is defined by s(e, λe) = 0, λe > 0.

We will compute the main contributions to the integrated density of states by
considering the different terms of the sum (6.60).

6.1.3 Thomas-Fermi model

The contribution of the term j = 0, k = 0 of the sum (6.60) consists of neglecting
the quantization of the action variables, considered in this case as continuum
variables. Unsurprisingly, we get the main contribution to the smooth part of the
integrated density of states, which is the Thomas-Fermi term, by considering the

lowest order term of s(e, x) only, which is s0(e, x) = 1
π

∫
dr
(

e− V (r) − x2

r2

) 1
2
:

N0(e) =
s

ε2

∫ λe

−λe

dx

∫ s0(e,x)

0

dν

=
s

ε2

∫ λe

−λe

dx s0(e, x)

=
s

πε2

∫ λe

−λe

dx

∫ r2

r1

dr

√

e− V (r) − x2

r2
. (6.61)

Let’s compute this term. The integration is performed on the domain where the
integrand is positive. Let’s define

(f(x))+
.
=

{
f(x), if f(x) > 0,
0, if f(x) ≤ 0.

N0(e) becomes

N0(e) =
s

πε2

∫

R

dx

∫

R+

dr

√
(

e− V (r) − x2

r2

)

+

=
2s

πε2

∫

R+

dx

∫

R+

dr

√
(

e− V (r) − x2

r2

)

+

=
2s

πε2

∫

R+

dr

∫

R+

dx

√
(

e− V (r) − x2

r2

)

+
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=
2s

πε2

∫

R+

dr

r

∫ r2(e−V (r))+

0

dx
√

(r2(e− V (r)) − x2)

=
2s

πε2

∫

R+

dr

r
r2(e− V (r))+

∫ 1

0

dx
√

(1 − x2)

︸ ︷︷ ︸

=π
4

=
s

2ε2

∫

R+

rdr(e− V (r))+

=
s

4πε2

∫

R2

d2x(e− V (|x|))+. (6.62)

This result is the same as the one obtained in the semiclassical Hartree-Fock
approach in chapter 5, it confirms therefore the result we obtained.

6.1.4 First correction to WKB quantization

The first correction to WKB quantization leads to a correction to the integrated
density of states which was already computed in section 6.1.1, where the result
was given in equation (6.52). Adding the spin factor s we find

N1(e) = − s

48π

∫

d2x∆V (r)δ(e− V (r)) − s

12
. (6.63)

This result is the same as the one obtained in the semiclassical Hartree-Fock
approach in chapter 5.

6.1.5 l-quantized Thomas-Fermi model

From now on, we will consider the function s at lowest order in ε only (that is
s0). Higher orders will not be necessary for our computations. For simplicity we
write this lowest order s.

To proceed further with expression (6.60), we consider all the terms j =
0, k 6= 0. The physical meaning is that we quantize the variable x, which is the
angular momentum, but not the radial quantum number. This is why this model
is usually called the lTF model. It will provide oscillating terms, which is why
we write its contribution to the integrated density of states N I

osc:

N I
osc(e) =

s

ε2

∫ λe

−λe

dx

∫ s(e,x)

0

dν
∑

k 6=0

exp

{
2πi

ε
kx

}

=
s

ε2

∑

k 6=0

∫ λe

−λe

dx s(e, x) exp

{
2πi

ε
kx

}

=
2s

ε2

∞∑

k=1

∫ λe

−λe

dx s(e, x) cos

{
2π

ε
kx

}
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=
4s

ε2

∞∑

k=1

∫ λe

0

dx s(e, x) cos

{
2π

ε
kx

}

. (6.64)

To extract the terms of lowest order in ε we integrate two times by parts this
expression:
∫ λe

0

dx s(e, x) cos

(
2π

ε
kx

)

=
ε

2πk
s(e, λe)
︸ ︷︷ ︸

=0 (see definition of λe)

sin

(
2π

ε
kλe
)

− ε

2πk

∫ λe

0

dx sx(e, x) sin

(
2π

ε
kx

)

= − ε

2πk

∫ λe

0

dx sx(e, x) sin

(
2π

ε
kx

)

=
ε2

(2π)2k2

(

sx(e, λ
e) cos

(
2π

ε
kλe
)

− sx(e, 0)

)

− ε2

(2π)2k2

∫ λe

0

dx sxx(e, x) cos

(
2π

ε
kx

)

=
ε2

(2π)2k2
sx(e, λ

e) cos

(
2π

ε
kλe
)

− ε2

(2π)2k2
sx(e, 0)

+o(ε2), (6.65)

where sx(e, x)
.
= ∂s(e,x)

∂x
.

To establish that the rest is of the order of o(ε2), further calculations show
that ∫ λe

0

dx|sxx(e, x)| <∞. (6.66)

Hence, by the Riemann-Lebesgue lemma (if a function is integrable, its Fourier
transform is zero when evaluated at infinity),

lim
ε→0

∫ λe

0

dxsxx(e, x) cos

(
2π

ε
kx

)

= 0, (6.67)

that is ∫ λe

0

dxsxx(e, x) cos

(
2π

ε
kx

)

= O(εδ), δ > 0. (6.68)

The rest is therefore of the order of O(ε2+δ), δ > 0, that is o(ε2). The Riemann-
Lebesgue lemma will be used several times to prove that the remaining terms are
tending to 0.

Therefore we get, for the lTF contribution to the integrated density of states

N I
osc(e) =

s

π2

∞∑

k=1

sx(e, λ
e)

cos
(

2π
ε
kλe
)

k2
− s

π2
sx(e, 0)

∞∑

k=1

1

k2

︸ ︷︷ ︸

=π2/6

+o(1)
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=
s

π2

∞∑

k=1

sx(e, λ
e)

cos
(

2π
ε
kλe
)

k2
− s

6
sx(e, 0) + o(1)

=
s

π2

∞∑

k=1

sx(e, λ
e)

cos
(

2π
ε
kλe
)

k2
+

s

12
+ o(1), (6.69)

where the last equality comes from the fact that sx(e, 0) = −1
2

for a very general
class of potentials (the condition is that the potential must be C1 at r = 0), see
annex 6.3.1.

The term s
12

will cancel the constant term arising from the smooth correction
to WKB in equation (6.63).

These terms can be interpreted in terms of Fourier series. It seems natural
to interpret the λ oscillations (6.69) in terms of the function 〈x〉 .

= x − 1
2
− [x],

where [x] is the largest integer smaller than x. This comes from the fact that the
N I
osc term is a correction of the "smoothed" integrated density of states. These

corrections should naturally be described by a function of 〈x〉.
Let’s write the Fourier series of 〈x〉:

〈x〉 =
∞∑

k=1

ck sin(2πkx), (6.70)

where ck
.
= 1

Nk

∫ 1

0
dxx sin(2πkx) = − 1

Nk

1
2πk

. The factor Nk is the normalization

of the function sin(2πkx): Nk
.
=
∫ 1

0
dx sin2(2πkx) = 1

2
. We finally find

〈x〉 = −
∞∑

k=1

1

πk
sin(2πkx), (6.71)

where the equality is valid almost everywhere in x.

Let’s integrate 〈x〉:
∫ x

0

dx′〈x′〉 =
1

2

∞∑

k=1

1

(πk)2
cos(2πkx) − 1

12
, (6.72)

valid for x ∈ R (a.e. x), not only in the interval [0, 1].

Identifying (6.69) and (6.72) we can rewrite the l-quantized integrated density
of states in terms of 〈x〉:

N I
osc(e) = 2ssx(e, λ

e)

∫ λe

ε

0

dx′〈x′〉 + s
(sx(e, λ

e) − sx(e, 0))

6
+ o(1). (6.73)
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6.1.6 Complete model

The last terms we have not considered until now in the sums (6.60) are those of
the type j 6= 0, k ∈ Z. The contribution to the integrated density of states will
be oscillating terms, we write it N II

osc.

We compute these terms:

N II
osc(e) =

s

ε2

∫ λe

−λe

dx

∫ s(e,x)

0

dν
∑

j 6=0

∞∑

k=−∞
(−1)j exp

{
2πi

ε
[kx+ jν]

}

=
2s

ε2

∫ λe

−λe

dx

∫ s(e,x)

0

dν<
{ ∞∑

j=1

∞∑

k=−∞
(−1)j exp

{
2πi

ε
[kx+ jν]

}}

=
2s

ε2

∫ λe

−λe

dx<
{
∫ s(e,x)

0

dν
∞∑

j=1

∞∑

k=−∞
(−1)j exp

{
2πi

ε
[kx+ jν]

}}

=
s

πε

∫ λe

−λe

dx<
{ ∞∑

j=1

∞∑

k=−∞

(−1)j

ij

{

exp

{
2πi

ε
[kx+ js(e, x)]

}

− exp

{
2πi

ε
kx

}}}

=
s

πε

∫ λe

−λe

dx

{ ∞∑

j=1

∞∑

k=−∞

(−1)j

j

{

sin

{
2π

ε
[kx+ js(e, x)]

}

− sin

{
2π

ε
kx

}}}

=
s

πε

∫ λe

−λe

dx

{ ∞∑

j=1

∞∑

k=−∞

(−1)j

j

{

sin

{
2π

ε
[kx+ js(e, x)]

}}}

=
2s

πε

∫ λe

0

dx

{ ∞∑

j=1

∞∑

k=−∞

(−1)j

j

{

sin

{
2π

ε
[kx+ js(e, x)]

}}}

. (6.74)

To establish the second equality we compute these sums:

∑

j 6=0

∞∑

k=−∞
exp

{
2πi

ε
[kx+ jν]

}

= 2
∞∑

j=1

∞∑

k=−∞
exp

{
2πi

ε
kx

}

cos

{
2π

ε
jν

}

= 2
∞∑

j=1

∞∑

k=−∞
cos

{
2π

ε
kx

}

cos

{
2π

ε
jν

}

.

(6.75)
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<
{
∑

j 6=0

∞∑

k=−∞
exp

{
2πi

ε
[kx+ jν]

}}

= <
{
∑

j 6=0

∞∑

k=−∞
exp

{
2πi

ε
kx

}

exp

{
2πi

ε
jν

}}

=
∑

j 6=0

∞∑

k=−∞
cos

{
2π

ε
kx

}

cos

{
2π

ε
jν

}

= 2
∞∑

j=1

∞∑

k=−∞
cos

{
2π

ε
kx

}

cos

{
2π

ε
jν

}

, (6.76)

where we have used the fact that sin is an odd function, so that
∑∞

k=−∞ sin(kx) =
0.

We have to compute terms of the type

2s

πε

∫ λe

0

dx
(−1)j

j
sin

{
2π

ε
[kx+ js(e, x)]

}

. (6.77)

For convenience, let’s define the action

A(x, e; k, j)
.
= kx+ js(e, x) (6.78)

and the function x?(e, k, j), solution of the equation

∂A(x?, e; k, j)

∂x
= k + jsx(e, x

?) = 0, (6.79)

hence

sx(e, x
?) = −k

j
, k ∈ Z, j ∈ N?. (6.80)

The equation (6.80) will not have a solution for all triples (e, k, j).
To perform the computation of (6.77) we will distinguish four families of

triples:

1. x?(e, k, j) ∈]0, λe[,

2. x?(e, k, j) = 0,

3. x?(e, k, j) = λe,

4. x?(e, k, j) does not exist.

In the first three cases, the dominating contributions will arise from a station-
ary phase approximation. For consistency, we will have to proceed beyond this
approximation by integrations by parts. In the last case, there will be no sta-
tionary phase approximation and we will extract the dominating contributions
by integrations by parts only.

Let’s study these contributions separately. From now on we will not write the
dependencies of the functions in the variables e, k, j.
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1. x? ∈]0, λe[

The term we compute is

∫ λe

0

dx sin

{
2π

ε
A(x)

}

= =
{∫ λe

0

dx exp

{
2πi

ε
A(x)

}}

= =
{∫ x?−δ

0

dx exp

{
2πi

ε
A(x)

}}

(6.81)

+=
{∫ x?+δ

x?−δ
dx exp

{
2πi

ε
A(x)

}}

(6.82)

+=
{∫ λe

x?+δ

dx exp

{
2πi

ε
A(x)

}}

, (6.83)

where δ � 1.

We extract the asymptotic behaviour of the first term (6.81) by integration
by parts:

∫ x?−δ

0

dx exp

{
2πi

ε
A(x)

}

=

∫ x?−δ

0

dx
1

Ax(x)

{

Ax(x) exp

{
2πi

ε
A(x)

}}

=
ε

2πi

{

exp
{

2πi
ε
A(x? − δ)

}

Ax(x? − δ)
− exp

{
2πi
ε
A(0)

}

Ax(0)

}

+o(ε). (6.84)

The rest is of the order of o(ε): it is

ε

2πi

∫ x?−δ

0

dx
Axx(x)

A2
x(x)

exp

{
2πi

ε
A(x)

}

=
ε

2πi

∫ A(x?−δ)

A(0)

dy
Axx(x(y))

A3
x(x(y))

exp

{
2πi

ε
y

}

, (6.85)

where we proceeded to the change of variable y = A(x), dy = Ax(x)dx (the
function A is invertible on the specified domain, because we consider functions
with one extremum only, reached at x = x?).

The rest is then of the order of o(ε) because further computations show that

∫ A(x?−δ)

A(0)

dy

∣
∣
∣
∣

Axx(x(y))

A3
x(x(y))

∣
∣
∣
∣
=

∫ x?−δ

0

dx

∣
∣
∣
∣

Axx(x)

A2
x(x)

∣
∣
∣
∣
<∞, (6.86)

and the Riemann-Lebesgue lemma leads to the conclusion.
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For the second term (6.82) we introduce the stationary phase approximation

∫ x?+δ

x?−δ
dx exp

{
2πi

ε
A(x)

}

=

∫ +δ

−δ
dx exp

{
2πi

ε
A(x? + δ)

}

' exp

{
2πi

ε
A(x?)

}∫ +δ

−δ
dx exp

{
2πi

ε

σ|Axx(x?)|
2

x2

}

= exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

∫ +
√

2π
ε

σ|Axx(x?)|
2

δ

−
√

2π
ε

σ|Axx(x?)|
2

δ

dy exp
{
iy2
}

= exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

∫ ∞

−∞
dy exp

{
iy2
}

− exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

∫ −
√

2π
ε

σ|Axx(x?)|
2

δ

−∞
dy exp

{
iy2
}

− exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

∫ ∞

+
√

2π
ε

σ|Axx(x?)|
2

δ

dy exp
{
iy2
}

+o(ε)

= exp

{
2πi

ε
A(x?)

}
√

ε

2π(−i)
2π

σ|Axx(x?)|

− exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

×
∫ −

√
2π
ε

σ|Axx(x?)|
2

δ

−∞
dy

1

2iy

{
2iy exp

{
iy2
}}

− exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

×
∫ ∞

+
√

2π
ε

σ|Axx(x?)|
2

δ

dy
1

2iy

{
2iy exp

{
iy2
}}

+o(ε)

=

√

ε

2π

2π

|Axx(x?)|
exp

{
2πi

ε
A(x?) + i

σπ

4

}

+ exp

{
2πi

ε
A(x?)

}
ε

2πi

2

σ|Axx(x?)|δ
exp

{

i
2π

ε

σ|Axx(x?)|
2

δ2

}

+o(ε), (6.87)
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where σ = signAxx(x
?). The rest if of the order of o(ε). One of these terms is

(the other is treated in the same way)

− exp

{
2πi

ε
A(x?)

}
√

ε

2π

2

σ|Axx(x?)|

∫ ∞
√

2π
ε

σ|Axx(x?)|
2

δ

dy
exp {iy2}

2iy2

= −ε exp

{
2πi

ε
A(x?)

}
√

1

2π

2

σ|Axx(x?)|

∫ ∞

2π
σ|Axx(x?)|

2
δ2

dx
exp

{
ix
ε

}

4ix
3
2

,

(6.88)

where we used the change of variable x = εy2. Then, using the Riemann-Lebesgue
lemma and the result

∫ ∞

2π
σ|Axx(x?)|

2
δ2

dx

x
3
2

<∞, (6.89)

we can conclude.

The third term (6.83) is computed in the same way than the first one. We
find

∫ λe

x?+δ

dx exp

{
2πi

ε
A(x)

}

=
ε

2πi

{

exp
{

2πi
ε
A(λe)

}

Ax(λe)
− exp

{
2πi
ε
A(x? + δ)

}

Ax(x? + δ)

}

+o(ε). (6.90)

We use again the Riemann-Lebesgue lemma and the result

∫ λe

x?+δ

dx

∣
∣
∣
∣

Axx(x)

A2
x(x)

∣
∣
∣
∣
<∞ (6.91)

to establish the order of the rest.

Combining these terms, and taking into account the fact that, for δ small,
we have A(x? ± δ) = A(x?) ± Ax(x

?)δ + 1
2
Axx(x

?)δ2 = A(x?) + 1
2
Axx(x

?)δ2 and
Ax(x

? ± δ) = Ax(x
?) ± Axx(x

?)δ = ±Axx(x?)δ, we get as a final result

∫ λe

0

dx exp

{
2πi

ε
A(x)

}

=

√

ε

2π

2π

|Axx(x?)|
exp

{
2πi

ε
A(x?) + i

σπ

4

}

− ε

2πi

exp
{

2πi
ε
A(0)

}

Ax(0)

+
ε

2πi

exp
{

2πi
ε
A(λe)

}

Ax(λe)

+o(ε). (6.92)
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Only the imaginary part of this expression contributes to the integrated density
of states. We obtain

∫ λe

0

dx sin

{
2π

ε
A(x)

}

=

√
ε

2π

√

2π

j|sxx(e, x?)|
sin

{
2π

ε
[kx? + js(e, x?)] +

σπ

4

}

− ε

2π

cos
{

2π
ε
kλe
}

(k + jsx(e, λe))

+
ε

2π

cos
{

2π
ε
s(e, 0)

}

(k + jsx(e, 0))

+o(ε). (6.93)

Let’s note that the stationary points exist only if there is a solution x? ∈ [0, λe].
The function s(e, x) is decreasing with respect to x. Its slope sx(e, x) is therefore
negative, and the equation (6.80) may have a solution only in the case k ∈ N.

The main oscillating contributions to the integrated density of states arise
from the stationary points. They can be interpreted in terms of periodic orbits.
The function s(e, I2) is the level curve of energy H(I1, I2) in the (I1, I2) plane. Its
derivative sx(e, I2) is tangent to this level curve. Hence the variation of energy
is perpendicular to this vector: dH(I1, I2) ⊥ sx(e, I2), as shown in Figure 6.2.

The slope of dH(I1, I2) = ∂H(I1,I2)
∂I1

dI1 + ∂H(I1,I2)
∂I2

dI2 = ω1(I1, I2)dI1 +ω2(I1, I2)dI2

is given by ω1(I1,I2)
ω2(I1,I2)

, where ω1 and ω2 are the frequencies of the angle variables
on the torus. The fact that the contributions to the integrated density of states
arise from terms for which −sx(e, x?) ∈ Q implies ω1(I1,I2)

ω2(I1,I2)
∈ Q, which consists of

periodic orbits. Let’s write the main contribution of the stationary points to the

Figure 6.2: The vector dH(I1, I2) is perpendicular to the tan-
gent sx(e, I2). The rationality of sx implies the rationality of the
frequencies ratio, given by the slope of the vector dH(I1, I2).
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integrated density of states:

N IIa
osc (e) =

2s

π
√
ε

∑

k,j

′ (−1)j

j
3
2

sin
{

2π
ε
[kx? + js(e, x?)] + σ π

4

}

√

|sxx(e, x?)|
, (6.94)

where the sum runs over the pairs (k, j) such that x?(e, k, j) ∈]0, λe[. Let’s note
that this sum will depend on the energy e. This implies that N IIa

osc (e) is not a
continuous function of e.

Observing that all the pairs (nk, nj), n ∈ N? provide the same stationary
point x?(e, k, j), and that A(x?, e;nk, nj) = nA(x?, e; k, j), we finally find

N IIa
osc (e) =

2s

π
√
ε

∞∑

n=1

∑

{k,j| gcd(k,j)=1}

′ (−1)nj

n
3
2 j

3
2

sin
{

2π
ε
n[kx? + js(e, x?)] + σ π

4

}

√

|sxx(e, x?)|
, (6.95)

where the sum is the same as previously, but such that the greatest common
divisor is gcd(k, j) = 1.

2. x?(e, k, j) = 0

This case is treated in a similar way as the previous one.

The final result is

∫ λe

0

dx sin

{
2π

ε
A(x)

}

= =
{∫ λe

0

dx exp

{
2πi

ε
A(x)

}}

= =
{∫ δ

0

dx exp

{
2πi

ε
A(x)

}}

+=
{∫ λe

δ

dx exp

{
2πi

ε
A(x)

}}

=
1

2

√
ε

2π

√

2π

j|sxx(e, 0)| sin

{
2π

ε
js(e, 0) + σ

π

4

}

− ε

2π

cos
{

2π
ε
kλe
}

(k + jsx(e, λe))
+ o(ε). (6.96)

The order of the rest can be established using the Riemann-Lebesgue lemma.

The family of triples (e, k, j) which are of this type is easy to determine. They
are defined by (6.80). Moreover we establish (see annex 6.3.1) that sx(e, 0) = −1

2
,

for a very general class of potentials (the only condition is that the potential has
to be C1 at r = 0). This implies that the condition is

2k = j, (6.97)
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which is independent of e, and the main contribution to the integrated density of
states is

N IIb
osc (e) =

s

π
√
ε

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x?=0

(−1)j

j
3
2

sin
{

2π
ε
js(e, 0) + σ π

4

}

√

|sxx(e, 0)|

=
s

π
√
ε

∞∑

j=1

∞∑

k=−∞
δ2k,j

(−1)j

j
3
2

sin
{

2π
ε
js(e, 0) + σ π

4

}

√

|sxx(e, 0)|

=
s

π
√
ε

∞∑

k=1

(−1)(2k)

(2k)
3
2

sin
{

2π
ε
(2k)s(e, 0) + σ π

4

}

√

|sxx(e, 0)|

=
s

π
√

8ε

∞∑

n=1

1

n
3
2

sin
{

4π
ε
ns(e, 0) + σ π

4

}

√

|sxx(e, 0)|
. (6.98)

3. x?(e, k, j) = λe

This case is treated in the same way than the previous cases again. We obtain

∫ λe

0

dx sin

{
2π

ε
A(x)

}

= =
{∫ λe

0

dx exp

{
2πi

ε
A(x)

}}

= =
{∫ λe−δ

0

dx exp

{
2πi

ε
A(x)

}}

+=
{∫ λe

λe−δ
dx exp

{
2πi

ε
A(x)

}}

=
1

2

√
ε

2π

√

2π

j|sxx(e, λe)|
sin

{
2π

ε
kλe + σ

π

4

}

+
ε

2π

cos
{

2π
ε
js(e, 0)

}

(k + jsx(e, 0))
+ o(ε). (6.99)

The rest is again estimated using the Riemann-Lebesgue lemma.

The triples (e, k, j) for which this situation occurs are very rare.

The main contribution from this term to the sum (6.74) will be

N IIc
osc (e) =

1

π
√
ε

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x?=λe

(−1)j

j
3
2

1
√

|sxx(e, λe)|
sin

{
2π

ε
kλe + σ

π

4

}

.

(6.100)
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4. x? does not exist

In this case we can perform integrations by parts:

∫ λe

0

dx sin

{
2π

ε
A(x)

}

= =
{∫ λe

0

dx exp

{
2πi

ε
A(x)

}}

= =
{∫ λe

0

dx
1

Ax(x)

{

Ax(x) exp

{
2πi

ε
A(x)

}}}

= = ε

2πi

{
1

Ax(λe)
exp

{
2πi

ε
A(λe)

}

− 1

Ax(0)
exp

{
2πi

ε
A(0)

}}

+ o(ε)

= − ε

2π

cos
{

2π
ε
kλe
}

(k + jsx(e, λe))
+

ε

2π

cos
{

2π
ε
js(e, 0)

}

(k + jsx(e, 0))
+ o(ε),

(6.101)

the rest being estimated using the Riemann-Lebesgue lemma.

Complete expression

We can now combine these four types of terms to give an explicit formula for the
sum (6.74):

N II
osc(e) = N IIa

osc (e) +N IIb
osc (e) +N IIc

osc (e) +N IId
osc (e) +N IIe

osc (e), (6.102)

where N IIa
osc (e) is given by (6.95), N IIb

osc (e) by (6.98), N IIc
osc (e) by (6.100), and

N IId
osc (e) = − s

π2

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x? 6=λe

(−1)j

j (k + jsx(e, λe))
cos

{
2π

ε
kλe
}

= − s

π2

∞∑

j=1

(−1)j

j2

︸ ︷︷ ︸

=−π2

12

1

sx(e, λe)

− s

π2

∞∑

j=1

∑

k 6=0

∣
∣
∣
∣
∣
x? 6=λe

(−1)j

j (k + jsx(e, λe))
cos

{
2π

ε
kλe
}

=
s

12

1

sx(e, λe)
− s

π2

∞∑

j=1

∑

k 6=0

∣
∣
∣
∣
∣
x? 6=λe

(−1)j

j (k + jsx(e, λe))
cos

{
2π

ε
kλe
}

.

(6.103)
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N IIe
osc (e) =

s

π2

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x? 6=0

(−1)j

j (k + jsx(e, 0))
cos

{
2π

ε
js(e, 0)

}

=
2s

π2

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
j 6=2k

(−1)j

j (2k − j)
cos

{
2π

ε
js(e, 0)

}

. (6.104)

To establish the last equality we used the result sx(e, 0) = −1
2
, as computed in

annex 6.3.1, valid for a very general class of potentials (which have to be C1 at
r = 0).

6.1.7 λ oscillations

The oscillations of frequency λe

ε
will be referred to as the λ oscillations, following

Englert’s notations in (Englert, 1988). They are composed of a part of N I
osc, N

IIc
osc ,

and the oscillating part of N IId
osc . In this section we will combine these terms in a

different way. For energies e such that sx(e, λ
e) /∈ Q, which is the most probable

case (the set of energies for which sx is rational is of measure zero), we group
N I
osc and N IId

osc to get, for the contribution of the order of ε0, using the fact that
cos(kx)
k2 is an even function of k,

N II
λ (e) =

s

π2

∑

k 6=0

{

sx(e, λ
e)

2k2
−

∞∑

j=1

(−1)j

j (k + jsx(e, λe))

}

cos

{
2π

ε
kλe
}

=
s

π2

∑

k 6=0

1

k

{

sx(e, λ
e)

2k
−

∞∑

j=1

(−1)jk

j (k + jsx(e, λe))

}

cos

{
2π

ε
kλe
}

=
s

π2

∑

k 6=0

1

k

{

sx(e, λ
e)

2k
−

∞∑

j=1

(−1)j

{

1

j
− 1

k
sx(e,λe)

+ j

}}

cos

{
2π

ε
kλe
}

,

(6.105)

where we used the equality

k

j(k + jsx(e, λe))
=

1

j
− 1

k
sx(e,λe)

+ j
. (6.106)

The term

− s

π2

∑

k 6=0

1

k

∞∑

j=1

(−1)j
1

j
cos

{
2π

ε
kλe
}

= 0 (6.107)

is odd in the variable k. Hence, by summing over k 6= 0, we find that this sum is
0.
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The term
s

π2

∑

k 6=0

1

k

∞∑

j=1

(−1)j
1

k
sx(e,λe)

+ j
cos

{
2π

ε
kλe
}

(6.108)

is of the kind γ(k, j) = β(k, j)f(k), such that β(k, j) = −β(−k,−j), and f(k) is
odd. Hence β(k, j)f(k) = β(−k,−j)f(−k). The consequence is that

∑

k 6=0

∑

j>0

γ(k, j) =
∑

k<0

∑

j>0

γ(k, j) +
∑

k>0

∑

j>0

γ(k, j)

=
1

2

∑

k<0

∑

j>0

{γ(k, j) + γ(−k,−j)}

+
1

2

∑

k>0

∑

j>0

{γ(k, j) + γ(−k,−j)}

=
1

2

∑

k<0

∑

j>0

γ(k, j) +
1

2

∑

k>0

∑

j<0

+γ(k, j)

+
1

2

∑

k>0

∑

j>0

γ(k, j) +
1

2

∑

k<0

∑

j<0

γ(k, j)

=
1

2

∑

k 6=0

∑

j 6=0

γ(k, j). (6.109)

Using the result
∞∑

j=−∞

(−1)j

x− πj
=

1

sin(x)
⇒
∑

j 6=0

(−1)j

x− πj
=

1

sin(x)
− 1

x
, (6.110)

we establish

s

π2

∑

k 6=0

1

k

∞∑

j=1

(−1)j
1

k
sx(e,λe)

+ j
cos

{
2π

ε
kλe
}

=
s

2π

∑

k 6=0







cos
{

2π
ε
kλe
}

k sin
(

πk
sx(e,λe)

) − sx(e, λ
e)

πk2
cos

{
2π

ε
kλe
}





.

(6.111)

Introducing (6.107) and (6.111) in (6.105) we find

N II
λ (e) =

s

2π

∑

k 6=0

1

k

cos
{

2π
ε
kλe
}

sin
(

πk
sx(e,λe)

) . (6.112)

The slope sx(e, x) is negative. Therefore we can finally write

N II
λ (e) = − s

2π

∑

k 6=0

1

k

cos
{

2π
ε
kλe
}

sin
(

πk
|sx(e,λe)|

) . (6.113)
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6.1.8 ν oscillations

The oscillations of frequency s(e,0)
ε

will be referred to as the ν oscillations, following
Englert’s notations in (Englert, 1988). They are composed of the contributions
N IIb
osc (e), and N IIe

osc (e).
Let’s explicitly compute the term N IIe

osc (e). We note that the sum over k is
divergent. To avoid this divergence we will sum in the following order:
limN→∞

∑N
k=−N f(k), and separate the terms j even and j odd.

For notational convenience let’s write the terms of the sum N IIe
osc as f(j, 2k−j).

The sum we have to compute is

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
j 6=2k

f(j, 2k − j) =
∞∑

j=1

∑

k 6=j
f(2j, 2k − 2j)

+
∞∑

j=1

∞∑

k=−∞
f(2j − 1, 2k − 2j + 1)

m=k−j
=

∞∑

j=1

∑

m6=0

f(2j, 2m)

+
∞∑

j=1

∞∑

m=−∞
f(2j − 1, 2m+ 1). (6.114)

The function f(2j, 2m) is odd in the variable m. Hence the first sum gives 0.
The second sum is:

∞∑

m=−∞
f(2j − 1, 2m+ 1) = f(2j − 1, 1)

+
∞∑

m=1

(

f(2j − 1, 2m+ 1) + f(2j − 1,−2m+ 1)
)

.

(6.115)

The dependence in the second variable is f(x, y) = g(x)
y

. Hence

f(2j − 1, 1) +
∞∑

m=1

(f(2j − 1, 2m+ 1) + f(2j − 1,−2m+ 1))

= g(2j − 1) + 2g(2j − 1)
∞∑

m=1

1

(1 − 4m2)
︸ ︷︷ ︸

=− 1
2

= g(2j − 1) − g(2j − 1)

= 0. (6.116)



156 6. Semiclassical energy of a two-dimensional system

We have established N IIe
osc (e) = 0.

The ν oscillations are therefore only given by N IIb
osc :

Nν(e) =
s

π
√

8ε

∞∑

n=1

1

n
3
2

sin
{

4π
ε
ns(e, 0) + σ π

4

}

√

|sxx(e, 0)|
. (6.117)

6.1.9 Integrated density of states

The integrated density of states, computed up to the order ε0, is

N(e) = N0(e) +N1(e) +Nstat(e) +Nλ(e) +Nν(e) + o(ε0), (6.118)

where the smooth contribution is

N0(e) +N1(e) =
s

4πε2

∫

R2

d2x(e− V (|x|))+

− s

48π

∫

d2x∆V (r)δ(e− V (r))

+
s

12sx(e, λe)
, (6.119)

where the terms come from the N0, N1, N
I
osc and N II

osc parts of N(e).

The terms from the stationary phase approximation are given by N IIa
osc :

Nstat(e) =
2s

π
√
ε

∑

{k,j| gcd(k,j)=1}

′ (−1)nj

n
3
2 j

3
2

sin
{

2π
ε
n[kx? + js(e, x?)] + σ π

4

}

√

|sxx(e, x?)|
(6.120)

The λ oscillations are given by N IIc
osc and N II

λ :

Nλ(e) = − s

π
√
ε

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x?=λe

(−1)j

j
3
2

sin
{

2π
ε
kλe + σ π

4

}

√

|sxx(e, λe)|

− s

2π

∑

k 6=0

1

k

cos
{

2π
ε
kλe
}

sin
(

πk
|sx(e,λe)|

) . (6.121)

The ν oscillations are given by N IIb
osc only:

Nν(e) =
s

π
√

8ε

∞∑

n=1

1

n
3
2

sin
{

4π
ε
ns(e, 0) + σ π

4

}

√

|sxx(e, 0)|
. (6.122)
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6.2 Computation of the energy of the system

As it was established previously, one part of the ground state energy is derived
from the integrated density of states, and is given by

E(µ) =

∫ µ

deN(e) =

∫ µ

V0

deN(e). (6.123)

V0
.
= V (0) is the smallest value the chemical potential can have: it is the smallest

value of the energy, corresponding to a kinetic energy of 0, and the smallest
possible potential energy (the potential is a monotonous growing function of r,
its smallest value is at r = 0).

This integration over e implies some technical difficulties, which can be avoided
if we first integrate over e, then over x. This is what we will do to compute this
term.

The term to compute is established in the same way than for N(e) in formula
(6.60). We have to compute

E(µ) =
s

ε2

∞∑

k=−∞

∞∑

j=−∞

∫ µ

V0

de

∫ λe

−λe

dx

∫ s(e,x)

0

dν(−1)j exp

{
2πi

ε
kx

}

exp

{
2πi

ε
jν

}

=
2s

ε2

∞∑

k=−∞

∞∑

j=−∞

∫ λµ

0

dx

∫ µ

ex

de

∫ s(e,x)

0

dν(−1)j exp

{
2πi

ε
kx

}

exp

{
2πi

ε
jν

}

,

(6.124)

where ex is a function of x defined by s(ex, x) = 0. The factor 2 comes from the
fact that we integrate only over the positive values of x.

6.2.1 Thomas-Fermi model

The Thomas-Fermi term, which corresponds to the k = 0, j = 0 term, is obtained
from (6.62), which we integrate over e. There is no convergence problem, we
obtain

E0(µ) =

∫ µ

V0

deNTF (e) =
s

8πε2

∫

R2

d2x(µ− V (|x|))2
+. (6.125)

6.2.2 First correction to WKB quantization

The first correction to WKB arising from the quantization condition was already
computed at (6.55). Adding the spin factor we find

E1(µ) = − s

48π

∫

d2x∆V (r)θ(µ− V (r)) +
sµ

12
. (6.126)
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6.2.3 l-quantized Thomas-Fermi model

To compute the contribution from the lTF model, which arises from the terms
j = 0, k 6= 0 from the sum (6.124), we first integrate over e:

EI
osc(µ) =

2s

ε2

∑

k 6=0

∫ λµ

0

dx

∫ µ

ex

de s(e, x) exp

{
2πi

ε
kx

}

=
2s

ε2

∑

k 6=0

∫ λµ

0

dxS(µ, x) cos

{
2π

ε
kx

}

, (6.127)

where

S(µ, x)
.
=

∫ µ

des(e, x) =
2

3π

∫

dr

(

µ− V (r) − x2

r2

) 3
2

. (6.128)

We have used the equality
∑

k 6=0 sin{2π
ε
kx} = 0, because the sine function is odd,

and S(ex, x) = 0.
We extract the terms of lowest order in ε by integrating by parts:

∫ λµ

0

dxS(µ, x) cos

{
2π

ε
kx

}

=
ε

2πk
S(µ, x) sin

{
2π

ε
kx

}∣
∣
∣
∣

x=λµ

x=0

− ε

2πk

∫ λµ

0

dxSx(µ, x) sin

{
2π

ε
kx

}

= − ε

2πk

∫ λµ

0

dxSx(µ, x) sin

{
2π

ε
kx

}

=
ε2

(2πk)2
Sx(µ, λ

µ) cos

{
2π

ε
kλµ
}

︸ ︷︷ ︸

=0

− ε2

(2πk)2
Sx(µ, 0)

− ε2

(2πk)2

∫ λµ

0

dxSxx(µ, x) cos

{
2π

ε
kx

}

= − ε2

(2πk)2
Sx(µ, 0)
︸ ︷︷ ︸

=−µ
2

− ε3

(2πk)3
Sxx(µ, λ

µ) sin

{
2π

ε
kλµ
}

+ o(ε3). (6.129)

We used the results S(µ, λµ) = 0, and S(µ, 0) < ∞ to establish the second
equality. The result Sx(µ, λ

µ) = 0 is also obvious. The result limx→0 Sx(µ, x) =
−µ

2
is established in the annex 6.3.2. We also used the result Sxx(µ, 0) <∞.
The order of the rest is estimated using the Riemann-Lebesgue lemma and

using ∫

dx |Sxxx(µ, x)| <∞. (6.130)
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The lTF contribution to the energy is finally

EI
osc(µ) =

∑

k 6=0

sµ

(2πk)2
−
∑

k 6=0

sε

4(πk)3
Sxx(µ, λ

µ) sin

{
2π

ε
kλµ
}

+ o(ε)

=
sµ

12
−

∞∑

k=1

sε

2(πk)3
Sxx(µ, λ

µ) sin

{
2π

ε
kλµ
}

+ o(ε), (6.131)

where we used the equality
∑∞

k=1
1
k2 = π2

6
, and the fact that the function sin(k)

k3 is
even.

The term sµ
12

will cancel the constant term arising from the smooth correction
to WKB in equation (6.126).

Let’s note that this result can be obtained by integrating (6.69) over e, and
proceeding to integrations by parts. We obtain

EI
osc(µ) =

sµ

12
+

∞∑

k=1

sε

2(πk)3

sx(µ, λ
µ)

λµe
sin

{
2π

ε
kλµ
}

+ o(ε). (6.132)

Some calculations provide the result:

Sxx(µ, λ
µ) = −sx(µ, λ

µ)

λµe
=

2W?

r3
?

√

2

|W ′′
? |
, (6.133)

where W (r)
.
= r2(µ − V (r)), and r? is defined by W ′(r?) = 0, and W?

.
=

W (r?), W
′′
?
.
= W ′′(r?).

To obtain these results, we calculate the functions in this way: f(xe, e) =
limx→xe f(x, e), and f(x, ex) = lime→ex f(x, e).

6.2.4 Complete model

We still have to compute the energy arising from the other terms, those with
j 6= 0, k ∈ Z. This expression is obtained in the same way than for the integrated
density of states, we find

EII
osc(µ) =

2s

ε2

∑

j 6=0

∞∑

k=−∞

∫ λµ

0

dx

∫ µ

ex

de

∫ s(e,x)

0

dν(−1)j exp

{
2πi

ε
kx

}

exp

{
2πi

ε
jν

}

=
s

πiε

∑

j 6=0

∞∑

k=−∞

∫ λµ

0

dx
(−1)j

j
exp

{
2πi

ε
kx

}∫ µ

ex

de exp

{
2πi

ε
js(e, x)

}

.

(6.134)
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To proceed further we integrate by parts over e:

∫ µ

ex

de
1

se(e, x)
se(e, x) exp

{
2πi

ε
js(e, x)

}

=
ε

2πji

exp
{

2πi
ε
js(µ, x)

}

se(µ, x)
− ε

2πji

exp
{

2πi
ε
js(ex, x)

}

se(ex, x)

+
ε

2πji

∫ µ

ex

de
see(e, x)

s2
e(e, x)

exp

{
2πi

ε
js(e, x)

}

=
ε

2πji

exp
{

2πi
ε
js(µ, x)

}

se(µ, x)
− ε

2πji

1

se(ex, x)
+ o(ε),

(6.135)

where we used the fact that s(ex, x) = 0, and (using the Riemann-Lebesgue
lemma)

∫ µ

ex

de

∣
∣
∣
∣

see(e, x)

s2
e(e, x)

∣
∣
∣
∣
<∞ (6.136)

to establish the order of the rest.

The complete expression is then

EII
osc(µ) = − s

2π2

∑

j 6=0

∞∑

k=−∞

∫ λµ

0

dx
(−1)j

j2

(

exp
{

2πi
ε

[kx+ js(µ, x)]
}

se(µ, x)

−exp
{

2πi
ε
kx
}

se(ex, x)

)

= − s

π2
<
{ ∞∑

j=1

∞∑

k=−∞

∫ λµ

0

dx
(−1)j

j2

(

exp
{

2πi
ε

[kx+ js(µ, x)]
}

se(µ, x)

−exp
{

2πi
ε
kx
}

se(ex, x)

)}

= − s

π2

∞∑

j=1

∞∑

k=−∞

∫ λµ

0

dx
(−1)j

j2

cos
{

2π
ε
[kx+ js(µ, x)]

}

se(µ, x)

+
s

π2

∞∑

j=1

∞∑

k=−∞

∫ λµ

0

dx
(−1)j

j2

cos
{

2π
ε
kx
}

se(ex, x)
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= − s

π2

∞∑

j=1

∞∑

k=−∞

∫ λµ

0

dx
(−1)j

j2

cos
{

2π
ε
[kx+ js(µ, x)]

}

se(µ, x)

+
s

π2

∞∑

j=1

∑

k 6=0

∫ λµ

0

dx
(−1)j

j2

cos
{

2π
ε
kx
}

se(ex, x)

− s

12

∫ λµ

0

dx
1

se(ex, x)
, (6.137)

where we used formulas equivalent to (6.75), (6.76), and
∑∞

j=1
(−1)j

j2
= −π2

12
.

We can now perform the integration over x. Let’s consider the two terms
separately. The first one is computed exactly in the same way than in the com-
putation of the integrated density of states. The dominating contribution is given
by a stationary phase, for the pairs (k, j) such that x?(µ, k, j) ∈ [0, λµ], where
x?(µ, k, j) is defined by

sx(µ, x
?) = −k

j
. (6.138)

If x?(µ, k, j) = 0, we obtain ν oscillations. If x?(µ, k, j) ∈]0, λµ[, we obtain normal
oscillations. If x?(µ, k, j) = λµ, we obtain λ oscillations.

If the point x?(µ, k, j) does not exist for a pair (k, j), we calculate the energy
by integrations by parts only. Hence we have to consider four families of pairs
(k, j), and proceed exactly in the same way than for the computation of the
integrated density of states.

We obtain four different types of terms. By analogy with the results (6.93),
(6.96), (6.99), and (6.101), we find

EIIa
osc (µ) = −s

√
ε

π2

∑

k,j

′ (−1)j

j
5
2

cos
{

2π
ε
[kx? + js(µ, x?)] + σπ

4

}

se(µ, x?)
√

|sxx(µ, x?)|
, (6.139)

where the sum runs over all the pairs (k, j) such that x?(µ, k, j) ∈]0, λµ[.

EIIb
osc (µ) = − s

√
ε

8
√

2π2

∞∑

n=1

1

n
5
2

cos
{

4π
ε
[ns(µ, 0)] + σπ

4

}

se(µ, 0)
√

|sxx(µ, 0)|
. (6.140)

We proceeded to the sum over the saddle points which are equal to 0. In this
case, we have sx(µ, 0) = −1

2
, which provides the relation 2k = j, which was used

to obtain this result.

EIIc
osc (µ) = −s

√
ε

2π2

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x?=λµ

(−1)j

j
5
2

cos
{

2π
ε
kλµ + σπ

4

}

se(µ, λµ)
√

|sxx(µ, λµ)|
. (6.141)

The sum runs over the pairs (k, j) such that k = −jse(µ, λµ). This means that if
se(µ, λ

µ) is irrational this sum is zero.
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The first contribution beyond the saddle-point approximation is zero:

EIIe
osc (µ) =

sε

2π3

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
j 6=2k

(−1)j

j2

sin
{

2π
ε
js(µ, 0)

}

se(µ, 0)[k + jsx(µ, 0)]

=
sε

π3

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
j 6=2k

(−1)j

j2

sin
{

2π
ε
js(µ, 0)

}

se(µ, 0)(2k − j)

= 0, (6.142)

for the same reason than the reason why N IIe
osc = 0.

The second contribution beyond the saddle-point approximation is

EIId
osc (µ) = − sε

2π

1

π2

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
k 6=−sx(µ,λµ)j

(−1)j

j2

sin
{

2π
ε
kλµ
}

se(µ, λµ)[k + jsx(µ, λµ)]

= − sε

2π

1

π2

∞∑

j=1

∑

k 6=0

∣
∣
∣
∣
∣
k 6=−sx(µ,λµ)j

(−1)j

j2

sin
{

2π
ε
kλµ
}

se(µ, λµ)[k + jsx(µ, λµ)]
.

(6.143)

If sx(µ, λ
µ) is irrational, the sum has no restriction. The term k = 0 is not

oscillatory. This term is however 0, because it is multiplied by sin(0).
We still have to compute the second term of the expression (6.137). We

integrate over x by parts

∫ λµ

0

dx
cos
{

2π
ε
kx
}

se(ex, x)
=

ε

2πk

sin
{

2π
ε
kλµ
}

se(µ, λµ)
+ o(ε) (6.144)

to obtain

+
s

π2

∞∑

j=1

∑

k 6=0

∫ λµ

0

dx
(−1)j

j2

cos
{

2π
ε
kx
}

se(ex, x)
=

sε

2π3

∞∑

j=1

∑

k 6=0

(−1)j

j2

sin
{

2π
ε
kλµ
}

k se(µ, λµ)
.

(6.145)
Summing this term with (6.143) we obtain

− sε

2π3

∞∑

j=1

∑

k 6=0

(−1)j

j2

(
1

se(µ, λµ)[k + jsx(µ, λµ)]
− 1

k se(µ, λµ)

)

sin

{
2π

ε
kλµ
}

= − sε

2π3

∞∑

j=1

∑

k 6=0

(−1)j

j2

1

se(µ, λµ)

−jsx(µ, λµ)
k(k + jsx(µ, λµ))

sin

{
2π

ε
kλµ
}

= − sε

2π3

∞∑

j=1

∑

k 6=0

(−1)j

j

1

kλµe (k + jsx(µ, λµ))
sin

{
2π

ε
kλµ
}

. (6.146)
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We used the following result:

se(µ, λ
µ) = −λµe sx(µ, λµ), (6.147)

which comes from the condition (which is the definition of λµ)

s(e, λe) = 0 ∀e ⇒ d

de
s(e, λe) = se(e, λ

e) + λeesx(e, λ
e) = 0. (6.148)

The result is exactly the result we would obtain if we integrated the second term
of (6.103). This means that the integration over x and e is commutative.

The third term of (6.137) is the same as the one which arises from the inte-
gration over e of the first term of (6.103):

− 1

12

∫ λµ

0

dx
1

se(ex, x)
= − 1

12

∫ µ

V0

de
λe

se(e, λee)
=

1

12

∫ µ

V0

de
1

sx(e, λe)
, (6.149)

where we performed the change of variable x 7→ e = ex ⇒ x = λe, λeede = dx and
used the equality (6.148).

6.2.5 λ oscillations

The λ oscillations can be grouped, in the same way as was done for the integrated
density of states. To do it, let’s use the equality

(−1)j

kj(k + jsx(e, λe))
=

(−1)j

k2

(
1

j
− sx(e, λ

e)

(k + jsx(e, λe))

)

, (6.150)

and
∑

k 6=0

1

k2
sin

{
2π

ε
kλe
}

= 0, (6.151)

because this function is odd in the variable k.

This allows us to rewrite the sum (6.146) as

− sε

2π3

1

λµe

∞∑

j=1

∑

k 6=0

(−1)j

j

1

k(k + jsx(µ, λµ))
sin

{
2π

ε
kλµ
}

=
sε

2π3

sx(µ, λ
µ)

λµe

∞∑

j=1

∑

k 6=0

(−1)j

k2

1

(k + jsx(µ, λµ))
sin

{
2π

ε
kλµ
}

.

(6.152)
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We will now sum this contribution with that arising from the lTF model (6.132):

sε

2π3

sx(µ, λ
µ)

λµe

∑

k 6=0

[

1

2k3
+

∞∑

j=1

(−1)j

k2

1

(k + jsx(µ, λµ))

]

sin

{
2π

ε
kλµ
}

=
sε

2π3

sx(µ, λ
µ)

λµe

∑

k 6=0

1

k2

[

1

2k
+

∞∑

j=1

(−1)j

(k + jsx(µ, λµ))

]

sin

{
2π

ε
kλµ
}

=
sε

4π3

sx(µ, λ
µ)

λµe

∑

k 6=0

1

k2

[

1

k
+
∑

j 6=0

(−1)j

(k + jsx(µ, λµ))

]

sin

{
2π

ε
kλµ
}

=
sε

4π3

sx(µ, λ
µ)

λµe

∑

k 6=0

1

k2

∞∑

j=−∞

(−1)j

(k + jsx(µ, λµ))
sin

{
2π

ε
kλµ
}

=
sε

4π3

sx(µ, λ
µ)

λµe

∑

k 6=0

1

k2

π

sx(µ, λµ)

∞∑

j=−∞

(−1)j
(

πk
sx(µ,λµ)

+ πj
) sin

{
2π

ε
kλµ
}

=
sε

4π2

1

λµe

∑

k 6=0

1

k2

sin
{

2π
ε
kλµ
}

sin
{

π k
sx(µ,λµ)

}

= − sε

4π2

1

λµe

∑

k 6=0

1

k2

sin
{

2π
ε
kλµ
}

sin
{

πk
|sx(µ,λµ)|

} , (6.153)

where we used the equality

∞∑

j=−∞

(−1)j

(x+ πj)
=

1

sin(x)
. (6.154)

This result can be obtained by integrating directly over e the integrated density
of states Nλ (6.113), proceeding by integrations by parts.

The result can be written explicitly, using the results

sx(µ, λ
µ) = − 1

r?

√

2W?

W ′′
?

(6.155)

and

λµe =
r2
?

2
√
W?

. (6.156)

We obtain

Eλ(µ) = − sε

2π2

√
W?

r2
?

∑

k 6=0

1

k2

sin
{

2π
ε
kλµ
}

sin

{
πkr?

√
W ′′

?√
2W?

} . (6.157)
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The complete λ oscillations are therefore, from EIIc
osc and EIId

osc :

Eλ(µ) = −s
√
ε

2π2

∞∑

j=1

∞∑

k=−∞

∣
∣
∣
∣
∣
x?=λµ

(−1)j

j
5
2

cos
{

2π
ε
kλµ + σπ

4

}

se(µ, λµ)
√

|sxx(µ, λµ)|

− sε

2π2

√
W?

r2
?

∑

k 6=0

1

k2

sin
{

2π
ε
kλµ
}

sin

{
πkr?

√
W ′′

?√
2W?

} . (6.158)

6.2.6 ν oscillations

The ν oscillations are only given by the stationary phase terms, EIIb
osc . They are

Eν(µ) = − s
√
ε

8
√

2π2

∞∑

n=1

1

n
5
2

cos
{

4π
ε
[ns(µ, 0)] + σπ

4

}

se(µ, 0)
√

|sxx(µ, 0)|
. (6.159)

6.2.7 Energy oscillations

The complete energy is given by

E(µ) = E0(µ) + E1(µ) + Estat(µ) + Eλ(µ) + Eν(µ), (6.160)

where







E0(µ) + E1(µ) = s
8πε2

∫

R2 d2x(µ− V (|x|))2
+ − s

48π

∫
d2x∆V (r)θ(µ− V (r))

+ s
12

∫ µ

0
de 1

sx(e,λe)
,

Estat(µ) = − s
√
ε

π2

∑

k,j
′ (−1)j

j
5
2

cos{ 2π
ε

[kx?+js(µ,x?)]+ σπ
4 }

se(µ,x?)
√

|sxx(µ,x?)|
,

Eλ(µ) = − sε
2π2

√
W?

r2?

∑

k 6=0
1
k2

sin{ 2π
ε
kλµ}

sin

{

πkr?
√

W ′′
?√

2W?

} ,

Eν(µ) = − s
√
ε

8
√

2π2

∑∞
n=1

1

n
5
2

cos{ 4π
ε

[ns(µ,0)]+ σπ
4 }

se(µ,0)
√

|sxx(µ,0)|
.

(6.161)
We supposed that λµ is irrational, which implies that there are no λ oscillations of
the order

√
ε. For quantum dots (see chapter 8), it is the case. It is an interesting

question to know whether this is the case in any system or not.
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6.3 Annex

6.3.1 Computation of limx→0 sx(e, x)

From the definition (6.3) of s, we establish that its derivative with respect to x is

sx(e, x) = −x
π

∫ r2(e,x)

r1(e,x)

dr

r2

1
√

e− V (r) − x2

r2

+
r2x(e, x)

π

√

e− V (r2(e, x)) −
x2

r2
2(e, x)

−r1x(e, x)
π

√

e− V (r1(e, x)) −
x2

r2
1(e, x)

, (6.162)

where rix, i = 1, 2, is the derivative of ri with respect to x.

The two last terms are zero: e − V (ri(e, x)) − x2

r2i (e,x)
= 0, i = 1, 2, is the

definition of ri.

The function is therefore

sx(e, x) = −x
π

∫ r2(e,x)

r1(e,x)

dr

r2

1
√

e− V (r) − x2

r2

= −x
π

∫ r2(e,x)

r1(e,x)

dr

r

1
√

r2 (e− V (r)) − x2
. (6.163)

In the limit x→ 0, the lower bound of the integral tends to 0, which implies that
the integrand (the term 1

r
) diverges. We have to determine how it diverges, and

will see that it compensates the prefactor x in the expression of sx.

We separate the integral in two terms:

∫ r2(e,x)

r1(e,x)

dr

r

1
√

r2 (e− V (r)) − x2
=

∫ r0

r1(e,x)

dr

r

1
√

r2 (e− V (r)) − x2

+

∫ r2(e,x)

r0

dr

r

1
√

r2 (e− V (r)) − x2
,

(6.164)

where r0 � 1 is such that the potential V can be expanded in a Taylor series in
the first term: V (r) = V0 + V ′

0r + 1
2
V ′′

0 r
2 + O(r3). The second term is finite and

will therefore be cancelled by the prefactor x in the limit x → 0. Let’s focus on
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the first term:
∫ r0

r1(e,x)

dr

r

1
√

r2 (e− V (r)) − x2
'

∫ r0

r1(e,x)

dr

r

1
√

r2 (e− V0) − x2

=
1

x

∫ α
x

1

dr

r

1√
r2 − 1

x→0−→ 1

x

∫ ∞

1

dr

r

1√
r2 − 1

︸ ︷︷ ︸

=π
2

=
1

x

π

2
, (6.165)

where we proceeded to the change of variable r 7→ r′ = r
√
e−V0

x
.

Returning to the expression (6.163) of sx we find

lim
x→0

sx(e, x) = −1

2
. (6.166)

This result is universal, it does not depend on the nature of the potential, whose
condition is only to be C1 at r = 0.

6.3.2 Computation of limx→0 Sx(e, x)

From the definition (6.128) of S, we establish that its derivative with respect to
x is

Sx(e, x) = −2x

π

∫ r2(e,x)

r1(e,x)

dr

r2

√

e− V (r) − x2

r2

+
2r2x(e, x)

3π

(

e− V (r2(e, x)) −
x2

r2
2(e, x)

) 3
2

−2r1x(e, x)

3π

(

e− V (r1(e, x)) −
x2

r2
1(e, x)

) 3
2

, (6.167)

where rix, i = 1, 2, is the derivative of ri with respect to x.
The two last terms are zero: e − V (ri(e, x)) − x2

r2i (e,x)
= 0, i = 1, 2, is the

definition of ri.
The function is therefore

Sx(e, x) = −2x

π

∫ r2(e,x)

r1(e,x)

dr

r2

√

e− V (r) − x2

r2

= −2x

π

∫ r2(e,x)

r1(e,x)

dr

r3

√

r2 (e− V (r)) − x2. (6.168)

In the limit x→ 0, the lower bound of the integral tends to 0, which implies that
the integrand (the term 1

r3
) diverges. We have to determine how it diverges, and

will see that it compensates the prefactor x in the expression of Sx.
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We separate the integral in two terms:

∫ r2(e,x)

r1(e,x)

dr

r3

√

r2 (e− V (r)) − x2 =

∫ r0

r1(e,x)

dr

r3

√

r2 (e− V (r)) − x2

+

∫ r2(e,x)

r0

dr

r3

√

r2 (e− V (r)) − x2,

(6.169)

where r0 � 1 is such that the potential V can be expanded in a Taylor series in
the first term: V (r) = V0 + V ′

0r + 1
2
V ′′

0 r
2 + O(r3). The second term is finite and

will therefore be cancelled by the prefactor x in the limit x → 0. Let’s focus on
the first term:

∫ r0

r1(e,x)

dr

r3

√

r2 (e− V (r)) − x2 '
∫ r0

r1(e,x)

dr

r3

√

r2 (e− V0) − x2

=
(e− V0)

x

∫ α
x

1

dr

r3

√
r2 − 1

x→0−→ (e− V0)

x

∫ ∞

1

dr

r3

1√
r2 − 1

︸ ︷︷ ︸

=π
4

=
(e− V0)

x

π

4
, (6.170)

where we proceeded to the change of variable r 7→ r′ = r
√
e−V0

x
.

Returning to the expression (6.168) of Sx we find

lim
x→0

Sx(e, x) = −(e− V0)

2
. (6.171)

This result is universal, it does not depend on the nature of the potential, whose
condition is only to be C1 at r = 0.
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The objective of this chapter is to obtain a solution of the self-consistent
equation of a quantum dot, in order to introduce the self-consistent potential in
the formulas of the ground state energy.

In chapter 5 we established formulas for the computation of the ground state
energy of many-fermion systems. We obtained these results in the semiclassical
Hartree-Fock framework, which was justified by the developments of chapter 2.

169
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As our technique does not provide the oscillating terms, these were computed in
chapter 6 in the specific two-dimensional case. All these formulas are functionals
of a potential, the self-consistent potential. This self-consistent potential is solu-
tion of the self-consistent equation (5.45). As established in the developments of
chapter 5, only the lowest order of this equation (5.125) has to be solved, so as
to obtain results at the desired order in our small parameters.

In this chapter we start by establishing the self-consistent equation of our spe-
cific problem, a two-dimensional system with a parabolic confinement (V ext(x) =
1
2
κx2). We are interested in having a solution for realistic experimental situa-

tions, for which κ � 1. There exists an analytical solution in the asymptotic
limit κ→ 0. This limit motivates us to define a new basis of functions, in which
the energy to minimize becomes a quadratic form, plus a linear term. We then
use this new approach analytically and establish the already known limit κ→ 0,
as well as a new limit κ → ∞ (of no relevance for experimental work). Based
on these limits, we use this new basis analytically by solving the problem in a
restricted vector space, that is by considering a few basis elements instead of the
complete basis. Unfortunately we face some difficulties: it is hard to do analytical
developments for a large number of basis elements, and – even worse – the series
are asymptotics: they diverge, very quickly if we consider only 5 basis elements.
To verify these analytical developments, we proceed to numerical computations,
in this new basis, on a bigger number of basis elements. We conclude that these
analytical results have insufficient precision, which is why we finally solve the
problem by doing numerical simulations. As we need functional relations, we
have to proceed to many numerical simulations, and proceed to a polynomial
fitting. We look for the optimal compromise between speed and precision, this is
why we first calibrate our program. We finally obtain the energy and chemical
potential of the system, as well as the density, and the radius of the dot. They
are obtained as polynomial functions of κ

1
3 . These results will be used in chapter

8, where we will make use of the formulas developed earlier.

7.1 Self-consistent equation

As derived in chapter 5, the self-consistent equation is, in terms of the density ρ̂:

πρ̂(x̂) +
1

2
kx̂2 +

∫

d2ŷ
ρ̂(ŷ)

|x̂ − ŷ| = µ̂. (7.1)

We restrict to the two-dimensional case. This equation corresponds to the mini-
mization of the functional energy (which is the Thomas-Fermi energy)

ÊTF [ρ̂] =
π

2

∫

d2x̂ρ̂2(x̂) +

∫

d2x̂
1

2
kx̂2ρ̂(x̂) +

1

2

∫

d2x̂

∫

d2ŷ
ρ̂(x̂)ρ̂(ŷ)

|x̂ − ŷ| , (7.2)
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with the normalization constraint
∫

d2x̂ρ̂(x̂) = N, (7.3)

and the constraint of positivity

ρ̂(x̂) ≥ 0. (7.4)

For simplicity, we normalize the density to 1, and introduce the parameter κ
.
= k

N
.

The Thomas-Fermi energy becomes

ÊTF [ρ̂1]

N2
=
π

2

∫

d2x̂ρ̂2
1(x̂) +

∫

d2x̂
1

2
κx̂2ρ̂1(x̂) +

1

2

∫

d2x̂

∫

d2ŷ
ρ̂1(x̂)ρ̂1(ŷ)

|x̂ − ŷ| .

(7.5)
If we consider a solution with radial symmetry ρ̂1(x̂), the energy becomes, intro-

ducing ETF .
= ÊTF

N2 :

ETF [ρ̂1] = π2

∫

dx̂x̂ρ̂2
1(x̂) + πκ

∫

dx̂x̂3ρ̂1(x̂)

+π

∫

dx̂

∫

dŷ

∫ 2π

0

dθ
x̂ŷρ̂1(x̂)ρ̂1(ŷ)

√

x̂2 + ŷ2 − 2x̂ŷ cos θ
, (7.6)

where we used the equality |x̂− ŷ| =
√

(x̂ − ŷ) · (x̂ − ŷ) =
√

x̂2 + ŷ2 − 2x̂ · ŷ =
√

x̂2 + ŷ2 − 2x̂ŷ cos θ, where θ is the angle between x̂ and ŷ.
It was proven that by considering a function with radial symmetry ρ̂1(x̂), there

exists a unique solution to this problem (Lieb et al., 1995). A solution was found
in the asymptotic limit κ→ 0 (Shikin et al., 1991). It is

ρ̂1(x̂) =
3

2πR2

√

1 − x̂2

R2
, R =

(
3π

4κ

) 1
3

. (7.7)

It is proven in (Lieb et al., 1995) that the support of ρ̂1 is compact, that is there
exists a radius R > 0 such that ρ̂1(x̂) = 0, x̂ ≥ R. It is therefore appropriate to
proceed to a scaling, which preserves the normalization condition:

x̂ 7→ x =
x̂

R
,

ρ̂1(x̂) 7→ ρ(x) = R2ρ̂1(x̂) = R2ρ̂1(Rx). (7.8)

The last equality implies 1 =
∫

d2xρ(x).
In these new variables the problem consists of finding a positive function ρ in

the interval [0, 1], with ρ(1) = 0, and a radius R, which minimize the functional

E[ρ,R] =
π2

R2

∫ 1

0

dxxρ2(x) +R2πκ

∫ 1

0

dxx3ρ(x)

+
π

R

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dθ
xyρ(x)ρ(y)

√

x2 + y2 − 2xy cos θ
. (7.9)
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7.1.1 New basis

Experimental results indicate that we always work in the regime κ� 1 (McEuen
et al., 1992), (Zhitenev et al., 1997), (Kouwenhoven et al., 2001). Hence, by
continuity (the convergence κ → 0 is uniform, (Lieb et al., 1995)), the solution
is close to the solution obtained in the limit κ → 0. This is why we introduce a

basis for the functions in the interval [0, 1], defined by ϕn(x)
.
= (1 − x2)

n
2 , n ≥ 1,

and suppose that we can consider a small number of basis elements (and that the
precision will be sufficient).

Proposition 1

{ϕn}n≥1 is a basis of {f : [0, 1] → R|f(1) = 0}

Proof 1

Let’s define the change of variable x 7→ y = arcsin(x) and define ψn(y)
.
=

ϕn(x(y)) =
(
1 − sin2(y)

)n
2 = cosn(y). Let’s proceed to another change of vari-

able y 7→ z = cos(y) and define φn(z)
.
= ψn(y(z)) = zn. The condition ϕn(1) = 0

becomes φn(0) = 0. It is a well-known result that {φn}n≥1 is a basis of the set of
functions {f : [0, 1] → R|f(0) = 0}, which concludes the proof.

Let’s note that this basis is not orthonormal. The nature of our problem (a two-

dimensional one) is such that the natural scalar product is 〈f |g〉 .= 2π
∫ 1

0
dxxf(x)g(x),

whose corresponding norm is ‖f‖ .
=
√

2π
∫ 1

0
dxxf 2(x), which we will use later.

The scalar product between the basis elements is 〈ϕn|ϕm〉 = 2π
2+n+m

. The Hilbert
space we consider is therefore

H .
= L2([0, 1], 2πxdx). (7.10)

A function ρ : [0, 1] → R, with ρ(1) = 0, can be written as

ρ(x) =
∑

n≥1

cnϕn(x). (7.11)

The energy and the constraint have now to be expressed in this basis. The first
term of (7.9), which is the kinetic energy, becomes

T
.
=

t

R2

=
π2

R2

∫ 1

0

dxxρ2(x)

=
π2

R2

∑

n,m≥1

cncm

∫ 1

0

dxxϕn(x)ϕm(x)
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=
π2

R2

∑

n,m≥1

cncm

∫ 1

0

dxx(1 − x2)
(n+m)

2

︸ ︷︷ ︸

= 1
(2+n+m)

=
π2

R2

∑

n,m≥1

cncm
2 + n+m

.
=

1

R2

∑

n,m≥1

tnmcncm

.
=

∑

n,m≥1

Tnmcncm. (7.12)

The second term of (7.9), the confining potential, becomes

V ext .
= R2vext

= R2πκ

∫ 1

0

dxx3ρ(x)

= R2πκ
∑

n≥1

cn

∫ 1

0

dxx3ϕn(x)

= R2πκ
∑

n≥1

cn

∫ 1

0

dxx3ϕn(x)

= R2πκ
∑

n≥1

cn

∫ 1

0

dxx3(1 − x2)
n
2

︸ ︷︷ ︸

= 2
(2+n)(4+n)

= R22πκ
∑

n≥1

cn
(2 + n)(4 + n)

.
= R2

∑

n≥1

vextn cn

.
=

∑

n≥1

V ext
n cn. (7.13)

The last term of (7.9), the electrostatic interaction V , needs some more de-
velopments. Let’s use the following integral representation of 1

|x−y| :

1

|x − y| =

∫ ∞

0

dkJ0(k|x − y|). (7.14)
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This result is obtained by expressing the Fourier transform of the function 1
|x|

(which is a function of |k| only):

f(|k|) =

∫

d2x
e−ik·x

|x|

=

∫ ∞

0

dx

∫ 2π

0

dθe−ikx cos θ

︸ ︷︷ ︸

2πJ0(kx)

= 2π

∫ ∞

0

dxJ0(kx)

︸ ︷︷ ︸
1
|k|

=
2π

|k| . (7.15)

The function 1
|x| can be expressed as

1

|x| =
1

(2π)2

∫

d2k
2π

|k|e
ik·x

=
1

2π

∫ ∞

0

dk

∫ 2π

0

dθeikx cos θ

︸ ︷︷ ︸

=2πJ0(kx)

=

∫ ∞

0

dkJ0(kx). (7.16)

We use the equality (Gradshteyn et al., 2000)

J0(k|x − y|) = J0(k
√

x2 + y2 − 2xy cos θ)

= J0(kx)J0(ky) + 2
∞∑

l=1

Jl(kx)Jl(ky) cos(lθ) (7.17)

to proceed further.

Returning to the electrostatic interaction (7.9) we find

V =
1

2R

∫

d2x

∫

d2y
ρ(x)ρ(y)

|x − y|

=
1

2R

∫

d2x

∫

d2y

∫ ∞

0

dkρ(x)ρ(y)J0(k|x − y|)

=
π

R

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dθ

∫ ∞

0

dkxyρ(x)ρ(y)J0(k
√

x2 + y2 − 2xy cos θ)
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=
π

R

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dθ

∫ ∞

0

dkxyρ(x)ρ(y)

×
(

J0(kx)J0(ky) + 2
∞∑

l=1

Jl(kx)Jl(ky) cos(lθ)

)

=
2π2

R

∫ 1

0

dx

∫ 1

0

dy

∫ ∞

0

dkxyρ(x)ρ(y)J0(kx)J0(ky). (7.18)

The other terms vanish when integrating over the angle θ.

Let’s note that the expression (7.18) shows that V [ρ] is positive definite (even
for functions which are not positive):

V =
2π2

R

∫ 1

0

dx

∫ 1

0

dy

∫ ∞

0

dkxyρ(x)ρ(y)J0(kx)J0(ky)

=
2π2

R

∫ ∞

0

dk

(∫ 1

0

dxxρ(x)J0(kx)

)2

≥ 0. (7.19)

To express this energy in the chosen basis we have to compute

Vnm =
2π2

R

∫ 1

0

dx

∫ 1

0

dy

∫ ∞

0

dkxy(1 − x2)
n
2 (1 − y2)

m
2 J0(kx)J0(ky)

=
2π2

R
2

n
2 Γ
(n

2
+ 1
)∫ 1

0

dy

∫ ∞

0

dky(1 − y2)
m
2

Jn
2
+1(k)J0(ky)

k
n
2
+1

=
π2

R

Γ
(

1
2

)
Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)

∫ 1

0

dyy(1 − y2)
m
2 F

(
1

2
,−n

2
− 1

2
, 1, y2

)

=
π

5
2

2R

Γ
(
n
2

+ 1
)
Γ
(
m
2

+ 1
)
Γ
(
n
2

+ m
2

+ 2
)

Γ
(
n
2

+ 3
2

)
Γ
(
m
2

+ 3
2

)
Γ
(
n
2

+ m
2

+ 5
2

) . (7.20)

To establish this result we first integrated over x, using the equality (Gradshteyn
et al., 2000)

∫ 1

0

dxx(1 − x2)µJ0(kx) =
2µΓ(µ+ 1)Jµ+1(k)

kµ+1
. (7.21)

Then we integrated over k, using (Gradshteyn et al., 2000)

∫ ∞

0

dk
J0(ky)Jµ+1(k)

kµ+1
=

1

2µ+1

Γ
(

1
2

)

Γ
(
µ+ 3

2

)F

(
1

2
,−µ− 1

2
, 1, y2

)

. (7.22)
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Finally we integrated over y, proceeding to the change of variable x = y2, and
using the result (Gradshteyn et al., 2000)
∫ 1

0

dyy(1 − y2)νF

(
1

2
,−µ− 1

2
, 1, y2

)

=
1

2

∫ 1

0

dx(1 − x)νF

(
1

2
,−µ− 1

2
, 1, x

)

=
1

2

Γ(1)Γ(ν + 1)Γ(µ+ ν + 2)

Γ
(
ν + 3

2

)
Γ
(
µ+ ν + 5

2

) . (7.23)

Using Γ
(

1
2

)
=

√
π and Γ(1) = 1, we find the result (7.20).

The electrostatic potential is therefore, in the chosen basis, for ρ(x) =
∑

n≥1 cnϕn(x), expressed as (using (7.20))

V
.
=

v

R

=
π

R

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dθ
xyρ(x)ρ(y)

√

x2 + y2 − 2xy cos θ

=
∑

n,m≥1

cncm
π

R

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dθ
xy(1 − x2)

n
2 (1 − y2)

m
2

√

x2 + y2 − 2xy cos θ

=
1

R

∑

n,m≥1

π
5
2

2

Γ
(
n
2

+ 1
)
Γ
(
m
2

+ 1
)
Γ
(
n
2

+ m
2

+ 2
)

Γ
(
n
2

+ 3
2

)
Γ
(
m
2

+ 3
2

)
Γ
(
n
2

+ m
2

+ 5
2

)cncm

.
=

1

R

∑

n,m≥1

vnmcncm

.
=

∑

n,m≥1

Vnmcncm. (7.24)

The constraint (7.3) becomes, in the chosen basis, for ρ(x) =
∑

n≥1 cnϕn(x):

2π

∫ 1

0

dxxρ(x) = 2π
∑

n≥1

cn

∫ 1

0

dxx(1 − x2)
n
2 = 2π

∑

n≥1

cn
2 + n

.
=
∑

n≥1

kncn = 1.

(7.25)
We obtain a constraint which we call an affine constraint: we can write a co-
efficient as an affine function of the others. The result is not surprising: the
constraint is already affine in the initial problem, and the change of basis is
linear.

7.1.2 Existence and uniqueness of a solution

The existence and uniqueness of a solution was proven in (Lieb et al., 1995).
However, in order to have a better understanding of our approach, it is useful
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to prove it in our basis. In this case the problem consists of finding a solution
({cn}n≥1, R)

.
= (c, R) which minimizes the function

E(c, R) =
1

R2

∑

n,m≥1

tnmcncm +R2
∑

n≥1

vextn cn +
1

R

∑

n,m≥1

vnmcncm (7.26)

under the affine constraint ∑

n≥1

kncn = 1. (7.27)

This can be written using the Lagrange multiplier µ: we have to minimize the
function F (c, R, µ) defined by

F (c, R, µ) =
1

R2

∑

n,m≥1

tnmcncm +R2
∑

n≥1

vextn cn

+
1

R

∑

n,m≥1

vnmcncm − µ

(
∑

n≥1

kncn − 1

)

. (7.28)

The Lagrange multiplier µ has the physical meaning of the chemical potential.
To prove the existence and uniqueness of a solution to this problem we will

minimize E(c, R) with regards to c only, including the constraint condition. We
will show the uniqueness of a solution c?(R), for R fixed. To prove the existence
and uniqueness of a solution we have to prove the existence of a unique global
minimum of the function E(c?(R), R) which is a function of one variable, R.
This will lead to R?. Unfortunately we could not prove this point, but there is
numerical evidence for this, as we will illustrate later with numerical simulations.

To show the uniqueness of c?(R), let’s note that the energy is given by a
quadratic form of c, plus a linear term in c. Let’s write it as

E(c) =
1

2

∑

n,m≥1

gnmcncm +
∑

n≥1

V ext
n cn. (7.29)

If the quadratic form is invertible, let’s proceed to the change of variable

γn = cn +
∑

m≥1

g−1
nmV

ext
m . (7.30)

The energy becomes

E(γ) =
1

2

∑

n,m≥1

gnmγnγm − 1

2

∑

n,m≥1

g−1
nmV

ext
m V ext

n . (7.31)

Hence, if the quadratic term of the energy g is positive definite, the energy will be
a paraboloid with regards to c, centered at γ?, defined by γ?n = −∑m≥1 g

−1
nmV

ext
m .

Moreover the paraboloid is shifted by an energy −1
2

∑

n,m≥1 g
−1
nmV

ext
m V ext

n .

Let’s prove that 1
2
g = t

R2 + v
R

is positive definite.
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Proposition 2

The kinetic energy t is a positive definite quadratic form.

Proof 2

The kinetic energy (7.12) has the integral representation

tnm =
π2

2 + n+m
= π2

∫ ∞

0

dte−(2+n+m)t. (7.32)

For any c, the kinetic energy can be written

t =
∑

n,m≥1

tnmcncm = π2
∑

n,m≥1

∫ ∞

0

dte−(2+n+m)tcncm

=

∫ ∞

0

dte−2t

(

π
∑

n≥1

e−ntcn

)2

≥ 0 ∀c 6= 0. (7.33)

Proposition 3

The electrostatic energy v is a positive definite quadratic form.

Proof 3

Let’s use the formula (Gradshteyn et al., 2000)

Γ(µ)Γ(ν)

Γ(µ+ ν)
=

∫ 1

0

dttµ−1(1 − t)ν−1, (7.34)

which is equal to the beta function, in order to separate n and m in the electro-
static energy (7.24):

Γ
(
n
2

+ m
2

+ 2
)

Γ
(
n
2

+ m
2

+ 5
2

) =
1

π
1
2

Γ
(

1
2

)
Γ
(
n
2

+ m
2

+ 2
)

Γ
(
n
2

+ m
2

+ 5
2

) =
1

π
1
2

∫ 1

0

dtt(
n
2
+m

2
+1)(1− t)− 1

2 . (7.35)

For any c, the electrostatic energy can be written

v =
∑

n,m≥1

π
5
2

2

Γ
(
n
2

+ 1
)
Γ
(
m
2

+ 1
)
Γ
(
n
2

+ m
2

+ 2
)

Γ
(
n
2

+ 3
2

)
Γ
(
m
2

+ 3
2

)
Γ
(
n
2

+ m
2

+ 5
2

)cncm

=

∫ 1

0

dtt(1 − t)−
1
2
π2

2

(
∑

n≥1

Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)t
n
2 cn

)2

≥ 0 ∀c 6= 0.

(7.36)

The sum of two positive definite quadratic forms is trivially a positive definite
quadratic form. Hence:
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Corollary 1

The quadratic form 1
2
g = t

R2 + v
R

is positive definite.

Let’s note that the vector space is of infinite dimension and requires therefore a
more careful study. A more detailed study shows that 0 is an accumulation point
of the spectrum. Does this imply that g is not positive definite? No, because the
operator g does not act on any vector, it acts on functions normalized to 1. These
functions are in particular square integrable, which means that the coefficients
{cn}n≥1 are decreasing at a certain speed (cn ∼ n− 1

2 , n� 1).The speed at which
the eigenvalues of g tend to 0 is slow enough in order that g is invertible on the
considered space of functions.

Proposition 4

For fixed R, there exists one unique solution c?(R) which minimizes the energy
(7.26) with regards to c, under the constraint (7.27).

Proof 4

This result can be seen immediately in Figure 7.1, but let’s prove it.

Figure 7.1: Minimum of the energy under the constraint.

The function we have to minimize is given at (7.28). In the notations intro-
duced in (7.29) it becomes

F (c, µ) =
1

2

∑

n,m≥1

gnmcncm +
∑

n≥1

V ext
n cn − µ

(
∑

n≥1

kncn − 1

)

. (7.37)

It has to be minimized with regards to c and µ. Proceeding to the change of
variables (7.30), the constraint remains affine:

∑

n≥1

kncn − 1 =
∑

n≥1

kn(γn −
∑

m≥1

g−1
nmV

ext
m ) − 1

.
=
∑

n≥1

knγn − α. (7.38)
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In these new variables the function F becomes

F (γ, µ) =
1

2

∑

n,m≥1

gnmγnγm − 1

2

∑

n,m≥1

g−1
nmV

ext
m V ext

n − µ

(
∑

n≥1

knγn − α

)

. (7.39)

This function has a quadratic and a linear term in γ. We proceed again to a
change of variables to eliminate the linear term. Let’s define

λn = γn − µ
∑

m≥1

g−1
nmkm. (7.40)

The function F becomes

F (λ, µ) =
1

2

∑

n,m≥1

gnmλnλm − 1

2

∑

n,m≥1

g−1
nmV

ext
m V ext

n − µ2

2

∑

n,m≥1

g−1
nmknkm + µα.

(7.41)
The Lagrange multiplier has been separated from the other variables. The ex-
tremization with regards to the initial variables (c, µ) is equivalent to the extrem-
ization with regards to the new variables (λ, µ). g is positive definite, hence the
extremization with regards to λ provides the solution λ? = 0. The extremization
with regards to µ provides the equation for µ (using the definition (7.38) of α):

∂F (λ, µ)

∂µ
= −µ

∑

n,m≥1

g−1
nmknkm + α = 0 ⇒ µ =

1 +
∑

n,m≥1 g
−1
nmknV

ext
m

∑

n,m≥1 g
−1
nmknkm

.

(7.42)
We computed explicitly the solution which extremizes the function F , and found
it to be unique, which concludes the demonstration.

Let’s note that we can give the solution to the extremization problem explicitly
in terms of the initial variables. These are

c?n = γ?n −
∑

m≥1

g−1
nmV

ext
m = λ?n

︸︷︷︸

0

+µ
∑

m≥1

g−1
nmkm −

∑

m≥1

g−1
nmV

ext
m

= µ
∑

m≥1

g−1
nmkm −

∑

m≥1

g−1
nmV

ext
m

=
1 +

∑

p,m≥1 g
−1
pmkpV

ext
m

∑

p,m≥1 g
−1
pmkpkn

∑

m≥1

g−1
nmkm −

∑

m≥1

g−1
nmV

ext
m . (7.43)

Let’s note however that to have an explicit result from this formula we have to
invert the matrix g which is numerically not obvious. We will not proceed this
way for the numerical computations.

We were unable to prove the uniqueness of a radius R? which minimizes
E(c?(R), R). Numerical simulations, however, show strong evidence for this, as
can be seen on Figure 7.2, which is the result of a simulation with N = 5, ε =
10−4, and κ = 0.0625 in the modified atomic units. R is not a variable, it is fixed
in these simulations (see the numerical part, section 7.3, for explanation).
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Figure 7.2: Energy versus fixed radius. The energy
E(c?(R), R) has one unique minimum, at R?. It is a local min-
imum of E. The configurations (c, R) which have an energy
smaller than E(c?(R?), R?) are such that the corresponding den-
sity ρ is not positive everywhere.

7.2 Analytical approach

This new description of the problem leads to a new analytical approach. First
we derive the result obtained by Shikin (Shikin et al., 1991) in the asymptotic
limit κ → 0. We find the result ρ = c1ϕ1. A new asymptotic limit, κ → ∞
is established, too, and we find ρ = c2ϕ2. These asymptotic limits lead us to
approximate the solution by ρ = c1(κ)ϕ1 (resp. ρ = c2(κ)ϕ2) in the asymptotic
limit κ → 0 (resp. κ → ∞). Mathematically this means that we look for a
solution in the restricted vector space E1 (resp. E2) spanned by ϕ1 (resp. ϕ2).
This leads to analytical approximations of the radius R, the energy E and the
chemical potential µ, for κ� 1 (resp. κ� 1), but provides no information about
the shape of the density. This is why we proceed to a better approximation: we
consider a solution ρ = c1(κ)ϕ1 + c2(κ)ϕ2. Mathematically this means that we
look for a solution in the restricted vector space E1 × E2. Comparison with
numerical results are done in section 7.4. We even go beyond this approximation
and span ρ on the first three basis elements, and eventually on the first five basis
elements. We will see however that in these two cases the series are strongly
divergent and cannot be used for further computations.
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7.2.1 Asymptotic limit κ→ 0

The uniqueness of a solution was proven in (Lieb et al., 1995). In the limit κ→ 0
this solution was established in (Shikin et al., 1991) and is of the type ρ = c1ϕ1.
Let’s establish this result with our approach, looking for a solution defined by

ρ = c1ϕ1. (7.44)

If one finds a solution, it is, by uniqueness, the right solution.
The constraint (7.27) fixes the coefficient c1:

c1 =
3

2π
. (7.45)

Introducing (7.44) in the energy (7.26) and using (7.45) we find

E(c1, R) =
π2

4

1

R2
c21 +

2πκ

15
R2c1 +

2π3

15

1

R
c21

=
9

16

1

R2
+
κ

5
R2 +

3π

10

1

R
. (7.46)

Extremizing with regards to R we find

dE(c1, R)

dR
= −9

8

1

R3
+

2κ

5
R− 3π

10

1

R2
= 0. (7.47)

Multiplying by R3 we find the extremization equation

−9

8
+

2κ

5
R4 − 3π

10
R = 0, (7.48)

which consists of finding the roots of a polynomial of the fourth order, which can
be done analytically. We are however interested in the asymptotic limit κ → 0,
and in this limit there are two ways to solve this equation: we can consider that
R is of the order of 1, which implies that the second term of the equation is
negligible. This would imply that the confining energy is negligible compared to
the others and would lead to a free gas of fermions, for which the radius R would
tend to infinity. It would therefore not be of the order of 1, which leads to a
contradiction. We have to reject this solution. Another possibility is that R is
of the order of κ−

1
3 . In this case the first term is negligible: the kinetic energy is

therefore negligible compared to the other energies. This leads to the result

2κ

5
R4 − 3π

10
R = 0 ⇒ R =

(
3π

4κ

) 1
3

. (7.49)

We reject the solution R = 0 (which would have implied division by 0 in the
developments).
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Now we have to prove that it is the solution of our problem in the asymptotic
limit. In this limit the kinetic energy can be neglected and we have to minimize
(7.28)

F (c, R, µ) = R2
∑

n≥1

vextn cn +
1

R

∑

n,m≥1

vnmcncm − µ

(
∑

n≥1

kncn − 1

)

, (7.50)

which leads to the equations
∂F

∂cn
= 0, (7.51)

hence

R2 2πκ

(2 + n)(4 + n)
+

1

R

3π2

4

Γ
(
n
2

+ 1
)
Γ
(
n
2

+ 5
2

)

Γ
(
n
2

+ 3
2

)
Γ
(
n
2

+ 3
) =

2π

(2 + n)
µ, (7.52)

where we used Γ
(

3
2

)
= π

1
2

2
and Γ(2) = 1.

This equality has to be satisfied for all n. The equation for n = 1 provides
the value of the chemical potential (using the value established at (7.49) for R)

µ =

(
3π

4

) 2
3

κ
1
3 . (7.53)

We still have to show that the equations (7.52) are satisfied for n 6= 1. Introducing
the radius R (7.49) and the chemical potential µ (7.53) we find

1

(2 + n)(4 + n)
+

1

2

Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)
Γ
(
n
2

+ 5
2

)

Γ
(
n
2

+ 3
) − 1

(2 + n)
= 0. (7.54)

We have to distinguish the cases n even and n odd, and use formulas (Gradshteyn
et al., 2000), for µ an integer:

Γ(µ) = (µ− 1)!, Γ

(

µ+
1

2

)

=
π

1
2

2µ
(2µ− 1)!!. (7.55)

In both cases this leads to

1

2

Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)
Γ
(
n
2

+ 5
2

)

Γ
(
n
2

+ 3
) =

(n+ 3)

(n+ 4)(n+ 2)
, (7.56)

which implies immediately that (7.54) is satisfied for all n.

The solution ρ(x) = 3
2π

√
1 − x2, R =

(
3π
4κ

) 1
3 is therefore the solution to the

extremization problem in the asymptotic limit κ→ 0.
Our approach allows a simple computation of the energy, which is (still ne-

glecting the kinetic energy)

E =
3

5

(
3π

4

) 2
3

κ
1
3 . (7.57)
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7.2.2 Asymptotic limit κ→ ∞
This asymptotic limit can be understood in the following way: the confining
energy is very strong, hence the self-consistent potential tends to the confining
potential. This self-consistent potential is related to the density by the equality

ρ̂(x̂) =
1

π

(

µ̂− V̂ (x̂)
)

→ 1

π

(

µ̂− 1

2
κx̂2

)

. (7.58)

In the normalized variables the only way to satisfy such a relation is ρ(x) =
2
π

(1 − x2), because ρ has to satisfy the condition ρ(1) = 0 and the normalization
condition (7.3).

The density is therefore given by ρ = c2ϕ2. Let’s check this result by consid-
ering a function

ρ = c2ϕ2. (7.59)

The constraint implies

c2 =
2

π
. (7.60)

Introducing (7.59) in the energy (7.26) and using (7.60) we find

E(c2, R) =
π2

6

1

R2
c22 +

πκ

12
R2c2 +

256π

315

1

R
c22

=
2

3

1

R2
+
κ

6
R2 +

1024

315π

1

R
. (7.61)

Extremizing with regards to R we find

dE(c2, R)

dR
= −4

3

1

R3
+
κ

3
R− 1024

315π

1

R2
= 0. (7.62)

Multiplying by R3 we find the extremization equation

−4

3
+
κ

3
R4 − 1024

315π
R2 = 0. (7.63)

Solving this equation consists of finding the roots of a polynomial of the second
order (replacing R by x = R2), which is easily computed. However, in the
asymptotic limit κ → ∞ there are two ways to solve this equation: we could
consider R of the order of κ−

1
2 . In this case the second and third terms would

be negligible (of the order of κ−1) compared to the first one (of the order of 1),
which has to be rejected: the confining potential cannot be neglected, otherwise
the electron gas would be free and the radius would tend to infinity. The other
solution is to consider a radius of the order of κ−

1
4 . The third term is negligible

compared to the others, which means that the electrostatic energy is negligible.
This leads to the result

−4

3
+
κ

3
R4 = 0 ⇒ R =

2
1
2

κ
1
4

. (7.64)
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Now we have to prove that it is the solution of our problem in the asymptotic
limit. In this limit the electrostatic energy can be neglected and we have to
minimize (7.28)

F (c, R, µ) =
1

R2

∑

n,m≥1

tnmcncm +R2
∑

n≥1

vextn cn − µ

(
∑

n≥1

kncn − 1

)

, (7.65)

which leads to the equations
∂F

∂cn
= 0, (7.66)

hence
1

R2

4π

(4 + n)
+R2 2πκ

(2 + n)(4 + n)
=

2π

(2 + n)
µ. (7.67)

This equality has to be satisfied for all n. The equation for n = 2 provides the
value of the chemical potential (using the value established at (7.64) for R):

µ = κ
1
2 . (7.68)

We still have to show that the equations (7.67) are satisfied for n 6= 2. Introducing
the radius R (7.64) and the chemical potential µ (7.68) we find

1

(4 + n)
+

2

(2 + n)(4 + n)
− 1

(2 + n)
= 0, (7.69)

which is clearly satisfied for all n.

The solution ρ(x) = 2
π

(1 − x2) , R = 2
1
2

κ
1
4

is therefore the solution to the

extremization problem in the asymptotic limit κ→ ∞.

Our approach allows a simple computation of the energy, which is (still ne-
glecting the kinetic energy)

E =
2

3
κ

1
2 . (7.70)

Let’s return now to equation (7.58), and proceed to the scaling of the length
and the density, using the radius established at (7.64). The chemical potential
scales trivially:

ρ(x) = R2ρ̂(Rx) =
2

π
(1 − x2). (7.71)

We find exactly the same solution, which confirms that our solution expresses
nothing else but the fact that, in the limit κ → ∞, the self-consistent potential
is the confining potential.
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7.2.3 Restriction to E1, for κ� 1

In order to find a solution close to the exact one, for κ� 1, we restrict the space
of functions to E1, and look for a solution in this subspace which minimizes the
energy. This provides no information about the shape of the density, but on the
radius of the dot, on its energy and chemical potential. The solution is

ρ = c1ϕ1. (7.72)

The constant c1 is fixed by the constraint and is c1 = 3
2π

. The development is
similar than in section 7.2.1, except that we take into account the kinetic energy.
The extremization equation is (7.48)

−9

8
+

2κ

5
R4 − 3π

10
R = 0. (7.73)

The exact solution was computed with Mathematica. Only one root is real, and
its series expansion around κ = 0, at first order in κ

1
3 , is

R =

(
3π

4κ

) 1
3

+
5

4π
+ O(κ

1
3 ) = 1.33067κ−

1
3 + 0.39789 + O(κ

1
3 ). (7.74)

The energy is, from (7.46), using the radius (7.74):

E =
9

16

1

R2
+
κ

5
R2 +

3π

10

1

R

=
3

5

(
3π

4

) 2
3

κ
1
3 +

(
3

4

) 4
3 1

π
2
3

κ
2
3 + O(κ)

= 1.06241κ
1
3 + 0.31767κ

2
3 + O(κ). (7.75)

The chemical potential is computed using the extremization equation

∂F

∂c1
= 0, (7.76)

which is (without neglecting the kinetic energy)

3π

2

1

R2
+

2πκ

15
R2 +

2π2

5

1

R
= µ

2π

3
. (7.77)

This leads to the result

µ =

(
3π

4

) 2
3

κ
1
3 +

5

2

(
3

4

)
1

π
2
3

κ
2
3 + O(κ)

= 1.77068κ
1
3 + 1.05891κ

2
3 + O(κ). (7.78)

Let’s note that the extremization equations with regards to the other coefficients
cn, n 6= 1 are not satisfied, because the solution is not exact.
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7.2.4 Restriction to E2, for κ� 1

In order to find a solution close to the exact one, for κ � 1, we restrict the
subspace of functions to E2, and look for a solution in this space which minimizes
the energy. This provides no information about the shape of the density, but on
the radius of the dot, on its energy and chemical potential. The solution is

ρ = c2ϕ2. (7.79)

The constant c2 is fixed by the constraint and is c2 = 2
π
. The development is

similar than in section 7.2.2, except that we take into account the electrostatic
energy. The extremization equation is (7.63)

−4

3
+
κ

3
R4 − 1024

315π
R2 = 0. (7.80)

The exact solution was computed with Mathematica. Only one root is real and
positive, and its series expansion around κ−1 = 0, at first order in κ−

1
4 , is

R = 2
1
2κ−

1
4 +

128 2
1
2

105π
κ−

3
4 +O(κ−

5
4 ) = 1.41421κ−

1
4 +0.54876κ−

3
4 +O(κ−

5
4 ). (7.81)

The energy is, from (7.61), using the radius (7.81):

E =
2

3

1

R2
+
κ

6
R2 +

1024

315π

1

R

=
2

3
κ

1
2 +

512 2
1
2

315π
κ

1
4 + O(κ−

1
4 )

= 0.66667κ
1
2 + 0.73169κ

1
4 + O(κ−

1
4 ). (7.82)

The chemical potential is computed using the extemalization equation

∂F

∂c2
= 0, (7.83)

which is (without neglecting the kinetic energy)

1

R2

π

3
+R2πκ

12
+

1

R

1024

315π
=
π

2
µ. (7.84)

This leads to the result

µ =
2

3
κ

1
2 +

1024 2
1
2

315π2
κ

1
4 + O(κ−

1
4 )

= 0.66667κ
1
4 + 0.46581κ

1
4 + O(κ−

1
4 ). (7.85)

Let’s note that the extremization equations with regards to the other coefficients
cn, n 6= 2 are not satisfied, because the solution is not exact.
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7.2.5 Restriction to E1 × E2, for κ� 1

In order to get more information about the solution for κ � 1, mainly on the
shape of the density, we restrict the space of solutions to E1 ×E2. This approach
is motivated by the fact that the solution has to be close to 3

2π
ϕ1, which is exact

in the limit κ→ 0. Moreover, the fact that the exact solution is 2
π
ϕ2 in the limit

κ → ∞ motivates the choice of the two basis elements ϕ1 and ϕ2, which span
E1 × E2. The error is not controlled, which is why our results will be compared
to numerical ones later.

To find an exact solution in this subspace E1×E2, we have to find the roots of
a polynomial of degree 9, which is not possible analytically. This is why we solve
it perturbatively at first order in κ

1
3 . The solution is written ρ = c1ϕ1 + c2ϕ2,

and we compute c1, c2, R,E, µ,. Computations are done with Mathematica and
we present the procedure.

The energy we have to minimize is (7.26)

E(c1, c2, R) =
1

R2

(
π2

4
c21 +

2π2

5
c1c2 +

π2

6
c22

)

+R2

(
2πκ

15
c1 +

πκ

12
c2

)

+
1

R

(
2π

15
c21 +

5π3

24
c1c2 +

256π

315
c22

)

. (7.86)

The constraint (7.27) gives c2(c1):

2π

3
c1 +

π

2
c2 = 1 ⇒ c2(c1) =

2

π
− 4

3
c1. (7.87)

Introducing (7.87) in (7.86), we obtain after some coputations

E(c1, c2(c1), R)
.
= E(c1, R)

=

(
7π2

540

1

R2
+

4096π

2835

1

R
− 13π3

90

1

R

)

c21

+

(

−4π

45

1

R2
+
πκ

45
R2 +

(
5π2

12
− 4096

945

)
1

R

)

c1

+

(
2

3

1

R2
+
κ

6
R2 +

1024

315π

1

R

)

. (7.88)

The extremization equation with regards to the variable c1 provides the relation
c1(R):

dE(c1, R)

dc1
= 0 ⇒ c1(R) =

(
4π
45

1
R2 − πκ

45
R2 +

(

−5π2

12
+ 4096

945

)
1
R

)

(
7π2

270
1
R2 + 8192π

2835
1
R
− 13π3

45
1
R

) , (7.89)
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which can be simplified to

c1(R) =
−1008π − 49152R + 4725π2R + 252κπR4

−294π2 − 32768πR + 3276π3R
. (7.90)

Long computations provide the energy as a function of R only

E(c1(R), R)
.
= E(R) =

P1(R)

P2(R)
, (7.91)

where P1(R) and P2(R) are polynomials of degree 8 and 3 respectively:

P1(R) = −6048π + (70560π2 − 737280)R

+(39375π3 − 393216π)R2

−2856πκR4 + (26040π2κ− 262144κ)R5

+112πκ2R8,

P2(R) = −11760πR2 + (131040π2 − 1310720)R3. (7.92)

This energy has to be minimized with regards to this variable. The extremization
equation is, after computation

dE(R)

dR
=
P3(R)

P4(R)
.
= 0, (7.93)

where P3(R) and P4(R) are polynomials of degree 9 and 5 respectively:

P3(R) = −889056π2 + (−202825728π + 20046096π3)R

+(−12079595520 + 2363719680π2 − 115577280π4)R2

+(−3221225472π + 644603904π3 − 32248125π5)R3

+419831π2κR4 + (81199104πκ− 8080884π3κ)R5

+(4294967296κ− 856031232π2κ+ 42653520π4κ)R6

−49392π2κ2R8 + (458640π3κ2 − 4587520πκ2)R9,

P4(R) = 864360π2R3 + (192675840π − 19262880π3)R4

+(10737418240 − 2146959360π2 + 107321760π4)R5. (7.94)

The extremization equation reduces therefore to

P3(R) = 0, (7.95)

whose results are roots of a polynomial of degree 9, which cannot be solved
analytically. We proceed to an expansion for κ� 1, reminding that the solution
is of the order R = O(κ−

1
3 ) in the limit κ→ 0. Writing

R = R−1κ
− 1

3 +R0 + O(κ
1
3 ) (7.96)
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and

P3(R) = a0 +a1R+a2R
2 +a3R

3 +a5κR
5 +a6κR

6 +a8κ
2R8 +a9κ

2R9 = 0, (7.97)

and introducing (7.96) in (7.97), we find, at first orders in κ−
1
3 :

a3R
3
−1 + a6R

6
−1 + a9R

9
−1 = 0 ⇒ R−1 =

(
3π

4

) 1
3

,

a2R
2
−1 + 3a3R

2
−1R0 + 6a6R

5
−1R0 + a8R

8
−1 + 9a9R

8
−1R0 = 0

⇒ R0 =
81920 − 8253π2

65536π − 6615π3
. (7.98)

We find two real positive solutions for R0. One corresponds to the minimum we
are looking for, the other one to a local maximum of E(R). R0 is obtained by
substituting R−1 in the equation.

The final result is therefore

R =

(
3π

4

) 1
3

κ−
1
3 +

81920 − 8253π2

65536π − 6615π3
+ O(κ

1
3 )

= 1.33067κ−
1
3 + 0.59695 + O(κ

1
3 ). (7.99)

Returning to (7.90) the coefficient c1 becomes

c1 =
3

2π
+

189 3
2
3

(2π)
1
3 (6615π2 − 65536)

κ
1
3 + O(κ

2
3 )

= 0.47747 − 0.85712κ
1
3 + O(κ

2
3 ), (7.100)

while the constraint (7.87) provides c2

c2 =
126 6

2
3

π
1
3 (65536 − 6615π2)

κ
1
3 + O(κ

2
3 )

= 1.14282κ
1
3 + O(κ

2
3 ). (7.101)

The energy is obtained with (7.91) and we find

E =
3(3π)

2
3

10 2
1
3

κ
1
3 +

3

4

3
1
3

(2π)
2
3

κ
2
3 + O(κ)

= 1.06241κ
1
3 + 0.31767κ

2
3 + O(κ). (7.102)

The chemical potential is computed using the extremization equation

∂F

∂c1
= 0. (7.103)
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The equation ∂F
∂c2

= 0 would lead to the same result in our perturbative treatment.
This equation is

π2

2

1

R2
c1 +

2π2

5

1

R2
c2 +

2πκ

15
R2 +

4π3

15

1

R
c1 +

5π3

24

1

R
c2 = µ

2π

3
. (7.104)

Using (7.87) and (7.90) we express the chemical potential as a function of R:

µ(R) =
P5(R)

P6(R)
, (7.105)

where P5(R) and P6(R) are polynomials of degree 5 and 3 respectively:

P5(R) = −6048π + (−737280 + 70560π2)R

+(−393216π + 39375π3)R2 − 1428πκR4

+(−131072κ+ 13020π2κ)R5,

P6(R) = −5880πR2 + (−655360 + 65520π2)R3. (7.106)

Replacing R by its value (7.99) we find

µ =

(
3π

4

) 2
3

κ
1
3 +

3
1
3

(2π)
2
3

κ
2
3 + O(κ)

= 1.77068κ
1
3 + 0.42357κ

2
3 + O(κ). (7.107)

Another approach, which can be easily generalized to N > 2, consists of using
formula (7.43) to obtain c?(R). Let’s note that we have to invert g, which is done
with Mathematica. To obtain the radius we have to solve the equation

dE(c?(R), R)

dR
= 0, (7.108)

where the energy is given at equation (7.26). It leads to the evaluation of the
roots of a polynomial (of order 9, 11, 13 and 15 for N = 2, 3, 4 and 5 respectively).
In each case, in the limit κ→ 0, there are two real positive solutions and we keep
the solution which corresponds to a minimum of E(c?(R), R).

For the case N = 2 we obtain exactly the same result as above, the advantage
is that this approach allows for a better control of the expansions. We generalized
the previous result to a perturbative expansion of order 3. The result is

R(κ) = 1.33067κ−
1
3 + 0.59695 − 0.61552κ

1
3 + 0.14827κ

2
3 + O(κ). (7.109)

The coefficients c become

{
c1(κ) = 0.47746 − 0.85712κ

1
3 + 1.99747κ

2
3 − 5.08758κ+ O(κ

4
3 ),

c2(κ) = 1.14282κ
1
3 − 2.66329κ

2
3 + 6.78344κ+ O(κ

4
3 ),
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while the energy and the chemical potential are

E(κ) = 1.06241κ
1
3 + 0.31767κ

2
3 − 0.10449κ+ O(κ

4
3 ),

µ(κ) = 1.77068κ
1
3 + 0.42357κ

2
3 − 0.10449κ+ 0.06519κ

4
3 + O(κ

5
3 ).

(7.110)

All these numbers have an analytical expression, which is however too long to be
written here.

Is this approach a good one? We can see that the perturbative expansion of
the physical values (radius, energy, chemical potential) have coefficients which
are decreasing fast, and it is reasonable to think that the expansion is conver-
gent (in fact it is, because the convergence for κ → 0 is uniform (Lieb et al.,
1995)). Conversely to the coefficients c, whose perturbative expansion coeffi-
cients are strongly increasing: the series is divergent and has to be interpreted
as an asymptotic series. An explanation is that our approach has no physical
meaning, and we have no information about its convergence with regards to κ,
for κ → 0. This approach should be avoided, but we will check if the results are
in agreement with a reference solution anyway (which is obtained by numerical
simulations, see section 7.3). This is done in section 7.4.

We proceeded to the same computations for N = 3. The perturbative ex-
pansion in powers of κ

1
3 leads unfortunately to a solution which is not physical:

we find a solution c for which ρ(x) is negative for some x ∈ [0, 1]. Moreover the
coefficients of the perturbative expansion are strongly increasing and the density
does not have a realistic shape at all. These coefficients are







c1(κ) = 0.47746 − 2.95522κ
1
3 + 15.37408κ

2
3 − 77.09687κ+ O(κ

4
3 ),

c2(κ) = 6.70975κ
1
3 − 38.86535κ

2
3 + 203.65683κ+ O(κ

4
3 ),

c3(κ) = −3.46182κ
1
3 + 22.95823κ

2
3 − 126.07627κ+ O(κ

4
3 ).

(7.111)
The radius is

R(κ) = 1.33067κ−
1
3 + 0.73966 − 1.31194κ

1
3 + 4.39461κ

2
3 + O(κ), (7.112)

the energy and chemical potential are

E(κ) = 1.06241κ
1
3 + 0.31767κ

2
3 − 0.10692κ+ O(κ

4
3 ),

µ(κ) = 1.77068κ
1
3 + 0.42357κ

2
3 − 0.10692κ+ 0.08148κ

4
3 + O(κ

5
3 ).

(7.113)

We also studied in detail the case N = 5, and the same discussion holds. The
increase of the coefficients of the expansion is even worse, and we couldn’t proceed
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beyond the order 2. These coefficients are







c1(κ) = 0.47746 − 13.6144κ
1
3 − 2.00819 · 1020κ

2
3 + O(κ),

c2(κ) = 66.5609κ
1
3 + 1.80427 · 1017κ

2
3 + O(κ),

c3(κ) = −125.834κ
1
3 + 8.34655 · 1020κ

2
3 + O(κ),

c4(κ) = 108.642κ
1
3 − 4.36091 · 1016κ

2
3 + O(κ),

c5(κ) = −35.2962κ
1
3 − 3.99756 · 1020κ

2
3 + O(κ).

(7.114)

The radius is

R(κ) = 1.33067κ−
1
3 + 0.94956 − 4.33755κ

1
3 + O(κ

2
3 ). (7.115)

We didn’t compute the energy and chemical potential from these results which
are clearly a divergent series.

It seems that for N > 2, for the description of the density with the coefficients
c and the radius R, an expansion around κ = 0 is not adapted: the series is an
asymptotic one and is clearly divergent. However, the functions c(κ) exist (and
are finite for all κ) and we want to approximate them by a polynomial function

of κ
1
3 .

The asymptotic series appear in numerous physical situations, a typical one
arising from the existence of solitons (or equivalently instantons): it can imply a

small effect (of the order of O(e−
1
T ), T � 1), which can however not be treated

by a perturbative expansion, because the function e−
1
T is not analytic. This

is why different techniques have been developed to handle these series, mainly
resummation techniques.

For example we can proceed to a Padé resummation: we replace the desired

function by a rational function
∑M

i=0 aix
i

1+
∑N

j=1 bix
j
, whose coefficients are determined by

making its perturbative expansion match the divergent perturbative expansion
until the order M+N . This provides (M+N+1) equations from which we obtain
the coefficients {ai}Mi=0 and {bi}Ni=1. Then we can proceed to an expansion of this
new rational function to obtain an expansion of the desired function, which is
not divergent this time. The results are often in very good agreement with the
desired function. This technique is very useful if we proceed to an expansion of
a higher order than what we do: we have to provide at least 2 coefficients of the
expansion, and we want to proceed until the order 2! Hence this technique is of
no use for us.

We need another approach to get a functional relation c(κ), which is done in
section 7.5: using the numerical results for N = 5 we proceed to a polynomial
fitting of c(κ) of order 2 in powers of κ

1
3 .
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7.3 Numerical approach

7.3.1 Optimization algorithm

We adopt a numerical approach to obtain a solution of the self-consistent equation
(7.1), which is equivalent to minimizing Thomas-Fermi energy given by formula
(7.26) in our basis, under the constraint (7.27). Instead of solving numerically
(7.1) we use an optimization algorithm, which consists of determining the solution
which minimizes the energy E(c, R) with regards to the variables (c, R), under
the constraint (7.27). In this language, E is the energy-cost function. It depends
on an infinite number of variables. However, for evident reasons we have to
restrict ourselves to a finite number of basis elements N for the description of
the function ρ, hence the energy E(R

.
= c0, c1, . . . , cN) is a function of (N + 1)

variables. It is numerically simple to include the constraint, which is why we do
it from the beginning. The energy becomes E(c0, . . . , cN(c1, . . . , cN−1)) and is a
function of N variables. Based on the asymptotic limit κ→ 0, we work with the
energy-cost function e

.
= E

κ
1
3
, and with the variable r

.
= Rκ

1
3 . This allows dealing

with numbers of the order 1 and we therefore have a better numerical stability.
The asymptotic limits provide the solution ρ = 3

2π
ϕ1 in the limit κ → 0 and

ρ = 2
π
ϕ2 in the limit κ→ ∞, this is why we make the conjecture that we can work

with a small number of basis elements, N = O(1). This result will be established
numerically.

Our work is based on (Bonnans et al., 2003). A great number of algorithms
exists to compute the optimal solution, but the main idea is very often the same:
we start from an initial condition c0

.
= (c00, . . . , c

0
N−1), look for the negative steep-

est direction −∇E(c00, . . . , c
0
N−1), and modify c0i 7→ c1i such that the minimum is

reached along this direction. This consists of defining E(t)
.
= E(c0 − t∇E(c0))

and determining the minimum of E(t), reached at t = t0min. We define then
c1

.
= c0 − t0min∇E(c0), and proceed in the same way with this new starting point.

We proceed iteratively until we reach the minimum of the energy-cost function,
which is considered attained when the steepest slope is less than a threshold ε.
The algorithm is very simple, and many variations exist to accelerate the conver-
gence, which is not necessary in our case: as we have a small number of variables
only, the speed of convergence is not crucial.

7.3.2 Program description

Numerical simulations were done with Fortran 90, with the Salford compiler. The
algorithm is based on the previous discussion.

The function ρ is square integrable,
∫

d2xρ2(x) < ∞, which means, in terms
of the coefficients c: 2π

∑

n,m≥1
cncm

2+n+m
< ∞. Hence, cn → 0, n → ∞. In the

asymptotic limit we establish cn ∼ n− 1
2 , which decreases slowly. To accelerate de-
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crease, we "normalize" the basis elements ϕn, replacing them by ψn
.
=

√
2 + 2nϕn.

The density becomes ρ =
∑

n≥1 cnϕn =
∑

n≥1 anψn, where an = cn√
2+2n

. The new
basis is not orthonormal but the norms of the basis elements are now independent
of n:

〈ψn|ψm〉 =
2π

√
2 + 2n

√
2 + 2m

2 + n+m
=

4π
√

1 + n
√

1 +m
(√

1 + n−
√

1 +m
)2

+ 2
√

1 +m
√

1 + n
,

(7.116)
which implies in particular

‖ψn‖ =
√

2π. (7.117)

The decreasing of an is faster in the asymptotic limit n→ ∞ (an ∼ n−1). This is
why this description is best adapted for the numerical computations, and we use
it instead of the non "normalized" basis.

The threshold ε has to be determined carefully. The energy-cost function is
given by a positive definite quadratic form (called 1

2
g previously), but a careful

analysis of it shows that its eigenvalues can be very small. For example, for
N = 5 and κ = 0.0625, the smallest eigenvalue is of the order of 10−7. Hence
the solution we find can be "far" (in the RN sense, that is with the euclidean

distance
(
∑N

n=1 c
2
n

) 1
2
) from the exact solution. If λ is the smallest eigenvalue,

after some iterations, the solution "falls" in the valley given by the eigenvector
direction eλ, and stays at a distance d from the exact solution. The energy is
E(d) = E? + 1

2
λd2, where E? is the minimal energy. Hence the absolute value

of the slope in the direction eλ (that is the slope in the direction of the solution

c?) is dE(d)
dd

= λd. The algorithm stops once the slope ε is reached, which means
ε = λd ⇒ d = ε

λ
. Therefore, if we choose ε = 10−5, N = 5, κ = 0.0625, we have

d = O(102)! However, the distance d is not the relevant distance to measure
the difference between two solutions c and c′, as we will see later. From these
considerations we decided to work with a double precision.

We start the procedure with the initial condition c01 = 3
2π
, c0i = 0, i = 2, . . . , 5,

as the solution, for κ� 1, is close to this value.

7.3.3 Numerical tests

In order to validate our program and to determine which value of the parameters
N and ε provide a sufficient precision, we proceed to different tests.

First we test the program in the asymptotic limits κ � 1 and κ � 1, for
which we obtain the same results than the analytical ones.

We compute results for fixed κ (we choose κ = 1.0 and κ = 0.0625, which cor-
responds to ~ω = 3meV , in modified atomic units), and for N = 2, 3, . . . , 10, ε =
10−4, 10−5, 10−6, 10−7. Another set of tests are done for N = 2, 3, . . . , 20, ε =
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10−4. We compare the results to a reference solution (ρref , Rref ). This refer-
ence solution is that which has the highest N and the smallest ε of the set of
computations.

We characterize the precision of the solution (c, R) with two parameters, p1

and p2, defined as follows:

p1 = ‖ρ−ρref‖
‖ρref‖ =

(
∑

n,m≥1
(cncm+c

ref
n c

ref
m −2cnc

ref
m )

(2+n+m)

∑

n,m≥1
c
ref
n c

ref
m

(2+n+m)

) 1
2

,

p2 = |R−Rref |
|Rref | .

The results are shown in Figures 7.3 and 7.4 for κ = 1.0, and in Figures 7.5
and 7.6 for κ = 0.0625.

These results show that the precision is in each case less than a few percent,
and becomes rapidly less than 10−2. This is why we restrict to N = 5 and
ε = 10−6: the precision is sufficient (for κ = 1.0 we find p1 = 1.62 · 10−3, p2 =
7.30 · 10−4, and for κ = 0.0625 we find p1 = 3.66 · 10−3, p2 = 1.52 · 10−3).
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(a) (b)

Figure 7.3: Precision p1, p2 versus N , for ε = 10−4, on a linear
(left) and logarithmic (right) scale, for κ = 1.0.

(a) (b)

Figure 7.4: Precision p1, p2 versus N and ε, on a linear (left)
and logarithmic (right) scale, for κ = 1.0.
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(a) (b)

Figure 7.5: Precision p1, p2 versus N , for ε = 10−4, on a linear
(left) and logarithmic (right) scale, for κ = 0.0625.

(a) (b)

Figure 7.6: Precision p1, p2 versus N and ε, on a linear (left)
and logarithmic (right) scale, for κ = 0.0625.
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7.4 Verification of the analytical approximations

Our analytical approximations correspond to the first terms of a divergent series,
hence there is no reason why our results should be close to the exact solution.
This is why we compare it to a reference solution, which is chosen to be the
numerical simulation with N = 5, ε = 10−6, which is a solution with enough
precision (see section 7.3.3).

Another reason which implies the necessity to verify the results is that we do
not have a control on the analytical approximations. We have a control through
the parameter κ, but we work on a restricted subspace E1 ×E2, and this approx-
imation is not controllable (the control parameter would be N).

Experimental conditions are such that κ � 1. For example, the results in
(Kouwenhoven et al., 2001) are modeled with κ = k′

N
3
2

e

, where k′ is a constant and is

k′ = 0.27 in our units, and Ne is the number of electrons, as established in chapter
4. The small parameter we use in our developments is p = κ

1
3 = 0.65

N
1
2

e

, which is

not that small, and this is another reason why our results have to be verified.
However, let’s note that we work with large Ne, which makes this parameter
smaller. For example, for Ne = 30, this parameter is p = 0.12.

We obtain a functional relation R(κ). The density is also obtained as a func-
tion of κ through the coefficients ci(κ), i = 1, 2.

Figure 7.7: Precision p1, p2 versus p = κ
1
3 for the analytical

approximations of orders 0, 1, 2 and 3. The reference solution is
the numerical simulation, obtained with N = 5, ε = 10−6.

The analytical approximation is compared to the numerical reference solution
quantitatively: we compute the precision p1 and p2 as a function of κ, for κ
between 0.0 and 0.0625. We do it for all orders from 0 to 3. We show it as a
function of p = κ

1
3 at Figure 7.7. Unsurprisingly, the two precision parameters
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are increasing with p. The development at order 0 is the worst case, and we can
see, for p� 1, that p1 and p2 are linear with regards to p. Surprisingly, the best
approximation, for values of κ smaller than κ = 0.0625, is that of order 1, for
both p1 and p2. Let’s note that the precision, for κ = 0.0625, is p1 = 0.050, which
is too high, and the precision p2 = 0.025 is less but still important. The difference
comes from the fact that p1 provides information on the precision of the shape of
the density. We developed it on two basis elements only, which implies that this
shape cannot be precisely approximated.

Our analytical results are therefore not precise enough and we need another
approach to obtain an expansion of the solution of the self-consistent equation
(that is c and R) in powers of κ

1
3 . The approach we adopt is more pragmatic and

consists of fitting the numerical solution for the coefficients {ci}Ni=1 as well as R

by a polynomial of order two in p = κ
1
3 . We do it for N = 5.

7.5 Polynomial fitting

To obtain the density as an expansion in powers of p = κ
1
3 we proceed to a

polynomial fitting of order 3 of the numerical results as a function of p. As
mentioned previously, the solution in the space {ci} can be far from the real
solution (in the RN sense), and this is why we increase the precision to the highest
level, by fixing the threshold at ε = 10−8, in which case numerical computations
are long.

We do the simulations for 100 values of p, uniformly distributed between 0
and 0.5. Due to the very small threshold, the results are precise enough and show
a regular curve, which allow us to do a polynomial fitting. We obtain numerical
functions {ci(κ)}5

i=1, which we approximate with a polynomial fitting.
To fit the coefficients {ci}5

i=1 with a polynomial of order 3 of p we use the
method of least squares: for each coefficient {ci}4

i=1 we define a polynomial
cfiti (p)

.
= a0

i + a1
i p + a2

i p
2 + a3

i p
3. The numerical function ci(p) is defined by

M values cji corresponding to the points pj (M = 100 in our case). We minimize
the function

f(a0
i , a

1
i , a

2
i , a

3
i )

.
=

M∑

j=1

(

cji − cfiti (pj)
)2

(7.118)

with regards to its variables aji , i = 0, 1, 2, 3. It provides 4 equations from which
we compute the coefficients of the polynomial. In our problem, we know the
values of ci(p = 0) from the asymptotic limit κ → 0. They are c1(0) = 3

2π
=

0.4775, ci(0) = 0, i = 2, 3, 4, which are constraints and fix the parameters a0
i .

The last coefficient c5 is defined as a polynomial such that the constraint (7.27)
is satisfied at each order. It is in very good agreement with a polynomial fitting
cfit5 obtained with the procedure explained above.
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This method provides the following results:







c1(κ) = 0.4775 − 0.9344κ
1
3 + 1.6326κ

2
3 − 1.1788κ+ O(κ

4
3 ),

c2(κ) = 0.6107κ
1
3 − 1.0730κ

2
3 + 0.7500κ+ O(κ

4
3 ),

c3(κ) = 1.0926κ
1
3 − 2.0541κ

2
3 + 1.5380κ+ O(κ

4
3 ),

c4(κ) = 0.7770κ
1
3 − 1.5356κ

2
3 + 1.1935κ+ O(κ

4
3 ),

c5(κ) = −1.3246κ
1
3 + 2.7356κ

2
3 − 2.1076κ+ O(κ

4
3 ).

(7.119)

These polynomial fittings are superposed to the numerical solution in Figure 7.8.
To fit the radius R we proceed to a polynomial fitting of order 2 of r = Rκ

1
3

as a function of p, again with the method of least squares. The constraint is

limκ→0R(κ)κ
1
3 =

(
3π
4

) 1
3 = 1.3307, which is the asymptotic limit κ → 0. We

obtain
R(κ)κ

1
3 = 1.3307 + 0.5885κ

1
3 − 0.3081κ

2
3 + O(κ). (7.120)

This polynomial fitting is superposed to the numerical solution in Figure 7.9.
What do the results look like? To have an idea of the shape of the density

ρ(x) obtained with this fitting, we compare it to the reference numerical solution
for 2 values of κ: 0.001 and 0.125. They are shown in Figure 7.10. They are in
very good agreement with the reference solution in both cases.

Let’s proceed to a quantitative analysis of the precision of the fitting. We do
it by computing the precision parameters p1 and p2 as functions of κ

1
3 . Results

are shown in Figure 7.11
p1 and p2 present oscillations as a function of κ

1
3 , but with a very low ampli-

tude: the values are of the order of a thousandth, which means that the precision
is very high.

The solution we obtained with the polynomial fitting can therefore be used
for further computations and be considered as a solution of the self-consistent
equation, its precision being sufficient in the domain of the parameter κ which
we will use.
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Figure 7.8: Numerical results (N = 5, ε = 10−8) and polyno-
mial fitting of the coefficients {ci}5

i=1 versus κ
1
3 . The polynomial

fittings are represented by solid lines.

Figure 7.9: Numerical results (N = 5, ε = 10−8) and polyno-
mial fitting of r = R(κ)κ

1
3 versus κ

1
3 .
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(a) (b)

Figure 7.10: Scaled density ρ(x), for the numerical solution
(N = 5, ε = 10−8) and for the polynomial fitting, for κ = 0.001
and κ = 0.125.

Figure 7.11: Precision of the polynomial fitting, compared to
numerical simulations (N = 5, ε = 10−8).
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Chapter 8

Smooth and oscillating energy
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The objective of this chapter is to obtain an explicit expression of the smooth
and oscillating parts of the ground state energy of a quantum dot.

In chapter 5 we established formulas for the computation of the ground state
energy of many-fermion systems. We obtained these results in the semiclassical
Hartree-Fock framework, which was justified by the developments of chapter 2.
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As our technique does not provide the oscillating terms, these were computed at
chapter 6 in the specific two-dimensional case. All these formulas are functionals
of a potential, the self-consistent potential, which was computed numerically in
chapter 7. We still have to introduce this solution in the formulas, which is what
we do in this chapter.

We first compute the smooth contribution to the ground state energy. We use
the density obtained by the self-consistent equation in chapter 7 (it is equivalent
to consider the self-consistent density or the self-consistent potential) to first
compute the lowest order contribution to the energy, given by Thomas-Fermi
energy, as established in chapter 5, and proceed to an expansion in powers of
p
.
= κ

1
3 . The next term is treated using the lowest order part of the self-consistent

potential, for which we have an analytical expression. We then compute the
exchange energy, introducing the self-consistent potential in the formula obtained
in chapter 5, and proceed to an expansion in powers of p.

Next we compute the energy oscillations. To simplify the problem we scale
the expressions. We study some relevant properties of the periodic orbits, and
identify which ones have to be considered. We observe that only one family of
periodic orbits has to be considered, the other ones being negligible. Having
obtained the energy oscillations, we return to the non scaled system to obtain
the final oscillations.

8.1 Smooth terms

8.1.1 Thomas-Fermi energy

We established that the dominant contribution to the energy is the Hartree en-
ergy, and we established that it is equivalent to Thomas-Fermi energy, which is
better adapted to our needs. It is

Ê00 =
N2

L?

(
π

2

1

L?

∫

d2x̂ρ̂2(x̂) +

∫

d2x̂V̂ext(x̂)ρ̂(x̂) +
1

2

∫

d2x̂

∫

d2ŷ
ρ̂(x̂)ρ̂(ŷ)

|x̂ − ŷ|

)

.

(8.1)
The length L? was introduced to identify the importance of the length. We can
however choose it as we want. For convenience we will fix it to L? = 1: the length
scale is the Bohr radius. Hence the energy becomes

Ê00 = N2

(
π

2

∫

d2x̂ρ̂2(x̂) +

∫

d2x̂V̂ext(x̂)ρ̂(x̂) +
1

2

∫

d2x̂

∫

d2ŷ
ρ̂(x̂)ρ̂(ŷ)

|x̂ − ŷ|

)

=
N2

R

(
π

2

1

R

∫

d2xρ2(x) +

∫

d2xVext(x)ρ(x) +
1

2

∫

d2x

∫

d2y
ρ(x)ρ(y)

|x − y|

)

,

(8.2)
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where ρ(x) = R2ρ̂(Rx) is the normalized density, as defined by a scaling in
chapter 7.

It is simple to express this energy in terms of the parametrization we used
to compute numerically the solution of the self-consistent equation (we solved
the self-consistent equation for the density ρ, which is equivalent to solving it for
the potential V ). Writing the normalized density in the basis {ϕn}n≥1, ϕn(x)

.
=

(1 − x2)
n
2 :

ρ(x) =
∑

n≥1

cnϕn(x), (8.3)

the energy becomes

Ê00 = N2E00 = N2

(

1

R2

∑

n,m≥1

tnmcncm +R2κ
∑

n≥1

vextn cn +
1

R

∑

n,m≥1

vnmcncm

)

,

(8.4)
where t, vext, and v were established in chapter 7.

Numerically, we restricted the number of basis elements to 5 and proceeded
to a polynomial fitting in powers of p

.
= κ

1
3 , to obtain

{
cn(p) = cn0 + cn1p+ cn2p

2 + cn3p
3 + O(p4), n = 1, . . . 5,

R(p) = R−1p
−1 +R0 +R1p+ O(p2).

(8.5)

The lowest order terms, determined analytically in the asymptotic limit, are






c10 = 3
2π
,

cn0 = 0, n 6= 1,

R−1 =
(

3π
4

) 1
3 .

(8.6)

The energy becomes

Ê00 = N2

[

1
(∑1

i=−1Ripi
)2

5∑

n,m=1

tnm

( 2∑

i=0

cnip
i

)( 2∑

j=0

cmjp
j

)

+

( 1∑

i=−1

Rip
i

)2

p3

5∑

n=1

vextn

( 2∑

i=0

cnip
i

)

+
1

(
∑1

i=−1Ripi
)

5∑

n,m=1

vnm

( 2∑

i=0

cnip
i

)( 2∑

j=0

cmjp
j

)

+ O(p3)

]

.

(8.7)

From this formula we can proceed to an expansion of the energy in powers of p
(remembering that cn0 = 0, n 6= 1):

Ê00 = N2
(
e1p+ e2p

2 + e3p
3 + e4p

4 + O(p5)
)
, (8.8)
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where long calculations provide

e1 =
2π3

15

c210
R−1

+
2π

15
c10R

2
−1,

e2 =
π2

4

c210
R2

−1

− 2π3

15

c210R0

R2
−1

+
4π

15
c10R0R−1

+
π

3
R2

−1

[
2

5
c11 +

1

4
c21 +

6

35
c31 +

1

8
c41 +

2

21
c51

]

+
π3

3

c10
R−1

[
4

5
c11 +

5

8
c21 +

18

35
c31 +

7

16
c41 +

8

21
c51

]

,

e3 = −π
2

2

c210R0

R3
−1

+
2π3

15

c210R
2
0

R3
−1

− 2π3

15

c210R1

R2
−1

+
π2

R2
−1

c10

[
1

2
c11 +

2

5
c21 +

1

3
c31 +

2

7
c41 +

1

4
c51

]

−π3 c10R0

R2
−1

[
4

15
c11 +

5

24
c21 +

6

35
c31 +

7

48
c41 +

8

63
c51

]

+π3 c10
R−1

[
4

15
c12 +

5

24
c22 +

6

35
c32 +

7

48
c42 +

8

63
c52

]

+
2π

15
c10R

2
0 +

4π

15
c10R−1R1

+π
1

R−1

[
2π2

15
c211 +

256

315
c221 +

2π2

35
c231 +

65536

155925
c241 +

100π2

3003
c251

]

+π
1

R−1

[
5π2

24
c11c21 +

6π2

35
c11c31 +

7π2

48
c11c41 +

8π2

63
c11c51 +

35π2

256
c21c31

+
16384

14175
c21c41 +

105π2

1024
c21c51 +

63π2

640
c31c41 +

20π2

231
c31c51 +

77π2

1024
c41c51

]

+πR0R−1

[
4

15
c11 +

1

6
c21 +

4

35
c31 +

1

12
c41 +

4

63
c51

]

+πR2
−1

[
2

15
c12 +

1

12
c22 +

2

35
c32 +

1

24
c42 +

2

63
c52

]

. (8.9)

The analytical formula of e4 is very long (but its computation presents no tech-
nical difficulty), we do not write it here.

We can now introduce the value of c10 and R−1 given by (8.6) to obtain

e1 =
3

5
3π

2
3

2
4
3 5

,

e2 =
3

4
3

2
8
3π

2
3

+
π

5
3

2
1
3 3

1
3

c11 +
3

2
3π

5
3

2
7
3

c21 +
3

2
3π

5
3

2
1
3 5

c31 +
π

5
3

2
4
3 3

1
3

c41 +
3

2
3π

5
3

2
1
3 7

c51,
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e3 = − 3

2π
R0 +

3

5
R2

0 +

(
3

1
3π

1
3

2
2
3

− 2
4
3π

4
3

3
2
3 5

R0

)

c11

+

(
2

4
3 3

1
3π

1
3

5
− 3

1
3π

4
3

2
8
3

R0

)

c21 +

(
2

1
3π

1
3

3
2
3

− 2
7
3 3

1
3π

4
3

5 · 7 R0

)

c31

+

(
2

4
3 3

1
3π

1
3

7
− 5π

4
3

2
11
3 3

2
3

R0

)

c41 +

(
3

1
3π

1
3

2
5
3

− 2
4
3π

4
3

3
2
3 7

R0

)

c51

+
π

5
3

2
1
3 3

1
3

c12 +
3

2
3π

5
3

2
7
3

c22 +
3

2
3π

5
3

2
1
3 5

c32 +
π

5
3

2
4
3 3

1
3

c42 +
3

2
3π

5
3

2
1
3 7

c52

+
2

2
3π

2
3

3
1
3

[
2π2

15
c211 +

256

315
c221 +

2π2

35
c231 +

65536

155925
c241 +

100π2

3003
c251

]

+
2

2
3π

2
3

3
1
3

[
5π2

24
c11c21 +

6π2

35
c11c31 +

7π2

48
c11c41 +

8π2

63
c11c51 +

35π2

256
c21c31

+
16384

14175
c21c41 +

105π2

1024
c21c51 +

63π2

640
c31c41 +

20π2

231
c31c51 +

77π2

1024
c41c51

]

.

(8.10)

We find analytically the asymptotic limit κ→ 0:

Ê00 ∼
3

5
3π

2
3

2
4
3 5

N2κ
1
3 = 1.0624N2κ

1
3 . (8.11)

Introducing now the numerical value of the other coefficients, and adding the
fourth order term e4, we find

Ê00 = N2
[
1.0624κ

1
3 + 0.3177κ

2
3 − 0.1074κ

3
3 + 0.0977κ

4
3 + O(κ

5
3 )
]
. (8.12)

The numbers ei show a decrease as i increases, which is an indicator of the
convergence of this series.

8.1.2 First corrections to Thomas-Fermi

We need to go beyond Thomas-Fermi energy for consistency (it will become
evident later). Let’s note that if we use the general formulas developed previously,
that is, writing with the initial variables,

Ê01 =
N

24π

∫

d2x̂∆̂V̂ (x̂)θ(µ̂− V̂ (x̂))

=
N

24π

∫

Ω

d2x̂∇̂ · ∇̂V̂ (x̂)

=
N

24π

∫

∂Ω

dσ̂ · ∇̂V̂ (x̂)

=
N

12
V̂ ′(r̂)

∣
∣
∣
r̂=R

. (8.13)
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We therefore have to compute V̂ ′(R). If we naively take the first derivative of the
self-consistent potential at r̂ = R, it diverges. Is this divergence a real divergence?
No, it arises from the non commutativity of the limit κ → 0, and the derivative
with respect to r̂.

To compute V̂ ′(R) we will return to the self-consistent equation, which defines
V̂ , and proceed the following way: we start by evaluating

∇̂V̂ (r̂) = êr̂V̂
′(r̂) + êθ̂

1

r̂

∂

∂θ̂
V̂ (r̂)

︸ ︷︷ ︸

=0

⇒ êr̂ · ∇̂V̂ (r̂) = V̂ ′(r̂). (8.14)

As we want to evaluate V̂ ′(R), we will evaluate êr̂ ·∇̂V̂ (x̂) at x̂ = Rê1 to simplify
the problem, to have ê1 = êr̂.

The self-consistent equation is

V̂ (x̂) =
1

2
κx̂2 +

∫

d2ŷ
ρ̂(ŷ)

|x̂ − ŷ| . (8.15)

Taking the gradient we find

∇̂x̂V̂ (x̂) = κx̂ +

∫

d2ŷρ̂(ŷ)
(ŷ − x̂)

|x̂ − ŷ|3

= κx̂ +

∫

d2ŷρ̂(ŷ + x̂)
ŷ

|ŷ|3 , (8.16)

where we proceeded to the change of variables ŷ 7→ ŷ−x̂. As explained previously,
we take x̂ = Rê1, and project this equation on ê1 to obtain, with the change of
variable ŷ 7→ y = ŷ

R
,

V̂ ′(R) = κR +

∫

d2yρ̂

(

R
√

(y1 + 1)2 + y2
2

)
y1

|y3|

= κR +

∫

dθ cos θ

∫

dyρ̂
(

R
√

1 + 2y cos θ + y2
)

, (8.17)

where we introduced the polar coordinates. The integration limits are such that
ρ(r) = 0, r > R. This condition is (the variables being, of course, limited by
y > 0, θ ∈ [0, 2π]),

y < −2 cos θ. (8.18)

This implies cos θ < 0, which restricts θ ∈ [π
2
, 3π

2
]. A second condition is 1 +

2y cos θ + y2 > 0, but this is always satisfied for y > 0.
Let’s note that, in view of this result, which we can write as (using the fact

that ρ̂(R) = 0):

V̂ ′(R) = κR +

∫

dθ cos θ

∫

dy
[

ρ̂
(

R
√

1 + 2y cos θ + y2
)

− ρ̂(R)
]

, (8.19)
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we can conclude that if ρ̂(R− ε)− ρ̂(R) ∼ εα, α > 0, this term will be finite, and
the correction to the energy will be finite.

We can now compute the integral in (8.17). Using the density

ρ̂(Rx) =
3

2π

1

R2

√
1 − x2, (8.20)

we find

3

2π

1

R2

∫ 3π
2

π
2

dθ cos θ

∫ −2 cos θ

0

dy

y

√

−y2 − 2y cos θ

= − 3

2π

1

R2
2

∫ 3π
2

π
2

dθ cos2 θ

︸ ︷︷ ︸

=π
2

∫ 1

0

dz

√

−1 +
1

z
︸ ︷︷ ︸

=π
2

= −3π

4

1

R2
, (8.21)

where we proceeded to the change of variable y 7→ z = − y
2 cos θ

.
Let’s return to equation (8.17):

V ′(R) = κR− 3π

4

1

R2
. (8.22)

As established previously, the radius R is given by

R =

(
3π

4κ

) 1
3

, (8.23)

the derivative of V is therefore

V ′(R) = κ

(
3π

4κ

) 1
3

− 3π

4

(
4κ

3π

) 2
3

= 0. (8.24)

Surprisingly, we find that this contribution is zero. Moreover, this energy would
have been of the order of Np2 = O(1). There is therefore no need to compute
the hypothetical corrections to this energy, as they would be of an order in N too
low for our interest.

8.2 Exchange energy

Let’s now consider the exchange energy. In equation (5.155) we found the result

Êex
0 = −N 3

2
4
√

2

3
√
π

∫

d2x̂ρ̂
3
2 (x̂)

= −N
3
2

R

4
√

2

3
√
π

∫

d2xρ
3
2 (x)

(8.25)
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= −N
3
2

R

4
√

2

3
√
π

2π

∫ 1

0

drr

(
∑

n≥1

cnϕn(r)

) 3
2

. (8.26)

Considering the expansion of the density in powers of p, and remembering that
cn0 = 0, n 6= 1, we find

∫ 1

0

drr

(
∑

n≥1

cnϕn(r)

) 3
2

= c
3
2
10

∫ 1

0

drrϕ
3
2
1 (r)

(

1 + p
∑

n≥1

cn1

c10

ϕn(r)

ϕ1(r)
+ p2

∑

n≥1

cn2

c10

ϕn(r)

ϕ1(r)
+ O(p3)

) 3
2

= c
3
2
10

∫ 1

0

drrϕ
3
2
1

(

1 +
3

2
p
∑

n≥1

cn1

c10

ϕn
ϕ1

+p2

(
3

8

∑

n,m≥1

cn1cm1

c210

ϕnϕm
ϕ2

1

+
3

2

∑

n≥1

cn2

c10

ϕn
ϕ1

)

+ O(p3)

)

= c
3
2
10

∫ 1

0

drr(1 − r2)
3
4 + p

3

2
c

1
2
10

∑

n≥1

cn1

∫ 1

0

drr(1 − r2)
n
2
+ 1

4

+p2

(
3

8
c
− 1

2
10

∑

n,m≥1

cn1cm1

∫ 1

0

drr(1 − r2)
n
2
+m

2
− 1

4

+
3

2
c

1
2
10

∑

n≥1

cn2

∫ 1

0

drr(1 − r2)
n
2
+ 1

4

)

+ O(p3). (8.27)

Using the result
∫ 1

0

drr(1 − r2)k =
1

2k + 2
, (8.28)

we finally obtain

∫ 1

0

drr

(
∑

n≥1

cnϕn(r)

) 3
2

=
2

7
c

3
2
10 + 3c

1
2
10

∑

n≥1

cn1

5 + 2n
p

+

(
3

4
c
− 1

2
10

∑

n,m≥1

cn1cm1

3 + 2n+ 2m
+ 3c

1
2
10

∑

n≥1

cn2

5 + 2n

)

p2

+O(p3). (8.29)

To obtain the expansion of the exchange energy we still have to proceed to the
expansion of 1

R
:

1

R
=

p

R−1

(

1 − R0

R−1

p+

(
R2

0

R2
−1

− R1

R−1

)

p2

)

+ O(p3). (8.30)
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Combining these two expansions we finally write the expansion of the exchange
energy

Êex
0 = −N 3

2p
8
√

2π

3

1

R−1

[

2

7
c

3
2
10 + p

{

3c
1
2
10

∑

n,m≥1

cn1

5 + 2n
− 2

7
c

3
2
10

R0

R−1

}

+p2

{

2

7
c

3
2
10

(
R2

0

R2
−1

− R1

R−1

)

− 3
R0

R−1

c
1
2
10

∑

n≥1

cn1

5 + 2n

+

(
3

4
c
− 1

2
10

∑

n,m≥1

cn1cm1

3 + 2n+ 2m
+ 3c

1
2
10

∑

n≥1

cn2

5 + 2n

)}]

+O(p4). (8.31)

Expanding this expression we find

Êex
0 = N

3
2

(
eex1 p+ eex2 p

2 + eex3 p
3 + O(p4)

)
, (8.32)

where long calculations provide

eex1 = −
√

2π
16

21

c
3
2
10

R−1

,

eex2 =
√

2π

{

− 8c
1
2
10

R−1

(1

7
c11 +

1

9
c21 +

1

11
c31 +

1

13
c41 +

1

15
c51

)

+
16

21

c
3
2
10R0

R2
−1

}

,

eex3 = +
√

2π

{
8c

1
2
10R0

R2
−1

(1

7
c11 +

1

9
c21 +

1

11
c31 +

1

13
c41 +

1

15
c51

)

−2c
1
2
10

R−1

(1

7
c12 +

1

9
c22 +

1

11
c32 +

1

13
c42 +

1

15
c52

)

− 2

c
1
2
10R−1

(1

7
c211 +

1

11
c221 +

1

15
c231 +

1

19
c241 +

1

23
c251

)

− 4

c
1
2
10R−1

(

+
1

9
c11c21 +

1

11
c11c31 +

1

13
c11c41 +

1

15
c11c51 +

1

13
c21c31

+
1

15
c21c41 +

1

17
c21c51 +

1

17
c31c41 +

1

19
c31c51 +

1

21
c41c51

)

−16

21

R2
0c

3
2
10

R3
−1

}

. (8.33)

Let’s finally replace c10 and R−1 by their value given at (8.6):

eex1 = −2
11
3 3

1
6

7π
4
3

,
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eex2 = −2
11
3 3

1
6

π
1
3

(1

7
c11 +

1

9
c21 +

1

11
c31 +

1

13
c41 +

1

15
c51

)

+
2

13
3

3
1
6 7π

5
3

R0,

eex3 =
2

13
3

3
1
6π

2
3

R0

(1

7
c11 +

1

9
c21 +

1

11
c31 +

1

13
c41 +

1

15
c51

)

−2
11
3 3

1
6

π
1
3

(1

7
c12 +

1

9
c22 +

1

11
c32 +

1

13
c42 +

1

15
c52

)

−2
8
3π

2
3

3
5
6

(1

7
c211 +

1

11
c221 +

1

15
c231 +

1

19
c241 +

1

23
c251

)

−2
11
3 π

2
3

3
5
6

(

+
1

9
c11c21 +

1

11
c11c31 +

1

13
c11c41 +

1

15
c11c51 +

1

13
c21c31

+
1

15
c21c41 +

1

17
c21c51 +

1

17
c31c41 +

1

19
c31c51 +

1

21
c41c51

)

− 25

3
1
2 7π2

R2
0. (8.34)

We find analytically the asymptotic limit κ→ 0:

Êex
0 ∼ −2

11
3 3

1
6

7π
4
3

N
3
2κ

1
3 = −0.4735N

3
2κ

1
3 . (8.35)

Replacing the other variables by their numerical values established in chapter 7,
we find

Êex
0 = N

3
2

[
− 0.4735κ

1
3 + 0.1319κ

2
3 − 0.1195κ

3
3 + O(κ

4
3 )
]
. (8.36)

We observe that the dominant term has the largest numerical prefactor.

8.3 Oscillating terms

Let’s now focus on the oscillating terms. In order to determine them, we will
have to calculate different functions of interest. They will be calculated analyti-
cally when possible, otherwise numerically (the numerical computations show no
difficulty; they will be computed with Mathematica).

As developed in chapter 6, the oscillating terms require the knowledge of the
function

s(e, x) =
1

π

∫ r2(e,x)

r1(e,x)

dr

√

e− V (r) − x2

r2
, (8.37)

and se, the first derivative of s with respect to e, as well as sxx, the second
derivative of s with respect to x.

In our problem, V is the self-consistent potential. The contribution of the
oscillating terms to the total energy of the system is very low, which is why we
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are only interested in its main contribution. Hence we will only consider the
lowest order of the self-consistent potential, which will considerably simplify this
study. e is the energy, x the angular momentum, and ri, i = 1, 2 are the turning
points.

Moreover the main oscillating terms consist of a sum over the periodic orbits
of the classical dynamics of a particle in the self-consistent potential. We have to
determine which orbits will contribute to the oscillating terms, and which ones
will be negligible. For this we will need to know sx, the first derivative of s with
respect to x.

8.3.1 Scaling

In order to simplify the study of the function s(e, x), let’s proceed to relevant
scalings. As previously we will consider L? = 1. At lowest order, the density and
chemical potential are

ρ̂(r̂) =
3

2π

1

R2

√

1 − r̂2

R2
, R =

(
3π

4κ

) 1
3

, µ̂ =

(
3π

4

) 2
3

κ
1
3 . (8.38)

Hence, at lowest order, the self-consistent potential is

V̂ (r̂) = µ̂− πρ̂(r̂) = µ̂− 3

2

1

R2

√

1 − r̂2

R2
. (8.39)

The energy and chemical potential are always grouped, this is why we define the
variable ε̂

.
= (ê− µ̂).

The function s becomes

ŝ(ε̂, x̂) =
1

π

∫ r2(ε̂,x̂)

r1(ε̂,x̂)

dr̂

√

ε̂+
3

2

1

R2

√

1 − r̂2

R2
− x̂2

r̂2

=
1

π
R

∫ r2(ε̂,x̂)
R

r1(ε̂,x̂)
R

dr

√

ε̂+
3

2

1

R2

√
1 − r2 − x̂2

R2r2

=
1

π

∫ r2(ε̂,x̂)
R

r1(ε̂,x̂)
R

dr

√

R2ε̂+
3

2

√
1 − r2 − x̂2

r2

=
1

π

∫ r2(ε′,x′)

r1(ε′,x′)
dr

√

ε′ +
3

2

√
1 − r2 − x′2

r2

= s′(ε′, x′), (8.40)

where we proceeded to the change of variable r̂ 7→ r = r̂
R

, and defined ε′
.
= R2ε̂,

and x′
.
= x̂. For notational simplicity, the turning points are noted with the same

symbol.
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We can still simplify this expression for further calculations. Let’s write

√

ε′ +
3

2

√
1 − r2 − x′2

r2
=

√

3

2

√

2

3
ε′ +

√
1 − r2 − 2

3

x′2

r2

=

√

3

2

√

ε+
√

1 − r2 − x2

r2
, (8.41)

where we defined ε
.
= 2

3
ε′, and x

.
=
√

2
3
x′. We will study the function

s(ε, x)
.
=

√

2

3
s′
(

3

2
ε,

√

3

2
x

)

=
1

π

∫ r2(ε,x)

r1(ε,x)

dr

√

ε+
√

1 − r2 − x2

r2
. (8.42)

The study of the function s(ε, x) will provide results for the function ŝ. This func-
tion is easily interpreted: we study the classical dynamics of a particle evolving
in a potential V (r) = −

√
1 − r2, with energy ε, and angular momentum x. For

the derivation of some results it will be useful to use this physical interpretation.
A case whose importance will become clear later (it will provide the main

oscillating contribution) is the case ê = µ̂, that is ε = 0. We will focus on this
case, for which some analytical calculations are possible.

8.3.2 Turning points

In order to calculate all we need for the determination of the oscillating terms,
we have to determine the turning points ri(ε, x), i = 1, 2. These turning points
are defined by

ε+
√

1 − r2
i −

x2

r2
i

= 0. (8.43)

This equation can be rewritten as

−r6
i + (1 − ε2)r4

i + 2εx2r2
i − x4 = 0. (8.44)

ri appears at even powers only. Defining pi
.
= r2

i , we have to determine the roots
of a polynomial of the third order, which is possible analytically. We did it with
Mathematica. Two out of six roots are real and nonnegative, these are r1 and r2.
The result is a very long formula and there is no need to write it down here. In
Figure 8.1 we show r1 and r2 as functions of x, for different values of ε.

8.3.3 rmax, λmax

Other functions of interest are the radius rmax, and the angular momentum λmax.
The radius is the one for which, at fixed energy ε, the angular momentum takes
the maximum value λmax the system can have. The radius rmax can be obtained
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Figure 8.1: Turning points as a function of x, for different
values of ε.

by maximizing x(r1) (or equivalently x(r2)). We maximize x2(ri) instead, which
is easier to obtain. Let’s recall that ri is defined by equation (8.43), hence

r2
i

(

ε+
√

1 − r2
i

)

= x2. (8.45)

Taking the derivative of equation (8.45) with respect to ri, we obtain the solution
rmax. The final equation is

9r4 + 4(ε2 − 3)r2 + 4(1 − ε2) = 0, (8.46)

for which there are two nonnegative solutions. One solution increases when ε
increases, the other one decreases. If the energy increases, the maximal radius
increases, too. This is why the physical solution is the first one, and is

rmax(ε) =

√
2

3

√

3 − ε2 − ε
√

3 + ε2. (8.47)

The maximum angular momentum is directly obtained, introducing rmax in equa-
tion (8.45):

λmax(ε) =

√
2

3

√
√
√
√
(

3 − ε2 − ε
√

3 + ε2
)
(

ε+

√

1 − 2

9

(

3 − ε2 − ε
√

3 + ε2
)
)

.

(8.48)
This function is represented in Figure 8.2. It shows a weak curvature. Applying
these results to the case ε = 0 we find the very simple results







rmax(0) =
√

2
3

= 0.8165,

λmax(0) =
√

2

3
3
4

= 0.6204.
(8.49)
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Figure 8.2: Maximal angular momentum as a function of ε,
compared to a straight line.

Unsurprisingly we also find
λmax(−1) = 0. (8.50)

If there is no energy in the system (ε = −1 is the lowest energy the system can
have), the particle has no movement and its angular momentum can only be zero.

8.3.4 s(ε, x)

Let’s evaluate the function s(ε, x), defined in equation (8.42). It is clear that the
limit ε → 0 converges uniformly. Moreover we see graphically (see Figure 8.3)
that the limit x→ 0 converges uniformly, too. The integral is the square root of
the area, which varies uniformly as x→ 0. Hence we can evaluate s analytically
as ε = 0, x = 0. We find

s(0, 0) =
1

π

∫ 1

0

dr
(
1 − r2

) 1
4 =

1

6
√
π

Γ
(

1
4

)

Γ
(

3
4

) = 0.2782. (8.51)

We were unable to evaluate analytically all other cases. In Figure 8.4 we show
the function s(ε, x) as a function of x, for different values of ε. The curvature of
these functions is weak.

Let’s note that this figure shows the level curves of the energy, as a function
of the two actions. We can proceed to an analogy with the case of the atom. The
shell structure of the atoms is usually modeled by the energy levels of the hydro-
gen atom, which corresponds to the picture of independent electrons, evolving in
the confining potential produced by the nucleus. The same picture can be used in
the case of quantum dots. This case is modeled as independent electrons evolv-
ing in the harmonic confining potential (see chapter 4, where we describe some
properties related to the shell structure of this model). Its semiclassical states are
given by the quantization of the actions. In this case the level curves are straight
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Figure 8.3: s(ε, x) is the square root of the enclosed area. It
converges uniformly in the limit x→ 0.

Figure 8.4: Level curves of ε as a function of x and s, compared
to straight lines.

lines, with slope −1
2
. Many levels are degenerated. Our work is more precise,

and this degeneracy disappears. Our calculations are then predictive: it shows
in which order the states are filled. These results could be tested experimentally.

8.3.5 sx(ε, x)

Let’s study the first derivative of s with respect to x, which will be useful to
determine which periodic orbits we will have to consider. This function is

sx(ε, x) = −x
π

∫ r2(ε,x)

r1(ε,x)

dr

r2

1
√

ε+
√

1 − r2 − x2

r2
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+
r2x(ε, x)

π

√

ε+
√

1 − r2
2(ε, x) −

x2

r2
2(ε, x)

−r1x(ε, x)
π

√

ε+
√

1 − r2
1(ε, x) −

x2

r2
1(ε, x)

, (8.52)

where rix, i = 1, 2, is the derivative of ri with respect to x.
The two last terms are zero: ε +

√

1 − r2
i (ε, x) − x2

r2i (ε,x)
= 0, i = 1, 2, is the

definition of ri. Hence, even if rix diverges for both i = 1, 2 in the limit x→ λmax,
they are multiplied by 0, and their product is zero.

The function is therefore

sx(ε, x) = −x
π

∫ r2(ε,x)

r1(ε,x)

dr

r2

1
√

ε+
√

1 − r2 − x2

r2

= −x
π

∫ r2(ε,x)

r1(ε,x)

dr

r

1
√

r2
(
ε+

√
1 − r2

)
− x2

= −x
π

∫ r2(ε,x)

r1(ε,x)

dr

r

1
√

W (r) − x2
, (8.53)

where we defined W (r)
.
= r2

(
ε+

√
1 − r2

)
.

We want to study this function. First of all, we will verify that this function
is not divergent. Then we will extract all analytical information we are able to
obtain, that is the limits limx→0 sx(ε, x) and limx→λmax

sx(ε, x). The complete
function will be computed numerically.

From equation (8.53) we see that the integrand diverges at the integration
limits. But does this imply that the integral is divergent? To answer this question,
let’s look how this integrand diverges as r → ri. Let’s define r

.
= ri+δ. Proceeding

to an expansion for δ small, we find

W (r) − x2 = r2
i

(

ε+
√

1 − r2
i

)

− x2

︸ ︷︷ ︸

=0

+δW ′(ri). (8.54)

Hence the integrand behaviour near ri is of the order of 1√
δ
, which means that

the hypothetical divergence behaves as
∫

dδ√
δ
∼

√
δ, and is therefore finite. If

W ′(ri) = 0 this result is not true. This case arises when r1 = r2 = rmax and will
be studied in detail later. Another singularity may arise from the term 1

r
of the

integrand, that is when r1 → 0, which happens when x → 0. This case will also
be studied in detail later.

Let’s focus on the limit x → 0. This case was already studied while we
developed formulas for the oscillating terms in chapter 6. The general result
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(applying to any "smooth" potential) was

lim
x→0

sx(ε, x) = −1

2
. (8.55)

The divergence appearing in the integrand (from the 1
r

term) compensates the
prefactor x to provide a finite limit.

Another interesting limit is the limit x→ λmax. We proceed to an expansion
around rmax, writing r = rmax + y, to find

W (r) − x2 ∼= λ2
max − x2

︸ ︷︷ ︸
.
=δ�1

−|W ′′
max|
2

y2. (8.56)

Introducing it into the integral (8.53) we find

−x
π

∫ r2

r1

dr

r

1
√

W (r) − x2
= −x

π

∫ +
√

2δ

|W ′′
max|

−
√

2δ

|W ′′
max|

dy

(rmax + y)

1
√

δ − |W ′′
max|
2

y2

= −x
π

1

rmax

√

2

|W ′′
max|

∫ +1

−1

dλ√
1 − λ2

︸ ︷︷ ︸

=π

= − x

rmax

√

2

|W ′′
max|

, (8.57)

where we proceeded to the change of variable y 7→ λ
.
=

√
|W ′′

max|
2δ

y.
There is no convergence problem, we can take the limit x→ λmax to find

lim
x→λmax

sx(ε, x) = −
√

2
λmax

rmax
√

|W ′′
max|

. (8.58)

λmax(ε) and rmax(ε) were established previously at equations (8.47) and (8.48).
The function W is, by definition, W (r) = r2 (e− V (r)). The second derivative
of W is

W ′′(r) = 2 (e− V ) − 4rV ′ − r2V ′′. (8.59)

Evaluating it for r = rmax and multiplying by r2
max, elementary calculations

provide

r2
maxW

′′(rmax) = rmax
(
2rmax(e− V ) − r2

maxV
′)

︸ ︷︷ ︸

=W ′(rmax)=0

−3r3
maxV

′ − r4
maxV

′′

= −3r3
maxV

′ − r4
maxV

′′, (8.60)
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Figure 8.5: Absolute value of the second derivative of W , as a
function of ε.

therefore
r2
max|W

′′
max| = 3r3

maxV
′(rmax) + r4

maxV
′′(rmax). (8.61)

It is easily evaluated and is shown in Figure 8.5
In the particular case ε→ 0, using the results (8.49) and (8.61), we find

lim
ε→0

lim
x→λmax(ε)

sx(ε, x) = − 1√
6

= −0.4082. (8.62)

Finally, we have to compute the complete function sx. This is done numeri-
cally. To deal with the numerical divergence at the integration limits we integrate
from r1 +δ to r2−δ, and consider δ small enough so that it has no influence. The
function sx is represented as a function of x, for different values of ε, in Figure
8.6.

Figure 8.6: First derivative of s with respect to x, for different
values of x.
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8.3.6 Periodic orbits

In our previous developments, we characterized the periodic orbits with two nat-
ural numbers, k and j. The periodic orbits are such that

sx(ε, x
?(ε)) = −k

j
, (8.63)

which is a condition that defines x?(ε).
This condition expresses the fact that the ratio of the two classical actions of

a periodic orbit is a rational number.
The amplitude of the energy oscillations is multiplied by 1

j
5
2
. This amplitude

is multiplied by other terms, which have, however, a weak dependence on j and k.
As a function of j and k, it is therefore dominated by the term 1

j
5
2
, which implies

that the orbits with a large value of j can be neglected. It is not surprising that
only a few orbits have to be considered: if it were not the case, the sum would
diverge.

Let’s focus on the case ε = 0, as the energy oscillations only depend on this
case. As we can see in Figure 8.6, the periodic orbits must be such that

k

j
∈
[

1√
6
,
1

2

]

= [0.4082, 0.5000] . (8.64)

Hence the orbits allowed are

(k : j) = (1 : 2), (2 : 4), (3 : 6), (3 : 7), (4 : 8), (4 : 9), (5 : 10), . . . (8.65)

These orbits can be grouped in families of periodic orbits, defined by k
j

= cst.
The orbits involved consist of only three families!

We still have to determine the relative order of magnitude of the oscillating
terms generated by these orbits. The first one is of the order of 1

2
5
2
. Hence the

relative order of magnitude of the other ones is
(

2
j

) 5
2
. We find

(
j

2

) 5
2

=







5.66 , j = 4,
15.59 , j = 6,
22.92 , j = 7,
32.00 , j = 8,
42.96 , j = 9,
55.90 , j = 10,

...

The energy corresponding to the orbit with j = 6 is already an order of magnitude
higher than the energy corresponding to the orbit with j = 2. Hence it seems
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that only one family of periodic orbits (actually only the first two terms) will
have to be considered. To complete our study we will include the orbits (k : j) =
(3 : 7), (4 : 9) in our final results.

To proceed further we have to determine x?(0), corresponding to the different
orbits. We easily find

x?(1:2)(0) = x?(2:4)(0) = x?(3:6)(0) = x?(4:8)(0) = x?(5:10)(0) = λmax(0) =

√
2

3
3
4

= 0.6204.

(8.66)
For the other periodic orbits (3

7
= 0.4286, 4

9
= 0.4444) we find numerically

x?(3:7)(0) = 0.4318; x?(4:9)(0) = 0.3163, (8.67)

as can be seen in Figure 8.6.
From these results, let’s note that when summing over the orbits of a given

family, the first term will provide the amplitude, the others will influence (almost)
only the shape of the oscillations.

Let’s finally note that λmax(0) /∈ Q, which means that some of the oscillating
terms calculated will be zero (see chapter 6).

The case ε 6= 0 is necessary for the computations of the integrated density of
states. From our results we can see that if the energy ε decreases, the number
of periodic orbits diminishes. This is not surprising: some periodic orbits need
energy, and if the available energy is unsufficient, the orbit cannot be realized.
Let’s determine for which energy the orbits disappear (as well as its corresponding
oscillating term). This is obtained by inverting the function λmax(ε), which is
done graphically with means of Figure 8.2. We have x?(3:7) = λmax(ε(3:7)), x

?
(4:9) =

λmax(ε(4:9)). We obtain

ε(1:2) = ε(2:4) = ε(3:6) = ε(4:8) = ε(5:10) = −1;

ε(3:7) = −0.3399; ε(4:9) = −0.3130. (8.68)

There will be no discontinuity in the integrated density of states at these
energies. This discontinuity only appears because of our description and is not
intrinsic to the problem.

8.3.7 sε(ε, x)

The amplitude of the energy oscillations depends on the derivative of s with
respect to ε. It is

sε(ε, x) =
1

2π

∫ r2(ε,x)

r1(ε,x)

dr
1

√

ε+
√

1 − r2 − x2

r2
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+
r2ε(ε, x)

π

√

ε+
√

1 − r2
2(ε, x) −

x2

r2
2(ε, x)

−r1ε(ε, x)
π

√

ε+
√

1 − r2
1(ε, x) −

x2

r2
1(ε, x)

, (8.69)

where riε, i = 1, 2, is the derivative of ri with respect to ε.
The two last terms are zero: ε +

√

1 − r2
i (ε, x) − x2

r2i (ε,x)
= 0, i = 1, 2, is the

definition of ri. Hence, even if riε diverges for both i = 1, 2, in the limit x→ λmax,
they are multiplied by 0, and their product is zero.

The function is therefore

sε(ε, x) =
1

2π

∫ r2(ε,x)

r1(ε,x)

dr
1

√

ε+
√

1 − r2 − x2

r2

=
1

2π

∫ r2(ε,x)

r1(ε,x)

dr
r

√

r2
(
ε+

√
1 − r2

)
− x2

=
1

2π

∫ r2(ε,x)

r1(ε,x)

dr
r

√

W (r) − x2
, (8.70)

where W was defined previously (W (r) = r2
(
ε+

√
1 − r2

)
).

We want to study this function. First of all we will verify if this function is not
divergent. Then we will extract all analytical information we are able to obtain,
that is the limits limx→0 sε(ε, x) and limx→λmax

sε(ε, x). The complete function
will be computed numerically.

From equation (8.70) we see that the integrand diverges at the integration
limits. But does this imply that the integral is divergent? To answer this question,
let’s look at how this integrand diverges as r → ri. Let’s define r

.
= ri + δ.

Proceeding to an expansion for δ small, we find (see equation (8.54))

W (r) − x2 = δW ′(ri). (8.71)

Hence the integrand behaviour near ri is of the order of 1√
δ
, which means that

the hypothetical divergence behaves as
∫

dδ√
δ
∼

√
δ, and is therefore finite. If

W ′(ri) = 0 this result is not true. This case arises when r1 = r2 = rmax and will
be studied in detail later. Clearly, no singularity arises from the term r of the
integrand.

Let’s focus on the limit x→ 0. The integrand is an integrable function, hence,
by Lebesgue’s theorem, the integral and the limit can be commuted and we find

lim
x→0

sε(ε, x) =
1

2π

∫ 1

0

dr
1

√

ε+
√

1 − r2
. (8.72)
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We cannot solve this integral analytically, except in the case ε = 0 (in which case
the integrand is also an integrable function, and the limit and the integral can be
commuted), where we find

lim
ε→0

lim
x→0

sε(ε, x) =
1

2π

∫ 1

0

1

(1 − r2)
1
4

=
1√
π

Γ
(

3
4

)

Γ
(

1
4

) = 0.5991. (8.73)

Another interesting limit is the limit x→ λmax. We proceed to an expansion
around rmax, writing r = rmax + y, to find

W (r) − x2 ∼= λ2
max − x2

︸ ︷︷ ︸
.
=δ�1

−|W ′′
max|
2

y2. (8.74)

Introducing it into the integral (8.70) we find

1

2π

∫ r2

r1

dr
r

√

W (r) − x2
=

1

2π

∫ +
√

2δ

|W ′′
max|

−
√

2δ

|W ′′
max|

dy
(rmax + y)

√

δ − |W ′′
max|
2

y2

=
rmax
2π

√

2

|W ′′
max|

∫ +1

−1

dλ√
1 − λ2

︸ ︷︷ ︸

=π

=
rmax√

2

1
√

|W ′′
max|

, (8.75)

where we proceeded to the change of variable y 7→ λ
.
=

√
|W ′′

max|
2δ

y.
There is no convergence problem, we can take the limit x→ λmax to find

lim
x→λmax

sε(ε, x) =
rmax

√

2|W ′′
max|

. (8.76)

rmax(ε) was established previously in equation (8.47). The second derivative of
W was already calculated in equation (8.59).

In the particular case ε→ 0, using the results (8.49) and (8.61), we find

lim
ε→0

lim
x→λmax(ε)

sε(ε, x) =
1

2

1

3
3
4

= 0.2193. (8.77)

Finally we have to compute the function for an arbitrary energy ε. It is done
numerically. To deal with the numerical divergence at the integration limits we
integrate from r1+δ to r2−δ, and consider δ small enough that it has no influence.
The function sε is represented as a function of x, for different values of ε, in Figure
8.7.
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Figure 8.7: First derivative of s with respect to ε, for different
values of ε.

8.3.8 sxx(ε, x)

The amplitude of the energy oscillations depends on the second derivative of
s with respect to x. We have to compute the derivative of sx (established in
equation (8.53)) with respect to x:

sxx(ε, x) = − 1

π

∫ r2(ε,x)

r1(ε,x)

dr

r

1
√

W (r) − x2

−x
2

π

∫ r2(ε,x)

r1(ε,x)

dr

r

1
(
W (r) − x2

) 3
2

−x
π

r2x(ε, x)

r2(ε, x)
√

W (r2(ε, x)) − x2

+
x

π

r1x(ε, x)

r1(ε, x)
√

W (r1(ε, x)) − x2
. (8.78)

Except the first term, all the terms diverge! However, the whole expression
(sxx) does not. The divergence arises from the separation we did during the
calculations.

Let’s note that, except in the limits x → 0 and x → λmax(ε), we cannot
calculate analytically sxx. To deal numerically with the divergences we introduce
a cut-off: we replace r1 by (r1 + δ) and r2 by (r2 − δ), choosing δ small enough
that it has no influence on the result.

As explained before we can calculate the limit x → 0. To avoid the diver-
gences, and see that they cancel out, we could consider a cut-off. We would
integrate from r1(ε, x + δ) to r2(ε, x + δ), and, at the end, take the limit δ → 0.
This way the 1√

δ
divergences would cancel, as well as the 1

x
divergence (in the

limit x→ 0).
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The way we proceed is different: the derivative of the self-consistent potential,
at r = 0, is 0. Hence we know that sx(ε, x) = −1

2
+ O(x) (see chapter 6). We

therefore have to find a way to determine the first order in x of sx(0, x), which
corresponds to limx→0 sxx(0, x). For this let’s recall that sx is

sx(0, x) = −x
π

∫ r2(0,x)

r1(0,x)

dr

r

1
√

r2
√

1 − r2 − x2
. (8.79)

To determine the limit x→ 0 we replaced the integrand by

1
√

r2
√

1 − r2 − x2
−→ 1√

r2 − x2
, (8.80)

which can be easily integrated in the limit x� 1 (introducing the cut-off r2 = 1):

−x
π

∫ 1

x

dr

r

1√
r2 − x2

= − 1

π

∫ 1
x

1

dr

r

1√
r2 − 1

= − 1

π
arccos(x)

= −1

2
+
x

π
+ O(x3). (8.81)

The first part of the first order correction to sx is then 1
π
. However, this correction

does not arise from the real integrand, but from its asymptotic corresponding
function. To this correction we have to add

lim
x→0

1

x

(

−x
π

∫ r2(0,x)

r1(0,x)

dr

r

(

1
√

r2
√

1 − r2 − x2
− 1√

r2 − x2

))

lim
x→0

(

− 1

π

∫ r2(0,x)

r1(0,x)

dr

r

(

1
√

r2
√

1 − r2 − x2
− 1√

r2 − x2

))

. (8.82)

Let’s note that we can take the lower integration limit 0: the divergences arising
from the integrand cancel out.

Rearranging the integrand we find

lim
x→0

(

− 1

π

∫ r2(0,x)

r1(0,x)

dr

r

[
(r2 − x2)

√

r2
√

1 − r2 − x2(r2
√

1 − r2 + x2)

(r4(1 − r2) − x2)(r2 − x2)

−(r4(1 − r2) − x2)
√
r2 − x2

(r4(1 − r2) − x2)(r2 − x2)

])

. (8.83)

Taking the limit x→ 0 we obtain

− 1

π

∫ 1

0

dr

r2

(

1

(1 − r2)
1
4

− 1

)

= − 1

π
+

√
2π

Γ2
(

1
4

) . (8.84)
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Summing (8.81) and (8.84) we find

lim
x→0

sxx(0, x) =

√
2π

Γ2
(

1
4

) = 0.19069. (8.85)

We compute the whole function sxx(ε, x) numerically. Due to the numerical
instability we cannot compute it in the limits x� 1 and x . λmax(ε). In Figure
8.8 we show sxx(ε, x) as a function of x, for different values of ε.

Figure 8.8: Second derivative of s with respect to x, for differ-
ent values of ε.

8.3.9 Inverse scaling

We established results for the scaled problem. To apply them to our problem, we
still have to proceed to an inverse scaling.

We need to calculate ŝ. Using the scaling relations we find

ŝ(ê, x̂) =

√

3

2
s

(

2

3
R2(ê− µ),

√

2

3
x̂

)

. (8.86)

We need to calculate ŝx̂. Using the scaling relations we find

ŝx̂(ê, x̂) =

√

3

2
sx̂

(

2

3
R2(ê− µ),

√

2

3
x̂

)

= sx

(

2

3
R2(ê− µ),

√

2

3
x̂

)

. (8.87)

The scaling of s is exactly compensated by the scaling of x. This means that
the relevant periodic orbits are exactly the same in the original system as in the
scaled system. The discussion held previously is still valid here.
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We need to calculate ŝê. Using the scaling relations we find

ŝê(ê, x̂) =

√

3

2
sê

(

2

3
R2(ê− µ),

√

2

3
x̂

)

=

√

2

3
R2sε

(

2

3
R2(ê− µ),

√

2

3
x̂

)

. (8.88)

We also need to calculate ŝx̂x̂. Using the scaling relations we find

ŝx̂x̂(ê, x̂) =

√

3

2
sx̂x̂

(

2

3
R2(ê− µ),

√

2

3
x̂

)

=

√

2

3
sxx

(

2

3
R2(ê− µ),

√

2

3
x̂

)

.

(8.89)

8.3.10 Energy oscillations

We have calculated all we need to obtain an analytical formula for the main
energy oscillations. Let’s recall (see chapter 6) that the formula is given by

Eosc = −2
√
ε

π2

∑

k,j

′ (−1)j

j
5
2

cos
{

2π
ε
[kx? + js(µ, x?)] + σπ

4

}

se(µ, x?)
√

|sxx(µ, x?)|
, (8.90)

where the sum is performed over all the periodic orbits of the classical dynamics
in the self-consistent potential.

For the orbits which contribute most to the oscillations (those corresponding
to (k : j) = (1 : 2)), we obtained a special result, the amplitude being divided by
2 (the value of x was at the lower limit of its integration domain, implying that
only half of the saddle-point integration had to be taken into account). These
contributions were called the ν oscillations.

In this case we find x? = 0, and therefore







ŝ(µ, 0) =
√

3
2π

1
6

Γ( 1
4)

Γ( 3
4)

ŝê(µ, 0) =
√
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1√
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ŝx̂x̂(µ, 0) =
√
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√
2π

Γ2( 1
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.

Replacing in formula (8.90) we find

E(1:2)
osc = −√

ε
3

1
12κ

2
3

2
13
6 π

29
12

Γ2
(

1
4

)

Γ
(

3
4

) cos

(

2π

ε

1√
6π

Γ
(

1
4

)

Γ
(

3
4

) +
π

4

)

= −0.1647
√
εκ

2
3 cos

(

0.6815
2π

ε
+
π

4

)

= −0.1385
κ

2
3

N
1
4

cos
(

0.9637 · 2π
√
N +

π

4

)

, (8.91)
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where we used ε = 1√
2

1√
N

.

Let’s consider the other terms of the same family of periodic orbits, in order
to provide to the oscillations its shape:

∑

n≥1

E(n:2n)
osc = −0.1385

κ
2
3

N
1
4

∞∑

n=1

1

n
5
2

cos
(

0.9637 · 2πn
√
N +

π

4

)

. (8.92)

The result is an oscillating function of
√
N , of period 1

0.9637
= 1.0376.

Similar to previous work, we have to multiply this energy by N to obtain the
real energy. We also use κ = k′

N
3
2
, according to our model described in chapter 4,

to find

∑

n≥1

Ê(n:2n)
osc = −0.1385

k′
2
3

N
1
4

∞∑

n=1

1

n
5
2

cos
(

0.9637 · 2πn
√
N +

π

4

)

. (8.93)

Let’s now add the two next terms, which will be small compared to the main
one. We find numerically







x?(3:7) = 0.4318

x̂?(3:7) = 0.5288

ŝ(µ, x̂?(3:7)) = 0.0965

ŝê(µ, x̂
?
(3:7)) = 0.1689R2 = 0.2990κ−

2
3

ŝx̂x̂(µ, x̂
?
(3:7)) = 0.1035.

This leads to the energy contribution

E(3:7)
osc = 0.01625

√
εκ

2
3 cos

{

2.2619
2π

ε
+
π

4

}

= 0.01367
κ

2
3

N
1
4

cos
{

3.1988 · 2π
√
N +

π

4

}

. (8.94)

The inclusion of the whole family of the corresponding periodic orbits provides

∑

n≥1

E(3n:7n)
osc = −0.01367

κ
2
3

N
1
4

∑

n≥1

(−1)n

n
5
2

cos
{

3.1988 · 2πn
√
N +

π

4

}

. (8.95)

The real energy is obtained by multiplying by N . We also use κ = k′

N
3
2

to obtain

∑

n≥1

Ê(3n:7n)
osc = −0.01367

k′
2
3

N
1
4

∑

n≥1

(−1)n

n
5
2

cos
{

3.1988 · 2πn
√
N +

π

4

}

. (8.96)
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The next correction is given by






x?(4:9) = 0.3163

x̂?(4:9) = 0.3874

ŝ(µ, x̂?(4:9)) = 0.1582

ŝê(µ, x̂
?
(4:9)) = 0.1633R2 = 0.2892κ−

2
3

ŝx̂x̂(µ, x̂
?
(4:9)) = 0.1225.

This leads to the energy contribution

E(4:9)
osc = 0.0082

√
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2
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2π
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π

4

}

= 0.0069
κ

2
3

N
1
4

cos
{
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√
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π

4
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. (8.97)

The inclusion of the whole family of the corresponding periodic orbits provides

∑

n≥1

E(4n:9n)
osc = −0.0069

κ
2
3

N
1
4

∑

n≥1

(−1)n

n
5
2

cos
{

4.2050 · 2πn
√
N +

π

4

}

. (8.98)

The real energy is obtained by multiplying by N . We make use of κ = k′

N
3
2

to

obtain

∑

n≥1

Ê(4n:9n)
osc = −0.0069

k′
2
3

N
1
4

∑

n≥1

(−1)n

n
5
2

cos
{

4.2050 · 2πn
√
N +

π

4

}

. (8.99)

As was already mentioned, the contribution arising from the other terms are
small compared to the main contribution. It is represented in Figure 8.9, where
the energy oscillations of the three most contributing families of orbits are shown,
as well as their sum. This figure confirms the fact that mainly one family of orbits
contributes to the energy oscillations.

We still have to calculate the λ oscillations. They should be less important
than the other terms. The general formula is (see chapter 6):

Eλ
osc = − ε

2π2

1

λ̂max,ê(µ)

∑

k≥1

1

k2

sin
{

2π
ε
kλ̂max(µ)

}

sin
{

πk

|ŝx̂(µ,λ̂max(µ))

} . (8.100)

We find
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Figure 8.9: Normalized main energy oscillations as a function
of

√
N .

Introducing these values in expression (8.100) we find
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√
6
}

= −0.0461
κ

2
3√
N

∑

k≥1

1

k2

sin
{

1.0746k2π
√
N
}

sin {0.4082kπ} . (8.101)

The real energy is obtained by multiplying by N . We also make use of κ = k′

N
3
2

to find

Êλ
osc = −0.0461

k′
2
3√
N

∑

k≥1

1

k2

sin
{

1.0746k2π
√
N
}

sin {0.4082kπ} . (8.102)

A plot of this function is shown in Figure 8.10, superposed with the other
contributions to the energy oscillations. This contribution is decreasing compared
to the others (the relative decrease is ∼ 1

N
1
4
). We also show the sum of all these

contributions, and a separate plot with the total energy oscillations only.
Let’s replace k by its experimental value. In comparison with Tarucha’s results

(see chapter 4), we find that the constant k′ is estimated as k′ = 0.205 in our
units. To express the final energy in meV we have to multiply the energy by
E? = 11.2meV . The final result is

Êosc =
∑

n≥1

(

Ê(n:2n)
osc + Ê(3n:7n)

osc + Ê(4n:9n)
osc

)

+ Êλ
osc (8.103)
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(a) (b)

Figure 8.10: Total energy oscillations.

and is shown in Figure 8.11.

Figure 8.11: Total energy oscillations expressed in meV .

8.4 Comparison with experimental results

Our results can be compared to experimental results (Tarucha’s results presented
in the introduction – chapter 4).

We start by comparing the classical energy, which is the only analytical result
we can obtain. It is plotted in Figure 8.12.

We observe a difference between the classical energy and the experimental
one. The two curves however seem to be in good agreement qualitatively, which
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Figure 8.12: Classical energy compared to experimental en-
ergy.

confirms the relevance of the model we used.
We can still improve this analytical result by adding the exchange energy of

this model, which is the lowest order exchange energy. It can also be computed
analytically. It is plotted in Figure 8.13.

Figure 8.13: Classical energy (with the exchange term) com-
pared to experimental energy.

Let’s plot the total energy, obtained with numerical simulations. It corre-
sponds to Hartree energy, or Thomas-Fermi energy (which is equivalent in this
case). It is plotted in Figure 8.14.

Surprisingly, the total energy is worse than the classical energy, when com-
pared to the experimental results. However, the difference is small.

Let’s note that there is no quantum correction: as established in the develop-
ments, this correction is zero.

To improve the results, let’s add the exchange energy to Hartree energy. The
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Figure 8.14: Hartree energy compared to experimental energy.

result is plotted in Figure 8.15 and leads to Hartree-Fock energy.

Figure 8.15: Theoretical energy compared to experimental en-
ergy.

There is a remarkable similarity between the theoretical and experimental
curves. To evaluate quantitatively these results, we compute the relative error as
a function of N , defined as

Error(N)
.
=

|Eexp(N) − Eth(N)|
|Eexp(N)| . (8.104)

This error is plotted in Figure 8.16 as a function of
√
N .

The relative error is more than 5% for N = 2. However, let’s recall that our
theory is justified for N � 1. From

√
N = 5, the relative error is stabilized at

about 1%. It is low enough to validate our theory.
There is, however, a weak effect we want to observe in this comparison be-

tween experimental and theoretical results: the energy oscillations. Let’s estimate
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Figure 8.16: Relative error of the energy as a function of
√
N .

the relative importance of these oscillations. We plot the theoretical energy os-
cillations, divided by the smooth energy. It is shown in Figure 8.17.

(a) (b)

Figure 8.17: Relative importance of the oscillations.

The relative importance of the energy oscillations is, from
√
N = 3, of the

order of 10−3. This is a very weak effect, which is very difficult to observe. We
established above that the precision of our results is of the order 10−2, which
makes it impossible to observe the oscillations.

Let’s look however at the difference of the experimental energy, and the the-
oretical energy (which plays the role of the "smooth" energy), multiplied by N

1
4 ,

in order to compare with the theoretical energy oscillations from Figure 8.11. In
Figure 8.18 we represent (Eexp − Esmooth)N

1
4 as a function of N

1
2 .
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Figure 8.18: Normalized experimental oscillations.

As already mentioned, the oscillations, if they exist, are hidden by other
effects, which have to be discussed. There are no clear oscillations in this figure.

8.5 Discussion of the results

Before explaining the potential reasons of the difference between our results and
experimental results, let’s mention the high sensitivity of the experimental os-
cillations with regards to the experimental parameter k′: a slight change in this
parameter has an important effect on the experimental oscillations: by changing
this parameter of a few percent only, the curve of Figure 8.18 can go up or down.
Moreover, it is impossible to set the value of this parameter with a sufficient pre-
cision. It is not surprising that the energy oscillations are so sensitive: it is a very
weak effect and is therefore naturally sensitive to any change of the parameters.

The theory we developed is valid for N � 1, and we were able to compare
our results with experimental results for up to 41 electrons only.

The ground state energy we computed is in good agreement with the exper-
imental values, the relative error being a few percent only. This relative error
seems to be stabilized at about 1% from

√
N = 5. Even if the theoretical energy

is in good agreement with experimental results, it is still insufficient (of an order
of magnitude) to observe the experimental oscillations, and it needs therefore an
explanation.

The most plausible explanation comes from the approximations we made by
defining the model. We used a model with a density independent of N , by fixing
the confining strength to be N -dependent. Reimann (2002) mentions that this
model is a good one for quantum dots with a large number of electrons. One of
the main consequences of such a model is that the asymptotic limit of the ground
state energy behaves as N

3
2 . Moreover, following our developments, the energy



8.5. Discussion of the results 239

divided by N
3
2 can be expanded in powers of δ

.
= N− 1

2 . This function is therefore
a smooth function of δ. A look at Figure 4.7 shows that this experimental function
is not smooth: there is a large oscillation around a smooth curve. However, the
smaller δ is, the straighter the curve seems to be. From δ < 0.2, the experimental
curve seems to be smooth. This confirms that the constant density model is
adapted for N � 1, but not for N small. We think that this approximation is
the main reason explaining the errors between our results and the experimental
results.

Another approximation we did is to model the confining potential as a parabolic
potential. This is however what most researchers do, and this model leads to nu-
merical results in very good agreement with the experiments.

One approximation we did is to consider a two-dimensional problem. In real
systems, the effective electrons-electron interaction is slightly modified at small
and large distances, which could have consequences on the results. Another
effect of the third dimension is that electrons could be in excited states in the
z-direction. However, as we considered a number of electrons smaller than 41, we
are not concerned with this, as it was established by Kouwenhoven et al. (2001).

In our model we considered the approximation of effective mass. This approx-
imation is valid for k ≈ 0. To estimate the maximal value kF of our system, let’s
use a qualitative argument. We simplify by modeling the system as N indepen-

dent particles in a square of radius R =
(

3π
4κ

) 1
3 (the radius of the dot). The states

are quantized as kn = 2πn
R

⇒ k2
n = 4π2n2

R2 . For N � 1, the number of electrons is
given by the surface in the reciprocal lattice: N ≈ πn2

F , where nF is the Fermi
surface. From this we conclude that the Fermi wave vector is

kF ≈ 2πnF
R

≈ 2
5
3π

1
6

3
1
3

k′
1
3 = 1.72a−1

? = 0.167nm−1. (8.105)

The maximal value kF is independent of N and is small enough to validate the
effective mass approximation in our problem.

Our model was developed in a non relativistic theory. Englert (1988) observes
that relativistic effects are crucial in the case of the atoms. In the case of quantum
dots, Jacak et al. (1997) compute the spin-orbit interaction, and conclude that it
has to be taken into account for N large.

We cannot observe clearly the energy oscillations experimentally, but for a
small number of electrons, there is a strong evidence of shell filling for N =
2, 6, 12, 20, . . . However, as mentioned in (Kouwenhoven et al., 2001), the exis-
tence and amplitude of these peaks depend strongly on the dot considered. More-
over, compared to numerical simulations (Reimann et al., 1999), these peaks are
smaller than what the theory predicts. It may be explained by a loss of the radial
symmetry: energy oscillations are weaker in chaotic systems.

The error is too important to compare the experimental oscillations to the
theoretical ones. We can however proceed to a qualitative discussion of these os-
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cillations. As written in table 4.1, in the harmonic oscillator model, the shells are
filled at values which are in very good agreement with the peaks of the theoretical
energy oscillations. This is an argument to confirm our results.

To compare our theoretical energy oscillations to experimental results, we need
results with a larger number of electrons. In this case however, we would reach
the limits of our model: the third dimension of the dot could not be neglected,
and spin-orbit interactions should be considered, too. Moreover, as written in
(Kouwenhoven et al., 2001), the experimental oscillations seem to disappear for
N larger.



Conclusion and outlook

In this thesis, we introduced and investigated a functional integration approach
for the treatment of many-fermion systems. For systems with a large number
of particles, a systematic expansion is possible, and leads to the semiclassical
Hartree energy at lowest order, the first order being the exchange energy. This
approach therefore justifies the Hartree-Fock theory, which is widely used for the
treatment of the many-fermion problem. The terms beyond the Hartree-Fock
approach correspond to the correlation energy, which we developed at lowest
order.

The Hartree-Fock theory was applied to the atoms in (Englert, 1988). With
the method we developed, we computed the correlation energy of atoms at lowest
order.

This method could be applied to other systems of fermions. One case of
interest is molecules: a system with several nuclei could be investigated, in order
to compute its correlation energy. This correlation energy could be responsible
for the existence of molecules (which is excluded in the Thomas-Fermi approach
by Teller’s no binding theorem).

We concentrated our application of the method to quantum dots. We com-
puted the ground state energy of these systems, that is the Hartree-Fock energy,
the energy oscillations, and the correlation energy. A comparison to experimental
results showed that the smooth part of the energy is in good agreement, but that
the energy oscillations are too weak to be compared to experimental ones.

The computation of the Hartree energy required the solving of a self-consistent
equation. To solve this equation and obtain the self-consistent potential, we
introduced a new basis of functions which yielded the known asymptotic results
in a simple form. This basis could serve as a starting point for further calculations.

The computation of the energy oscillations led us to the development of a
formula for the energy of independent particles in two dimensions, confined with
a monotonous growing potential with radial symmetry. This formula is general
and could serve for other computations.

We observe that in two-dimensional systems, the correlation energy is – rel-
atively to the dominant energy – more important than in three-dimensional sys-
tems. It would be interesting to know if this result has physical consequences.

We also observe that in two-dimensional systems, the energy oscillations are

241
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mainly dominated by one term, conversely to three-dimensional systems, where
the superposition of functions with incommensurable frequencies leads to appar-
ently random energy oscillations. It is believed that these oscillations are related
to the shell structure, and the comparison of the energy oscillations we obtained
to the shell fillings of a two-dimensional harmonic oscillator confirms it. This
link between shell structure and energy oscillations could certainly be observed
experimentally in two-dimensional systems.

To be able to compare the energy oscillations to experimental results, a study
of the "second derivative" of E(N), ∆2(N) = E(N+1)−2E(N)+E(N−1) could
be done. The energy oscillations – relatively to the total energy – would be much
more important, and should therefore be observable. Moreover, a statistical study
of ∆2(N) could be done and compared to existing results – both experimental
and theoretical (a certain number of models were proposed).

The method we developed could be applied to chaotic quantum dots, like
quantum dots with a magnetic field, or quantum dots with a confining potential
without radial symmetry. Both have been realized experimentally. In the latter
case, the first step would be to solve the self-consistent equation – which would be
solved numerically. This would answer whether the self-consistent potential has
a radial symmetry or not, and under which conditions on the confining potential.
For chaotic systems, there would be differences for the treatment of the energy
oscillations. The Gutzwiller trace formula could be used, and it would not be
necessary to proceed to a detailed calculation, as was made in this thesis for
quantum dots with radial symmetry.
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