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Abstract

A functional integration approach — whose main ingredient is the Hubbard-Strato-
novich transformation — for the quantum nonrelativistic many-fermion problem
is investigated.

With this method, the ground state energy correponds to a systematic expan-
sion in powers of a small parameter related to the number of fermions. It is a
functional of a potential determined by a self-consistent equation. The semiclas-
sical Hartree energy is obtained at lowest order of the expansion, the exchange
energy at first order, and the correlation energy at second order.

This approach is applied to large neutral atoms, for which the correlation
energy is computed.

This approach is also applied to many-electron quantum dots with harmonic
confinement. The self-consistent equation is solved as a function of a small param-
eter depending on the confinement strength. The Hartree and exchange energies
are computed in powers of this parameter, and the correlation energy is computed
at lowest order. The energy oscillations, arising from the Hartree energy, are also
evaluated; they are related to the periodic orbits of the classical dynamics of the
self-consistent potential.

Keywords: Semiclassical quantum physics, quantum dots, large atoms, cor-
relation energy.
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Version abrégée

Une approche par l'intégrale fonctionnelle — dont le principal ingrédient est la
transformation de Hubbard-Stratonovich — est investiguée pour le probleme quan-
tique non relativiste d’un systeme avec grand nombre de fermions.

Par cette méthode, ’énergie de I’état fondamental correspond & un développe-
ment en puissance d'un petit parametre relié au nombre de fermions. C’est
une fonctionnelle d’'un potentiel déterminé par une équation autoconsistante.
L’énergie de Hartree semiclassique est obtenue a 1’ordre le plus bas du développe-
ment, I’énergie d’échange au premier ordre, et 1’énergie de corrélation au deuxieme
ordre.

Cette approche est appliquée aux atomes neutre avec grand nombre d’électrons,
pour lesquels I’énergie de corrélation est calculée.

Cette approche est aussi appliquée aux boites quantiques avec grand nombre
d’électrons, avec confinement harmonique. L’équation autoconsistante est résolue
comme fonction d'un petit parametre relié a I'intensité du confinement. Les én-
ergies de Hartree et d’échange sont calculées en puissance de ce parametre, et
I’énergie de corrélation est évaluée a l'ordre le plus bas. Les termes oscillants de
I’énergie, provenant de I’énergie de Hartree, sont également évalués; ils sont reliés
aux orbites périodiques de la dynamique classique du potentiel autoconsistant.

Mots-clés: Physique quantique semiclassique, boites quantiques, atomes lourds,
énergie de corrélation.
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Introduction

The study of the atom is intimately related to the study of matter, which has
been fascinating people for many centuries. The question of its existence goes
back — in western culture — to the ancient Greeks, for whom it was a philosophical
question. The presocratic philosophers, in the V! century BC (mainly Leucip-
pus, Democritus, and later Epicurus), created atomism: all physical objects are
constituted of atoms and void. Both are never created and never ending. Void
creates space, in which atoms evolve. The packings and scatterings of these atoms
are responsible for the sensations we feel. The atoms correspond to the small-
est possible division of matter, the word describing it being aropo( (atomos) in
ancient Greek, and this word gave the name to the current atom.

At the time it was impossible to verify experimentally the discreteness of
matter, and this theory was rejected by Aristotle (in the IV" century BC), who
thought that matter was continuous. His ideas dominated through the middle
ages in Europe.

In the XVI*® and XVII'® centuries, atomists (among them Galileo Galilei) met
some success, and atomism really came back in the XVII*" century with Descartes
and Gassendi in France, and Boyle in England.

In the XVIII*™ century, experiments in chemistry led Lavoisier to postulate
that nothing is created, nothing is lost, all is transformed. They model substance
as constituted of elements, and the organization of these elements is modified
during a chemical reaction to provide other substances.

During the same period, and following Descartes, Bernouilli (and also Her-
mann and Euler), suppose that gas is made of particles. They develop a kinetic
theory of gases, which leads to results (for pressure and temperature) in agree-
ment with experiment.

Another field of study, at this time, is crystallography: natural crystals present
particular geometries, and to explain it, Haiiy claims that these geometries are the
consequence of an elementary piece (which is however not, at this time, related
to atoms).

In the XIX™ century, more experiments and postulates allow these three do-
mains to have a common explanation: the existence of atoms and molecules. John
Dalton, first, assumes that substance is made of spherical objects, the atoms,
which are different for different elements. In parallel to this work, Gay-Lussac



92 Introduction

observes that during a chemical reaction, the ratios between the volumes in play
are small integers. He too deduces that substance is made of discrete objects. A
few years later, Avogadro is the first to make a clear distinction between atoms
and molecules. Herapath develops a kinetic theory of gases to explain phase tran-
sitions. The kinetic theory of gases is improved mainly by Clausius, Maxwell, and
Boltzmann, who provide the basis of statistical mechanics. During this century,
crystallography also makes progress, and is related to the atomic point of view
through the work of Delafosse, Pasteur, and Bravais. The elementary pieces
consist of a lattice on which there are molecules.

Though there were strong arguments for the existence of atoms, the atomic
point of view was still a subject of controversy. One of Einstein’s papers of his
miraculous year 1905 is considered the paper ending this controversy. He explains
the brownian motion (observed by Brown in the XIX™ century): pollen grains
suspended in water have constant, apparently random, motion, and Einstein ex-
plained this motion by collisions with molecules of water, themselves moving
because of thermal agitation.

A systematic classification of atoms, with increasing masses, is done by Mende-
leiev, who identifies periodicities in properties of atoms. It leads to the periodic
table of the elements, from which Mendeleiev predicts the existence of new atoms,
which will be verified later. The periodicities of these properties could only be
understood with quantum mechanics, as will be explained later in this chapter.

The atomistic point of view was then generally accepted. But the structure
of the atom was not clearly understood. Electrodynamics was already known,
and Thomson’s experiments (at the end of the XIX'™® century) decompose the
atom, leading to the discovery of the electron. A few years later, Rutherford
projects alpha particles (which are positively charged) on gold foils, and observes
that while the majority crosses, some are deviated and even come back. His
conclusion is that matter is mainly empty, and that there are very concentrated
clusters of positive charges. He derives a model for the atom, which consists of a
positive nucleus with electrons orbiting around, like planets around the sun. This
model is however in contradiction with one consequence of electrodynamics, the
Bremsstrahlung: any accelerated charge loses energy by radiation. The electrons
of a classical atom, having a centripetal acceleration due to the nucleus, should
lose energy and crash very quickly on the nucleus. Classical physics can therefore
not explain the stability of atoms. Moreover, the experiments show that the
energy levels of atoms are quantized. This problem was solved with Bohr’s model,
which is the same kind of system, with certain orbits allowed only. He did not
give an explanation to this quantization.

The problem of the stability of atoms could only be solved with the discovery
of quantum mechanics, whose history is closely related to the history of atoms.
The electron is described by a wave function, whose square corresponds to a
probability of presence of the electron. The theoretical problem, describing the



hydrogen atom, was solved analytically in quantum theory, and led to results in
very good agreement with experimental data. For the treatment of other atoms,
with more than one electron, the statistical properties (the wave function is an-
tisymmetric under the exchange of particles, leading to Fermi-Dirac statistics)
of electrons have to be taken into account. The computation of various proper-
ties of the atoms can be done analytically both for the hydrogen atom, and for
atoms with a number of electrons tending to infinity. In between, approximation
methods were developed to compute them, the main method being Hartree-Fock
(described in chapter 1). But these numerical resolutions imply simplifications,
and effects like correlation energy (which will be discussed below) are left out.
The stability of atoms (and matter) was proven by Lieb in the 1970’s, in the
framework of quantum mechanics.

The quest for a deep understanding of matter led physicists to the current
model, the standard model, a quantum field theory which describes the nucleus
as constituted of protons and neutrons, which are constituted of quarks. We will
not develop this theory in this introduction.

Since the eighties, technical developments in semiconductor physics allowed
the creation of quantum dots, also called artificial atoms. A quantum dot consists
of a set of electrons evolving in a bi-dimensional plane (a quantum well), and
confined to a small region by an external potential, in the same way electrons of
an atom are confined by the potential created by the nucleus. Quantum dots are
of great importance both for scientific research and industrial applications.

In the case of an atom, the parameters like electron mass, confinement strength,
electronic interaction strength, are fixed. In the case of quantum dots, these pa-
rameters are controllable through the choice of the semiconductor material —
which allows a modification of the (effective) mass and the (effective) electronic
interaction — and the strength and shape of the confinement. This allows a more
systematic study. Moreover, the typical length, energy, and magnetic field in
quantum dots are such that we can explore domains which are impossible to
reach with atoms in a laboratory setting. For example, there are new effects
found for atoms submitted to a huge magnetic field (of the order of 10° Tesla),
which are impossible to produce in laboratory setting. But such strong magnetic
fields exist in neutron stars, and this is why astrophysicists are interested in the
properties of atoms in these regimes. This regime is attained for quantum dots
in magnetic fields of the order of 1 Tesla, which are easily produced. The study
of quantum dots can therefore lead to a better understanding of the behaviour of
atoms in neutron stars.

Quantum dots have also important — existing and potential — technological
applications, mainly due to their interesting transport and optical properties.
There are potential applications in diode lasers, amplifiers, and biological sensors.
Quantum dots are already used as blue lasers for DVD players.

Other very promising applications are in solar cells, where quantum dots based
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cells seem to have better efficiency than the current cells.

The quantum properties of quantum dots make them a hopeful candidate for
g-bits in quantum computing. One possibility consists of having several dots, with
one electron per dot. If they are close enough, their spins become automatically
entangled, and they play the role of the g-bits.

The many-body problem is not limited to the study of atoms and artificial
atoms. It appears in numerous situations, among them nuclear physics, where
the particles studied are nucleons (protons and neutrons), chemistry, where the
particles studied may be molecules, as well as biology, where the particles studied
are large molecules.

Some effects in many-body systems are of great importance, although they
are very weak. Among them, the correlation energy and the energy oscillations,
which are discussed below.

Correlation energy

The correlation energy, which is defined as the energy beyond the Hartree-Fock
approximations, is weak, but has deep physical consequences in some systems.
The correlation energy explains, for example, the stability of certain systems,
and, more exotically, the color of certain metals. This energy is negative, the
Hartree-Fock energy being an upper limit to the true ground state energy.

For large atoms, it was proven by Teller’s theorem (Teller, 1962) that the
Thomas-Fermi energy (which is the asymptotic energy for atoms and molecules)
is unstable under the decomposition of a big molecule into any smaller ones: it is
the no-binding theorem. It is therefore necessary to go beyond the Thomas-Fermi
model, and pay particular attention to the correlation energy.

The correlation energy of the neutral atom has been obtained experimentally
for up to 18 electrons, as shown in Figure 1 (data is from Clementi (1963a,b);
Chakravorty et al. (1993)). This data corresponds to the difference between ex-
perimental and numerical Hartree-Fock data, where some effects (like relativistic
effects) are dropped — further details are given in chapter 3.

With so little data, it seems difficult to state that the correlation energy is
a linear function of N, as resulting from our computations. If it were linear, a
linear interpolation of this data provides, in Hartree,

—Eeprr = 0.043N. (1)

Energy oscillations

A basic model of atoms consists of a system of independent particles evolving in
the potential created by the nucleus at the origin. The Fermi-Dirac statistics is



Figure 1: Experimental correlation energy as a function of N
for the neutral atom.

therefore such that the electrons fill the first energy levels of the spectrum of the
hydrogen atom.

The radial symmetry of this system (combined with an accidental degeneracy
and the spin degeneracy) implies degeneracies, that is the electrons fill shells.
The energy of a shell is F,, = —# in Rydberg, and its degeneracy is 2n?. The
two first shells (which contain 2 and 8 atoms respectively) are explained by the
mentioned model. It is however too simple to explain the next shells, as can be
seen in the periodic table of the elements.

The physical and chemical consequences of this shell structure are huge: it
explains why the noble gases, their shells being completely filled, almost never
interact; it explains the tendency of atoms to bind together (in order to "fill"
their shells) to form molecules, which explains the existence of many molecules
and chemical reactions.

This shell structure is observable in the ionization energy of neutral atoms: the
atoms with filled shells are more stable, their ionization energy is therefore bigger
than for other atoms. This can be characterized mathematically (as was done by
Englert and Schwinger (1985a)). As shown in Figure 2 (experimental data from
NIST — National Institute of Standards and Technology), the ionization energy
shows variations. The same function, multiplied by N %, as shown in Figure 2
as a function of N %, shows a very interesting property: a periodicity, which led
Englert and Schwinger (1985a) to compute the ground state energy of neutral
atoms, and to identify these periodicities in the parameter N 3.

Quantum dots (seen as artificial atoms) have the same properties: by con-
sidering a system of independent particles evolving in an external potential as a
basic model, the energy levels correspond to those of a two-dimensional harmonic
oscillator. These energies are E, ,, = 2n,+|m|+1 = n+1 in appropriate units,
and the degeneracy is 2n. In this case, a quantum dot can be treated in the same
way as an atom, as it was done by Kouwenhoven et al. (2001), from which Figure
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This model is discussed in more detail in chapter 4. The values for which
the shells are filled show a periodicity as a function of v/N, as predicted by our
computations done with a refined model.



Structure of the thesis

Some preliminary knowledge is required to understand this thesis: the reader
should be familiar with quantum mechanics. A good book on this topic is "Quan-
tum mechanics" by Schwinger (2001). The reader should also know functional
integration over real and Grassmann variables. A nice book on functional inte-
gration is "Path integrals in quantum mechanics, statistics, polymer physics, and
financial markets" by Kleinert (2004). For the Grassmann variables we recom-
mend "Quantum many-particle systems" by Negele and Orland (1988), where the
formalism we need is developed, and from which our notations are taken.

The thesis is divided in two parts: in part I, we develop the general method
for the computation of the ground state energy of many-fermion systems, and
compute the correlation energy for both atoms and quantum dots with the men-
tioned method. In part II, we proceed to the computation of the ground state
energy of quantum dots (with radial symmetry), as an application of the method
developed in part I.

Part I is organized as follows: we start with an introduction (chapter 1),
where we define and discuss the model of the atom, and discuss the existing
results on the subject. In chapter 2 we develop the new method, and obtain, for
the ground state energy, the Hartree energy at lowest order, the exchange energy
at first order, and the correlation energy at second order. These energies are
expressed as functionals of a potential, which satisfies a self-consistent equation.
The correlation energy is computed in chapter 3 for both atoms and quantum
dots.

Part II is organized as follows: we start with an introduction (chapter 4),
where we define and discuss the model of the quantum dot, and discuss the exist-
ing results (both theoretical and experimental) on the subject. In chapter 5 we
proceed to a semiclassical Hartree-Fock development, with a specific discussion
for its application to quantum dots. We derive the equation for the self-consistent
potential, and obtain the Hartree and exchange energies as functionals of this po-
tential. As this approach does not contain energy oscillations, those are obtained
with the development of another approach, done in chapter 6, where the energy
oscillations are related to the periodic orbits of the classical dynamics in the self-
consistent potential. In chapter 7 we solve the self-consistent equation to find the
density, which does not depend on N — after a scaling — but depends on a (small)
parameter p related to the strength of the confining potential. The limit p — 0
has an analytical solution, and the numerical solution is obtained in the small p
regime, as a function of this parameter. In chapter 8, this solution is introduced
in the Hartree, exchange, and correlation energies to obtain the smooth part of
the energy of quantum dots. This smooth energy is a polynomial of N and p.
We also compute the energy oscillations at lowest order, using the self-consistent
potential at lowest order (for which we have an analytical solution). The smooth
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and oscillating energies are compared to experimental results.
The thesis ends with the conclusion and perspectives.



Part 1

Many-fermion systems and
semiclassical atoms






Chapter 1

Introduction

Contents
1.1 Atom description . ... ............ 0.0, 11
1.2 Themodel. ... ............ o, 12
1.3 Theoretical approaches of the N-body problem ... 13
1.4 Theoretical results —atoms . ... ........... 14

The objective of this chapter is to describe atoms, to describe and discuss its
modeling, and to present existing approximations for the treatment of N-fermion
systems, and theoretical results on the computation of the ground state energy
of atoms.

We qualitatively describe an atom, before discussing its modeling. We discuss
the existing results for the asymptotic smooth energy, as well as the theoretical
treatment of the energy oscillations.

1.1 Atom description

As explained in the general introduction, it took a long time until the current
understanding of the atom was reached. This model consists of a nucleus, con-
stituted of A neutrons (no charge) and Z protons (positive charge), and a cloud
of N electrons. For a neutral atom, as we will consider, N = Z.

The typical size of the nucleus is 107m = 1 fermsi, and the typical size of
the atom is 1071%n = 1 Angstrom, which makes a ratio of 10° between the sizes
of the nucleus and the atom.

The masses of a neutron and a proton are very similar (1.67 - 10727kg) while
the mass of an electron is much smaller (9.11-1073'kg). The ratio is of the order
of 103.

11



12 1. Introduction

In the atomic nucleus, the forces in play are the so called weak and strong
interactions, and the energy excitations are of the order of 1MeV. The electrons
are submitted to electrostatic interactions, and the energy excitations are of the
order of 1Ry ~ 10eV, which corresponds to a ratio of 10° between the excitation
energies.

1.2 The model

Considering the typical size of an atom, we will work in the framework of quan-
tum mechanics (further considerations will allow us to work in the semiclassical
regime).

The ratio between the masses of protons and electrons is so high that we will
consider the protons to have an infinite mass, their position therefore being fixed.

Moreover, the ratio between the size of the nucleus and the electron cloud is
so high that we will consider the nucleus to be a point, located at the origin.

The ratio between the energy excitations of the nucleus and the electrons is
so high that we will only take the excitations due to the electrons into account.

We will consider that the atom is in the vacuum. Moreover we will neglect the
gravitational interaction, as well as relativistic effects (even though Figure 1.2(a)
shows that, for N large, they are not negligible). We will consider the classical
electromagnetic field.

Based on these concepts, the system consists of a set of N electrons with
mutual electronic interaction, evolving in three dimensions, and subjected to a
confining potential produced by electrostatic interactions with the N protons
located at the origin. The hamiltonian of this system is

N N N 9

W R DI T

= =1 7 i,j=1,i#j

where m is the electron mass, e = \/#70’ while ¢ is the charge of an electron and

€o the dielectric constant (in the vacuum).

This hamiltonian is written in the (arbitrary) MKSA units. It is however
more comfortable to work in atomic units. The energy unit is the Hartree (which
equals two times the Rydberg)

met
Ey =2Ry = e = 27.2€V, (1.2)

and the length unit is the Bohr radius

ap = — = 0.534. (1.3)
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The energy unit can be expressed in terms of the length unit
2
e
Eg=—. 1.4
n== (14)

The new variables are, writing them with a hat,

. H x " oF
H - r — - = k_. 15
Ex T 4 o0k M3k (1.5)
The hamiltonian now has the very simple form
N N
. 1 N N 1 1
H _ — = A,L — = - T ~ - 16
24 Z|$z’+22|$z—$g| (16)
i=1 i=1 i,j=1,i#j

This hamiltonian will be the starting point of our developments. The confining
potential will be generalized to an arbitrary one, and the ground state energy of
such a system will be computed for a large number of electrons in chapter 2.

1.3 Theoretical approaches of the N-body prob-
lem

The N-body problem (we will always consider fermions) cannot be solved exactly,
and different approximation methods were developed to study properties of N-
body systems. We will describe some of them.

The Thomas-Fermi model is a mean-field theory: the N-body system is sim-
plified to a one-body system: one particle feels the average interaction from the
other particles. The density is then computed through a self-consistent equation.
This approach is adapted for a system with a large number of particles (and be-
comes exact in the limit of an infinite number of particles). One advantage of this
approach is that we only deal with the density (a function of d variables), and
not with a wave function of an N particle system (a function of dN variables).

Another approach is the Hartree-Fock approximation: it consists of writing
the wave function as a product of one-particle wave functions, and finding the
wave function which minimizes the energy. The hamiltonian itself depends on
the wave function and the solution has to be found iteratively, numerically. It is
possible to consider a simple product of wave functions (Hartree approximation)
or an antisymmetrized product of wave functions (Hartree-Fock). As it is numer-
ically demanding, this approach is best suited for systems with a low number of
particles.

The semiclassical Hartree-Fock approach (as developed in detail in chapter 5)
consists of considering the wave function to be an antisymmetrized product of
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wave functions. These are one-particle wave functions, the N first eigenfunctions
of a one-particle hamiltonian, whose potential is determined self-consistently.
More precisely, it is determined by minimizing the energy of the system in the
semiclassical framework. This framework allows the expression of the potential as
a function of the density, which leads to a self-consistent equation for the density.
The energy can then be expressed as a functional of the density. At lowest order,
this approach yields the Thomas-Fermi model. The advantage is that through a
perturbative expansion, it can be extended beyond Thomas-Fermi.

The last approach we describe is the density functional theory (DFT). It is
based on the Hohenberg-Kohn theorem, which states that there is a one to one
correspondence between the ground state wave function and the ground state
density, and that this density minimizes the ground state energy. However, this
theorem does not provide the energy as a functional of the density, and approxi-
mations have to be made.

1.4 Theoretical results — atoms

The different techniques for the treatment of the N-body problem were very often
developed to solve the problem of the atom. This is what Thomas (1927) and
Fermi (1927) did independently. They used a mean-field theory: the many-body
problem is simplified in a way that it becomes a one-body problem, and the elec-
tron considered is submitted to a mean-field potential, consisting of the confining
potential, plus the mean potential the electron cloud produces. It therefore pro-
vides a self-consistent equation for this potential. This mean-field approach is
now known as the Thomas-Fermi model. It was done rigorously by Lieb (see,
for example, (Lieb, 1976)), who proved that the ground state energy obtained
with the Thomas-Fermi model is asymptotically equal to the quantum ground
state energy in the limit of an infinite number of electrons Z. The energy is
proportional to Z 5

This model was improved and many physicists provided smooth corrections
(that is corrections in inverse powers of Z3): Scott (1952) was the first to propose
a Z3 correction due to the innermost core electrons (where the confining potential
is huge). Earlier, Dirac (1930) added the contribution of the exchange energy (of
the order of Z3), and von Weiszéicker (1935) the gradient contribution to the
kinetic energy. These corrections provide the asymptotic ground state energy.
A modification was done by Englert and Schwinger (1985b), who did the most
comprehensive work on the topic. They worked in what we call the semiclassical
Hartree-Fock model (as will be developed in detail in chapter 5), which provides,
at lowest order, the Thomas-Fermi model. It also provides smooth corrections,
given by inverse powers of Z 5. The innermost core electrons were treated outside
this model, because the confining potential is divergent at the origin. It provides
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a term of the order of Z g, as obtained by Scott. They obtain the exchange
energy, like Dirac, but also a new term arising from quantum corrections to the
kinetic energy, which are of the order Z 5 They obtain results which are in very
good agreement with the reference solution (which are Hartree-Fock simulations,
as there are no experimental results for Z > 28, up to which Hartree-Fock and
experimental results agree very well), as shown in Figure 1.1, taken from (Englert
and Schwinger, 1984). The final result provides the smooth energy (expressed in

atomic units):

_Esmooth 1 _1
Y 1.537Z5 — 1+ 0.540Z"5. (1.7)

25 50 75 00 125

Figure 1.1: Comparison of calculations of the total binding en-
ergy. Crosses are Hartree-Fock (HF) data; curve (a) is Thomas-
Fermi (TF) energy; curve (b) is TF with corrections of relative
order Z~3; curve ¢ is TF with corrections of relative order 7735,

These smooth corrections were rigorously made by Feffermann and Seco,
whose work is summarized in (Feffermann and Seco, 1997). They proved that
Schwinger’s correction is correct.

So far we have discussed the smooth contribution to the energy. But what
about oscillatory terms? The energy oscillations were studied in detail by Englert
and Schwinger (1985a) (computations are developed in more detail in (Englert,
1988)). The energy oscillations were computed analytically in the semiclassical
Hartree-Fock approach and were compared to numerical Hartree-Fock results,
considered as a reference solution. Comparison with experimental data is not
easy: real atoms include relativistic effects. To verify the reference solution,
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Hartree-Fock simulations are compared to experimental results in Figure 1.2(a)
for up to Z = 20. On this figure, relativistic numerical results are shown, and
are in good agreement with experimental results (although not exact, numerical
simulations being obtained by a simplification of the real problem). On the same
figure, Hartree-Fock simulations (which are, of course, non relativistic) are shown.
We observe that they are in very good agreement with relativistic results up to
Z3 = 2. We also observe that the energy oscillations are a non relativistic effect.
This is why Hartree-Fock results are a reference solution, and are used to validate
semiclassical Hartree-Fock results. The comparison is shown in Figure 1.2(b), and
we observe that the energy oscillations obtained this way are in good agreement
with the reference solution. The oscillations are quasi-periodic functions of Z %,
and their magnitude is of the order of Z 5,
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(a) Binding-energy oscillations. Stars (b) Comparison of semiclassical pre-
are experimental values for Z = dictions for the nonrelativistic binding-
1,...,20. Curve (a) shows non rel- energy oscillations (curve (a)) with the

ativistic HF oscillations. Curve (b) HF prediction (curve (b)).

shows relativistic simulations.
Figure 1.2: Energy oscillations

Feffermann and Seco (1997) tried to establish these oscillating terms rigorously
but they could not prove it completely. They could prove that there are oscillating
terms of the order of Z %Jr%, and of a period of the order of Z %, but they could
not prove that the remaining terms (called the error terms) are of lower order in
Z.
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The objective of this chapter is to obtain a formula for the ground state energy
of a system of many fermions, with a new approach using functional integration
over Grassmann variables, up to a certain order in a small parameter (given by

17
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an inverse power of the number of electrons N). All developments are done in d
dimensions.

This new formalism is developed in this chapter, and will be used in part II
with an application to quantum dots.

We start this chapter by proceeding to a scaling of the energy and length,
in order to see that we can work in the semiclassical regime. We proceed to
the developments, whose main ingredient is the use of the Hubbard-Stratonovich
transform. We then establish a formula for the grand-canonical partition function,
from which we compute the pressure, as an expansion in an inverse power of
N. We find that the lowest order term corresponds to the semiclassical Hartree
pressure, while the first order provides the exchange term (their sum is therefore
semiclassical Hartree-Fock). We then compute the second order corrections and
find new terms. We take the limit of zero temperature to obtain the ground state
pressure, from which we deduce, by a Legendre transformation, the energy of the
ground state. The new corrections are universal, in the sense that they depend on
the dimension of the system only, not on the specific properties of the problem.

The grand-canonical partition function is

QB 1) = Trpe AH=1N) (2.1)

where Trr is the trace over the Fock space of fermions, which will be explained
later in this section. The pressure is

Pac(B.1) = 5 Q(3.0) (2:2)

From this point we need some thermodynamics to obtain the energy of the system.
The free energy is obtained from the pressure (which is the opposite of the grand
potential) by a Legendre transformation with regards to p:

F=FE-TS=—-P+ uN. (2.3)

In the zero temperature limit, the term with entropy S vanishes, and the energy
is equal to the free energy.

The grand-canonical description corresponds to a system of particles in con-
tact with a heat and particle reservoir. We however consider a physical system
with a fixed number of particles N, in the ground state. In the grand-canonical
ensemble the number of particles N is not fixed, there is a mean value Ngo (3, 1).
In the zero temperature limit, we evaluate this mean value as a function of u,
leading to N(u). We then impose this function to be an integer

N(p) = N. (2.4)

This relation gives i as a function of N.



2.1. Scaling 19

A similar treatment could be done in the canonical ensemble, by writing the
canonical partition function using

d6
Snnt = / = o0+ (M =N) (2.5)
7T

The canonical partition function is then written as

. o .
QC— Z/ 1,9+B,u Y(M— N)Tre BHyy _/ 27_‘_ (9+B,LLNQ C(ﬁ o+

10

5)
(2.6)
In the large N limit, the chemical potential is evaluated with a saddle point
integration over @, which leads to the same relation between N and p, at lowest
order, than what we find in the grand-canonical formalism. It remains to be
verified if this relation is the same at higher orders.
Let’s note that the usual Hartree Fock approach (used in Lieb (1976), for
example) also makes use of the grand canonical ensemble: an energy functional
is minimized, under the constraint [ d%zp(x) = N, making a chemical potential

appear as a Lagrange multiplier.

2.1 Scaling

The general hamiltonian of a system of /N interacting fermions is, in appropriate

units,
A N N

NA‘ )
DICEO RIS S CE I
=1 =1

=Li#j
where V,,; is the external confining potential, and V is the interacting potential,
which will only depend on the interparticle distance:

l\DIn—

V(g 2;) = V(|2 — &), (2.8)

and is therefore symmetric.

What does "appropriate units" mean? It means that we are working in a
system of units in which all the fundamental constants of the system (%, m, the
confining potential constant, the interaction potential constant e) are set to 1,
as it was done in equation (1.6) for the atoms. This can be performed for any
system, and will be done in chapter 5 in the case of quantum dots.

To identify our framework we perform relevant scalings. Let’s proceed to the
scaling of the length unit

@ 00
[ _— s — =
N> o7 OuF ok’

~

T— T =

(2.9)
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as well as the scaling of the energy

X H
He H= (2.10)

We now want to find optimal values for A and v. The new hamiltonian H is

. 1 XA X e SRR T JRES
- _m217 + Zlm‘/eact( mz) + 5 Z7é WV( x;, a:j).
i= i= i,j=1,i#]

(2.11)
To proceed further we need some information on the confining and interacting
potentials. We need to know how they scale. For simplification we will consider
a special case: the three-dimensional electron-electron interaction:

1

|z — x|

Vizi, z;) = (2.12)
Let’s note that this will be the interaction in the two cases we will study later
(atom and quantum dot).

The energy (2.11) becomes

. 1 XA X Lo ooy 1 1 N 1 )13
__—N(VJFQA);?_'—EW ext( )+§N7+>‘ j;;éj ’wi__wj‘. ( . )

The main idea of considering a large number of particles N is that one particle
(the particle i) will feel the mean energy of all others, which will be

N7+/\ pra— | (2.14)
J= 1,#% ]/
o(N)
This mean energy will be of the order of 1 if
y+A=1 (2.15)

This is the first condition on these parameters. The second one will be obtained
by imposing the density to be normalized to N. We know from usual semiclassical
results that the density is given by p ~ ﬁ, where h? is the prefactor of , Which is
h = NW — in our problem. Let’s suppose that this value is small, Wthh allows us
to work in the semiclassical regime. This hypothesis will be verified a posteriori.
Moreover we want the density to be of the order of N for an N-particle system.
This leads to the second condition:

dvy + 2dX = 2. (2.16)
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These two conditions lead to

7= 2_%7
A= 21

Returning to the hamiltonian (2.13) we find

1 SA X 11 & 1
H=—S 204N — Vo (Nilz) +-— = (217
Na 121 2 121 N2—3 t( ) 2N ij%;éj |QSZ — CEj| ( )

As supposed for the calculation, we are in the semiclassical regime: the prefactor
of $is 1y < 1.
Ni
Let’s have a look at the case of the neutral atom. In this case the dimension
is d = 3, and the confining potential V(&) = % Applying the scaling we find

Vewt(x) = ﬁf/m&(]\f%lw) = |—910| The scaling is perfect, in the sense that /N has

totally disappeared from the confining potential. For the atom we have h = N %,
and the length scale is of the order of N 5. These are well-known results.

The case of quantum dots is treated in a similar way. It is a two-dimensional
system (as will be explained later), the interacting potential is the same, and the
confining potential is sometimes modeled as f/(ﬁ:) = %/{N &°. The factor N is
"unnatural": the confining potential should not, a priori, depend on the number
of electrons. We introduce it however, in order to have a system which scales as
we want. We will justify this approach later (we can consider either (N, k) or
(N,k = kN), where k would be the real confining strength). We find & = Nz,
and the length scale is of the order of N = 1. (We will see later that this length
scale depends on x, which, in the end, depends itself on N. We will find that the
length scale is finally of the order of N %.)

We want to determine the energy of the following hamiltonian (writing
L Ve(Nila) = Vig()):

N?Ta
N N 11 X 1
H=—-&3 A, Vowr(i) + = — S 2.18
EZ +Z t( )+2N,.Z4‘5L‘i—l‘j’ ( )
=1 i=1 1,j=1,i#j
where €2 = —5. We note /i = € to avoid a wrong physical interpretation.

2N d

2.2 Partition Function

As explained in the introduction, we first express the grand-canonical partition
function. It consists of considering a system whose particle number is not fixed.
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The second quantization is therefore best adapted, and the hamiltonian (2.18)
becomes, in the {|x)} representation, including the spin o:

=3 [deilenl-da vl

iy 2 / ddm/ Ay (@, 0)d 1 (y, o)V (@, )i (y, o' )@, o), (2.19)

o,0’'=1

where ¥f (2, 0), 1(x, o) are the creation and annihilation operators of the state
|z, ). The spin o does not influence the energy; it only has an effect on the
degeneracy of states. We consider a spin which can take an arbitrary number of
values s. For the electrons we will take s = 2.

The grand-canonical partition function is given by the trace
Q(8, 1) = Trge P(H1N), (2.20)

where N = Se oS d%a)t (2, 0)ih(e, 0) is the operator which counts the number
of particles. F is the Fock space (for fermions), which consists of all the pos-
sible antisymmetrized quantum states of N particles, N varying from 0 to oco:
F = ®¥_oFn, where Fy is the space of states of an N-particle system. It is con-
structed from the one-particle Hilbert space ‘H by antisymmetrizing its N-tensor

product: Fy = A (H®Y).

There are various techniques to evaluate this partition function. We will per-
form the Fock space integration by using functional integration over Grassmann
variables, which are anticommuting variables. This approach consists of integrat-
ing over the set of all coherent states of the system, which forms a (overcomplete)
basis. The coherent states have the strange property of not being states with
a fixed number of particles (they are not eigenvectors of N ). Moreover, in the
case of fermions, they do not even belong to the Fock space, which thus has to
be extended. They also imply the necessity to introduce a new kind of object,
the Grassmann variables. A good explanation is given in the book of Negele and
Orland (1988), from which our notations are taken.

Using functional integration over Grassmann variables we find

QB, 1) = / Dy Dipe5" ], (2.21)
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where the action is

S[p* b = Z/ddmdw*(m,a, t) [0 + (—€A + Vo () — p] ¥(, 0,1)

11
+§N00221/ddw1dt1dd$2dt2¢*($1,01>t1)¢*($2702,t2)
xV (21, x2)0(t1 — to)(xa, 02, t2)Y(x1, 01, 11).
(2.22)

The integration over the positions (x, €1, ) runs over the entire space and the
integration over the imaginary times (t,t1, ;) from 0 to (.
The boundary conditions are antiperiodic:

U(x,0,0) = —Y(x,0,0) (2.23)

in a continuous description of the problem.
Let’s note that the integration is

/Dw)w = /Hm*(-,a,-)m(-,a,-). (2.24)

We integrate over s fields, each corresponding to a given value of the spin.

If the action S were quadratic in (¢*,1), an exact solution could be found.
Hence, using an integration equality for the second term, we will express this
action as a quadratic form in those fields. This integration equality, known as
the Hubbard-Stratonovich transform, is

L Dpe= 2 @IV 19)+i(pl @)

e 3110 [ Dge TV (2.25)
where we used the notation
(F]Alg) = / Ay Aty Ayt (@1, 1) A(mr, by, B, 1) g (0 1a)  (2.26)
and
(f19)= [ dtadtf(@.09(a.1), (2.27)

the real scalar product.

This equality is very well known in field theory and was already applied to
systems of fermions by Blaizot and Orland (1981) and Rebei and Hitchon (2003),
even to the specific problem of atoms by Dietz et al. (1982). In a non continuous
formulation this equality states that the Fourier transform of a gaussian is a
gaussian.
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In this formula ¢ is a real variable, and p is chosen

p(x,t) = (@0 t))(x,0,t) (2.28)

and has the physical interpretation of a density. The integral operator V is
V(xy,t1, o, ta) = V(x1, 2)0(t1 — ta), (2.29)
its inverse being simply
V_l(azl, t1, @o, ta) = V_l(ml, X2)0(ty — ta). (2.30)

Introducing equality (2.25) in equation (2.21) we find

Q= j%[ / D¢DyY* DipeSov"v] (2.31)

where the action is

Sord) = Ve + Y [ dledtt(@on[o
o=1

+(_€2A + ‘/;It(w)) — K= Z¢($’ t)}¢(w7 g, t),
(2.32)

and the normalization constant
N = / Depe™ 2 @IV 19), (2.33)

The action is now a quadratic form in the Grassmann variables, its exact calcula-
tion could be performed. However, we would then have to evaluate a complicated
expression of ¢ with a gaussian measure, which would be hard to treat. This is
why we proceed, taking advantage of the large factor N of the gaussian measure,
to the change of variables

0(x,t)

d(x,t) — O(x,t), oz, t)= N + W (x), (2.34)

where the shift will be useful for canceling terms out, W () being determined
self-consistently later.
In these new variables, the partition function (2.31) becomes

Q= %[ / DOIDY*Dipe 0w V1, (2.35)
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where the action is

S0l = 5OV 0+ VR OV W) - W]V W)

+ Zl / d’xdty* (z, 0, t) [at + (=€ A+ Ve () + W ()

O(x,t)
- — i —— x,o,t),
oS Y( )
(2.36)
and the normalization constant is
N = /Dee—%“"”‘l"’). (2.37)

The integration over the Grassmann variables can now be performed exactly.
Writing

1 1ig/—1 .
v / Do V0 f(9) = (£(6))o1. (2.38)
we obtain
» , . 10
Q=3 WIVIW) <6—NWV W) det * (K — —)> , 2.39
<) (2:39)

where K is the integral operator with the kernel

K(wl,tlwg,tQ) = (5<t1 — t2)(5<$1 — CUQ) <8t1 + (—€2A1 + ‘/;zt(wl) + W(.’Bl))J—/,L),

=h(x1)

(2.40)
and 0 is seen as a diagonal operator, whose kernel is

0((131, tl, o, tg) = 5(t1 — t2)5($1 — wg)H(wl, tl) (241)

The expression (2.39) is a very good starting point for a perturbative expansion
using the small parameter \/—% We use

0 i
det* | K —i— ) = det*Kdet* (1 — —K'6
() s (o )
_ det SKesT&"ln<]lf\/%K_19>

s 15 _ S -
= det*K exp ( — \/—NTr (K7'0) + oy (K 19)2)

18 13 S 1\ 4 s
Xexp(gN Tr(K 0) —mTr(K 6’) —I—O(N ))

3
2

(2.42)
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The first term of the expansion will be used to compensate exactly the term
linear in @ of the action of the partition function (2.39). This will lead to the
self-consistent equation, which determines W.

The second term will be treated perturbatively, using the gaussian measure
for the real variables . Its treatment is the one-loop expansion. The third term
will not contribute: the measure is gaussian, hence at this order, an odd term in
6 will be zero. The fourth term will also be treated perturbatively, using Wick’s
theorem. It corresponds to the two-loop expansion.

2.2.1 Propagator

Before proceeding to these developments, let’s determine the inverse operator
K~!. Tt is a propagator, we note it G. More precisely it is the propagator of a one-
body problem of fermions, with the hamiltonian (written in second quantization)

~

h = / dlxipt (2, 0)[—EA + Ve (@) + W ()] (2, 0). (2.43)

Let’s note that it is the hamiltonian of the system with fixed spin o. In the
following developments, the spin indices will be implicit.

We can already anticipate our results by giving a physical interpretation of
W: it will correspond to the mean field potential.

h is a one-body hamiltonian, whose eigenvectors {1, }o>1 clearly form a basis
of the one-particle quantum states. A detailed study in the book of Negele and
Orland (1988) leads to the result

Gapty,t2) = (Yol Glt1, 12)|¢5)

1
— o—(eamm)(ti—t2) [Q(tl —ty—€) — m} Oa,3

1
= (Yal Y e {9(751 —ly—€) = m}Wﬁ(%Wﬁ)

1
= (ol M=) [9(?51 —ta—€) — m] [¥s)

= (Yale” "RG0t —ty — €) — fa(h — )] [1p), (2.44)

where we introduced a small parameter ¢ — 0 to deal with the discontinuity
problem at times t; = t,. We introduced the Fermi-Dirac distribution

= L 2.45

fﬁ(e—ﬂ)—m- (2.45)

In an operator description, this result is

G(tl, tg) = 67(h7'u)(t17t2) [9(251 — tz — 6) — fg(h — /L)] . (246)
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It leads to

G(azl, tl, o, tg) = <$1|G(t17 t2)|$2>
(1| D e BT [0t — 1y — €) — fa(ea — p)][tha) (Valz2)

=3 O 91, — t, — €) = fofen — ) (@) (@)
i (2.47)

Hence, if t; > t, the propagator will be

Gar,ty, @a,ts) = Y e ORI — fo(eq — )] U5 (@a)dal@:),  (2.48)

«

for t1 < to

G(x1, b1, 2, t) = — Z 6_(8“_“)(t1_t2)f5(€a — )5 (x2) Yo (1), (2.49)

and for tl = t2 =t

Glai,t, @, t) = = Y folea — WVa(@2)ta(@1) = —pFp(@a 1), (2.50)

where p%.p (22, 1) is the two-body density matrix, with the Fermi-Dirac statistics,
for particles with fixed spin o. The total two-body density matrix is

s

prp(®s,®1) = Y php (@2, T1) = 5pfp(@s, 1), (2.51)

o=1

because p%, (22, x1) is independent of o.
For times t; = t, =t and positions ; = &3 = @ we find

Gla,t,z,t) = =) folea — p)vi(@)tal) = —pfp(@), (2.52)

where p%,(x) is the fermion density with the Fermi-Dirac statistics, for particles
with fixed spin o. The total density is

pen(@) = 3 pip(@) = spip (). (2.53)

In the zero temperature limit, using

B—o0

fole =) — O(u—e), (2.54)
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we obtain
Glmr, t, @, t) =F —p%(w, 1), Gla,ta,t) = —p7(x), (255

which are the two-body density matrix and the density of a system of N particles
in the ground state, for particles with fixed spin . The total density matrix is

p(xe, 1) = Zp”(wg, x1) = sp’ (@2, ). (2.56)

o=1

The density p?(x) is normalized to %, and the total density is given by

p(@) =5 (@) = 57 (@). (2.57)

We will also use the result

(1= fale — w)] == 0 — p). (2.58)

Let’s finally note that, when evaluated at equal times t; = t5, the propagator
is time-independent.

2.2.2 Self-consistent equation

Introducing (2.42) in the partition function (2.39) we determine W such that the
term linear in @ is eliminated.

To proceed we still need to have an explicit expression of the following objects
(using (2.41) and (2.52)):

Tr(GH) = / Al dt Ao dt, Gy, th, 0, 12)0(2o, ty, @1, )
= /ddwdtG(:v,t,a:,t)H(w,t):— dxdtpSp(x)0(x,t), (2.59)
and
OV = / A, dty ATy dtad(mr, 1)V (0, )5 (H1 — t2)W ()
= /ddmlddmgdte(ml,t)v_l(wl,mg)W(azg). (2.60)

It leads to the following self-consistent equation:

i\/ﬁ/ddwdt —/ddyV_l(ac,y)W(y)—l—%sp%D(:c) O(xz,t) =0. (2.61)

=prp(x)
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We impose this result to be verified for any function €, hence the self-consistent
equation is

1
[dw @)Wy = Sor(a) (262)
Applying V on the left we find
1
Wia) = [ dV (@ vproly) (2.63)

This is a self-consistent equation for W: the density p is the density of a one-body
problem, with a one-body hamiltonian h depending itself on W (equation (2.43)).
Let’s replace W in this hamiltonian by its calculated value:

b= [ dleii(@) {—emwm(@ oy [V @) ). @200

The interpretation of this term is now completely clear: it consists of the mean
potential produced by the other electrons, acting on an electron.

2.2.3 Final partition function

Let’s replace W by its expression (2.63) in

WV W) = = (ool V o) = == / d'zd'yV (@, y)oro(@)pro (),

N2 N2
(2.65)

where we performed explicitly the integration over the imaginary times (which
provides a factor [3).

We can now write the partition function (2.39), using (2.42) and (2.65). More-
over we do not write the term cubic in 6 (which will not contribute at this order,
as it is a gaussian process):

O = det® Keaw [ 'ed'yV @ypro@)orp(y) <€ﬁTr(G9)2—4;2 Tr(Ge>4+o<N-3>> -
0,V—
(2.66)

The remaining term is of the order of N3, because the term of order N 5 is an
odd power of 6 (6°).

The term we have to evaluate with the gaussian measure contains a term
which is an exponential of a quadratic form in 6. Let’s write it explicitly:

STI'(GQ)z =S / ddwldtldd$2dt2G(w1, tl, o, tQ)G(CUQ, tQ, Iy, t1)9(:131, tl)G(wg, tg)
= (0|T16), (2.67)
where we defined

F('rBl? tl: Z2, t2) - SG(wla tla L2, t2>G(a}27 t27 Zy, Zfl) (268)
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The partition function can now be written as

3OIV==510)

Q = det*Keaw/ alzdiyV (@y)orp @)prp(y) | DO

= 3 - D5V
ng
X<e,ﬁTr(G€)4+O(N_3)> . (2.69)
\ 9,(\/*17%)/
£64

2.3 Ground state pressure

Introducing the partition function (2.69) in (2.2) we observe that the ground state
pressure is a sum of four contributions:

4 4
P(N) = lim l111@ => P=) lim 1 In Q;. (2.70)
ﬁ =1 =1 p—oo 6

B—00

Let’s discuss and develop these four terms separately.

2.3.1 P
The first contribution to the pressure, Py, is
1
P, = lim —det®*K, 2.71
where K is the operator
K=0+h-—pu, (2.72)

with A the one-body hamiltonian

h(@) = ~2A+ V(@) + / d'yV (@, y)pro(y). (2.73)

This pressure is simply the pressure of a system of free fermions, submitted to a
mean-field potential. Due to the factor ¢ < 1, the pressure can be treated in the
semiclassical regime. This will be done in chapter 5 in the case of quantum dots.
The limit of zero temperature implies prp — p.

Let’s note that the nature of the potential (in which only p(z) is involved, not
p(x,y)) is such that there is no exchange term. This exchange term will arise
from the perturbative treatment®.

'However, the exchange energy could arise from a one-body approach. A quite similar
method including this exchange term was done by Dietz et al. (1982).
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For # > 1, the determinant of K can be written as (Negele and Orland, 1988)

det*K = H 1+e (ea— “ H e~ Pslea=n) H 1 = e P Xalea<ny S(Ca=h),

{alea<p} {Bles>u}

(2.74)
where e, are the eigenvalues of the one-body operator h.

The pressure is therefore

N/s
Zea + uN. (2.75)
a=1

A detailed treatment of this term, in the semiclassical limit, for a two-dimensional
system, will be done in chapter 6 for the application to quantum dots.

232 P

The second contribution to the pressure, Ps, is

P, = lim llne% [ d4ediyV (x,y)prp(®)prp(Y)
B—o0

- o / dadiyV (z, y)p(a)p(y). (2.76)

The interpretation of this term is simple: it corresponds to the opposite of the
self-energy of the electrons. This self-energy is counted twice in Py, it therefore
has to be subtracted here.

The lowest order terms correspond to the Hartree approximation: it consists
of the mean-field energy, without the exchange energy. Hence our approach (in
which the expansion in inverse powers of N is controlled) shows that the dominant
contribution is the semiclassical Hartree approximation. Let’s note that it was
proven by Lieb (1976) and Lieb et al. (1995) that the Hartree approximation is
exact in the limit N — oo for atoms as well as for dots.

These results (P, + P») can be obtained through another approach, as will be
done later (see chapter 5), where we proceed to a semiclassical treatment of these
terms.
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2.3.3 P

The third contribution to the pressure, Ps, is obtained from ()3, which we expand
in powers of N=! (by evaluating explicitly these gaussian integrals):

f Dee_%(e‘vil_%le)
[ Dhe 3OV

det(V=1) \?

Qs =

=

 (det(d —1§vr))§
oo {-to (1= Lvr))
= exp {%TI(VF) + ﬁTr(VF)Q + O(N—3)} : (2.77)

The contribution to the pressure is therefore

1 o1 1 1 -
P3 = ﬁh—>nolo 3 InQs; = ,61520 3 <ﬁTr(VF) + WTY(VF)2 + O(N 3)) . (2.78)

We have to calculate these terms explicitly. The first one is
TI"(VF) = S / ddmldtlddwgdtQV(wl, wg)é(tl — tz)G(afg, tz, Iy, tl)G(ml, tl, o, tg)
= 5/ddwlddwgdtV(a}l,wg)p‘}D(azl,wQ)p}‘;D(wg,wl)

= ﬁs/ddmlddeV(azl,mg)p}’;D(wl,wg)pgﬂD(wg,azl), (279)

where we used the expression (2.50) for the propagator.
This term leads to the pressure

S
Py = ﬁ/ddwddyV(w,y)p"(%y)ﬂ"(W)
1 d,,qd
= 23N/d xdyV(z,y)p(z,y)p(y, ©). (2.80)

The spin degeneracy was inserted in the density to obtain the total density. A
factor % appears.

The physical interpretation of this term is simple: it is the exchange energy
of the system (with the right prefactor %, as established in chapter 5 in the
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semiclassical Hartree-Fock developments). Hence, up to this order, the energy
of the system is the Hartree-Fock energy. Our calculations therefore show that
the semiclassical Hartree-Fock approach is exact up to a certain order in inverse
powers of N.

Our approach shows that the Hartree-Fock approach is correct. But with
this approach we can go beyond this, by calculating the next corrections. We
will calculate corrections up to the order N=2. The first one arises from Q3. To
calculate it we have to evaluate

Tr(VT)? = 32/ﬁddmidtﬂ/(w1,m2)6(t1 — t9)G (o, ta, T3, t3)G (23, L3, o, Lo)
i=1
XV (23, x4)0(ts — t4)G (24, g, T1,t1)G (1, t1, T4, 14)
= 52 / ﬁddwidtldtQV(wl, )G (X, 1, T3, t2)G (X3, ta, T2, 11)
i=1
XV (23, )G (24, t2, 1, t1)G (X1, b1, Ty, t2).  (2.81)
We replace the propagator by its expression (2.47), and integrate over the imag-

inary times, separating the contributions for t; > t5 and t5 < t;.
We have

B g
I = /dtl/th(wz,tl,333,?52)(;(333,752,5132,151)(;'(331,t17$4>t2)G(w4,t2,ﬂ31,t1)
0 0
B t1
= /dtl/ dt2G<x27t17w37t2)G(m37t27m?vtl)G(wlvthm47t2>G(x47t27w17t1)
0 0

B B
+ / dtJ dtQG(mQa t17 I3, tQ)G(:BEI; t27 Ia, tl)G(wh t17 Iy, t2>G<w4a t27 xy, tl)
0 t1

= I+ I, (2.82)
with
8 t1
I = Ezt/ mi/‘dhe%%+%_%ﬂm““mwl—fbwa—uﬂfMQa—u)
a.B,7,0 0 0

X [1 = faley — )] fo(es — )95 (x3)ba(2)
XY (x2) Y5 (x3) 5 (@a) Yy (1) 15 (21) 5 (24).-
(2.83)

We have to separate the terms e, + ey # eg + €5 and e, + €, = €eg + €;.
Using the result

B t1 -8 _ 1
Adul<meW”ﬂ:§+377< (2.84)
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we find

L= Y 0 11— falea — )] Fales — 1)

(€a + €y, —e3—e5)

{a,8,7,0|eateyFegtes}
X [1 = foley — w)] foles — m)vi(ms)iba(as)
XV5(@2) V(@) V] (@) (1) 5 (1) s (a) - (2.85)

Bleptes—2p) _ pfeatey—2p)

>

{a,8,7,0lea+eyF#eg+tes}
x fales — 1) faley — 1) foles — )i (@3)ha(2)
XP(@2) V(@) V5 (@) (1) 5 (1) s (4) - (2.86)

P S [ Falea — )] Foles — ) 1= Fales — )] Foles — )

{a,8,7,0lea+ey=eg+es}
Xt (@3) o (®2) V3 (@2)1hs(23) ] (4) 1y (@1) 05 (1) s (24),
(2.87)

(ea Ye, —e5— 66)2 fﬂ(ea - ,u)

where we used the explicit expression of the Fermi-Dirac distribution (2.45).
We evaluate [ in the same way. Using the result

B 8 L 6] eM _ 1
/O dtl[ dtg@ )\(tl t2) - —X -+ )\2 5 (288)
1

we find

_ —f o _ _ flen —
I _{a,ﬂ,fy,5|e§«,7ﬁ65+e(§} CR—— eé)fﬁ( o— 1) [1— faleg — )]
X faley — p) [1 — fa(es — )] i (3)1ha (a2)
XP5(x2)Vp(x3) Y5 (@a) Vs (1) Y5 (21) 05 (2a)  (2.89)

65(5«14“37*2#) —_ 65(354‘@6*2#)
>

{a,8,7,0]ea +ey 7é35+66}

(eq + ey —eg— e5)? folea — 1) fales — 1)

X fa(ey — p) fales — p)a(xs3)a(x:)
XP5(2) (@) Y5 (@a) 0 (1) 05 (21)s(xs)  (2.90)

P23 falew = m)[1— foles — ) Foles — )1~ Fales — )]

{a,ﬁ,’y,é\ea +e’Y:65+65}

X o (®3) e (®2) V5 (2) s (3) V] (®4) 1)y (1) 005 (21) 05 (1)
(2.91)

Summing I; and I, we see that the terms (2.86) and (2.90) cancel out.
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Let’s treat the remaining terms, by proceeding to the change of the summation
indices (a,y) < (5,0) in (2.89), and replacing eg + e5 by e, + e, in (2.91). We
find

D (1= fslea — )]

{0,8,7,6|lea+eyFeg+es} Cat ey € 66)
x fales — p) [1 = faley — )] foles — )
(1 (@) (@25 (@2 (@) 05 (@), ()05 () s (@)

+¢Z(332)%(333)1/13(fﬂs)%(w2)M(ml)%(%)%(wzl)%(wl))
+6° D [1— falea — )] fales — ) [1 = fales — )] fa(es — o)

{azﬁv’Yvd‘ea +€7:€5+65}

XY (X3) V0 (T2) V5 (x2) s (23) 0 (24) 10y (1) 105 (21) 5 (24).
(2.92)

Taking the zero temperature limit (using (2.54) and (2.58)) we find

I = Z ( ﬁ 0(604 - :u)

{a.B,7,0|leateyFestes} €q + €y — €5 — 65)
x0(p—ep)f(ey — p)0(p — es)
(1 (@) (@) (@215 ()05 (@), ()55 (1) s ()

+¢2(mz)%($3)1/JE(333)%(962)%(%1)%(%4)%(%4)%(wl))
+5° Y Blea — )bk — ep)bley — B — es) P (s)als)

{a,ﬁ,'y,ﬂea +€’Y:eﬂ+e5}

XY (x2)Ys(x3) V5 (@a) s (1) 15 (21) 5 (24).
(2.93)

In order to use a continuous description of the energy, we introduce the density
of states

(e;x,y) 25 e — ea)Un(x)o(y). (2.94)

An expression of this density of states will be obtained as a function of the self-
consistent potential in the semiclassical limit.

Introducing the density of states into the expression for I, using the indices
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(04757% ) — (617627@3764 we find

1
I = ﬁ/ d61/d62/ d65/d64
(e1 4+ e3 — ey —ey)

<p (617m37w2)p (627$2,w3>p (637w47m1)p0<€47m17w4)

617m27m3) 627w37m2)p (63793175174),0 (6473347331))

/ d€1 / deg/ d63/ d645 61 + e3 — €9 — 64)

(61,$3,$2)P 62,932,333)0 (63,$4,~’B1)P (64,$1,$4)-
(2.95)

The second term of (2.95) is zero, because e; + ez > 2u while ey + e4 < 2, the
constraint e; + es = eg + ey is therefore never satisfied.

Introducing the result (2.95) in (2.81) we find a contribution to the pressure
P3 which is, using (2.78)

M 00 iz 1
P2 = a4 / d /d / d /d
3 4N2/H Li €1 0 €2 " €3 0 64(61+63—€2—€4)

X (p"(el, X3, T2)p° (€2, T2, x3)p" (€3, T4, 1)p° (€4, T1, T4)

+P0(€1, T2, 503),00(627 I3, wz)ﬂo(&s, T, 334)PU(€4, L4, 5111))
X V(a:l, wg)V(mg, a:4).
(2.96)

For the second term we proceed to the change of the integration variables (a1, x2)
— (x4, x3) and use the symmetry of the potential V' to finally obtain

1
= d¢ d d d d
3 2N2/H wz/ 61/ 62/ 63/ 64 €1+€3—€2—64)

61,583,3:2 P (62,332,5'33)0 (6377/‘4,501)0 (64,501,354)
XV(CL‘l,«’Bz) (5133,934)

(2.97)
234 Py
The last term we need to evaluate will be calculated using Wick’s theorem. The
reference measure will be (V! — —) However, as we are interested in calculations

up to the order of N=2, we will not consider the contribution arising from the
term . Therefore, the measure term we will consider is V1.
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Using a cumulant expansion we find, from (2.69):

Qs = <e 4132Tr<60>4+o<zv3>>6(v1 = o (O, L tONTH) (9 gg)

)

z|

This expression leads to the pressure
Py = — lim —— (Tr(GO)Y), ., + O(N ). (2.99)

We therefore have to evaluate

4
<TI'(G€)4>0’V_1_< / H ddwidtiG(wla tla T, tQ)G("B27 t2> I3, t3)G<$3, t3) Ly, t4)

XG(wlla t4) xy, t1)9($17 t1)9<m27 t2)0($3, t3>0(w47 t4)>
0,V—1

4
Z/ H Az dt;G(z1, 1, T2, 12) G (T, to, T3, 13) G (3, b3, T, La)

XG(:B4, t4, Ty, tl) <0(1B1, tl)G(wg, tz)&(ﬁﬁg, t3)9<.’134, t4>>0,V_1 .
(2.100)

Let’s establish the Wick’s theorem’s result we need. We introduce the generating

functional and use a usual equality (the fact that the Fourier transform of a
gaussian is a gaussian)

(V1) = 3, (2.101)

take its functional derivative with respect to j(x1,t1), j(@2,t2), j(x3,t3), (X4, t4),
and evaluate at j = 0. We find

(0(x1,11)0(22, t2)0(23, 3)0 ($4at4)>9v 1
+V (@1, @2)d(t1 — to)V (23, 24)(t3 — t4)
+V (@1, 23)0(t1 — t3)V (xa, x4)0(te — t4)
+V (@1, 24)0(t1 — t4)V (@2, 23)(t2 — t3).
(2.102)
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We can introduce this result in (2.100) to find

4
<TI' G9 >9V 1 = /HddwidtiG(wl,tl,332,t2)G($2,t2,$3,t3)
i=1

XG(.’Bg, t3, Iy, t4)G(£B4, t4, Iy, tl)
X (V(wbwz) (t1 — ta)V (@3, 4)d(ts — ta)
‘I‘V(Cﬁl,wg,) ( 1 — t3 Vv 1327334) (tg — t4)
t

WA
YV (@1, )0 (8 — t2)V (@, 25)5(ts — t3)>
(2.103)

4
/ H ddﬂiidtldtQG(ZBl, tl, o, tl)G(ﬂJQ, tl, I3, tQ)

XG (23, ta, Ty, t2) G (x4, o, X1, 1)
XV(ZCl, wg)v<.’133, 504)

4
+ / H ddmidtldtQG(:nl, tl, o, tz)G(iBg, tg, I3, tl)
i=1

XG(x3,t1, 24, t2)G (24,2, T1,11)
XV (x1, x3)V (2, x4)

4
+ / H Az, dt Aty G (), 1, o, 1) G (2, ta, T3, o)

X G(x3,te, Ty, t1)G (24, 1, 21, 1)
XV (xq1, )V (2, x3).
(2.104)

The third term is equal to the first one, which can be seen by proceeding to the
permutation of the integration variables: (x, s, €3, 4) — (X2, T3, T4, x1), and
using the symmetry of V. We find

4

<TF(G9)4>97V_1 = 2/HddwidtldtQG($1,t1,ZBQ,t1)G($2,t1,$3,t2)
i=1

X G(x3,to, Ty, t2)G (X4, o, 21, 1)

XV (a1, x2)V (23, x4)

4
+ / [ d%®idtsdtaG (@, tr, @, 1) G (o, b, @3, 1)

XG(x3,t1, T4, t2)G (X4, b2, 21, 1)
XV (x1, x3)V (22, x4)(2.105)
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We will evaluate these two terms separately. Remembering that when evaluated
at same times the propagator is time-independent, we have to calculate

B B
Jl = / dtl / dtQG(wQ,tl,.’Dg,tg)G(iU4,t2,CC1,t1) (2106)
0 0

and

B B
JZi/dtl/dtQG(mlatla$27t2)G(m27t27m37t1)G(w37t17m4at2)G(w4at27mlatl)~

0 0
(2.107)

Let’s start with the determination of J'. In the same way as previously, we
replace the propagator by its expression (2.47), and integrate over the imaginary
times, separating the contributions for ¢; > ¢, and t; < t5. Let’s calculate

B B
Jl = / dtl / dtQG(w27t17m37t2)G<m47t27w17t1)
0 0
B t1
= / dtl/ dtQG(mQat1a$37t2)G(m47t27m17t1)
0 0

g B
+/ dt1/ dtQG(IBQ,tl,CUg,tg)G(ﬂ34,t2,w1,t1)
0 t1
= Ji+ 5, (2.108)
with
B t1
Jio= - Z/ dtl/ dtge (ool 1 — fy(eq — )] fales — p)
o, 0 0
Xt (@3) Vo (@) (1) V5 (24).

(2.109)
We have to separate the terms e, # eg and e, = eg.
Using the result (2.84) we find
o= - ) (ea#i%) (1 — falea — p)] foles — )
{a,ﬁleasﬁeﬁ}
X5 (@) o (2) (1) s (24) (2.110)
B (eﬂ(eﬁ—u) — eﬁ(ea—u)) B B

{a,ﬁlga:#eﬁ} (601 - eﬂ)Q fﬁ(ea Iu)fﬁ(eﬁ Iu)

X5 (@3) V0 (®2) 05 (1)1 5(24) (2.111)
2
B U olew — ) Foles — mA(Esal@2) g s ).
{a.Blea=es}

(2.112)
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We evaluate J; in the same way. Using the result (2.88) we find

B S P pen— [~ foles — )

(aflengen) (Eo €8
XY (@3)1ha(@2) 5 (21)Ys(T4) (2.113)
Blea—n) _ pPBleg—w)
Z e (e _: )2 )fﬁ(ea_ﬂ)fﬁ(eﬁ_ﬂ)
{a,Bleates} .
X5 (@3) Yo (@2) V5 (21)s(24) (2.114)
—% D falea = p) (1= fales — )] U (s)ha(@) (@1 )s(s).
{a,Blea=¢es}

(2.115)

Summing J{ and J; we see that the term (2.111) and (2.114) cancel out.
Let’s consider the remaining terms, by proceeding to the change of the sum-
mation indices a < (3 in (2.113), and replacing eg by e, in (2.115). We find

P =S e pea— ) fales - )
{a,ﬁleaieﬁ}(ea 66)
X (W (s)tha () V(1) ths(24) + Vi (1) a(®s) 5 (23)1hs(22))

=3 Y [ falea — )] fales — )5 (@s)va (@) (1) s (wa).

{a.Blea=¢es}
(2.116)
Taking the zero temperature limit (using (2.54) and (2.58)) we find
g
P e Y e -
(€a — €p)
{avﬁleoﬁéeﬁ}

X (U (xs)tha () V(1) ths(24) + V5 (1) 0 (2s) s (23)1hs(22))
=B ) Olea — m)O(p — ep)(@s)ta ()t (@) s ().

{Oé,ﬂ|€a:€g}
(2.117)

Introducing the density of states (2.94), and using the indices («, 3) — (€1, e2)
for the continuous description of the energy, we find

o] I 1
J' = —5/ d€1/ d€2—<PU(€17153,332)00(627331,174)

© 0 (e1 — e2)
+pa(617w17m4)pa(627m37w2)>

o] Y
—62/ d61/ d€25(61 — 62),00(61,$3,332>pa<62,331,a}'4). (2118)
I 0
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The second term of (2.118) is zero, because e; > p while e5 < p, the constraint
e1 = ey is therefore never satisfied.

Introducing the result (2.118) in (2.105), and using (2.50), we find a contri-
bution to the pressure P, which is, using (2.99)

4
s o " 1
Ph= ova [Tt [ e [Fdea
4 2N?2 i1 L 0 (61—62)

X (p7 (e, @3, x2)p (€2, @1, T4) + p° (€1, 1, T4)p° (€2, T3, X2))
xp7 (21, 22)p° (X3, 1)V (21, X2)V (T3, T4).
(2.119)

For the second term we proceed to the change of the integration variables (1, x4)
— (3, x2) to finally obtain

4 0o u
S 1
P41 = _N2 / | | ddmz/u d@l/ov d€2—(61 — 62)p0<€1,$3,$2)p0(627331,334)
i=1

Xpo<$17 wQ)pU(an .’B4>V(w1, $2)V(w37 .’.C4>.
(2.120)

We still have to determine J?. We replace the propagator by its expression (2.47),
and integrate over the imaginary times, separating the contributions for ¢; > ¢,
and t1 < to.

We have

B8 B8
Z/dtl/dtzG(iBbtl,1'2,752)0(082,t27$3,t1)G(€B3,t1,11347?52)G(€U4,752,$1,t1)

/dt1 dt2 (1, t1, o, 12)G (X, o, T3, t1)G (3, t1, T4, t2)G (24, Lo, X1, 1)
B
/ t1/dt2G X1, b1, o, o) G (X, to, 3, t1)G (@3, t1, 4, to) G (X4, to, 1, t1)
=J2 4 J2, (2.121)
with

Z / dtl/ dtye™ (eatey—eg—es)(t1—t2) [1—fg( )] fﬁ(eﬁ—ﬂ)

a,B3,7,0
x [1 = faley = p)] fa(es — 1) v (@) tba (@)
X (@3 )hs(@2) ) (@)1 (23) 005 (@1) s (24).
(2.122)

We have to separate the terms e, + ey # eg + €5 and e, + €, = €eg + €;.
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Using the result (2.84) we find

2 B
Jio= > CR— (1 — fo(ea — 1)) foles — 1)

{a,8,7,0lea+ey#eg+es}
x [1 = faley — )] fo(es — )5 (@2)ba(zr)
X (@s)hs(@2) Y (@) by (23) Y05 (1) s (2a)  (2.123)

Bleptes—2p) _ pfeatey—2u)

folea — 1) fo(es — 1)

D

2
e é., — €en — €
{a76’7a6|€a+€7§éeg+65} ( @ + Y B (S)

X faley — m)fales — )P (@2)da()
X5 (@3)1hp(2) Y7 (®4) 0y (23) 05 (1) s (4)  (2.124)
62

+? Z [1— fa(ea — )] fﬁ(eﬁ —p)[1— fﬁ(e“/ — )]

{a,8,7,0leatey=eg+es}
x fa(es — )i (x2)va(21)
XY (x3)Y5(2) V) (@a) s (223) 05 (1) 105 (24). (2.125)

We evaluate JZ in the same manner. Using the result (2.88) we find

_— . €a — — faleg —
2= {a,ﬁ,y,aeg#m} e ey ey tea = WL~ Safes = )]

X faley — p) [L = fa(es — p)] i (22)1ba (1)

X () (o) ()16 ()5 (@1 s () (2.126)

eBleatey—2u) _ Bleptes—2u)
5 fa(ea — 1) fa(es — )

D

€ 6. —en—e
{@.B7.0leate,#es+es} (a+ oy 3 5)

x faley — p) fales — p)va(@2)va(Tr)
x1ps(@3) U (@2) V] (@4) Yy (®3) 05 (@1) s (Ta)  (2.127)

+% > falea —p)[1 = fales — )] faley — )

{a,8,7,0leat+ey=eg+es}
x [1 = fales — p)] Y5 (@) a(1)
X (x3)1s(22) V5 (24) ) (23) 05 (1) Y5 (2a). (2.128)

Summing J? and JZ we see that the term (2.124) and (2.127) cancel out.

Let’s consider the remaining terms, by proceeding to the change of the sum-
mation indices (a,7) < (3,9) in (2.126), and replacing es + e; by e, + e, in
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(2.128). We find

2= T 1 folen — )

e+ €64 —€g—e
{a’ﬁy’y,ﬂea‘i‘ew?ﬁeﬂ—&—e&} @ 0 ﬂ 5)

x foleg — ) [1 = fs(ey — p)] fales — w)
X (%(mz)%($1)¢§(9’33)%(«’132W;($4)¢w($3)¢§($1)¢6($4)

+¢2(5133)%(5132)%(932)%(931)1/@($1)¢7($4)¢§($4)¢6(w3)>
+0% > (1= falea — )] fales — 1) [L = fales — w)] fales — p)

{a»59’776|6a +ey=eg +66}

XY (@2) 0o (T1)05(23) V5 (T2) V) (24) 105 (23) Y5 (1) Y5 (24).
(2.129)

Taking the zero temperature limit (using (2.54) and (2.58)) we find

_ g
S = Z (ea + €y —eg— 65)9(% — )

{a.B7,8leatesFegtes}
x0(11 = e4)0(e; — 1)0(n — e5)
(21 ) 05 ()3 ()07 () () 05 () ()
0 () (205 () (1) (1) () 05 () s ()
+6% D Blea — b1 — e5)f(ey — )01 — €5)

{a,ﬁ,y,&\ea +ew:eﬁ+€5}

XY (®2) o (T1)U5(23) Y 5(22) 0 (24) 105 (23) 05 (1) Y5 (24).
(2.130)

Introducing the density of states (2.94), and using the indices («, 3,7,0) —
(e1, e, e3,e4) for the continuous description of the energy, we find

J? = 5/ del/ deQ/ deg/ de4
61+63—62—e4)

<p (€1, @2, x1)p” (2, T3, T2)p7 (€3, T4, 3)p° (€4, T1, T4)

+pa(€17 I3, wQ)pa(€27 I, wl)pg(e?n xy, $4)p0<€47 Ly, w3)>

(2.131)
/ del/ deQ/ deg/ desd(er +e3 —ex —ey)

617$27w1)P (627w37w2)p (63,334,w3)p (6473317334)‘
(2.132)
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The second term of (2.132) is zero, because e; + e > 2u while ey + e4 < 2u, the
constraint e; + es = eg + e4 is therefore never satisfied.

Introducing the result (2.132) in (2.105) we find a contribution to the pressure
P, which is, using (2.99)

1
2 d
P} = 4Nz/lld:cz/ der [aes [“aey [ani

X <p"(e1, Xa, 1) (2, T3, T2)p° (€3, T4, 3)p° (€4, T1, T4)

+)00(617 I3, w2>p0<e27 o, wl)PO<€37 Iy, w4)pg(e47 Ly, x3)>
XV(ZBl, azg)V(mg, $4)‘
(2.133)

For the second term we proceed to the change of the integration variables
(x1, 2, T3, x4) — (T2, 3,24, 1), and e; < e3 to finally obtain

1
pP? = d
f 2N2/Hda:l/ del/ deQ/ de;;/ de4 e

elmeawl)p (627m3;m2)P <€3am47m3)p (647331,334)

X V(wl, IB3)V(CB2, .’E4).

(2.134)

2.3.5 Total pressure
The total ground state pressure, up to the order N=2, is

P=py+p N ' +pa N2+ O(N?) + puN, (2.135)
where

N/s
= 5Dt gy [ [ V@ wp@pty).
P = dzdyV(x, y)p(z, y)o(y, ©),

23
(2.136)
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52 4 & ® & # 1
= = d? / d /d / d /d
b2 B /ZI_II T } €1 ; €2 } €3 . 64(61+€3_€2_64)

xp?(e1, X3, T2)p° (€2, Ta, T3)p° (€3, T4, 1)p° (€4, T1, T4)
X V(azl, CL'Q)V(ZBg, 2134) (2137)

4 0o I
1
+S/Hddwz/u d61/0 degmp”(el,wg,wg)p”(eg,:1:1,584)

7(x1, x2)p” (23, T4) (a:l,azg)V(azg,w4) (2.138)

—= dd,/d/d/d/d
/H X €1 €9 €3 €4 61—|—63—62—€4)

p 617w27w1))0 (627-’537372)P (637w4vw3)p (€47m17w4)
XV (a1, x3)V (22, x4)(2.139)

2.4 Ground state energy

The ground state energy is immediately obtained from the ground state pressure
using equation (2.3). We find

E(N)=¢y+etN '+ eaN 2+ O(N?), (2.140)
where
N/s
e = ——— [ dz [ diyV(
0o = 61 yV(x,y)p(x)p(y),
e = ——/ddwddyV(w,y)p(w,y)p(y,w),

— _—/Hddwz/ del/ d62/ d€3/ d€4
61"—63_62_64)

61)w37m2>p <627m27w3)p (637w47m1)p (647w17w4)
XV($1,ID2)V($3,SU4)

4 o L
1
—8/||ddwi/ d61/ dez—e (o1, @5, 2)p (€2, @1, 4)
1 — 2

7(x1, T2)p 333,5134)‘/(331,502)‘/(3337334)

d¢ / d /d / d /d
/H X; €1 €9 €3 €4 61+63—62—e4)

Xp (617$27$1)P (627533,5152),0 (637w47m3)p (64,m1,$4)
XV($1,$3>V($2,$4).
(2.141)
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2.5 Ground state pressure in the semiclassical
limit

We have obtained an expression of the ground state energy of a system of N
fermions. To extract explicit results from this expression we work in the large N
limit. This allows us to work in the frame of semiclassical physics and obtain ex-
plicit expressions for the sum of the NNV first eigenvalues, as well as for the electron
density (solution of the self-consistent equation). These expressions are specific
to the dimension of the system considered and have to be treated separately for
the two- and three-dimensional cases. They also depend on the external poten-
tial, which is why we will treat in detail some particular cases later (see the case
of quantum dots in part II).

It is possible to use the semiclassical values of the densities of states (2.94)
to compute the corrections py. Let’s note that this density of states depend on
the semiclassical density, which is the solution of the self-consistent equation and
depends therefore on the specific dimension and external potential of the problem.
But we will see that these terms are actually independent of this density. This
result implies the universality of these corrections.

2.5.1 Semiclassical density of states

Before evaluating the different terms of p, we simplify them by using the relation

1 oo
= :/ dte™®, a>0 (2.142)
0

«

in order to separate the variables ey, e9, e3 and e4.
We will therefore have to evaluate semiclassically

o o 1 ikr 2
(@ er) = (%E)d/ddkek O — (K2 + V()
(e:x, x+er) = 1 Uee*r5(c — (k> €T

which leads to

u .
/deetep"(e; T, x+er) = dlke™r K TV@g((1 — V() — k),
0

ddkeikre—t(k2+V(m))9<k2 - (M . V(m)))

S

3

M

=
\\

& 1
/dee‘tep"(e;m,a} +er) =
m
(2.144)

These objects can now be introduced in p, to obtain explicit semiclassical expres-
sions of the corrections to the pressure.
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Let’s note that all these objects are non zero only if evaluated for positions
separated by a length of the order of €, which will be used later.

In our applications we will also use the Fourier representation of the electron-
electron interaction to take advantage of its translation invariance (V(x;, x;) =

V(le: — ).
We have
o 1 d eikwA ¥ _ dwe—ikw T
V(x) (Qﬁ)d/d k V(k) = V(k) /d V(x). (2.145)

1.

We will only consider the 3-dimensional electron-electron interaction V(x) = al

V(az):i = V(k:):—sd {52 =

2.14
@ [T\ S5 = A (2.146)

Another equality we will use in the computations is an integral representation
of the delta function

/ dxe™™® = (27)%5(x). (2.147)

2.5.2 Semiclassical correction ps

Let’s evaluate the first term (2.137) of po, corresponding to the renormalisation
term. Using (2.144), as well as proceeding to the change of variables

Iy = To, €ETr9 = 9 — Iy, Eddd’l"g = dd.’BQ,
r3 = T3, €T3 = I3 — €9 — €T, Eddd’f’?, = ddﬂfﬁg,

Iy > Ty, €Ery = Ly — Iy, Eddd”'4 = dd$47 (2148)
this term becomes

1
= _/Hddmz/ del/ d€2/ deg/ d64
(e1+e3 —eg —ey)

(61,w37$2)p (627w27w3)p (637$47w1>p (64,w17$4)
xV (@1, x2)V (3, 24)
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2 ')
- %éd / dt / Az, d%r,dir,dir,
0

o0
X / deje ™ p7(er; 1 + ery + ers, Ty + €ry)
m

o
X / dese™p? (eg; 1 + €rg, Ty + €rg + €r3)
0

o0 p
—t t
X / dese " p% (e3; 1 + €ry, wl)/ dese™p? (eq; @1, 1 + €74)
o 0

xV (1, + ETQ)V(wl + ery + €r3, & + €ry)

oy / dt / Az d?ryddrgdir, / Hddkz
7T

w otk (@1 teraters)) ot (k§+\/(m1+er2))e—t(k3+\/(ac1+er4))6t(k§+V(m1))

52
2

x eilratke—k)traka=ka)l\/ (@) o) 4 ery)V(2) + €y + erg, ) + €ry)
xO(k? — (1 — V(21 + era + er3)))0((n — V(xy + ery)) — k3)
x0(k3 — (1= V(@1 + era))0((1n = V(@) — ki)

(2.149)

At this stage we take the semiclassical limit. In this limit we know that the
density matrix p(ey, x;, ;) is non zero only if |x; — x;| ~ € (more exactly, the
decrease is exponential). This implies that r3 and 74 are of the order of 1, and
therefore ®; + er; ~ x;, j = 3,4. The treatment of ry is more delicate: the
decrease is not exponential in this case, as ax; are xy are not separated by a
density matrix, but by the electronic interaction.

Using moreover the translation invariance of V' (V(x;, x;) = V(|lx; — x;])),
this term becomes

2 —d o] 4
P = %ﬁ / dt / d?a,drydirydry / [ dke;etki-hathi=kd
(2m) 0 iy

><e"[”(krkl)*”(krk‘"’)]V(erg)V(em — €r3 — €r3)
X0k} — (1 — V(@1 + €r9)))0((n — V(21 + er2)) — K3)
xO(kz — (1 — V(21))0((1n — V(1)) — K3).

(2.150)

Let’s introduce the Fourier transform (2.145) of V, use the scaling property
Vier) = %V(r), and integrate over 73,74 using the delta function (2.147):

S —(d+2)

p% = 3 / dt/d x1dryddrsd 7“4/Hddk ddQ1ddQQV(Q1)V((I2)

xe~ t(kf—k3+k3— k4)el[7'2(¢h qa)+r3(ke—k1—qy)+ra(ka—ks+qs)]
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xO(k3 — (1 — V(1 + er2)))0((n — V(21 + €r)) — k3)
xO(k3 — (1 — V(21)))0((n — V(1)) — k3).

/ dt / dz,d’r, / Hddk dq,d%g,V (1)V ()
xe~ t(ki—k3+k3—k3) ”'2(‘11 5(]{;2 k, — q2)(5(k4 — k3 + QQ>
xO(kT — (1 — V(@1 + e72)))0((n — V(21 + €r3)) — k3)

xO(k3 — (= V(21))0((1 — V(1)) — ki)
(2.151)

¢—(d+2)

s
2 (

We make use of the delta functions to integrate over k1, k3, and we integrate over
t:

52 ¢—(d+2)

P = 1 2y /ddwldde/ddkzddk4ddQ1ddCI2V(Q1)V(QQ)
¢im2(91-a2) )
P - k2)9((k2 — )" — (= V(@1 +€r)))
XO((1n = V(@1 + era)) — k3)0((ka + g2)* — (1 — V(1))
x0((n = V(x1)) — KI).
(2.152)

We used the result
ki — k5 + k3 — ki = 2[q; + qx(ka — ko). (2.153)

This result remains to be understood. In particular one may be tempted to
neglect the terms ery in the integral, to obtain a delta function when integrating
over 5. As we will see in further developments, this leads to the same term as
in the jellium model, for which a lot of research was performed. In doing so, we
find, introducing the delta function (2.147):

2 o~ (d+2) . .
p; = Z(Q )4 /dd$1ddr2/ddk?ddk4ddQ1ddQQv<Q1)V(Cb)

6“‘2(‘11*‘12)

- q3 + qo (ks — k2)0((k2 — )" = (n=V(x1)))

<0(( = V(1)) — k2)0((ka + g2)* = (1= V(1))
<0((u = V(1)) — ki)
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—(d+2)

= /ddwl/ddkgddk4ddq1d QQV(%)V(%)

6(q, — qy) 2
< e bk — )~ (1= V(@)

XO((n—V(@1)) — k3)0((ks + q5)° — (0= V(21)))
x0((n—V(z1)) — ki)
(2.154)

The delta function is used to integrate over g;, and we use the symmetry of V.
Writing g, = q we find

po= %ﬂ / Az, / dk2d?k,dqV (q)V (q)
xO((1n =V (@1)) = k3)0((ks + q)° = (n = V(1))
xO((p = V(@) = k2).
(2.155)

Using the expression (2.146) for the Fourier transform of the potential, we find
R R [P d'kepd Ry diq— !

Pr = T @y (2m)3d 1 ¢t q* Y q* + q(ky — k2)
x0((k2 — @) = (1= V(1)0((1 = V(21)) — k3)
x0((ks +q)° = (1 = V(21))0((1 = V(1)) — k7).

(2.156)

We can separate the integration over x; from the other variables by the change
of variables

ke — ki, Ju—V(zk,=ks, %= (u—V(z))?dk),
ki o Ky V- V@K, =k, d'k = (n - V(2)? d'k,
d
a — ¢, Vu-V@)d=q dq=@p-V(z)>dq. (2157
With this change of variables the contribution to the pressure becomes

1 52 Sg d a d d d 1
P = e gy | Ve V@) [ dkedkd e oG

=C

1

. q’ + q(ks — ko)
x0((ka+q)> — 1)0(1 — K3).

(2.158)

0((k2 — Q)2 —1)o(1 - k%)
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The entire N-dependence of this term is contained in part C'. It can be established
by replacing (u — V' (x)) by the density, using the lowest order relation between
(u — V(x)) and p(x). This relation can be obtained by integrating over k in
(2.143), with » = 0:

pla) = si7(@) = g [ A0 — (K + V(@)

55 / " g
0

(2me)?
554 d
= (27re)dd(’u —V(x))2. (2.159)
We have therefore
S de d S de N
C — - d = — J—
4 €2(2m)2d / zp(2) 4 (27)2d €2
—_—
=N
s Sgd .2 =5 N? d=2
_ 8 NFI_ ] @ ) ’ 2.1
2 (2m { SNS . d=3, (2.160)
and pl becomes
25 Sgd 1 1
L= N1aZ 24 / d?kdk/d 2.161
P2 ‘5 2m J, T g + qk — k)’ ( )
where the integration domain A is such that
k—q|>1 |K —q|>1, |kl <1, |K|<1. (2.162)

When returning to the energy, and proceed to the inverse scaling of the energy, the
final expression we have to integrate corresponds to that of the jellium model.
This is why this integral was already studied (in (Gell-Mann and Brueckner,
1957)) for three-dimensional systems. It is divergent, and an infinite number of
selected terms (the "ring diagrams") has to be taken into account to obtain a finite
contribution, which is computed using the Random Phase Approximation. Our
problem is however different from the jellium model: the density is not uniform,
and is not infinitely extended. This is why we believe that our term may not be
divergent. We believe that the approximations that led us to this result are too
strong.

Let’s evaluate the second term (2.138) of p,. Using (2.143), and (2.144), as
well as proceeding to the change of variables

Ty — To, €Ty =Ty — X1, edddr, = dd:ng,

L3 = T3, €T3 ==T3— L1, eldiry = ddw3,

Ty — T4, ery=x4—x, dry=d%,, (2.163)
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this term becomes

4 00 o
1
2 d o o
ps = S ”dzcz/ de/de— €1, &3, T €9, L1, T
2 /121 ; 1 ; 2(61_62)0(1 3 2)/)(2 1 4)

xp7 (@1, T2)p” (X3, 1)V (21, T2)V (T3, T4)

= €3d8/ dt / dd$1ddT2ddT3ddT4/ d€16_t61p0(61; x|+ €T3, Iq + ETQ)
0 H

I
X / d626t62p0<€2; T1,T1 + 67”4)p0($1, T + erz)p”(azl +ers, xry + 6’)"4)
0

XV(CEl, x|+ E'I"Q)V(Zlﬁl +€rs, r + 6']"4)

eds [ !
= —(27T>4d/0 dt/dd$1ddT2ddT3ddT4/Hddki
i=1

—t(k%+V(:v1+6’r‘3))et(k:g-‘rV(:lil))e’i[’r‘z(k:l+k3)—’r‘3(k1+k4)+’r'4(k2+k4)}
XO(kT — (= V(@1 + ery))0((n — V(z1)) — k3)
XO((n— V(1)) — k3)0((n — V(@1 + ery)) — ki)

XV($1, xr, + 6T2)V($1 + €r3, o + 6’1“4).
(2.164)

xXe

Taking the semiclassical limit € < 1, which implies x; + er; ~ x;, we find, using
the translation invariance of V' (V (a1, x2) = V(|x1 — 2|),

g oo 1 212
><ei["‘2(kl+k3)—"3(k1+k4)+r4(k2+k4)]V(€r2)V( |T3 - 7“4|)
<02 — (1 — V(@) — V() —

k3)
XO((p = V(@) — k3)0((1 = V(21)) — ki)
(2.165)

Let’s introduce the Fourier transform (2.145) of V, use the scaling property
V(er) = 1V (r), and integrate over ro, 3,74 using the delta functions (2.147):

—(d+2) 2

P = ) Gds / dt / A%z, d%ryddrsdir, / Hddk: dlq,dig et ki—Hk2)
Xel[’r‘z(k1+k3+%) "‘3(k’1+k34+%)+7‘4(k2+k4+q2)]V(q1>v(q2)
xO(k — (= V(21))0((1e = V(1)) — K3)
xO0((n = V(x1)) — k3)0((1n = V(1)) — K3)
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d+2 2 ~
o / dt / ‘e, / Hddk dlqd'gue MV () V (gy)
xd(ky + ks + (I1)§(k1 + k4 +qy)0 (ko + ky + q2)/9(kf — (u—V(x1)))

:5(k1+k4+;2)5(k1+k2)
xO((e = V(1)) — k3)0((1e — V(1)) — k3)0((1 — V(1)) — k).
(2.166)

We integrate over gy, q,, k2, and use the parity of V to find

d+2
= 27r —— / dt / dix, / A% ks d% e,V (ky + ks)V (ky + ks)

X Bk — (= V(@n))B((n = V() — k)

XO((n— V(1)) — k3)0((n = V(21)) - k)
= 0. (2.167)

This contribution therefore vanishes in the semiclassical limit.

Let’s evaluate the third term (2.139) of py. Using (2.143), and (2.144), as well as
proceeding to the change of variables

ro H= To, €Erg = T2 — Iy, Gddd’r'g = dd$27
T3 +— T3, €r3=T3— T, elddry = ddwg,

Ty = Ty, €Ery = Iy — Iy, Eddd'f’4 = ddil}'4, (2168)

this term becomes

3 d
= —= i d d d d
P2 /Hdm/ 61/ 62/ 63/ “ 61+63—ez—e4)

p 61,332,331 1% (6273337532)P (637w47m3)p (64,3317334)
XV (a1, x3)V (22, T4)

3d oo oy
- _%/ dt/ddwldd’l“Qdd’l“gddr‘l/deletelpa<el§$1 + €ery, 1)
0 I

[e.9]

m

t —t

X /deze “2p7(e9; 1 + €rg, Ty + €r3) / dese "7 (e3; @1 + €Ty, T + €73)
0 Iz

o
X /de4ete4,o"(e4; 1, Ty + ery)V(xy, @1 + er3)V(x) + €rg, @y + €ry)
0
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s Eid /oo / 4
e dt ddwlddrgddrgddm/ | |ddkz‘
d
2 (2m)4 J, pale

ft(k%JrV(a:lJreTg))et(k%+V(w1+er3))eft(k§+V(w1+er4))et(ki+V(a:1))

xe
5 gilr2 (—Fe1+ka) 7 (—ka-Hs) +74 (ks +e)]
XV (x1, 1 + er3)V(x) + erg, 1 + €ry)
XO(kT — (n— V(1 +er)))0((1 — V(@1 + ery)) — k3)
xO(k3 — (n = V(@1 + era)))0(( — V(21)) — ki)

(2.169)

Taking the semiclassical limit € < 1, which implies x; + er; ~ x;, and using the
symmetry of V', we find

s €@ *° !
pg = —§W/O dt/ddwldd'f'zdd'f'gdd'f'4/HddkiV(E"f‘gDV(E‘T‘z;—Tgl)
=1

Xe—t(k%—k%-&-kg—ki)ei[’l‘g(—k:l+k¢2)+1"3(—k2+k3)+'r‘4(—k¢3+k4)]
XO(kT — (n =V (21))0((1 — V(21)) — k3)

<O0R2 — (— V(@) — V(1)) — K.

(2.170)

Let’s introduce the Fourier transform (2.145) of V, use the scaling property
V(er) = 1V(r), and integrate over ro, 73,74 using the delta functions (2.147):

Se™ (d+2)

p% = —2 271- 6d /dt/ddwldded ngd'f'4/Hddk dd‘hd q2V(q1)V<q2)
o ot —k3+k3—k3) ilra(—k1+hkz—ag)+s(—katks+ay)+ra(—ks+katqy)]

xO(kT — (1 — V(21)))0((n — V(1)) — k3)
x0(k; — (1 — V(21)))0((1n — V(x1)) — k3)
~(d+2)

= S ] dd"”/ Hd“kddqlddq e MDY ()T (q,)
7T

5(—k1+k2— )(5( k2+k3+Q1)5( k:3+k:4+q2)

XO(kT — (1 — V(21))0((1 — V(21)) — k3)

xO(k3 — (1 =V (@1))0((1n — V(1)) — ki)
(2.171)
We integrate over 6d variables in Fourier space, and there are 3d delta functions.

We will therefore have 3d variables left.
We have

(5(—k1+k2—q2)(5<—k33+k4+q2) = 5(q2—|—k1 —kg)é(—k1+k2—k3+k4) (2172)
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We integrate over q,, q,, k4 and proceed to the change of variables

(k17k27k3) — (k7q+7q—>7 (2173>
B ki + ks
k = 7
ki+ k
q_ = k? - ! 9 37
q. = —_k”; ks (2.174)
Ak dkydk; = 27dkd’q, d’q_. (2.175)
The old variables become
kl = k- q.,
kS = k+ q.,
k2 - k + q_,

ky, = ki—ky+ks=k—q_,
q = ko—ki=q —q,,

q, = —kit+ky=q, +q_. (2.176)
We establish
ki + k5 — ks — ki =2(q —q°). (2.177)
The contribution to the pressure becomes
_ 6_(d+2)8 o _ 2 _ 2
o= 2 (27r)3d /0 at / ' / d'kd’q,d'q_e > %)

xV(g_—q.)V(g, +q_)
x0((k—q,)* = (n—V(@)0((p—V(x) — (k+q_)°)
x0((k+q,)" — (n—V(®)0((n—V(x)) — (k—q_)*).

(2.178)
Integrating over ¢, and replacing V' by its value (2.146), we find
_(d+2)528 1
3 od-2)°€ d/dd d

Py, = —2 —— [ d®xd%q.dq_ ———~
’ (2m)3 T e - )

1

X @D

(g5 +q%)* —4(q,q.)%) =
y / AkO((k — q.)* — (1 — V(@)0((1 — V(x)) — (k+q_)%)

<0((k +q.)* — (u = V(@)0((n— V(x)) - (k —q_)*),
(2.179)
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where we used the equality
(a4 —q-)*(as +4-)* = (¢} +4°)* — 4(q,q)*. (2.180)
We can separate the integration over  and k, g, q_ by the change of variables
k — kK, Vi-V@k=k d%k=(u-V(z)?dK,
d

9 — 4. Ve-Vi@ld,=q,, dq,=(-V(z)dq,

a. — qd., Vi-V(@qgd =q_, dq_=(u-V(z))?dq . (2.181)
With this change of variables the contribution to the pressure becomes

) 6_(d+2)S§S

s _ _o@2 58 (i viant [ dle dlg -
b2 : (2m)d /d = Viw)) /d 24z — )
1
(@3 +q*)? — 4lq g )7
X /ddke((k —q,)’—1)0(1 — (k+q_)*)

x0((k+q,)*—1)0(1 - (k—q_)*)
1
(@3 —q2)

X

. B 6—(d+2)528 d
= —2¢ Z)QW—)gJi/ddfv(u—V(w))? /ddQ+ddq

~~

~c

x 1 fa )
(@ + ) —dlg.qyp) 2 i a-r

(2.182)

The function f; has a geometrical interpretation: it corresponds to the surface
contained in two hyperspheres of radius one and of center £q_, minus their
intersection with hyperspheres of radius one and of center q, .

The entire N-dependence of this term is contained in part C’. Its N-dependence
can be established by replacing (4 — V(x)) by the density, using the relation
(2.159). We find

o = 275 / Tap( )Z—Q(dd)deﬂ
EoE TR
=N
2618, d ) LN2 d=2
_ Nt: — ) 2 ’ ’ 2.1
R E I R
and p3 becomes
21-15,d 1 -
(27) (4% —42) (@2 +q*)2 —4(q q )?) 7

(2.184)
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2.5.3 Total semiclassical pressure

The ground state pressure in the semiclassical limit is therefore

P=pi°+pi°N"" +pi°N?+ O(N?) + N, (2.185)
where
N/s 1
PO = Yoot [ dadlyV @ e @) )
=1

1
pe = 2_5/dd"’ddy‘/(m,y)psc(w,y)pSC(yw’B)a

d-1)g.d 1
SC 1 1—i—22 d d d
— pto NV [ qdg dlg —
P2 P2 (2m)2d / L2 =)
fd(Q+7Q—7q+q—)
(@-1) °
(g5 +q%)* —4(q,q.)%) =

X

(2.186)

The eigenvalues e; are evaluated semiclassically, as well as the self-consistent
density and potential, evaluated with the use of the self-consistent equation (2.63).
This will be done in detail for the quantum dots later (see part II).

2.6 Semiclassical energy

The semiclassical energy is immediately obtained from the semiclassical pressure
using equality (2.3). We find

E=e9+ /N4 e5°N"24 O(NT?), (2.187)

where

N/s
1
G = s Y on [ty @)@ )
=1

1
50 = =5 [ dlediyV (@) ) (. a),
,2d=-1)g 4 1
e, 1 1+2 d g dlq ————
eS¢ = el 4+ N'ta /d q.d%q_
2 2 (2m)2d T d - )
% fd(Q+7Q—7Q+Q—)

(g% +q2)? —4(q,q.)2) ="
(2.188)
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where e} = —pl.

Let’s proceed to a discussion of this result. The lowest order term, e, corre-
sponds to the Hartree energy: it consists of the sum of the NV lowest eigenvalues of
a single particle system, submitted to a potential obtained with the self-consistent
equation (2.63), plus an additional term, the opposite of the self-energy of the
electrons. The interpretation is the following: it consists of approximating the
system by a system of independent particles, respecting the Fermi-Dirac statis-
tics by filling the N lowest energy eigenstates of a single-particle hamiltonian. In
this system, the self-energy of the electrons is counted twice, and this is why the
second term of e corresponds to the opposite of this self-energy, and therefore
cancels the term in excess. The Hartree energy can be expanded in the semi-
classical regime, to obtain an expansion around a small parameter, given by an
inverse power of N. This was done by Englert and Schwinger (1985b) for the
atom, and we do it in chapter 5 for the quantum dot, with a more detailed study
of the sum of the eigenvalues in chapter 6.

The first order term, e7¢, corresponds to the exchange energy. This result is
equal to that we obtain in the semiclassical Hartree development, as is done in
chapter 5.

The sum of these two first terms correspond to semiclassical Hartree-Fock
results.

The second order term, e5¢, corresponds to the first correction beyond the
semiclassical Hartree-Fock model. It is the lowest order of the correlation energy,
and this is why it is particularly interesting.

Let’s evaluate the orders in N of these terms. To proceed to these evaluations,
we need to know the orders e; = O(1), p = O(N). Moreover, the density matrix
is such that p(x,y) # 0 only if |y — x| ~ e. Changes of variable will be performed
to establish the order of the terms we computed. We are interested in the order
of magnitude of the phys1cal energy, which is obtained from E by the 1nverse of
the scaling (2.10): E = N*"iE. Moreover, the small parameter is e >~ N~ a

The order of Zi:l e; is N (as it consists of a sum of N terms of the order of
1). It provides a contribution of N 3-3 to the ground state energy, which is N 5
for d = 3 dimensions, and N? for d = 2 dimensions. To compute the self-energy
of the electrons, we use p = O(NN) to obtain a term of the order of N. Proceeding
to the inverse scaling we find that its contribution to the ground state energy is
N 3_%, which is the same as the sum of the eigenvalues. These orders in N are
well-known results.

In the case of quantum dots, let’s note that there is a second parameter, in
addition to N, which has to be taken into account. It is the strength of the
confining potential, x, which fixes the length scale. This is why a more compre-
hensive treatment has to be done, with a scaling depending on this parameter.
This is done in chapter 5 for a parabolic quantum dot, where we find that the
Thomas-Fermi energy is of the order of ]X—f, where L, = O(Kf%), and leads finally
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to an asymptotic energy of the order of N 3 (depending however on how we model
the confining potential, as discussed in chapter 4).

To establish the order of the exchange energy, ef¢, we proceed to the change
of variable y — 7, er = y. This implies d?y = €?d?r and V(er) = O(e!). The
energy is therefore of the order of N~ ~ Ned=! = Ni. The contribution to
the ground state energy is therefore N2~ata = N2-a. It is

Niind=3 dimensions, and N 3 in d = 2 dimensions.

In the case of a parabolic quantum dot, we find that the exchange energy is

3
of the order of JZ—f ~ N.

We made explicit the order of one part of e5C. We find N=2¢5¢ = O(N~1+2),
its contribution to the ground state being therefore N 2-3N-1+7 = N. The order
of the other part of e5¢ still has to be determined.

The order of this correction is independent of the dimension of the system. In
the case of atoms, there are more important corrections to the ground state energy
arising from the semiclassical Hartree-Fock development (of the order of N %),
which corresponds to corrections to ej©. These corrections are therefore contained
in our developments, but are out of reach analytically. It is therefore not necessary
to take this term into account for the computation of the ground state energy
of atoms. But is it useless to compute this term? No. The term we compute
is the main term of the correlation energy. There are numerical simulations,
with very high accuracy, computed in the Hartree-Fock model, that is without
correlations. The correlation energy can therefore be isolated, by subtracting the
numerical Hartree-Fock results to the experimental energy. We obtain this way
the correlation energy, and our results can be compared to experimental data.

This result deserves a comment: as written in Lieb (1976), in the Thomas-
Fermi approximation, the electrons of the outer region of the atom are not con-
sidered. If the theory is applied to molecules, this implies the no-binding theorem
(due to Teller (1962)), which states that the Thomas-Fermi energy is unstable
under the decomposition of a big molecule into any smaller ones. Moreover, Lieb
(1976) writes that the binding energy is of the order of N, which is precisely the
order of the correction we computed. This correction corresponds to the first
term including correlation effects. These terms may therefore correspond to the
binding energy. The application of our formalism to molecules may answer this
question.

In the case of quantum dots, as we will see later, this correction has to be
taken into account for the computation of the ground state energy for consistency.
As said earlier, we have to proceed to a scaling of the length, which depends on
an external parameter, as will be done in chapter 5. By proceeding to this scaling
we find that this correction is (in this case, too) of the order of N, independent
of the new length scale, for the parabolic quantum dot.

One part of the energy e5¢ will be computed in chapter 3, for the two- and
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three-dimensional cases, to obtain quantitative results.

We computed the first and second orders of the perturbative expansion of the
ground state energy. While we do not compute higher orders corrections, there
is no conceptual difficulty in doing so.



Chapter 3

Semiclassical atoms — correlation
energy

Contents
3.1 Universal correction in d =2 dimensions . . . . . . .. 65
3.2 Universal correction in d =3 dimensions. . . . . . .. 68

The objective of this chapter is to compute new corrections to the ground state
energy of quantum dots and large atoms, a term including correlation effects.

In chapter 2 we developed a new approach to compute, with a systematic
expansion around a small parameter, the ground state energy of a many-fermion
system. We apply this method to the problem of the quantum dot and the atom
in this chapter.

The semiclassical Hartree-Fock approach was already applied to atoms (En-
glert, 1988), this is why we focus on the new corrections. We compute one term of
the corrections, which is, as established in chapter 2, universal and depends on the
dimension of the system only. To compute this new contribution to quantum dots
and atoms, we compute this term for the two- and three-dimensional problems,
which reduces to the computation of multiple integrals, computed numerically.

The expression we have to compute is written in equation (2.188). The ex-
pression in the d-dimensional case is

pso _ 20 Sud /ddq d'q 1 fala+ 9-,949-) (3.1)
2 (2m)* L@ - (gt et —4lgaa )T

'

=Ay

61
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where the function f; is defined by

falar.q-,9.9°) = /ddkzﬁ((k —q,)’—1)0(1 — (k+q_)%
x0((k+q.)* —1)0(1 — (k—q_)*)
= /ddk@(k2 +q; —2[kq, | —1)0(1 — k* — ¢ —2|kq_]).
(3.2)

To compute this integral numerically, we simplify it to the maximum. Let’s
separate the integration variables in the radial and angular parts:

g, =q+éy, |éL| =1 k=Fké €| =1
= dlg, = ¢ Vdgsdés, Ak = k@ Ddkde. (3.3)

We obtain

d—1 _d—1 1

~ 1A 44 g
Ay = /dq+dq_de+d€— =
(3 =42 (2 +¢2)? — 4grq-€.6)) T

x /dkkdldée(kz + @2 — 2k |eé,| — 1)O(1 — k> — ¢* — 2kq_|eé_|).
(3.4)

There is an invariance under the variation of é, which is why we integrate over
these variables, and fix & = é,, the n!” direction. The integration provides a
factor Sy.

Moreover we perform the change of variables

a o 2y
(q4,9-) — (z,a), qy = kxcos 5 4= kx sin 5 dg,dq_ = Td:ﬁda. (3.5)

The integration limits are z € [0,00[, a € [0,7]. Using usual trigonometric
relations we find, after computation,

Sa [ dx . sin™V 1
Ay = o e, P—— / dé,de_ —
x cosa (1—sin*a(é e )?) 2
_ 1 1
X /dkk(d VoA, — 3005 — A,
(3.6)
where
Ay = 1+a%cos® § —2xcos e, (3.7)
A_ = 1+42?sin®¢ + 2zsin gle”|. '
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The integration over k can be performed, proceeding to the change of variable
k—y= k—12, we find

akkD0a, — Dot 4y = oA, — At [T agod
(+—ﬁ)(ﬁ— =) = (A - 7)§A vy
11 4 _d

= 64, - A), [AJ - Ag} (3.8)

The condition §(Ay — A_) is

2 o n AR
A, —A_=zx COSO(—QI(COS§|6+|—|—Sln§|6_|) >0 (3.9)
and can be written as

peosgletl Temglen] s, (3.10)

COSs ¢«

The numerator of the expression above is always positive (« € [0, 7]), while the

denominator is negative for 7 < o < w. This implies a new condition on the

integration domain of o, which becomes o € [0, 7]. The condition applies also to
the integration over x. Returning to (3.6) we find

jus

S, [z sinlV 1

o
Ay = — da—/dé+dé_
d (d—1)
24d J, cos « (1 sin? (A+é_)2) -

x/wd—m [Aj%—Aﬁ]. (3.11)

o T

Let’s mention that zy is positive for any values of «, e”, e™
0 y

gration.

in the range of inte-

This expression can be further simplified. For the integration over x, let’s
consider separately the contributions of A_ and A,, and write, for simplicity,
sy = |e|. We write Ay by completing the square of the expression:

Ay = 1+a%cos®§ —2xcos§sy =1—s% 4 (zcos§ —s4)?, (3.12)
A = 1+42?sin®$ +2zsin%s_ =1—s% + (zsing +s_)% '
To compute the first contribution we have to evaluate
/ de (A, —A_) / dz §(x cos o — 2(cos §s4 + sin §s_)) (3.13)
O ¢

(1—s*+ (zsing +s.)2
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e

Proceeding to the change of variable r +— xsin g,

tions, we find

and using trigonometric rela-

/d_a:@((a: +s_)cosa — (sinasy +s_))

z (1— 82+ (z+5.)%)"
_ / dr  f(zcosa — (sinasy +s_))
(x—s-) (1—s2 —i—x?)% 7

(3.14)

where we proceeded to the change of variable z +— x + s_. The contribution to
A, is therefore

B Sy 2 sin Vg 1A 1
Ai = gug / w2 ey

—sin*a(é,é_)?) 2

dr  6(xcosa — (sinas S_
X / T ( . S<2 i ﬁ;;‘ )) (3.15)
To compute the second contribution we have to evaluate
/ dz (A - A) _ / d_xG(x cos a — 2(cos §s4 + sin %5;_)) (3.16)
t Az T (1=t + (weos g —s4)?)°

&

Proceeding to the change of variable x +— x cos g,

tions, we find

/ dz 0((x — s4)cosa — (s +sinas_))

and using trigonometric rela-

T (s s
B / dr  O(zcosa— (s; +sinas_))
(+54) (1—82++ZL‘2)% ’

(3.17)

where we proceeded to the change of variable x — x—s,. When introduced in Ay,
the symmetry allows the exchange of the variables s, «<» s_. The contribution to
A, is therefore

™

Sq [, sin@V 1
Af = -2 [Tt @ / dé,de_

24d [, cos o

9 s A g (d;l)
1 —sin*a(é é_)?)

x/ dr  O(zcosa — (s +sinasy))
R BTSry B

(3.18)
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Combining (3.15) and (3.18) we find

Sq [, sin@V 1
Ao = o™t / de,de_ —
0 cosa (1 —sin’w(é e )?) 2
" /d$0(xcosa — (sinas:—i— s_)) { 11 } (3.19)
(1—s% +22)2 r—Ss-. T+ Ss_
Introducing this result in (3.1) we find
R SQ z - (d-1) 1
B¢ = Nt / T / dé.dée_ —
(2m)** Jo cosa (1—sin®a(e e )?) =
" /dxe(xcosa — (smas:—l— s_)) { 11 } .
(1—32,+x2)5 r—S8s. T+Ss_

(3.20)

From now we work in the specific d = 2 and d = 3 dimensions.

3.1 Universal correction in d = 2 dimensions

As mentioned in chapter 2, the term we compute is universal and only depen-
dent on the dimension of the problem. Let’s compute the correction for a two-
dimensional system, in order to apply it to quantum dots in part II.

In this case, the angular integration is

ér = (singy,cospy), déy=dos, ¢y €[—m . (3.21)

The correction to the energy becomes

EEC: N2/2 sma/ d¢+/ do. 1
2(2m)2 J,o cos « 1—sm acos(y — ¢ ))
X/dxe(xcosoz—(smoc]cos<b+|+]cos¢_|))
(1 —cos? p_ + 22)
1 1
>< J—
[:p—|cos¢_| T+ |cosp_|

N

(3.22)

Before developing this expression, let’s note that the symmetries with regards
to (¢4, ¢—) imply that the integration over ¢4 € [—m, 7| is equal to four times

the integration over ¢ € [~7, 7]. These new integration limits allow us to drop
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the absolute values (cos ¢y > 0). We therefore have to evaluate, using moreover
1 —cos?¢p_ =sin¢_:

5 N 1
ESC = — datanat/i d¢+t/, do_
2= Jo 3 3 (1 — sin® acos?(¢4 — ¢_))

0(x cos o — (sm acos ¢, + cosp_))
8 /dx (sin2 o_ + x2)

(S

1 1
8 {x—cos¢_ a $+COS¢_:| '
(3.23)

Let’s integrate over x. The integration is

/d 0(z cosa — (sinacos ¢, + cosp_)) { 1 B 1 }
g (:U2 + sin? (b,) T —CoS¢p_ T+ cosp_

/Wd 1 R

 Jae v (22 +sin*¢_) |2 —cosp_ x4 cosg_
o 1 1

=92 _ d

cos ¢ /m t (;1;2 + sin? ¢,) (22 — cos?¢_)

=2cos¢- [/xo dxm_/m) dm(x2+sin2¢)] |
(3.24)

where we redefined zy = Smacoif;;ws ¢— This lower integration limit is larger

than cos ¢_, the first integrand being therefore not divergent. We treat separately
these two integrations.

The first one is

2cos ¢ / = lnw. (3.25)

- COS2 (22 — cos? ¢_) (xg — cos ¢_)

Replacing xg by its value, and using trigonometric properties, this term becomes

Q cos 2 cos + sin £ cos ¢_
—lntan——ln( 2 a3 g{ )

2 (sin § cos ¢4 + cos § cosp_)’

(3.26)

The second term is antisymmetric under the exchange ¢, < ¢_, while the rest of
(3.23) is symmetric, as well as the integration limits. This means that this term
will not contribute, and will be neglected from now.
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The second integration is

x cosop_ [ dx

> d
2 cos gb_/ —_— = : —
v (27 +sin’ o) [sing-| J =g (22 +1)

cosp_ |m ; T
= 2— |- —arctan ——
|sing_| |2 |sin¢_|

2 T (sinacos ¢y + cosp_)
= — |—= — arctan - ,
|tang_| |2 cos o] sin ¢_ |
(3.27)
where we proceeded to the change of variable z — z|sin ¢_|.
The correction (3.23) to the energy is therefore
. N [z 7l bl 1
E5¢ = ) da tana/ do, do_ T
2= Jo -5 -5 (1 — sin® avcos?(¢py — ¢_))>
x |~ Intan < — _2 _|T_ arctan (sin a cos qb+‘ +cosé-)
2 |tang_| |2 cos a| sin ¢_|
= B0+ B
(3.28)
For the first term, we can integrate over ¢, and ¢_ to obtain
7 N [2 2 3 Intan 5
By = —— d@tana/ d¢+/ do_ 2 R
2= Jo -3 -3 (1 —sin®* acos?(¢4 — ¢_)) 2
N [ B Intan §
- datana/2 do ) T
2m Jo -5 (1 — sin® acos? ¢ )?
N [3 o} . 9
= —— datan aln tan — K (sin® «), (3.29)
T Jo 2
where we used the result
2 1 K (%
dé =2 ("”) (3.30)

The integral is computed numerically with Mathematica. We extract the asymp-
totic behaviour at the integration limits and compute them analytically, the rest
being computed numerically. We find

. N
ESC = +—2.8776 = 0.9160N. (3.31)
T
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For the second term, the symmetries in the variables (¢, ¢_) are such that the

integration over ¢_ € [—F,7] is twice the integration over ¢_ € [0,F]. We
separate the integration on ¢, < 0, and on ¢, > 0. We use Matlab to integrate

numerically and find

tan o 1
d do do_
/ “ / z ’ / tand— (1 _ gin2 o cos?(¢4 — @)

(sin Q. CoS ¢y + Ccos )
cos asin ¢
= 1.5201, (3.32)

D=

X T t
— — arctan
2

N

tan a 1
d d¢ do-
/ “ / i / tang_ (1 _gin2q cos? (¢4 — ¢_))

(sin a cos ¢4 + cosp_)

™
X | = — arctan
E

cos asin ¢
= 2.4357. (3.33)
This leads to oN
ESC = — 39558 = —0.8016N. (3.34)

The whole contribution to the energy is therefore
EJ¢ = 0.1144N. (3.35)

After having done these computations, a bibliographical research led us to note
that this integral appears in the problem of the two-dimensional jellium model at
high density: the correlation energy of a uniform high density electron gas, with
a positive background, was computed first in three dimensions by Gell-Mann and
Brueckner (1957). The two-dimensional analog term was computed in (Isihara
and Ioriatti, 1980). The result is the same as ours.

3.2 Universal correction in d = 3 dimensions

Let’s compute the correction for a three-dimensional system, in order to apply
this result to the atoms.
In this case, the angular integration is

éi = (COS ¢i sin Qi, sin gb:i: sin Qi, COS Hi), déi = sin eid¢id9i,
¢y € [—m, 7], 0L € 0,7 (3.36)
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The correction to the energy becomes
- N % sm « sinf, sinf_
B¢ = /d@/d@/d /d_ s
2 2374 Y eosa - b+ ¢ 1 —sin*a(éé_)?)
x/ O(x cosa — sma|cos€+|+]C089 )
x
(1 —cos?0_+ xz)

» 1 1
x—|cosf_| x+]|cosb_|]|’

— (QN)4'/2 SC](I)ls O{/ d9+/ de / d¢+/ d(b Sln 9+ Sln 97
T «

((1 - sma(e+e )) i (1 —|—sma(e+e )))
" /dxﬁ(xcosa — (sina| cos Oy | + | cosb_]))

(1 —cos?6_ + 1‘2)%

" 1 1
r—|cosO_| x+|cosO_|]|"

(3.37)
Let’s replace the scalar product by
é.é_ = (cos¢ycosp_ +sing, sing_)sinf,sinf_ + cosf, cosf_
= cos(¢y — ¢_)sinf, sinf_ + cosfy cosf_ (3.38)

and integrate over the variables ¢.. We proceed to the change of variables
¢ — ¢ = ¢, — ¢_, make use of the periodicity of the cosine, implying that
the integration bounds do not depend on ¢_. Its integration is therefore trivial
and provides 27. The parity of the cosine implies moreover that the integration
over ¢ € [—m, | is equal to twice the integration over ¢ € [0, 7]. The integrations
over ¢ are of the form

/0 dgb(Af — Bcos@)’ /o d¢(A++Bcos¢)’ (3.39)

with AL = 1 £ sinacosfy cosf_, and B = sinasinf, sinf_. The conditions
AL > B are satisfied, and the integrations therefore yield

™

@. (3.40)
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Using this formula we obtain, after computation,

/ A0+ / 10~ ((1 - sinclu<é+é_>> 0 +sm;(é+é_>>)

= (2m)? [ !

N|=

(1 —2sinacosf, cosf_ — sin® a1 — cos? B4 — cos?0_))

+

[N

1
(1+ 2sinacosf cosf_ —sin* a(l — cos? 0, — cos?6_)) ] .
(3.41)

This expression is invariant under the change cosf, +— —cosf,, as well as
cosf_ +— —cosf_. This means that it depends on their absolute value only.
The integrand in (3.37) therefore depends on the absolute value of cosfy only.
The integral over 6, € [0,7], 60— € [0, 7] is therefore equal to 4 times the same
integral over 6, € [0,5], 6_ € [0,5]. In this interval the absolute values can be
dropped, the values being always positive.

We proceed to the change of variables 61 +— si = cosf4, sinf,dfy = dsy.
With these new variables, and using (3.41), the energy (3.37) becomes

A N [2  sin’a
E5C¢ = —2/ da /ds+/ ds_g(a, s4,5-)
2 Jo cos

x/dm xcosa—(smas++s ) 11 |
(1_5__,_:52) rT—S. T+s_
(3.42)
where
. 1
g(a, S+ 3*) = 1
(1 —2sinasys_ —sin’a(l — s3 — s%))2
1
+ T (3.43)
(1+2sinas;s- —sin*a(l —s2 —s%))2

Let’s integrate over x, from xy = % to infinity. This integration yields

o 1 1 1
h(a,si,5_) = / dz -
o (

1—32_—1—1:2)% r—S_ T+ S_

> 1 1
= 23/ dx R R
L) (1—8%%—1’2)5 (.13 _5—)
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2s5_ o
= —1
1—s2 V1—s2 + 13

1—s_ _
ln( i )—l—ln(xOJrS )
1+ s_ Ty — S_

+

1 — g2 - 1= 2 2
+1In st SN (344
1—s% —s_xo++/1— %+t
The integral has been reduced to the following
~ N [ ! ! sin” o
B¢ = F/o da/o ds+/0 ds_ p— gla,si,s_)h(a, sy, s_). (3.45)

and is evaluated numerically. This numerical integration shows no difficulty (there
are no convergence problems), and is evaluated using Matlab. We find, in Hartree

. N
E7¢ = —0.23864 = 0.024179N. (3.46)
m

After having done these computations, a bibliographical research led us to note
that this integral appears in the problem of the jellium model at high density:
the correlation energy of a uniform high density electron gas, with a positive
background, was computed first by Gell-Mann and Brueckner (1957). They find
that one contribution to this energy is the same as that we computed, and this
integral was solved analytically by Onsager et al. (1966). They find, in Hartree

. 1 3
sSC = — _— =
E5¢ = (6 In(2) 4W2g(3)) N = 0.024179N. (3.47)

We can understand the fact that our results are the same as those found for the
jellium model in the following way: due to the semiclassical regime, only local
values are in play. This means that, around x, the system behaves as if it were
uniform, with a "local chemical potential" (1 — V(x)). The integration over x
then provides the factor N. This discussion holds for the two-dimensional case,
too.

At this stage, it is interesting to compare qualitatively this result to experi-
mental data. The first point to mention is that this contribution to the correlation
energy is positive and should be overcompensated by the other contribution: the
true ground state energy is less than the Hartree-Fock energy (which is an approx-
imation providing an energy larger than the true energy, as explained in chapter
5). The correlation energy has therefore to be negative.

Experimental results can be found in (Clementi, 1963a,b; Chakravorty et al.,
1993), but only up to N = 18 electrons, for which our theory is not justified (we
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work in the large N-limit). The experimental ground state energy is the sum
of all the ionization potentials. Hartree-Fock energy is subtracted to it, which
provides the correlation energy. This data is corrected by taking into account the
effects due to the nuclear motion, Breit and Dirac relativistic corrections, finite
nuclear radius corrections, and quantum electrodynamical corrections (the Lamb
shift). Results for the neutral atom are presented in Figure 1. It is difficult to
state if it behaves as N3 (as many people think) or as N. If it behaved as N, a
linear interpolation of this data provides, in Hartree

— Eorr ~ 0.043N. (3.48)

Our results have therefore the right order of magnitude, but let’s recall that our
theory is justified in the large N-limit only.

Let’s finally note that numerical efforts are made to compute the correla-
tion energy. A numerical method which shows analogies with our work is the
Moller-Plesset perturbative approach (see for example (Helgaker et al., 2000)).
It consists of proceeding beyond a self-consistent Hartree-Fock approach, up to
a given order. Another self-consistent approach, known as the GW approxima-
tion, and developed in (Hedin, 1965), consists of computing the self-energy of the
electrons. This approach was applied to the electron gas (Holm and Barth, 1998;
Garcia-Gonzalez and Godby, 2001), to atoms (Dahlen and Barth, 2004), and to
molecules (Dahlen et al., 2005). The interest of this approach is that it could be
used for systems with many particles, unlike other computation approaches which
can be used for systems with few particles only. It is considered by the authors
of these computations as a possible alternative to density functional theory.

One of the main differences between these two methods is that the GW ap-
proach makes use of resummation of graphs. A comparison between these two
approaches is done in (Holleboom and Snijders, 1990).
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The objective of this chapter is to describe quantum dots, to describe and
discuss their modeling, and to present existing results on the computation of the
ground state energy.

After having developed a technique for the computation of the ground state
energy of many-fermion systems in chapter 2, we apply it to quantum dots. This
is why we describe in detail what a quantum dot is, then develop the semiclassical
Hartree-Fock model in chapter 5 and apply it to quantum dots. As this model
does not include energy oscillations, they are treated separately by another devel-
opment in chapter 6. To use the expressions obtained this way, we have to solve
the self-consistent equation, which is done in chapter 7, before we use the result in
chapter 8 to obtain the semiclassical energy, which we compare to experimental
results.

4.1 Quantum dot description

The technology of solid state physics allows the creation of quantum wells: elec-
trons are constrained in a plane, which induces the quantization of energy levels

75
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in the third direction. It is possible to constrain the electrons in one further di-
mension, leading to one-dimensional objects called quantum wires. Constraining
the electrons in the third dimension leads to a zero-dimensional object which is
called a quantum dot, or an artificial atom.

There are different kinds of quantum dots, which have to be treated the-
oretically in different ways. We will describe two types of dots to which our
calculations can apply.

The first kind of quantum dot is called a vertical quantum dot. It consists of
growing a succession of very thin layers on a wafer. Let’s describe the dots ob-
tained by Tarucha’s group as an example. As shown in Figure 4.1 (from (Kouwen-
hoven et al., 2001)), the dot is on a GaAs layer, which acts as a source of elec-
trons. On it there is a thin layer of AlGaAs, then the dot, which is a layer of
IngosGagosAs, then a thin layer of AlGaAs, and finally a large layer of GaAs,
acting as a drain. A voltage difference is created between the source and the
drain. The AlGaAs layers act as barriers to constrain the electrons in the dot.
They act here as insulators: the bandgap of AlGaAs is bigger than the bandgap
of InGaAs, the electrons in the dot therefore feel this gap as an (almost) infinite
potential. Moreover these layers are thin enough that a current can be established
by tunneling. The current established this way is vertical to the dot, which is
why these quantum dots are called vertical quantum dots. These dots can have
different shapes: circular, triangular, square. The dots which are best adapted
to our work are circular quantum dots.

~0.5 pm
«— >

Figure 4.1: Schematic representation of a vertical quantum dot
(a) and electron micrograph of the dot (b).

The second kind of quantum dots we will describe is called a lateral quantum
dot. We consider the dots constructed by Marcus’s group, used for example in
(Folk et al., 1996). It consists of using a quantum well, by wrapping a GaAs
layer by two AlGaAs layers. FElectrons can then move 'freely" (they actually
have an effective mass) in the GaAs layer and therefore form a two-dimensional
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electron gas. With lithographic techniques, electrostatic gates are patterned on
this system, and this constrains the electrons in a small region of the quantum
well. A schematic picture is shown in Figure 4.2 (from (Alhassid, 2000)). To feed
the dot with electrons, the potential is modified to bring electrons from the source,
and the electrons can move to the drain (see figure). The current established this
way is lateral to the dot, which is why this kind of dots is called lateral quantum
dots.

oint contacts

' dot
GaAs Al Ga, ,As ——1pm

Figure 4.2: Schematic representation and picture of a lateral
quantum dot.

A measurement technique of the energy of quantum dots will be described
later in this chapter.

4.2 The model

The problem consists of studying properties of a quantum dot containing N
electrons. The typical sizes (10 — 1000nm) of these systems are such that the
study has to be done in the theoretical framework of quantum mechanics (further
considerations will allow us to work in the semiclassical regime).

As explained in the preceding section, the quantum dots we consider are a
set of electrons evolving in a very thin layer of a semiconductor. The electron is
described by a wave function which is the product of a wave function depending
on the two dimensions of the plane, x and y, and a wave function depending
on z. The z-direction presents an excitation energy which is about ten times
larger than the excitation energy of the z — y plane. The experimental results
we will use to compare to our theoretical results are such that the wave function
in the z-direction is always in its ground state (see (Kouwenhoven et al., 2001)),
which justifies a two-dimensional model. But if a larger number of electrons were
considered, the excitations in the z-direction would have to be taken into account.

The electrons are not evolving in the vacuum, but in a semiconductor. Solid
state physics theory teaches us that an electron evolving in a semiconductor (that
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is a periodic potential for the electron) has a dispersion relation which is different
from the one in the vacuum (e(k) = 522—:22) The dispersion relation takes place
on bands in the Brillouin zone, and a semiconductor is such that the bands are
either completely filled or completely empty (at zero temperature, which is what
we will consider). An electron in excess (which is the situation of the electron
we introduce in the system) therefore occupies a state in a new band, which
presents a quadratic profile for |k| ~ 0, different from that in the vacuum. This
quadratic profile allows the definition of an effective mass m,: e(k) = %’f—k@(kﬁ.
According to Li (2000), in the case of InggsGagesAs (which the quantum dot we
will consider is made of), this effective mass is m, ~ 0.064m, where m is the mass
of an electron.

The electronic interaction is also influenced by the fact that the electrons are
not in a vacuum. The electron-electron interaction in matter is

e? e2
V<$i7 acj) = = x s (41)
ele; — ;| @i — )
where e = %, with ¢ the electronic charge (expressed in the MKSA units), and

€ is the dielectric constant of the environment. This constant can be viewed as
a modification of the electron charge due to the semiconductor. According to Li
(2000), in the case of IngosGagosAs, this constant is e, ~ 0.283e. The environ-
ment also has other effects on the electronic interaction: since the background
consists of positive and negative charges (globally neutral, however), there is a
screening effect, which implies that the real long distance potential is lower than
the usual electronic interaction. Moreover, the electrons are expanded in the z-
direction, which means that the real short distance potential is lower than the
usual electronic interaction. All this was modeled by McEuen et al. (1992) by a
potential of the kind

V(wi, ﬂﬁj) = 62

1 - 1 (42)
Nz -2 +62)2 (o -z +62)2 ) .

where §_ > 6, > 0. In the review (Reimann, 2002), Reimann writes that this
difference in the electron-electron interaction is the main effect due to the third
dimension of the system. In our problem, however, we consider the usual electron-
electron interaction (4.1), with the influence of the background in the interaction
constant only. The fact that we have a two-dimensional system with a three-
dimensional electronic interaction has a very deep consequence for our develop-
ments: we cannot make use of the Poisson equation to make the self-consistent
equation a differential equation, instead of an integral one, as will be established
later.

In order to be able to model our system we still have to define a confinement
potential. It may depend on the kind of quantum dot we consider. The lateral
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quantum dots, whose confinement potential is established with electrodes, can
have almost any kind of confinement. In particular they can have a parabolic
confinement V() = %km2, where the confinement strength can be set experi-
mentally. The other kind of quantum dots, the vertical quantum dots, can have
different shapes, as already discussed. In the case of circular dots, a parabolic
confinement potential seems to be a good model: many numerical simulations us-
ing this model are in very good agreement with experimental results. Moreover,
some typical effects, like the shell structure, correspond to the effects observed
in a quantum dot with parabolic confinement. Hence a quantum dot with few
electrons is well modeled with a parabolic confinement. But with this model,
the density increases with the number of electrons, which is not observed in ex-
periments, where the density is more or less constant. The model has to be
modified to a constant density model, which is obtained by making the confine-
ment strength N-dependent. The mean density is p ~ %, where R is the radius

of the dot. We will establish in chapter 7 that, at lowest order, this radius is

R ~ (%)% The mean density is therefore p ~ N 5k3. For this density to be
independent of N, we have to impose k = Nk—,% This is the model proposed in
(Koskinen et al., 1997), and is the model we will use.

Let’s note that a sophisticated numerical work done by Bednarek et al. (2003),
which takes into account the whole system (the electrons and the dot), leads
to a confinement constant which is almost independent of N. However, these
simulations were done for a low number of electrons only.

Square-shaped quantum dots are also sometimes modeled as systems with cir-
cular symmetry, with a parabolic confinement potential. This is due to numerical
simulations done by Kumar et al. (1990), which show that the effective poten-
tial is close to a circular potential, even for a few number of electrons. As we
are looking for very weak effects such as energy oscillations (which are different
for systems with radial symmetry or not), we will not use experimental results
obtained with square-shaped quantum dots.

Our model is now complete, having defined the effective dimension of the
system, an effective mass for the kinetic energy term, an interaction and a con-
finement potential. The hamiltonian of the system is, writing it with a tilde

- N - e2
H=— A, Vot (i) + = — 4.3
Qm*; +; t(w)+2ij;¢j’ii_ij‘ 4

This hamiltonian is written in the (arbitrary) MKSA units. It is however more
comfortable to work in modified atomic units. We proceed in the same way as
for the atom. The energy unit is the modified Hartree

mye?

E, = Ty~ 6.39 102 Ey ~ 11.2meV, (4.4)
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and the length unit is the modified Bohr radius
h2

mye

~ 194ay ~ 10.3nm. (4.5)

Ay = 5
*

The energy unit can be expressed in terms of the length unit

B =% (4.6)

A H T oF ok
H=— z=— — g2 AT
E* o Ay ’ ozk L oxk ( )
The hamiltonian has now the very simple form
1 N LN )
H==3 Ai Veat (2 5 > 4.8
22 +' t(a:)+2ﬂz"|xi_wj‘ (4.8)
=1 i=1 i,j=1,i#j
where we defined th@) = _Veztéib*i)

Let’s note that the modified atomic units, which are the natural units of
IngosGagosAs quantum dots, are very different than for atoms (whose natural
units are the atomic units).

Let’s finally note that the size of the quantum dot, expressed in the modified
Bohr radius, will be very large (as computations will show later). This means that
the quantum effects (which are present at sizes of the order of the modified Bohr
radius) will be weak, and this is one argument for working in the semiclassical
regime. Stronger arguments, based on the number of electrons only, will be
developed later, when we will proceed to a new scaling depending on N.

4.3 A basic model: the harmonic oscillator

By analogy with the case of the atom, where the shell structure, and consequently
the periodic table of the elements, is well reproduced by the energy levels of the
hydrogen atom, we proceed the same way for the quantum dots, by developing the
basic two-dimensional harmonic oscillator. This corresponds to the case where
the electron-electron interaction is neglected.

The energy levels of the two-dimensional harmonic oscillator are easily ob-
tained by separating it into two one-dimensional harmonic oscillators. We can
proceed in another way, in order to make use of the radial symmetry, by express-
ing the problem in polar coordinates. An exact development can be found, for
example, in (Schwinger, 2001). It leads to the following energy levels:

Epym = Vk(2n, +|m|+1), n,=0,1,2,..., m=0,+£1,%£2,...  (4.9)
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n, and m are the radial and quantum numbers respectively.

There are degenerate states, and it is these degenerate states that form the
shells.

An interesting result we can derive from this simple model is the number of
electrons a shell contains. The first shell contains 2 electrons ((n,m) = (0,0),
with the spin degeneracy), the second shell contains 4 electrons ((n,m) = (0, £1),
with the spin degeneracy). The n'* shell has n,, = 2n electrons, which means that
the shell fillings occur at

anzik:n(nﬂ). (4.10)

We will establish later that the energy oscillations are a quasi-periodic function
of v/N. We will moreover establish that this function is dominated by a single
periodic function of v/N, of period 1.0376, and with peaks occuring at about
0.5, 1.5, 2.5, and so on. These values are represented, in our harmonic oscillator
model, by shell fillings. These are listed in table 4.1.

n_ | No | VNo
11 2 | 141
21 6 | 245
3| 12 | 3.46
4 | 20 | 4.47
5| 30 | 5.48
6 | 42 | 6.48
7| 56 | 7.48
8 | 72 | 8.49
9190 | 9.49
10 | 110 | 10.49

Table 4.1: Shell fillings, their corresponding number of elec-
trons N, and the square root of N.

There is a remarkable periodicity in the filled shells, in very good agreement
with the results we develop in chapter 8 with a more realistic model.

The shells are characterized by the fact that all the electrons of a shell have
a given energy, the electrons of the n shell having an energy of nv/k. This fact
corresponds to what is called a degeneracy. It is moreover possible to characterize
a shell in another way: let’s compute the quadratic mean distance of a particle
in a state (n,m) from the center, which is

<T2> - <7">2 = <wn,m|r2|wn7m>' (4'11)
~—

0
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The wave function of this state is:

Im
, emd ! 1 VE 2 k k
U, m (1, 0) = pil T e £r L \/—_TZ . (4.12)
. Vx| Ty + ) 3 A

The angular part plays no role, and its integration in (4.11) provides a factor of
27, Introducing (4.12) in (4.11), we find, after computation

o 4 nl = oy 3+2ml =2 ([ |ml (.2 2_ 2 n =+ lm
<T>_\/E(n+|m|)!/0 d Im| (LM (%)) \/E(2 + |m| +1). (4.13)

Unsurprisingly, we find that the more energy the state has, the higher its quadratic
mean distance is. The electrons belonging to the same shell are therefore at the
same mean distance from the center, and this is a way to characterize a shell.
Within this shell picture, we could introduce an electron-electron interaction be-
tween the electrons of the different shells, and obtain this way an approximation
of the ground state energy. This is what Englert (1988) did for the hydrogen
atom. He obtained a surprisingly good approximation of the ground state energy
of the atom.

We may ask if the energy oscillations we observe are related to the shell fill-
ings. As noted by Englert (1988), in the case of the atom, and more generally for
three-dimensional systems, two quantum numbers characterize the shells, and it
is therefore difficult to observe a structure in these oscillations. Conversely, for a
quantum dot, and in general for two-dimensional systems, the energy is character-
ized by a single quantum number (for the hamonic oscillator, the energy depends
on the single quantum number (2n, + |m|)). The study of two-dimensional sys-
tems presents the advantage to answer whether the energy oscillations are related
to shell fillings or not. If it is, the oscillations must be such that their peaks oc-
cur at shell fillings. And as mentioned above, our computations show that the
oscillations are dominated by one term of period 1.0376v/N, and with peaks in
very good agreement with those obtained in Table 4.1. This shows a link between
energy oscillations and shell fillings, which can be observed in two-dimensional
systems only.

4.4 Experimental methods

To compare the results provided by these theoretical models to experimental ones
we need a method to proceed to the measures we are interested in, which is in our
case, the ground state energy. We describe one of these methods (which was used
to measure the results we use), because we think it may be part of the discussion
of our results.
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This method makes use of Coulomb blockade. The dot is fed by a source
of electrons, and electrons can leave the dot to a drain. A voltage difference
between the source and the drain can establish a current in the dot. This dot
can be coupled strongly or weakly to the source and to the drain. The first case
corresponds to open quantum dots, the second one to closed quantum dots. As
we are interested in isolated quantum dots, this is best approached with a closed
one. A schematic of this system is shown in Figure 4.3.
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Eectron Etectron
Eleciron

| o | — OO0 —————
O OO @)
—O— —O— —O0—
—O0— —O— —O—
—O0— —O0— —O—
—O— —0O0— —O—
N ~ N = N =
3 —O0— |3 R 3 —O0— |3 R 3 —O0— |3 R
X O § X A X O § X AN O § 53 N
—O0— —O0— —O0—
—O0— —O0— —O—
Source Dot Drain Source Dot Drain Source Dot Drain

Figure 4.3: Schematic representation of a quantum dot. In
(a), there are (N — 1) electrons; in (b), a tunneling current is
established; in (c), there are N electrons.

The source is on the left and the drain on the right of the dot. The barriers
represent the potential needed for the electrons to tunnel from one system to
another. The higher they are the less the systems are coupled. The potential
V + 0V of the source is slightly higher than the potential V' of the drain. The
dot is characterized by energy levels u(N). At low temperature, if 0V < (u(N) —
(N —1)), the variation of the potential V' will modify the number of electrons in
the dot, one by one. If there are (N —1) electrons in the dot, and if V46V < p(NV),
there is no electron transfer. If V + 0V > u(N) > V, an electric current arises,
and if p4(N') < V this electric current stops. We therefore observe electric current
peaks at given values of the potential, as shown by experimental results of Meirav
et al. (1990) in Figure 4.4.

With an increasing temperature the widths of these peaks will increase and
they will progressively vanish, until the signal becomes continuous, as shown on
the same figure.

These experimental results provide the chemical potential (V). From the
chemical potential we can easily obtain the total energy of the system, which is
E(N) = Z,i\/:l w(k). More detailed explanations can be found in the reviews of
Ashoori (1996) and Reimann (2002).
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Figure 4.4: Coulomb Blockade peaks, and their temperature
dependence.

4.5 Experimental results

The experimental results we need for comparison are the ground state energy as
a function of N, for many electrons. The results which are the most relevant
to our work are, to our knowledge, those from Tarucha, which can be found in
(Kouwenhoven et al., 2001). They are reproduced in Figure 4.5. Results were
obtained for circular vertical quantum dots. They show results for up to 41
electrons, and these results are presented as the function Ay(NV), where Ay(N) =
u(N +1) — ().

(meV)

8l (b) o no offsets B (T)

Addition Energy Ap, (N)

20 )
Electron number N

Figure 4.5: Addition energy as a function of the number of
electrons.

From these values we deduce the chemical potential p(N), from which we
deduce the ground state energy E(N). The results we obtain are shown in Figure
4.6.
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Figure 4.6: FExperimental ground state energy as a function of
the number of electrons N.

As will be established later (see chapter 8), the asymptotic behaviour of the
ground state energy is given by £ ~ N Sks = N2/ %, where k' = \/iﬁ is a constant,
as explained earlier in this chapter.

In order to compare our results to experimental results, we need to know the
numerical value of the confinement strength, &’. It is obtained in the follow-
ing way: we know that in the limit N — oo, the energy divided by N 3 tends
to a constant, which is 1.06k’ é, as established in our developments. In these
developments we also establish that % can be expanded as a polynomial of

N~z. This is why we represent % as a function of N2 in Figure 4.7, and
2

proceed to a polynomial fitting. The 0'" order of this polynomial corresponds to

th*%ao % We find 7.7 meV. Dividing it by 11.2 meV (which is the energy

unit of this dot, a modified Hartree), and equating it to 1.06%’ 5, we find
K =0.27 (4.14)

in the modified atomic units.

4.6 Theoretical results — asymptotic limit

A rigorous study of the asymptotic limit of the ground state energy of quantum
dots with many electrons was done by Lieb et al. (1995). They studied the dot
in a perpendicular magnetic field B and found three distinct regimes. We will
restrict our discussion to the B = 0 regime. They prove that the ground state
energy is a functional of the density, the density being solution of a self-consistent
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Figure 4.7: Fxperimental ground state energy divided by N %,

as a function of N_%, for N =2 to 41, compared to a polynomial
fitting.

equation. This result is expressed in the following theorem. Let

EM M, Vear] = z/an:pz(zc) +/d2:cp(:c)‘/;xt(w) —l—l/an:/dem
2 2 [z -yl

(4.15)
be the Thomas-Fermi energy functional. Then there exists one unique density
p™" which minimizes the energy functional under the constraint [ d*zp(x) =
N, whose energy is ETF(N,V,,;). For an external potential of the order of N
(Vezt(®) = Nveg(x)), this minimal energy is related to the quantum energy
EQ(N7 B7 ‘/ext) by

. EQ(N7B7‘/e:Ct> . B
]\}1_{13)0 FFN Vi) if N 0. (4.16)
Let
1
Ep, Vi) = /d%p(m)vm(a:) +§/d2w/d2y%p(j) (4.17)

be the classical energy functional. Then there exists one unique density p¢ which
minimizes the energy functional under the constraint [ d?zp(x) = N, whose
energy is E°(N,V,,). For an external potential of the order of k (V. (x) =
kVezt (), ezt being of the order of 1), and for a homogeneous external potential
(Vewr(Ax) = NVop(x), s > 1), this minimal energy is related to the quantum
energy E9(N, B, V,,) by

E9(N.0 Ve
lim —( 10, Vear)

=1 if
N—oo EC(N, VYewf) ’ !

% o (4.18)
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This last asymptotic limit corresponds to the case where the kinetic energy is
negligible compared to the other energies. The situation xk = % < 1 is often ob-
served experimentally, and the asymptotic limit is therefore a good starting point
for theoretical developments (and this is what we used in our calculations). Let’s
finally note that all these limits converge uniformly, which allows a perturbative
treatment (for N > 1, k < 1).

A perturbative treatment also applies to the case of a small perpendicular
magnetic field (B < 1), which will not be studied in this thesis.

Shikin et al. (1991) were, to our knowledge, the first to find a solution for the
asymptotic limit k — 0, in the case of a parabolic confining potential. They found
a solution to the self-consistent equation (where y is the chemical potential)

1
—chQ—i—/ddy Py) = U. (4.19)
2 [z -y
obtaining the self-consistent density. It is
3 N 2 31\ 3 3r\3 .
c 1
P =g\ B=(50) s w= () e
Introducing it in the energy functional one easily finds the ground state energy:
3 (3r\?
EC=2(20) N2gs. (4.21)
5\ 4

An exact solution of the general self-consistent equation (including the kinetic
energy) does not exist, to our knowledge.

To obtain exact results, research was done by replacing the three-dimensional
electron-electron interaction by the two-dimensional one, that is V() = — In|x|.
This allows the use of the Poisson equation, which simplifies the problem. This
was done by Sinha et al. (2000) and independently by Pino (1998). They obtained
the asymptotic ground state energy for a number of electrons tending to infinity.
Corrections to this asymptotic limit were obtained by Dalessi and Kunz (2003) in
a master thesis. This approach is interesting because everything can be treated
analytically, but it presents more an academic interest than a physical one, due
to the fact that the electron-electron interaction is not the real one.

4.7 Theoretical results — energy oscillations

Not only the main (and smooth) asymptotic energy has been studied until now.
Research has been done on the oscillatory behaviour of the energy, in very different
ways, and using sometimes a different language. We proceed to a short description
of the main approaches we found in the literature.
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Considerable numerical effort was done to understand the electronic structure
of quantum dots. We will specifically discuss the research done to obtain the
addition spectrum, which corresponds experimentally to the Coulomb blockade
peak spacings. The spacing between the (N — 1) and the N peaks is, in our
language, simply (u(N) — (N — 1)). There are many experimental results, see
for example Tarucha’s results (Tarucha et al., 1996). They show "magic numbers'
for 2, 6, 12 and 20 electrons, corresponding to filled shells of a two-dimensional
harmonic oscillator, as shown in Figure 4.5.

We mention two numerical results obtained by modeling the dot as a two-
dimensional system with a harmonic confining potential, for up to 25-30 electrons.
The first was obtained by Macucci et al. (1997), using a self-consistent potential
approach, and including the exchange and correlation effects. The results are
shown in Figure 4.8(a). The second was obtained by Reimann et al. (1999),
using Spin Density Functional Theory. Their results are very similar to the
experimental ones, reproducing the "magic numbers" perfectly. Results are shown
in Figure 4.8(b). Numerical results were also obtained for up to 400 electrons by
Jiang et al. (2003b,a); they were interested in the statistical behaviour of the
peak spacings, which is discussed below.

-~ 7 : ‘ , ,
% ."‘.I 6 .'4, 2 -— LSDA
E 615 y i -—- Tarucha et al., Exp.
5 — |
g s |
o 4 — 4r
[*]
£ 3 z
'g 2 S
81 ]
0 L I 1 0
0 5 10 15 20 25 5 10 15 20
Number of electrons Particle Number N
(a) Addition energy as a function of the num- (b) Addition energy as a function of
ber of electrons, obtained by self-consistent the number of electrons, obtained with
calculations, for a dot with a radius of 90nm, SDFT calculations (solid line), com-
and with a parabolic confinement of strength pared to Tarucha’s results.

hw = 4meV (solid dots), 3meV (solid
squares), and 2.5meV (empty squares).

Figure 4.8: Addition energy as a function of N.

As explained previously, one method to measure the ground state energy con-
sists of using the Coulomb Blockade. The distribution of the peak spacings was
extensively studied, both experimentally and theoretically. A chaotic behaviour
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is expected due to the impurities and irregularities of the dot, and a simple model
of independent particles with constant interaction leads to an RMT model and
the (normalized) peak spacing distribution is the Wigner surmise. However, the
experimental results do not agree with RMT predictions: the fluctuations are
considerably larger than expected, and the distribution is gaussian. Similar re-
sults were obtained for GaAs dots by Sivan et al. (1996), an extensive study was
done by Patel et al. (1998), and finally Simmel et al. (1997) obtained the same
results for silicon dots. The distribution of (normalized) Coulomb blockade peak
spacings is shown in Figure 4.9, the figure is from Patel et al. (1998).
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Figure 4.9: Normalized Coulomb blockade peak spacings distri-
bution (bars), obtained with ~ 4300 peaks, and from 3 different
devices. The solid curve corresponds to a gaussian shape.

The mismatching with theoretical predictions was explained by the fact that
the electron density is too high, the electronic interaction therefore has to be taken
into account beyond the constant interaction approach. The gaussian distribution
was confirmed by Hartree-Fock calculations for random hamiltonians with an
interaction term by Levit and Orgad (1999), Walker et al. (1999), and Cohen
et al. (1999). A theoretical model including (random) interactions studied by
Alhassid et al. (2000) models a crossover from a Wigner surmise distribution at
low density, to a gaussian distribution at high density.

But is it justified to consider a chaotic quantum dot? An extensive numeri-
cal work was done by Jiang et al. (2003b,a), where they used refined numerical
techniques (in the framework of Spin Density Functional Theory) to compute the
ground state energy of a quantum dot, with symmetric and chaotic confinement
potentials, for dots containing up to 400 electrons. As shown in Figure 4.10, they
found, in both symmetric and chaotic potentials, that the peak-spacing distri-
bution has an almost gaussian shape. They distinguish the cases N odd and N
even, and observe differences. Moreover the symmetric case has a broader distri-
bution than the chaotic one. But there seems to be no clear answer whether the
experimental dots have a symmetric confining potential or not.
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Figure 4.10: Distributions of normalized peak spacing for even
(solid) and odd (dashed) N, for a symmetric, and an asymmetric
potential, obtained with density functional calculations.

The energy oscillations are also treated in another work, done by Reimann
et al. (1996). They consider a dot with a fixed number of electrons (about 1000),
submitted to a magnetic field, and whose radius can be varied by modifying
the external electrostatic potential. In this case the two parameters are the
radius and the magnetic field. They measured the conductance, which shows
clearly an oscillatory behaviour. This is explained by the variation of the density
of states (at the Fermi surface) as a function of the radius and the magnetic
field. This density of states can be easily related to the ground state energy (by
integrating two times over the density of states, as will be done in chapter 6).
The theoretical approach used to explain these experimental oscillations is done
in the framework of semiclassical physics, using the periodic orbit theory. They
consider the cases of a circular billiard (high density, the self-consistent potential
does not depend on the confinement) and of a harmonic oscillator (low density,
the self-consistent potential is the confining potential, the other electrons do not
modify it). As shown in Figure 4.11, the high-density model is qualitatively
similar to the experimental results, which confirms both the existence of these
oscillations, and that the self-consistent potential is, in good approximation, that
of a circular billiard.
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Figure 4.11: Oscillations of the density at the Fermi surface,
as a function of the magnetic field and the radius of the dot. (a)
is the experimental result, (b) is obtained using the periodic orbit

theory for a circular billiard.
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Chapter 5

Semiclassical Hartree-Fock

development
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The objective of this chapter is to develop the semiclassical approach and

apply it to the problem of a quantum dot.

In chapter 2 we developed a new approach for the treatment of many-fermion
systems. At lowest orders we established that the semiclassical Hartree-Fock ap-
proach was correct. We therefore develop this approach to obtain the ground state
energy of quantum dots. As this approach does not contain energy oscillations,
we use another approach in chapter 6 to obtain them. Moreover this approach

93
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needs the solution of a self-consistent equation, which is done in chapter 7, before
the self-consistent potential obtained this way is used in chapter 8 to obtain the
ground state energy of quantum dots.

In this chapter, we proceed first by a description of the Hartree-Fock approach,
then proceed to a relevant scaling, to justify the use of a semiclassical approach.
We then develop the semiclassical Hartree-Fock theory; we compute the density
matrix in this theory, proceed to an inverse Laplace transform, and proceed to
some integrations to obtain the semiclassical density, and from it the integrated
density of states, to finally derive the Hartree energy. The Hartree-Fock energy
is obtained by adding perturbatively the lowest order of the exchange energy.
The energy is obtained as a functional of a potential, solution of a self-consistent
equation.

5.1 Hartree-Fock

The semiclassical Hartree-Fock development is very general and this is why we will
work in arbitrary dimension d, except when the specific dimension is mentioned.
We will eventually discuss the particular cases d = 3, and d = 2 in more detail.

The hamiltonian we consider is given in equation (2.7) with the three-dimen-
sional electron-electron interaction. For the quantum dots problem, it corre-
sponds to the hamiltonian (4.8), which is the hamiltonian expressed in the mod-
ified atomic units. It is

YA, 1 & 1
H:—27+Z%xt(wz)+§ Z m (51)
i=1 =1 i,j=1,i#j g J

Let’s consider the ground state \\TJO>. We approximate it as a product of one-
particle wave functions, taking into account the Fermi-Dirac statistics (we will
write it as an equality and call the new wave function the ground state):

. 1 . . .
(@1, ..., 2N[Vo) = Vo > (D) ) (@) (82) - - ry (). (5:2)
(N)

" m€Perm
The one-particle wave functions have to be determined such that the ground state
energy Eq (which is the quantity that interests us) is best approximated by the
energy of the new wave function.

To derive such a condition we know that the hamiltonian (5.1) is self-adjoint
and hence, by the spectral theorem, its eigenfunctions {|¥;)}=o provide a basis
for N-particle wave functions. Any N-particle wave function |®) can therefore

be written as R R
@) = el W), (5.3)

k>0
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with the normalization condition Y, |cx|* = 1.
The energy of this state |®) is therefore

(DIH|D) =~ crow (Wi| H[Uw) = chow B (Vi) Zmy Ey, > E.

kK N kK
:Ek’ ‘\Ifk/> _6k: K/

5.4
The ground state energy is therefore best approached by minimizing the en(erg})f
we obtain with the Ansatz (5.2).

We now need an intuitive approach to build the one-particle functions. The
Fermi-Dirac statistics implies that these functions have to be orthogonal (they are
even orthonormal) <1ﬁz|7ﬁ]> = ¢; ;. This is why we build them from a one-particle
operator H=-2 + V by considering the N first eigenfunctions and eigenvalues
of this operator:

(—% + V(fc)) hi(@) = éni(@). (5.5)

With this procedure, the wave functions are now functionals of the potential
V. The ground state energy is therefore a functional of this potential, and the
minimization condition becomes a minimization with regards to this "parameter’
V.

Let’s rewrite the ground state energy with this potential V.

A

Ey = (Uo|H|Wo)

1 N N
= (Yol - §¢Z1Ai + ;V(@i)qu&

. / d'a / %, Y @@ @) (5.6)
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Using the definition p(z,9) = S0, U ()0;(&) we can write the ground state
energy as

We have to minimize this energy, with regards to the potential V. To proceed we
neglect the exchange term. It will be established a posteriori that, for N > 1,
this approximation is valid. The energy is then

A:ﬁpﬁ/k%(mam+§/wqj@;—V@Qmm. (58)

To minimize this functional, let’s look how the first term is modified by the change
V +— V + 6V. For this let’s consider it changes as zﬁz — 1/% + 5@&1, €; — €; + 0¢;.
To establish it let’s compute (without writing the & dependence)

éi +0¢; = /ddﬁz (1[)1* + 51@?) (é; + 0¢é;) (1/31 + 51@1)

— /ddﬁ: (w* + 61@*) (—% +V 4+ 6V> (1/1 + 51@-)
= &+ / A@rsVe); + ¢ / d'a (¢5¢ + ww)
O (8160, UF6¢;,66:01);). (5.9)
The last term is of the order of (9(57,@2-* 5@[),-), because of the normalization condition:
= [ e+ 80+ 00 = 1+ [ A+ e+ 80700, (510
hence
[ aoizi v diody — - [ awsizad. (5.11)
We finally obtain the result
5éi = / A8V (2)07 (3)0i (). (5.12)
Summing over the N first eigenvalues we find

(Z ) Z&fz— / A'&sV (& Z Ur (@) i(@) = / AoV (2)p(%).

. (5.13)
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We have to determine how the other terms of (5.8) are modified by a change of
V. We define 6p such that V +— V 4§V implies p — p + 6p. The last terms of
the ground state energy become

o ([ e (vt [0 2B @) sie)

S / &5V (2)p(2) + / d’& (‘lm(ﬁ:) - V@)) 5#?(1) + / dd@?gfﬁ)
= / A&V (&) p(&) + / A% (V@xt(i) + / dd@% — V(:i')) op(x)
(5.14)

Summing (5.13) and (5.14) we find

6Fy = / A% (Vm(ﬁ:) + / d%)% — V(:z:)) op(). (5.15)

Hence the ground state energy Ey is minimized with regards to the potential 1%
if §E, = 0. This condition is satisfied for any (small) modification of V if the
potential is (@)

(A o a ds P\Y

V@) = Veala) + [ @'yl (5.16)
This result is not surprising. It provides a potential which corresponds to the
mean-field potential: the particles feel the external potential and the mean electron-
electron interaction produced by the other particles.

This relation is not enough: the density p has to be related to the potential.
This is done through the relation (5.5), which we are unable to use analytically.
Instead we will use a semiclassical approximation which will be valid for N > 1.
Let’s note that the relation (5.5) could easily be used numerically.

We can now return to the ground state energy (5.7) (including now the ex-
change energy):

This formulation of the ground state energy can have a physical interpretation:
the first term contains the electron-electron interaction counted twice, one time
for each electron. Hence we have to subtract it, which explains the second term.

This theory can be generalized to a theory which includes the exchange term
for the determination of the self-consistent potential V. It is however more dif-
ficult to give a physical interpretation of such a potential. The equation for the
eigenfunctions 1@ and eigenvalues ¢é; is obtained by minimizing the ground state
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energy, taking into account the orthonormal constraints of the wave functions,
by means of Lagrange parameters. After diagonalization these parameters cor-
respond to the eigenvalues of a Schrodinger equation, and play the same role as
the eigenvalues established previously. Detailed developments can be found in
(Martin and Rothen, 2004). The equation we obtain is

(—é+‘7ext(ﬁz)+/dd@ o) >;@i(@)—/ddgﬁ(§”i{) )

= - Di(@) = étdy(@).
2 [z — 9| |z — 1y

(5.18)
The total energy becomes

N 1 Al AN Af Afn N Afa a
EWZZFF-(/d%/H%Mﬁﬁw—/h%/ﬁ%M%wM%@).
— 2 [z — y|
(5.19)
We observe that the sign of the exchange energy has changed between formulas
(5.17) and (5.19). This is explained by the fact that, in the first case, the sum
Z?Ll ¢; does not take into account the exchange energy. In the second case this

term includes twice the exchange energy, this is why we have to subtract it from
the total energy.

5.1.1 Scaling

From the formula for the ground state energy, we want to extract the N depen-
dence as well as identify which quantities are small, in order to identify which
asymptotic limit to study.

We already changed the units of our problem. We chose the modified atomic
units, which allowed us to write the ground state energy in an elegant way. How-
ever these units are not necessarily the natural ones of the system. In the problem
of quantum dots, there is a parameter, independent of N, the strength of the con-
fining potential. This is why we have to take it into account when proceeding to
a scaling, as it will have an influence on the size of the system, and therefore on
its typical length scale. The scaling will be therefore slightly different from that
we performed in the general study of chapter 2.

Let’s proceed to a scaling of the length, & — L%, where L, is a characteristic
length of the system, whose N dependence will be established a posteriori. The
length is denoted by a star to remind us that it is expressed in modified atomic
units.

The new wave functions will still be normalized to 1 but the new density p is
defined such that it is of the order of O(1), in order to quickly identify the orders
of the final expression of the energy (in chapter 2 the density was normalized to
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N, but there is no fundamental difference):

ok ok

. x d —dds k
We have then
1= / Advar (&) (&) = LY / d%a)r (L,x);(L,x). (5.21)

In order to have normalized wave functions we impose

/ Al () () = 1. (5.22)

From (5.21), the functions 1; are therefore

vi(x) = L bi(La). (5.23)
The densities are defined as
N
o y) = >0 w)le), (524
i=1
| N
plx) = < D vi(@)di(x). (5.25)
i=1

With this scaling, and the division by N, equation (5.18) becomes

1 Vext(L*w) 1 / i, PY) A
<2NEA+ N L) Wy | @

o [ ) = Soe). 65:20)

Multiplying it by L, we finally obtain

! Vear (L) dy PY)
(—2NL*A+ x +/dy,w_y|)wi(w)

- / atyPZY) gy — Gp(@). (5.27)

|z -y I,
Let’s define €2 = ﬁ, e; = S, and V() = w The equation we look at
* jre pre
1S now
Y P\, Yy
(<28t Vit + [ @ty 22 Y nta) - [ a2V ) = cnta).
|z — yl |z — y

(5.28)
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Let’s write the ground state energy (5.17) in terms of these new variables. We
find

iy — Lﬁze B 2J\£ /ddm/ddy (p(w)p(y);p_(z]y)p(y,w))‘ (5.29)

5.1.2 Chemical potential versus electron number

In our developments it will be more convenient to work with the chemical po-
tential p instead of the number of electrons N (which are thermodynamically
conjugated), which means that we will change from the canonical to the grand
canonical ensemble. This chemical potential is defined as the energy such that
the energy levels e; are filled until this value.

Moreover we take into account a degeneracy factor s, which is the degeneracy
due to the spin of the electron: s = 2. We conserve this letter throughout the
computations, and replace s by its number at the end of the computations. This
degeneracy is not contained in our hamiltonian, this is why we have to add it.

The relation between N and p is given by

N(p) =s Z (i — e;), (5.30)

where 0 is the Heaviside step function.
This immediately defines the chemical potential i as a function of the number
of electrons N, by the implicit equation

N = N(p). (5.31)

We can also write the energy

N e
sZei = SZGiﬁ(u —e;) (5.32)
i=1 i=1

as well as the electron density

pl@.y) = 5 2 viW)(@) = 5 > Ui @)@ — e, (5.33)
p(w) = 3 Do Ui @)i(e) = 5 D00 @)@l — ). (5:34)

At this stage we introduce the density p(e; x,y), whose importance will become
clear later. It is defined by

ple;z,y) =s Z U (y)i(x)d(e — e;), (5.35)
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plem) =5y Ui (@)i()d(e - e). (5.36)
i=1
p(x,y) and p(x) can be related to p(e; x,y) and p(e; x) respectively:
ple,y) = % ; b (Y)u()8(p — &)
I = .
= 3 [ s L viwn@i -

1 H
= N/ dep(e; z, y), (5.37)

pl@) = < > Vi @)@ — )
= %/M de S;%*(w)%(ﬂ?)é(e_@i)
= %/M dep(e; x). (5.38)

The energy can be formulated with the density of states p(e) and the integrated
density of states N(e), which are very usual objects in quantum chaos, and which
are defined by

ple) =5 d(e—e), N(e)stG(e—ei) = p(e):%N(e). (5.39)

=1

The density of states can be obtained from the density p(e; ), using the normal-
ization of the wave functions [ dxy}(x)y;(x) = 1:

ple) = 525@—@) = / dz szqﬁ(m)wi(m)é(e—ei) = / d%xzp(e; ), (5.40)

while the integrated density of states can be obtained from the density p(x):

Nip) =530 e) = [ a5 3 vi@)i@in - o) = N [ dap(a)
- - (5.41)
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The energy (5.32) can then be written as

S;ileﬁ(,u—ei) _ /mdeg(u—e)esiﬂe—ei)z/#deep(e)
=p(e)
-/ deeim )= eNoF - [ dente)
_ N - / deN (e (5.42)

where we proceeded to an integration by parts.

5.1.3 Ground state energy
With this formalism, the ground state energy (5.29) can be written
. N? 1
T L, N I:v - yl
(5.43)

Having extracted the N and L, dependencies, let’s simplify the problem by con-
sidering only the energy Ey = %EO:

1
N Iw ~y]
The self-consistent potential in these new variables, defining it as V' (x) = LWV(L*a:),

where we defined V' in (5.16), is given by

. PY)

V(x) = V() + /d |33 gl (5.45)
It is now necessary to proceed to some discussion. Throughout this development
we have considered that the external potential divided by N is of the order of
O(1), which is not the case in quantum dots, since this potential is an external
condition and does not necessarily depend on N. However this study is more
general and we will consider at the end the case where the external potential
divided by N is small. More precisely, the potential will depend on a parameter,
let’s say k, and we will consider the limit x = % < 1. This limit will be considered
independently of the limit N > 1. The factor x depends on the strength of the
external potential, but also on N. It is representative of the electron density in
the dot. The ground state energy has a uniform convergence in the limit x — 0,
as shown in (Lieb et al., 1995). Let’s note that instead of k we will consider L, as
a parameter of the system, which is directly related to the density of the system,
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as we will see below, and which, in the specific case of homogeneous potentials,
will be related to k explicitly in the asymptotic limit.

Let’s add a comment about the small parameter €. This parameter plays the
role of the usual % in quantum mechanics. Very powerful tools were developed
to study the asymptotic behaviour when this parameter is small. But small
compared to what? This parameter is not dimensionless, it therefore has to be
compared to other physical values, which are characteristic of the physical system.
Then "h small" means i < S, where S is the biggest action of the system (A has
the dimensions of an action). This regime is called the semiclassical limit, because
the limit 7 — 0 corresponds asymptotically to classical physics.

In our case we proceeded to a scaling, and the equation we obtained is di-

mensionless. In particular the parameter € is dimensionless (L, = é has no
dimension). Let’s recall that € is defined by
11
2
== . 5.46
¢ TaNL, (5.46)

This parameter is characterized by two independent ones: N and L,. The length
L, contains information about the density of the system, which is proportional

to L—]\Q If L, > N2 the system is diluted, hence it is not surprising that we are

working in the semiclassical regime. Conversely, if L, < N %, the density is high.
In this case it is not obvious whether the semiclassical regime is valid or not:
there is a competition between the two parameters L, and N. Looking at (5.46)
we see that the condition on L, in order to work in the semiclassical regime is
Le> 5.

The low density semiclassical regime is therefore given by

L,> N7, (5.47)

while the high density semiclassical regime is given by
1
& <L < Nz, (5.48)

The lower bound corresponds to the semiclassical regime limit, while the upper
bound corresponds to the high density regime limit.

On what does L, depend? It depends, first, on the number of electrons /N, but
also on another parameter of the system, the strength of the external potential.
This can be physically understood by the fact that if the confinement potential is
strong, the electrons will be confined in a small region and the density will be high.
In our developments we will consider two parameters, N and L, independently.

How large is L,? In order to give numerical values of this length, we will
develop the semiclassical limit of this problem, and determine, from this, its N
dependence in the different regimes. Moreover a particular case of physical inter-
est, the parabolic confinement, will be considered, and experimental estimations
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of the confinement potential strength will be discussed, which will allow us to
obtain an estimation of the length L,. After this discussion we will see that the
experimental conditions are such that the semiclassical limit can be used.

At this stage we can already discuss qualitatively the length scale in the case of
a homogeneous potential of degree p, that is such that kf/ext()\fc) = k‘)\p%xt(:ﬁ),
where k represents the strength of the potential. We want that in equation
(5.28), all the terms are of the order of O(1), except the parameter e. We already
extracted the L, dependence of the electron-electron interaction, we still have to
impose that the external potential is of the order of O(1), which will impose a
condition on the length scale. Returning to the initial definition of the external
potential, we find (working in the modified atomic units)

kL, ~ RLETY
kVept(x) = —Vep(Lyx) = Veat(x) = O(1). (5.49)
N N
Hence the length scale is defined by kL(*I;U ~ 1, therefore
N\ @
L, ~|— ) 5.50
(7) (5.50)
In the specific case of the two-dimensional harmonic potential Vm(:i:) = %k:i:Z we

find )
N\ 3

L,~(—) . 5.51

(7) (551)

From this result we can determine the asymptotic limit of the ground state energy
(5.43) with regards to N:
. N2
By~ = ~ N3k3. (5.52)
L,
In some cases (as will be the case for the experimental data we will use), the
strength "constant" depends on N; we have typically k = \/k—]’v, which leads to the
asymptotic energy
. N? K's
EO ~ — N2 6;
L* Nz
We may ask if it is possible to measure experimentally the ground state energy of
a quantum dot. Actually it is. We discussed the experimental results in chapter

4.

= N2K'5. (5.53)

5.2 Semiclassical Hartree-Fock

Our starting point in this section will be the self-consistent equation (5.45).
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In order to obtain an equation for V', the density p has to be related to the
potential V. This will be done in the semiclassical regime, using equation (5.28)
(and neglecting the exchange term):

(—A+ V(@) vy(@) = eshi(x), (5.54)
and we will work in the semiclassical limit
e<< 1. (5.55)

This equation will allow us to write p[V] as an asymptotic expansion in powers
of €2, where p is defined by equation (5.34).

We will also compute the density p(x,y), which will allow us to compute the
exchange energy. This density has been defined in (5.33).

We cannot proceed to an asymptotic expansion of the density in powers of
€2. We have to consider the expansion of the density matrix, from which we will
compute the density p(x,y). This density matrix is

ez, y) = (zle|y), (5.56)

which can be easily computed in the framework of semiclassical physics, in an
asymptotic expansion in powers of €.

Let’s see how these two objects are related (taking into account the spin
degeneracy s):

6_5H(m, y) = <w’s Z e~ Pei 7/12> <w2|y> . Z ?/Jf(y)lbi(w)@_ﬁei

= [ desY wiwpiteisic - e)e = [ depeizy)e
- (5.57)

where the last equality comes from the definition (5.35). Let’s note that p(e; x, y)
is a distribution, not a usual function.

The density is then obtained from p(e; x,y) by equality (5.37).

From equation (5.57) we see that p(e;x,y) is the inverse Laplace transform
of the density matrix e ##(x,y). Hence, we can obtain p(x,y) by comput-
ing e P (x, y) semiclassically, applying the inverse Laplace transform to obtain
p(e;x,y), then integrating over e and dividing by N to obtain p(x,y).

5.2.1 Density matrix

The density matrix will be computed at lowest order in e using functional inte-
gration. We will discuss our approach as in the real time case (the density matrix
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corresponds to the propagator e_%Ht), and compute it directly in the imaginary
time. The semiclassical approach is much more intuitive in real time.
We will consider the trajectory of a classical free particle from @ at time 0 to

y at time 1. This trajectory is given by
zq(t) = (1 —t)x +ty. (5.58)

The quantum effects, which consist of quantum fluctuations around the classical
path, are computed exactly. We find, writing Hy = —e?A, and considering the
spin degeneracy s:

d
I Gay) = slelet Ay = (s ) IO )
47 Ge?
which is a well-known result (see for example (Kleinert, 2004)).

In the semiclassical limit, which in our case is the limit ¢ < 1, the potential
is treated perturbatively around the classical trajectory of the free particle, using
the cumulant expansion with a gaussian measure arising from the quantum fluctu-
ations. Normalizing the imaginary time to 1 we find (writing (t) = x,(t)+o0x(t),

and introducing dy(t) = f\m/—%):

—BH( Be2A—BV (x

ly)

= s / Dxe
z(0)=z,z(1)=y

d
= s b 26_46162(3/_"3)2
47 3e?

% fém(O):&m(l):O

e (wy) = s(zle

-1 (35 GV i)

Do 13 (F R4V @) 20 )

1 8@2(t)

— o dt g2
fém(o):&c(l)zo Déxe 70 72 282

d
N e 1k
47 3e?

— [Lat(L642(6)+BV (zer (t)+ev/2B0y(t))
Xféy(o):‘s?l(l)zopéye Jo at(309 j (1))

— (Y aelsq?
f(Sy(O):(gy(l):O D(Sye fo 150y (t)

d
_ 1 2 eiﬁ(y,mf <675f01dtV(mcl(t)+€m5’y(t))> . (560)
47 Fe? "

The measure is a gaussian measure, arising from the normalized quantum fluctu-
ations. It is defined by

Opi())o = 0: (Oilt)dy; () = { gji’((ll_—tg N
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This result can be obtained easily when returning to the discrete version of the
functional integral. Another approach to obtain this result, working in the con-

tinuum, is to invert the operator —A(t,t') = —d0(t — t’)g—;, which means having
to find G(t',t") such that
1
- / QAL )G ) = 5(t — 1), (5.61)
0
Using the definition of A(¢,#') we find
Gt ") = =6(t' —t"), (5.62)

where the dot refers to a derivation with respect to the first variable (¢'). Inte-
grating over t’ from 0 to t we obtain

t t
/ G, t") = G(t, ") — G(0,t") = —/ dt'o(t' —t")=—-0(t—t"). (5.63)

0 0
Integrating again over ¢/, from 0 to ¢, and reminding that G(0,t) = G(1,t) =0

(the boundary conditions are fixed), we find

t
/ AWEE ) = Gt") —CO.8) = Gt )
0

t t
—/ﬁM@m—/ﬁwbw
0 0

= sG(0,¢") — (t—t")0(t — ). (5.64)

G(0,t") is computed with the boundary condition:
0=G(1,t") = G(0,t") — (1 —t") = G(0,t") = (1 — t"). (5.65)
We finally obtain

N[ t=t) , t<t,
G@”_{ﬂa—w,t>ﬂ

To compute (5.60) we perform an expansion in powers of €1/2(3 and proceed to a
cumulant expansion:

(A1) = e+ ((Aho=(ADF) . (5.66)
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We obtain

5 [ v () + /BB = o [ at <v<wd<t>>

VB Y SV (walt))dult)

d 2
526 > ajaxjv<mcz<t>>6yi<t>6yj<t>>
+0(€%), (5.67)

which implies

<_5 /01 atv <:ccz(t) + 6\/%511(15)) >o

-8 /01 At (V(za(t)) + BEAV (za(t)t(1 — 1)) + O(e*)
(5.68)

and

% ( < (—ﬁ /0 “aw (walt) + em5y<t)))2>
- <—B /01 dtV (zvcz(t) + 6@5y(t)>>2>

0

0

= 2ﬁ362/ dt /Ot At'VV (xy(t)) - VV (g (') (1 —t) + O(e*).
(5.69)

The final result for the density matrix is then

d
e M(z,y) = s (4 lﬁ ) D e ) [t (alt)
TTO€E

X exp < — 3% /01 dtAV (za(t))t(1 - t))

X exp (25362/0 dt /Ot dt'VV (zq(t)) - VV (2 (') (1 — t))
+O(Y). (5.70)
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5.2.2 Semiclassical density py(x,y)

_(yfor:)2
Let’s proceed to some discussion about this result. The factor e 45 implies
that the density matrix vanishes if [y —ax| > €. Let’s define r such that y = x+er
and compute e ?H (x, z + er), for € < 1, at lowest order in e

d

1 2 2

el (e_ﬁH)o (x,x+er)=s (m) e B AV (5.71)
7r

where we used the fact that the classical trajectory is @ (t) = @ + ter = .
Using the gaussian relation

r?
/dpie_ﬁp?“”pi = \/g e 18 (5.72)

the density matrix (5.71) becomes

- 1 s —Bp?+ir-p— T
(€t en) = o [ alpeerm e Gy

In order to compute the density p(e; x,y) at lowest order, related to the density
matrix by equation (5.57), we write

(e‘ﬁH)O (x,x+er) = / depo(e; x, x + er)e "

1 S OO d,.  —pBe+ir 2
~ e [ e [atpersrse s vi)
(5.74)
The density p(e; @,z + er) at lowest order in € is then
1 .
pleiw.m o) = St [ dpermite @ V@), (573)

We will rewrite the integral over p by writing it in hyperspherical coordinates, and
perform the integration over p = |p| using the delta function. The hyperspherical
measure is dp = p@Vsin@? ;1) sin Gy_q)...sin 020, dpdfig_1y---db;,

and the basis is chosen such that the scalar product is - p = rpcosfy_).

Integration over the angles 6(4_s), ..., 6 can be performed and we obtain Si;_1) =
(d-1)

22

@, where S(4_1) is the surface of a (d —2)-dimensional hypersphere of radius

1. This result can be found in (Gradshteyn et al., 2000).
Using the result

—L__f(p—+Je—V(x)), if e>V(x),
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the density matrix is written, if e > V (),

S-1y 1 1 i > 1) (de
. — de d (d—1) (d 2)9
pole;x, @ + er) 5= (QW)dZ\/m/o /0 pp sin
Xé(p— 6_V<w>)eirpcos9
S(dfl) 1 1 (d—2)
T T (27T)d§(e—V(m)) i

X /7T df sin(@=2) geirv/e=V(@)cosb
0
(5.76)

Using the integral representation of the Bessel function (Gradshteyn et al., 2000)

Jy () = 1(5—)/ e'eos? sin() gqg, (5.77)
m2D(v+3) Jo

(d-2)

5=, and z = ry/e —V(x) we

and introducing this result in (5.76) with v =
obtain, after some computation:
(d—2)

(6——‘/(“’)) S ij(sz) (r e—V(m)). (5.78)

r (zﬁ)% €l

S
po(e; T, + er) = 5

If e < V() the density matrix is 0.

To obtain the density we still have to integrate p(e; x,y) over e, from formula
(5.37). To proceed let’s note that p(e;x,y) is zero if e < V(x). The integration
is then performed from V(x) to w:

1 Iad
po(x, x +er) = N/ depo(e; @, @ + er)
0

1 S 1 /“
5 de (ve—V(x
P52 (2m)2 Net Jy ) ( ( >>
X J (a—2) <T e— V(ac))

11 s 1 (V@ o
5 @@ (V) T T ()
R [ (Vo) T (rve

s 1 /m/,u—V(a:)

1
ﬁ(Zﬂ)%N_Gd 0
— (Vi V@) (Vi Vi)

_ 1 Sg%< M_V(m))gjg (m/,u—V(m)), (5.79)

(d—2)

N | —

dyy%J@ (y)
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where we performed the changes of variables e — ¢/ = e — V(x) and ¢ — y =
rve!. We used the equality (Gradshteyn et al., 2000)

Zo
/ dzz™ T, (x) = 2 (2). (5.80)
0

5.2.3 Semiclassical density p(e; x) in d = 2 dimensions

We will now focus on the case we are most interested in, the two-dimensional
one. Although a general treatment in arbitrary dimension d is possible, it cannot
always be treated uniformly, we would therefore have to consider some cases
separately, which is not useful for our work. We will keep however the arbitrary
dimension d in our computations when they can be performed uniformly for any
dimension.

The density p(x) is related to the density matrix: it corresponds to its diagonal
part:

p(r) = p(z, ). (5.81)

It is much simpler to compute than the density matrix, because the classical path
is xy(t) = @, it is independent of the imaginary time ¢. Hence we will be able to
integrate explicitly over ¢ the terms in (5.70).

Let’s compute e ?# (x, x) explicitly. From expression (5.70) we find

e Pz, x) = S(ﬁ) exp< ﬁ/ dtV(x )
xexp( BPEAV (x /dttl—t)

0

xexp(+2632(vv / /tdtt’ >
 exp (o@)

g 2,2
= s(ﬁ) exp(—ﬂ\/( )—ﬁ—AV )

X exp ( + % (VV(x )
ﬁ?; 2
+? (VV( )) +O(64))

= ("), (@, @) + € () (z, @) + O(e*). (5.82)
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where we used [} dtt(1 —t) = Land [} dt [ dt't'(1—t) = L.

To compute the density p(x), we introduce p(e;x), which is related to the
density by equation (5.38). p(e;x) is itself related to the density matrix by
relation (5.57).

We expand the density matrix in powers of €2, as well as the density p(e; ):

(e, (@, ) + € (e (z, ) + O()
= / de (po(e; ) + p1(e;x)) e P+ O(e).
(5.83)

We will define py(e;x) as the inverse Laplace transform of (e*ﬂH)O (x,x), and
p1(e; @) as the inverse Laplace transform of (e’ﬁH )1 (x, ). This implies that we
suppose that the e expansion and the Laplace transform are commutative.

Lowest order

Let’s compute the first term explicitly:

d
_ 1 2 S _B(p2
() (@) = s (47&2) V@) _ o d/ddpe BB +V ()

m)de

- (QW—% /0°° e / d'pé(e — (p* + V(x))e ™,  (5.84)

ol

™

where we used the gaussian identity [ ddpe_ﬁ”2 = (B) .
The density at lowest order is then

po(e;x) = W/ddp(s(@ - (p*+V(z)))
1 s 1 o a1
T 2(2m)ded o V(x) & 0 A0 — Ve~ Viw)
S Sd (d_Q)
- 2 (2)ded < < V(w)>+
s (d-2)
T () @m)ed ( ° V(w)>+ ! (5:85)

(SIS

21

r(s)
appear, integrating then over p.
The case d = 2 seems special. However this formula is also valid in this case,
as can be seen by replacing d by 2. We obtain (with I'(1) = 1)

where we integrated over the angular part of p, making the factor S; =

[V1fSW

pole;x) = 47T€20(e —V(x)). (5.86)
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First correction

First term Let’s now consider the higher corrections to the density. We first
consider the term
d
S 1 2 d
2 =) e @Bt AV (). 5.87
() et Havie (5.7)
Here the approach will depend on the dimension d. Let’s consider the two-

dimensional one.
This term is written

s 1 s 1 /0
_ 2 PV - 2 - —BV(z
247 ¢ AV (=) 247 €2 (8V ) AV(z)
s 1 [ 0
= — — _ —p
S ), de (avé(e V(a:))) AV (x)e
(5.88)
The contribution to the density is then
s 1 /0

Second term Let’s now consider the second term of the first correction. It is

5(4;) @G (VY (@) (5.90)

As previously, the approach will depend on the dimension. This is why we only
compute the two-dimensional case. We write the term as follows:

:48%52 (gfv @) (VY (@)
- 48%612 Oood (88—‘;5(6—1/(33))) (VV (@) e .
(5.91)

The contribution to the density is then

s 1

o (gpatte - Vi ) WV, (592
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Final expression

In two dimensions the density p(e;x) at order O(€?) is, from equations (5.86),
(5.89) and (5.92):

ple;x) = pole; ) + *pi(e; ) + O(), (5.93)
where .
pole;x) = —0(e — V()), (5.94)
e
s (1[0
= — | =0(e — A
p1(e;x) e (6 aV(S(e V(w))) V(x)
w2 (Lste—viw)) (Vi)
12 \ a2\ ¥ v '
(5.95)
5.2.4 Semiclassical density p(x) in d = 2 dimensions
The semiclassical density p(x) is obtained from p(e; ) by equation (5.38).
We integrate each term of the expansion above separately and obtain
p(x) = po(x) + € pr(x) + O(e"), (5.96)
where po(x) = % J" depo(e; ), and py(z) = % [V depi(e; ).
Lowest order
The lowest order is easily computed:
@)= gz | deble— V(@) = 3= Vi) (5.97)
PO = rNe e = gNe W T+ '

Let’s compute the lowest order of the density p(x) in arbitrary dimension
d, which will be necessary for the computation of the lowest order of the ex-
change energy, which will be done later in this chapter. From equation (5.85), we
integrate over e, and divide by N to obtain

SSd

po(x) = m/“ de (e — V(z))

- G Vel 699

+ ol

Unsurprisingly, we find the same result as in equation (2.159), except the nor-
malization to 1 instead of V.
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First order

Using the equalities ;3-6(e — V() = —25(e — V() and (e — V(z)) = 26(e —
V(x)), the first order correction is

n@) = v [ el (G- vian) avi
—1—% (88—‘/2_2(5(6 — V(w))) (VV(m))2)

e /u de( - % (%5(6 - V(a;))) AV ()

gt - V@) (VW) )
- fve (—%W ~Vi@)AVi@) + %%éw V() (vwﬂc)f)
- i (ho V@AV + ol Vi) (FV@)?).

(5.99)

Keeping in mind that we will perform the integration over x in order to obtain
the integrated density of states, let’s rewrite the second part of this expression:

0 9 0 0
S0l = V(@) (VV(@)* = —L o5 (0(n = V(@) V(@) - VV (@)
0
= VO V(@) TV (@
- —%{dﬁv (6 — V() VV (x))
O — V(m))AV(a:)}. (5.100)

where we used the identity Vf - Vg = div(fVyg) — fAg.
The first correction to the density becomes

pl@) = xag ( - $0n— V(@) AV (@)

_% {div (0(pu — V())VV (z)) — O(u — V(m))AV(w)}>

= - 487TSN€2 % {0(n — V(z)AV () + div (0(n — V(z))VV(x))} .

(5.101)
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Final expression

The final expression for the density is

p(x) = po(x) + €pi(x) + O(e"), (5.102)
where .
po(®) = s (0 = V(@))+ (5.103)
and
() =~ oz 1005~ VI@DAY (@) + div (0~ V(@) VY (@),
(5.104)

Let’s note that p also depends on €. This dependence and its consequences will
be discussed in the part concerning the self-consistent equation.

5.2.5 Semiclassical integrated density of states in d = 2
dimensions

From equation (5.41) the integrated density of states is

N(e) = N / Lap(), (5.105)

where the p dependence has become an e dependence. As in the previous cases we
integrate each term separately, obtaining an expansion of the integrated density
of states in powers of €*:

N(e) = No(e) + €Ny (e) + O(e*), (5.106)

where
No(e) = N/dQ:vpo(w), (5.107)
Ni(e) =N / d*zp; (). (5.108)

Lowest order

We find immediately

S

No(e) = N / Papofe) = / La(e — V(w)),. (5.109)
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First correction

Using the divergence theorem and the boundary conditions we find

/R2 d*z (div (0(e — V(z))VV(z))) = /deaz (div (f(e — V(x))VV (x)))
= /asz do- (6(e —V(x))VV(x))
= 0, (5.110)

where 0 = R3. We consider the function (e — V(x))VV (x) as a distribution,
we "smoothen' it, and it becomes zero at infinity.
The first correction is then

Ny(e) = N / Prpi(e) = -~y / de%G(e—V(w))AV(az)
- / Lad(e — V(@)AV(z). (5.111)

Final expression

The integrated density of states is therefore

N(e) = No(e) + 2Ny (e) + O(e*), (5.112)
where
Nofe) = 1 / La(e — V(w))s, (5.113)
and
Ni(e) = —48fr = / Caxd(e — V() AV (z). (5.114)

5.2.6 Semiclassical self-consistent equation

We can now return to the self-consistent equation (5.45) to replace the density
p(x) by its semiclassical expression, which is expressed in terms of the potential
V. Before doing this, let’s expand V' in powers of €:

V(x) = Vo(z) + €Vi(x) + O(e*). (5.115)

To write the density p(x) in powers of € we will also need the chemical potential,
which we expand in powers of €

1= o + €y + O(e?). (5.116)
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It is defined as a function of N by the implicit equation (5.31). To obtain an
equation for each term of the expansion (5.116) we use the expansion (5.112) of
N(u). Let’s write the V' dependence of N (i) as NV (u).

From equation (5.113) we see that Ny depends on V' and p only by (u — V).

We write this dependence as NO(“ ~Y) Moreover the dependence of NN is such that
N = Ny N L o). (5.117)

Further computations show that the modification of the integration domain (when
(u—V) changes from (g — Vp) to (o — Vo) + €2(111 — V1)) modifies Ny of an order
O(e").

Hence the function N(p) is expanded as follows (returning to the initial no-
tations):

N = N(u) = Ny (o) + € (N (1) + N0 (10)) + O(e*). (5.118)

The lowest order defines p:

N = Ng*(0) (5.119)
and the first order defines yq, as a function of pyg:
N (1) = =Ny (o). (5.120)

Let’s now write the 4 and V' dependencies of p(x) as p¥*(x). From (5.103) we
see that po(x) depends on V' and p only by (u— V'), which we write as pé“_v)(m).
Moreover the dependence of pg(x) is such that

-V ~V -V
(@) = p T (@) + Epf T (@) + O(e). (5.121)
Further computations show that the modification of the integration domain (when
(u— V) changes from (ug— Vy) to (o — Vo) +€2(ug — V1)) modifies py by an order
O(e*).
Hence the function p is expanded as follows (returning to the initial notations):
PV (@) = o (@) + € (o (@) + o0 (@) ) + O(e?), (5.122)
Let’s note that the normalization condition is now
/ d2xpyet () = 1. (5.123)
Having extracted the ¢* dependencies of p(x) we can write the self-consistent
equation (5.45):
Vo(x) + €Vi(x) + O(e*)
(b7 () + € (o1 () + 1" () )

+ O(>eh.
|z — y| ()

(5.124)

= V() + /d2y
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Hence at lowest order we find

Vo,10
Vo() = Vewr () +/d2yp0—<y), (5.125)
|z -y
and at first order
L (@) + ()
Vi(x) = /d y : (5.126)
|z -y
Writing p"*# explicitly using equation (5.102) we find
s (1o — Vo(y))
= dPy——— 2t 12
Vol@) = Veur(@) + 105 / Y 2y (5:127)
and
s ((11 = Vi(y)) — 150(10 — Vo(y))AVo(y))
= d? 12 : 12
Vi(z) Ar Ne? / |z — vy (5.128)

5.2.7 Hartree energy

We now have all we need to compute the Hartree energy. It corresponds to the
smooth part of the ground state energy of the dot, neglecting (for the moment)
the exchange energy. We compute the energy FEj, given by equation (5.44).

As for the previous quantities we expand the energy in powers of €2:

Ey = Ego + €2 Fgy + O(e*). (5.129)

To do this we have to extract the * dependence of [ *deN(e). Looking explicitly
at the expansion of N(e) in (5.112), we write:

/M deN(e) = /M de(NY (e) + €NY (e)) + O(e*)

= [V [ aento+ ol
= L [ Vit + - Vi) + )’

I
+62/ deN?(e) + O(eh)
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e (4;62 [ i~ Val@), (1 - V@),

Ho
—l—/ devao(e)> + O(e")
Ho s
= [T e+ (1 [ o - et o - ice)),
Mo
+ / deNIVO(e)) + O(eh). (5.130)
We have
1o Vo, Mo VOHO
EOO_ 0__/ NVo /d2 /d2 Po (y)7 (5131)
|w—y|
and
Bu = 0 oy [ (0= Va(@)) (o~ Vi), - 7 [ deNth(o
01 = M Ine2 N T Mo 0 + 1 +7 N 1
L, P pgl’“l(y)mv“’““(y))
/d /d ) (5.132)
[z — 9|

Lowest order

We want to compute

Vouo Vouo
Eoo = O_N/ deNy® (e /d2 /d2 P |a:—y| (y) (5.133)

Returning to the definition (5.113) of Ny and the relation (5.103) between Vj and
M0 we establish

Po
1 Ho v s Ho 5
N/ deNy°(e) = 47T€2N/ de/d x (e —Vo(x)),

- 247T62N/ (10 = Vol ))
= 5 [ e @ - Vo(@), . (5130

Using the equality (5.125) we can write

2 2 PE)/OMO Vo;m(y)_l 2,0, ) V0sHO ) — x
3 [ e [yt [ e e) (Vifa) — Vi 12.135)
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Introducing (5 134) and (5.135) in (5.133), and using the normalization
[ Rxpyt(x) = 1, we find

1
FEoo = 5 (#0 + /d2w‘/;xt(w)pg°’“°(m)) : (5.136)
First order
Let’s compute
S 2 1 Ho Vo
Eo = = [ @@l =Vo(@)), (i —Vi(@)), — 5 | deNi®(e)
0#0 pgh#l(,y) + p¥07uo(y))
/d2 /d2 : (5.137)
|z -yl
From (5.113) and (5.103) we have
oy [ E i~ Val@), (- Vi@), =~ [ depl (1 - Vi(a)
Are? N + +

(5.138)
From (5.114) we have

1 Ho s Ho
v [Nt = / de / Las(e — Vi(z))AVo(x)

- m/d%AVo(w)@(uo —Vo(z)).  (5.139)

Vo#o( )

Using equation (5.126) and the normalization [ d*zp = 1 we obtain

[ e [ 5 @) (o ) + ol (w)
o

|z — y|

/fm%W<wm—m@».
(5.140)

This term is exactly cancelled by the term (5.138). The first order term is finally
§ 2
Eo = 187N /d T AVo(x)6(1o — Vo()). (5.141)

Final expression

Returning to the energy Ej defined by equation (5.43), we find

EO = EOO + €2E01 + O(E4>, (5142)



122 5. Semiclassical Hartree-Fock development

where
. N?1 ,
EOO:L_§ po+ | d*xVep(x)po(x) |, (5.143)
and
. N2 s
Ey = ——— A —
0 = gy [ CEAT@0 — Vila)
N2
- / P2 AV ()6(po — Vo()), (5.144)
T

where we used the definition (5.46) of €2, as well as the numerical value of s = 2.

The first term is of the order of (’)(]X—f), and the second is (’)(Lﬂ*)

Let’s add some comments about this result. Concerning technical aspects, it
is very important to notice that this result depends on 1} only, and not on V;. It
remarkably simplifies the calculation of this energy: the self-consistent equation
has to be solved at lowest order only, that is with equation (5.127). We will not
have to solve equation (5.128). In our computations, this is due to the fact that
two terms (whose origin is different) cancel out.

Let’s come back to the quantum dot with a homogeneous external potential

of degree p. The length L, is given by (5.50), which means that the first term is
of order (’)(N%) and the second O(N7T).

In the particular case of the parabolic external potential (p = 2) the first term
is of the order of O(N3), the second O(N3).

In the case where the confinement strength depends on N (k = Nk—,%), the first

term is of the order of O(N?), the second O(Nz).

Equivalence with Thomas-Fermi energy

The ground state energy of quantum dots, for a number of electrons tending to
infinity, is the Thomas-Fermi energy, as shown in (Lieb et al., 1995). It is, in
d = 2 dimensions,

Tr _ T 20 02( 2., 2) ol 1 2, 2, P(@)p(y)
B =G [ @art@) + [ Eavia@n) + g [ @ [ayf200 G

where p is solution to the extremization equation:

Vi) = Vol + [ @y 20 0 pla) = V@), (5140)

This self-consistent equation is exactly the same as (5.125), with the semiclassical
density (5.103).
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Let’s show that the lowest order of the Hartree energy we computed at (5.142)
is the Thomas-Fermi energy. Starting from expression (5.143) using the self-
consistent equation (5.125), the semiclassical density (5.103) and the normaliza-
tion condition [ d?xpy’*°(x) = 1, we find (without noting N and L,):

%(uw / A2V () P “%w))

:%(MO_ [ #avua) VW(@) [ V@l @

- % - %/de (VO(a:) /dzy%> " ()
/deVeu( )pgt ™t ()
:%/(ﬁ (1o — Vo(@)) proHo(z) + /an:Vm( )po"" ()

/d2 /d2 p(‘)/O He (‘]/O N()(y)
|w—y|
_ Ei 2 Vo, 1o Vo, 1o
—51 @ (@) + [ Eava@e)
/d2 /d2 pé)/o Ho 2)/0 u()(y). (5147)

Iw -yl
The first term is the kinetic energy, the second one is the confinement energy,
the last one is the electron-electron interaction. This result shows that for an
harmonic external potential, when L, ~ N %, the kinetic energy is of the order of
N 3, while the other terms are of the order of N3. If the confinement strength is
k= Nk—/%, L, ~N %, and the kinetic energy is of the order of N, while the other

terms are of the order of N3.

5.2.8 Exchange energy

The exchange energy, computed from the density matrix, in any dimension d, is
given by equation (5.44). It is
Eer = — /dd /dd ro(@.y) (5.148)
o -yl
In fact, in view of the density defined in equation (5.33), where the spin degener-

acy was already taken into account, we have to modify this formula. The correct
formula is derived as follows. Introducing the spin, the exchange energy is

——Z/dd /dd Z¢* ZT,o ¢5 Yy,0 )@Dﬁ(m J)@/Ja(y,()'/). (5149>

|z — y
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The wave function is characterized by two numbers, o = (i, u), where p is the
spin index, which takes s values. The wave function is

Va(®,0) = 1i(x)0,0- (5.150)

Introducing this function in the exchange energy, we obtain

——Z [t [y Ui L >_¢;<‘ PSS

w,v o0’
A >y

/dd /dd @ Y) 551
where we introduced the density (5.33).

Using the result (5.79) and performing the change of variables y +— 7 such
that y = x + er:

e /ddxmm )

9 (27)d N2ed+1 pd+1

Sl [ /Oodr< w V@) 7 (/i V@)

D) (27)d N2ed+1 2

.
o o Ji(y)
. 1 S d d+1 %
T 2(2n)d N2ed+15d/d :c( a V(a:)) /0 dy Y2
1 4
=T @-n
1 s 1 1 4 d+1
S - d% (/u — 152
3 () N2t 1 (g = 1)/ m( # V(‘”)>+ (5.152)

where we integrated over the angular part of r, and performed the change of
variable 1 — y =ry/p — V().

To extract the N dependence of this energy, let’s express the lowest order of
this exchange energy in term of the density (which allows a better control of the
N dependence, because we know that p is of the order of O(1), by construction).
Using equality (5.98) for arbitrary dimension d, the exchange energy becomes,
after computation

dsad(+a 1
Eer = —NGHZE T T / dzp T (), (5.153)
Sq(d* —1)
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The exchange energy of the initial problem ng is then

. N'a 45— ad(+a) 1
By — - te e /ddmpé”d’(m). (5.154)
- si@ -1

Let’s explicitly compute the numerical constant for the two and three dimensional
cases. We find

. N2 23 3
d=2 : ngz——z : l/depg(m) (5.155)
L, 3rzs2
. N3 33 s
d=3 : Eor= " 1/d3wp§(a:). (5.156)
L, 257553

For the two-dimensional case, the exchange energy is of the order of N %, which
is less than for the direct energy, which is of the order of N2. This implies that
the fact of neglecting the exchange term in the self-consistent equation (5.28) is
justified a posteriori. Taking this term into account would lead to corrections of
higher order than those in which we are interested.

Let’s now discuss the case of the homogeneous potential of degree s with

strength k, for which the length scale is L, ~ (%) s*1. For the d dimensional case

the N dependence of the exchange energy is E§* ~ N Tt

In particular the case of the quantum dot (d = 2) with harmonic potential
(s = 2) provides E* ~ N, which less than the direct energy (which is of the
order of O(N3)). In the case where the confinement strength is k = Nk—/%, the

length scale is L, ~ N %, and the exchange energy is therefore of the order of
O(N).

In the case of the atom, the typical length scale is of the order L, ~ N _%, as
was established with scalings in chapter 2. The exchange energy is therefore of
the order N g, which is exactly what other authors, for example Englert (1988),
find. To confirm our result, we see that the numerical constant is correct, as
compared to Englert’s results.
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Chapter 6

Semiclassical energy of a
two-dimensional system
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6.3.2 Computation of lim,_,o Sy(e,z) . . . . . .. ... ... 167

The objective of this chapter is to obtain the semiclassical energy of a two-
dimensional system of independent particles, submitted to a monotonous growing
potential with radial symmetry. We are especially interested in the lowest order
energy oscillations.

In chapter 5 we obtained the ground state energy of the Hartree-Fock ap-
proach. It is given by a functional of the self-consistent potential. However, with
this procedure we lose some information: as can be established with a careful
analysis of our approximations, the resolution of the energy is of the order of
h = e. This implies that we lose information on the details of the energy. Is this
loss important? Actually the effects we miss are weak, but they present a great
interest, because they are oscillating terms, which can be related to the stability
of these systems of fermions. Moreover with these oscillations we can distinguish
integrable from chaotic systems, the oscillations being more important in the
first case. A detailed study of energy oscillations in both chaotic and integrable
systems can be found in (Brack and Bhaduri, 1997).

These reasons lead us to adopt another, more systematic approach, within the
semiclassical framework: we consider a two-dimensional system of N independent
particles, submitted to a monotonous growing potential V' with radial symmetry,
and compute the ground state energy, which is the sum of the N first eigenvalues.
This general formula will be used by replacing this potential by the self-consistent
potential at the end (done in chapter 8, the self-consistent potential being itself
computed by solving the self-consistent equation in chapter 7). Moreover, the
smooth part we obtain with this approach allows the verification of the results
obtained in chapter 5.

In this chapter we start by using the radial symmetry to write the problem
in the action-angle variables, before proceeding to a WKB quantization of the
actions. We proceed beyond this quantization, using the work of Feffermann
and Seco (1992). Having obtained this quantization, we compute the integrated
density of states using the Poisson sum formula, and from this, the ground state
energy of this system of independent fermions. The energy consists of a smooth
contribution (which can be related to the results obtained in chapter 5), and
oscillating terms, which are related to the classical dynamics of a particle in the
potential. These expressions are functionals of the potential.

In all the developments, we write € instead of h, as the small parameter is
obtained after a scaling, and does not have the physical meaning of h.
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6.1 Computation of the integrated density of
states

6.1.1 Quantization condition
WKB quantization

Let’s consider a two-dimensional system of independent particles in an isotropic
monotonous growing potential V. Such a system is classically integrable. We can
therefore proceed to the well-known semiclassical quantization.

The classical one particle hamiltonian of the system is

H(p,q) =p" + V(|q]). (6.1)

A canonical transformation (p,q) — (¢, I) leads to the angle-action variables
and the hamiltonian takes the form

H(p(¢,1),q(¢, 1)) = H(I), (6.2)
where H(I) = e is defined by

1 [ra(el2) 12
L = —/ dryfe—V(r) — —22 = so(e, ), (6.3)

T Jri(ed2)

where 71,79 are the classically turning points.
The equations of motion are given by

{¢ = grHI) =w(l) = ¢t)=wit+¢:(0), i=12

I, = _a?mH(I =0 = Ijt) = cst, i=1,2.

The motion is developing on a torus in phase space, the variables I being con-
stants of the motion. w; and wy are the frequencies. If ﬁ—f is rational, the motion
is periodic.

The semiclassical quantization, justified by the WKB approximation (at low-
est order in €), is in our case

L —en+ld), neN,
Iy — em, m € 7.

The semiclassically quantized energy levels are therefore defined by

) 1
enm = H(e(n + 5), em). (6.4)
The term % appears for the radial quantum number. For the angular quantum
number, there is no correction term, conversely to the three-dimensional case,
where the Langer correction appears.
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Beyond WKB

The approach we presented is the intuitive semiclassical approach and is called
WKB quantization (and more generally, for an arbitrary number of degrees of
freedom, EBK quantization). This quantization corresponds to the lowest order
of an expansion for € small, where the general quantization formula is written as

e(n + %) = s(e,em) = so(e, em) + €*s1(e, em) + O(e*). (6.5)

Let’s note that the quantization of the angular momentum is exact, not just
semiclassical.

To obtain this quantization condition, there is an approach which provides
WKB at lowest order. It was developed by Dunham (1932) and Bender et al.
(1977) for a one-dimensional problem, and an explicit formal formula on the real
axis is given by Robnik and Salasnich (1997). In this approach, the wave function
is written as ¢ (z) = exp { £ Y02 €'oy(x) }. We consider analytic continuity € C.
The n'" eigenfunction of the operator H is such that the real axis has n zeroes x;
(¥n(z;) = 0). Hence by considering a contour around these zeroes in the complex
plane, the residue theorem provides the quantization. It yields recursion relations
on the functions ¢;. For a one-dimensional system, it provides the following formal
quantization condition:

; <n + %) _ 1 /dr (e — V(r)F — ?;—QW dr (ag@)? (e —V(r) %+ 0

- %/dr (e=V(): + 4;_1 dr (82;?)) (= V() * +O(),
(6.6)

where we proceeded to a formal integration by parts. The integration is performed
between the classical turning points r; and 5. From now on it will be the case if
not otherwise specified.

This quantization is formal: the second term of the right hand side of equation
(6.6) is divergent. An exact formula was given by Feffermann and Seco (1992),
who simply remove the divergent term. The quantization is given by the following
theorem:

c(n+ 5) = Blen) + (en) + o), (67)
where .
o)== [ are=vi)! (63
is the usual WKB quantization, and 1
ve) = - dim | [ @ e-ve) ot (69
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where

2V"(ra(e)) _ 2V"(ri(e))

"= )~ Vi) (6.10)
This correction is
Wle) = —ﬁ(slim 5’; / drV" (1) (e — V (1))} (6.11)
e—V>4

To establish this result, let’s compute the derivative of the integral above (where
the integration limits are the turning points r;, i = 1,2):

V" (ra(e — 0)) 1
(e = V(ra(e —9)))?
R G CICED)
(e =V (ri(e —9)))
1 V" (r)
- / dr(—, (6.12)

etss (€T VD

a ro(e—0)

-

drV" (e = V)72 = rye—9)

86 (e—5)

N

where 7., i = 1,2, is the derivative of r; with respect to e. 7;(e) is defined by
e —V(r;) =0, that is ;(e) = V~!(e), therefore, 7. (e) = m Introducing it
into equation (6.12), and using the definition of r; (which is e — V' (r;(e —d)) = ¢),
we find (working with 6 < 1)

r2(e—0) 1 L M v
: / GV (e—v)yh = 53 e sy Vin(e)

e Jry(e-s) V'(ra(e)) V'(ri(e))
1 V" (r)
_Z dr—————. (6.13)
2%£5 (e = V(r)?

This way we obtain the function ¢, the second quantizaton term. The boundary
terms correspond to the divergence terms given in the quantization theorem.

To apply this theorem to our two-dimensional system we have to simplify
the problem we consider. Let’s use the radial symmetry to transform it into a
one-dimensional problem.

In this problem we have two conserved quantities, the energy H = —e2A +

V(lql) = —€ (59—7,22 + %% —|— ol ae?) + V(r) and the square of the angular momen-

tum L2, where L = 397 because [H, L?] = 0. We have used the usual polar
coordinates (r,0) deﬁned by (q1,q2) = (rcosf,rsinf).

Using the fact that L? is a constant of the motion, we rewrite the wave func-
tion: ¥(x) = o(r)e™?, m = 0,£1,42,.... This way, it is an eigenfunction of L.
The Schrodinger equation (—e*A + V(|z|)) ¥ (x) = ey(x) becomes

( % —~ 7% —- G;n +V(r )) p(r) = ep(r), (6.14)
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with [ drrle(r)]? = 5=. The problem has been reduced to one dimension.
However, we cannot use equation (6.6) to quantize, because the structure of the
equation is not the same. We solve it by defining ¢(r) = \/r¢(r). The equation

becomes

_6 P
or?

with [dr|é(r)|*> = 5=. Let’s divide this equation by €?, and redefine e 2V (r) —
V(r), as well as e ?e — e. This is equivalent to considering e = 1.

Can we apply Feffermann’s quantization condition? We have made our prob-
lem a one-dimensional one, but the variable r is defined on R, , which makes the
theorem impossible to apply. If m? > 0, there will be a centrifugal barrier and
the wave function will be zero for » < 0. But a problem remains for m? = 0.
To avoid it, and apply the quantization theorem, we proceed to the change of
variable r — z, r = e** a > 0. The condition r € [0, cc] becomes = € [—00, ].
The parameter a will be determined a posteriori. Moreover, we define a new wave
function () = e P*¢(e**), where 3 will be determined a posteriori as well.

To write Schrédinger’s equation (6.15) in these new variables, let’s compute

o)+ (v o — o). (619

2 p(B—20)z
& o) = [0(2) + (26 — a0/ (a) + (P —aB)o(@)] . (6.16)

a2

In order to have a one-dimensional Scrodinger-like equation, we have to eliminate
the first derivative, which leads to the following condition on the parameters

20 = a. (6.17)
e find 7 W(@) ()
52 (r) = e 307 [4—52 — } , (6.18)

and equation (6.15) becomes (with € = 1, and writing m = \):

"
—30x ¢ (23) ¢(3§) —30x 2 ’QD([L') Bx 2Bz _
—e [4—ﬁ2_T +e A@/)(x)—T +e [V(e )—e]@/)(x)—
(6.19)
Multiplying by €% we find
1/]// T . -
—% + e [V(e% ) — e] Y(r) = —\2(x). (6.20)
The normalization of the wave function is, using the normalization of the function
?, g
,
/dxwz(x) =35 ﬁ¢2(r). (6.21)
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Is this function square integrable, that is, is this integration finite? In the limit
r — 00, there will be no divergence (the function ¢ is square integrable, therefore
7% is decreasing rapidly. In the limit » — 0, we know that ¢ decreases expo-
nentially due to the centrifugal barrier, and therefore decreases faster than r—2.
The wave function 1 is therefore a square integrable function and Feffermann’s
theorem can be used.

We have some liberty to set the constant 3. Let’s set g = % Equation (6.20)

becomes
—y"(x) + f(2)(x) = =N*¢(2), (6.22)
where f(x) = e** (V(e®) —e) = —W(e?).

We have transformed our problem into a new one. We want to determine
the quantization condition of the problem given by equation (6.22). In this new
problem, the role of the energy is played by —\?, the square angular momentum,
while the real energy plays the role of a parameter. The potential of this new
problem is f(z).

Which values can these parameters take ? The square angular momentum is
limited in the range A? € [0, (A°)?], where A° is the maximal classical value the
angular momentum can have, at a fixed energy e. The energy is itself limited by
e € [V, o], where Vy = V/(0) is the lowest value the classical energy can have.

We can now apply Feffermann’s quantization condition (6.7) to this new prob-
lem. At lowest order we find

o) =+ [ (¥ pw)
Feon2
- L [T rwe) - o)

1 ) )\2 %
= = d — - — 2
- /7"1 r <e V(r) T2) , (6.23)

where we expressed this condition in the old variables. Let’s note that this first
order term corresponds exactly to the WKB quantization described earlier in this
chapter. It also corresponds to the first order quantization of the "naive" approach
given in equation (6.6).

The second term is

a0y = g / f"(=) o )2\5- %
(=A%) = yrm 512%1+ dz q(—A%)d : (6.24)
—AZ—f>5

where

_2f"(xa(=A%) 2" (@1(=A?))
f'aa(=A%)  faa (=A%)

q(—=A?) (6.25)
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Let’s express this quantization in the old variables. Using the result
f(z) = V" (r) + 503V (r) — dr?(e — V (7)), (6.26)
the second quantization term becomes
(e=V(r))
X ar (7V7(r) + 5V (r) — 4le=KD)
(=N2) = — lim /l

3
rQ(e—V)—/\2T>5 <6 — V() - A_2) ’

g(—\?)6 2

(6.27)
To make use of this equation, let’s anticipate the next sections and look at what
we are interested in. We want to compute the integrated density of states, and
later the energy of the system. Only the lowest order contribution of this term
has to be considered for consistency. As explained later in this chapter, it is given
by

y
Ni(e) = / ANB(—A2) = N¥(e) + NY(e)

—)\é

1 A€ " A€ L
= — lim / dA / dz ") 3 —/ dAg(=A%)6 2
A8 50+ | J_ye (=2 — f(z)?)2 e

—A2—f>6

(6.28)

Let’s evaluate the first term of (6.28). We commute the integration over A and z
to find (using the fact that f = —W < 0)

Jore | dA(—f(x;—AQﬁ

A2<(=f=9)
" wW—-4
1
= —/de (x)/ A
Wi(z)z J-yw=s (1_ A2 )2

W// -« 1
d 3
/1+a y(l—y )5
T+O(0¢)
—\/_/dx\/_ ()+O()
_ _% / de WW( ) L o), (6.29)

W>é

(33)
where we performed the change of variable A — y = ﬁ, and defined

)
2W (z) "

o =
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It leads to the contribution to the integrated density of states

r .. 2 W"(z)
No(e) = ——— lim — d
t(e) B i 7 / T e

>4

+0()] . (6.30)

To evaluate the second term of (6.28), let’s compute

A€ W//(JIQ(—)\Q)) A W”(ZEQ(—AZ))
2/_/\e dA—W,<x2(_)\2)) :4/0 dA—W/(xQ(—)\Z))’ (6.31)

where we used the symmetry of the integrand (depending on A? only). To perform
this integration we need to know the meaning of x5(—\?): it corresponds to the
classical turning point for a given angular momentum \. Therefore, this turning
point is a monotonous decreasing function of A, we can therefore perform a change
of variable A +— x5. This relation is defined by

W'(x)

1
2
The integration (6.31) becomes
x2(0) "
—2/ Ay I T2) (6.33)
Tmax W(x2>

The integration is performed from the minimum value of x5 (defined by W (xq) =
(A9)?) to its minimum value (defined by W (xs) = 0) (explaining a change in the
sign of the integral).

The integration

A€ W”(l’l(—)\Q)) B A€ W”(:L‘l(—/\z))
2/_»3 d)\—W’(xl(—)\Q)) —4/0 d)\—W’(xl(—)\Q)) (6.34)

is treated exactly the same way: we perform the change of variables

1w
N W) = dr= 2 V) g (6.35)
2 W(l’l)
yielding the result
Tmax W//
2 / dy ) (6.36)
21(0) W(z1)

The integration is performed from the minimum value of z; (defined by W (z;) =
0) to its maximum value (defined by W (z;) = (A9)?).
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Using (6.33) and (6.36) we find, from (6.28) that Nb(e) is

1 W"(z
Ni(e) = — / dx (6.37)
487 Jﬂo /W
" \/_W>O )
We can now compute the total contribution to the density of states N;(e), which
Is

1 W//

Nile) = g \/‘ \/—)'

0<W <

(6.38)

We have to make this expression explicit to see that there is a contribution of the
order of 1 in § to this term. Let’s introduce the value (6.26) of f” to integrate

_/ drr3V”(r) +5r2V'(r) — 4r(e — V(r))‘ (6.39)
r2(e—V(r))

0<r2(e—=V)<4d

We can rewrite the numerator of the integrand as
d
r2AV (r) +2r°V'(r) — 25 (r*(e=V(r))), (6.40)

where we used AV (r) = V/(r) + rV"(r) and & (r?(e — V(r))) = 2r(e — V(r)) —
r?V’(r). This integral can be decomposed in two parts: the first concerns the
region r ~ rq, the second one concerns the region r ~ ry.

Let’s study the first part. The first contribution is

r1+a 2
- ar— AV (6.41)

" Vri(e =V(r))

r1 is defined by 7%(e — V(r1)) = 0 = r; = 0, « is small. We proceed to the
change of variable

which leads to
_1/<e—v‘?~1»d _AVI) 5 AV sy g
2, (e~ V()  2(e—V(n))3

For § <« 1, we replaced AV (r) by AV(ry), because its y-dependence is weak.
Therefore this term does not contribute to the integrated density of states.

The second contribution is, proceeding to the same change of variable as
above,

3
(e=V(r1))

r1+a ZV/( ) V’(Tl) 5 V/(T‘l) ﬂ 0

"=V O/ Vi) (e=V(m):

(6.44)
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This term does not contribute either.
The third contribution is

[ are <:j§: - m? 2 Wi (6.45)

where we proceeded to the change of variable y = r2(e — V(r)).

Let’s now study the second part of (6.39), that is the integration in the region
T ~T9.

The first contribution is

r?A "2 AV
V( ) — ( ) (6.46)
\/1“2 (e — ro \/ e—V(r)
We proceed to the change of variable
y=e—V(r) = dy=-V'(r)dr (6.47)
to find (the y-dependence of T‘A/V( is weak, we replace it by % for 6 < 1)
dy r2AV (1) oAV (1g)
= V22 6.48
\/_ V’(T‘Q) V’(TQ) ( )
The second contribution is
72 2 ! T2 /
2 Vir ) ~ o [T g (6.49)
\/r2e— r—a ye—V(r)
We proceed to the same change of variable as above and find
7 d
ry Ay
—2 [ 7 Ly = —4V5. 6.50
A (6.50)
The third contribution is
72 d _ V é d
2 e - Vir ) D e AN (6.51)
\/ (e =V (r) 0o VY
where we proceeded to the change of variable y = r72(e — V(r)).
Grouping all these terms, the integrated density of states is
1 T'QAV(’I“Q) 1 1 TQAV(T’Q)
N 4-8-2—— | =—-— - ——— .52
1) = gl =8 =2 T = s T s vy (6.52)
The second part can be written as
>z AV (r)d(e — V(). (6.53)

487T
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This is established as follows:

1 ) 1 [~ S(r —rg)
_ A _ - A b A7)
prom d*x AV (r)d(e — V(r)) 2, drrAV(r) Vi)
1 TQAV(’T’Q)
= ——=__ % b4
24 V() (6.54)
The energy we obtain from (6.52) is (as will be explained later)
p 1 "
B = [ deNi(e) = —— [ d2zn vy -2 |

1(1) / deNi(e) = — o [ dxAV(@)0(n = V(1) - 5 (6.55)

6.1.2 Integrated density of states

We are interested in computing the integrated density of states

s> D Oe—enm), (6.56)

n=0 m=—oc0

N(e)

where we included the spin degeneracy s = 2, which will be replaced by its
numerical value at the end.

A similar development was done by Berry and Tabor (1977), who computed
the integrated density of states of an integrable system in d dimensions with this
approach.

From now on the sum will be denoted by », .

An equivalent way of writing (6.56) is:

N(e) = 53 0s(e,em) — e(n + ). (6.57)

n,m

Formula (6.57) is the starting point of our calculations. We will proceed to an
€ expansion, extracting the smooth parts as well as the oscillating parts of the
integrated density of states.

It is easily seen from (6.3) that, at lowest order in €, e is a monotonous
growing function of I, for all I;. Moreover [ is a monotonous decreasing (resp.
increasing) function of Iy, for Iy > 0 (resp. Iy < 0), and for all e. This allows us
to give a geometrical interpretation of the integrated density of states (6.57): it
is the number of points (n,m) € N x Z contained in the contour H (I, I5) = e,
as shown in Figure 6.1. Let’s mention that an analogy can be made with Gauss’s
circle problem, a problem in number theory consisting of counting the number
of points on the lattice Z? enclosed by a large circle. This problem is still open.
It was proven that, for a circle of radius R, this number behaves as N ~ CR®,

1

where 3 < a < 2. The higher bound is due to Huxley (1990), and has been

improved continuously since Gauss’s work.
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Figure 6.1: Representation of semiclassical states in the Iy, I
plane. The integrated density of states corresponds to the number
of points enclosed in the energy level curve. The level curve is
that of the self-consistent potential of a quantum dot (see chapter

8).

To proceed from formula (6.57), we will replace the sums by integrations using
the Poisson sum formula, which is

o0

Z exp{2mimx} = Z d(x —p). (6.58)

m=—oQ p=—00

N(e) = SZ Z O(s(e,em) —e(n + %))
= 8/_00 dx/ooodl/ Z Z d(m —x)d(n + % —v)0(s(e,ex) — ev)

= 8/00 dz Ooodl/ Z Z Texp {2milkx + jv]} O(s(e, ex) — ev)

k=—00 j=—00
[

s o0 o0 o0
:—2/ dx/o dv Z Z exp{ [kx+ju]}9( (e,x) —v),
o0 k=—o00 j=—00
(6.59)
where we have used the equality e 7" = —1. We integrate v from 0. Other possible
choices are between —% + € and % —¢€, € < 1. The last equality is obtained through

a change of variables.
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We finally obtain the expression

s(e,x) o0 27i .
=5 /)\F dx/ dv kZ_OOJZOO 7 exp {T[kzx + ]IJ]} ,  (6.60)
where A¢ is defined by s(e, A°) =0, A > 0.
We will compute the main contributions to the integrated density of states by
considering the different terms of the sum (6.60).

6.1.3 Thomas-Fermi model

The contribution of the term j = 0,k = 0 of the sum (6.60) consists of neglecting
the quantization of the action variables, considered in this case as continuum
variables. Unsurprisingly, we get the main contribution to the smooth part of the
integrated density of states, which is the Thomas-Fermi term, by considering the

lowest order term of s(e, z) only, which is so(e, z) = = [dr <€ —V(r) - ﬁ) K

No(e) = —= dx/

62
S

= 5 dx so(e, x)

- @ dx/ dr\/e— - (6.61)

Let’s compute this term. The integration is performed on the domain where the
integrand is positive. Let’s define

) x), if f(x 0
fane = { 0 2

No(e) becomes

No(e) = %/Rdx/ﬂ%fr\/(e—vm—gl
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d 2(e~V(r)+
— 7T€2/]1%+ T/ dzy/(r2(e — V(r)) — 22)

2
— —82 dTTQ(e—V(r))Jr/ dz+/(1 — 22)
e R T Jo ,
- 2 rdr(e — V (r))
2¢% Jr, +
S 2
o [ dale=Vilal), (6.62)

This result is the same as the one obtained in the semiclassical Hartree-Fock
approach in chapter 5, it confirms therefore the result we obtained.

6.1.4 First correction to WKB quantization

The first correction to WKB quantization leads to a correction to the integrated
density of states which was already computed in section 6.1.1, where the result
was given in equation (6.52). Adding the spin factor s we find

S
N = d’xA ) R ——

1(e) 487T zAV(r)d(e = V(r) = 33

This result is the same as the one obtained in the semiclassical Hartree-Fock

approach in chapter 5.

(6.63)

6.1.5 [-quantized Thomas-Fermi model

From now on, we will consider the function s at lowest order in € only (that is
o). Higher orders will not be necessary for our computations. For simplicity we
write this lowest order s.

To proceed further with expression (6.60), we consider all the terms j =
0,k # 0. The physical meaning is that we quantize the variable x, which is the
angular momentum, but not the radial quantum number. This is why this model
is usually called the [T'F model. It will provide oscillating terms, which is why

we write its contribution to the integrated density of states NZ_:

s(e,x) 2
NI (e) = = dx/ dVZeXp{ﬂkx}

k0

2
= Z/ dz s(e,x exp{ﬂk’x}

k0

2
= Z/ dz s(e,x cos{lkx}
€
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4s o= [N 2
= e_j Z/o dz s(e, x) cos {gkx} : (6.64)
k=1

To extract the terms of lowest order in € we integrate two times by parts this
expression:

AE
2 2
/ dz s(e, z) cos ( ka) = s(e, A) sin (—Wk)\e>
0 2k —— €

=0 (see definition of A\¢)
€
€ A

2
—— dz s.(e, z)sin iy
2tk J, €

e
€ A

. (2m
=57 i dz s,.(e, x)sin (?kx)
€2 . 2T .
= W (S$(€, A )COS (?k)\ > - Sw(e,()))
€ A 2m
e /0 dz s..(e,x) cos <?kx>

E2 2

. 2m . €
= Wsz(e, A )COS (?k)\ > - st<€70>
o), (6.65)

where s, (e, z) = M

To establish that the rest is of the order of o(e?), further calculations show
that

)\e
/ dz|s..(e, z)| < oo. (6.66)
0

Hence, by the Riemann-Lebesgue lemma (if a function is integrable, its Fourier
transform is zero when evaluated at infinity),

A 2m
lim dzs,.(e, x) cos (—kx) =0, (6.67)
e—0 0 €
that is .
A 2m 5
dzs..(e,x)cos | —kx | = O(€%), 6 > 0. (6.68)
0 €

The rest is therefore of the order of O(e?*?),§ > 0, that is o(€?). The Riemann-
Lebesgue lemma will be used several times to prove that the remaining terms are
tending to 0.

Therefore we get, for the [T F contribution to the integrated density of states
cos (2“ k:/\e)

s =1
Zsz Y = Ssale 0 5 +oll)
k=1

=n2/6
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cos (% /’{:/\e
= Zsz e, \%) ( ) — gsx(e,O) +o(1)
cos (% k)\e
- st e,\°%) ( ) + E +o(1), (6.69)
where the last equality comes from the fact that s, (e, 0) = —% for a very general

class of potentials (the condition is that the potential must be C' at r = 0), see
annex 6.3.1.

The term 75 will cancel the constant term arising from the smooth correction
to WKB in equation (6.63).

These terms can be interpreted in terms of Fourier series. It seems natural
to interpret the A oscillations (6.69) in terms of the function (z) =z — 3 — [x],
where [z] is the largest integer smaller than x. This comes from the fact that the
NI term is a correction of the "smoothed" integrated density of states. These
corrections should naturally be described by a function of (x).

Let’s write the Fourier series of (z):

T) = Z o sin(2mkx), (6.70)

where ¢, = Nik fol dzz sin(2rkz) = —NLQ . The factor N} is the normalization

of the function sin(2rkz): Ny = fol da sin®(2rkz) = 5. We finally find

(x) = — Z Lk sin(2mkx), (6.71)

)

where the equality is valid almost everywhere in x.
Let’s integrate (x):

/01‘ da' (") = %Z (7r1/<:)2 cos(2rkzr) — %, (6.72)

valid for z € R (a.e. x), not only in the interval [0, 1].
Identifying (6.69) and (6.72) we can rewrite the l-quantized integrated density
of states in terms of (z):

VL) = 2ssafe ) [ a4 s HERIZ 0 o) oy
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6.1.6 Complete model

The last terms we have not considered until now

in the sums (6.60) are those of

the type j # 0,k € Z. The contribution to the integrated density of states will

NII

be oscillating terms, we write it N_..

We compute these terms:

vee = 3 [Ty Y e
€ —A¢ j#0 k=—o00
= / d:p/ e dyﬁ?{i f:
A¢ 7=1 k=—c0
= 2—28 Aedx?}ﬁ{/s dvii
€ —A¢ 7j=1 k=—o00
_ s [ vy
= — _)\edxﬂ?{jzlkz_oo 7
- 5 Ed:c i i (_1)j{sin
TE J_)e i J
BRI PR
= — _)\edx{;kz_:oo ; {sm
25 N [ S S (—1) [
= E ; d.f{];k:Z_OOT{SIH

{ exp

o
I exp {%Z[k‘m +jl/}}

i exp {?[lm +ju]}}
exp{ ke +j1/]}}

{?[kx + js(e,x)]}

en{irnd)]

2
2y

2

ool )

271

—Fkx

U
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{Z 3 exp{ k::v+jl/]}}

et ) { _Zexp{—kw}exp{_”}}

—00

J#0 k
cos s —kx p cos< —jv
€ €
=—00

370 k=-—

= 2 2
Z cos{jkx}cos{ljy} : (6.76)
€ €

where we have used the fact that sin is an odd function, so that Y ,- _ sin(kz) =
0.
We have to compute terms of the type

25 /0” PG sin{QW ki + js(e, x)]} | (6.77)

e j
For convenience, let’s define the action
Az, e;k,j) = kx + js(e, x) (6.78)
and the function z*(e, k, j), solution of the equation
0A(x*,e;k,j
0A@, ek, j) =k+ jsz(e,z*) =0, (6.79)
ox
hence 1
se(e,2*)=—=, keZ,jeN". (6.80)
J

The equation (6.80) will not have a solution for all triples (e, k, j).
To perform the computation of (6.77) we will distinguish four families of
tripleS'

(e, k, j) 6]0 X,
a*(e, k,j) =

x*(e, k,j) = N,

4. x*(e, k,j) does not exist.

In the first three cases, the dominating contributions will arise from a station-
ary phase approximation. For consistency, we will have to proceed beyond this
approximation by integrations by parts. In the last case, there will be no sta-
tionary phase approximation and we will extract the dominating contributions
by integrations by parts only.

Let’s study these contributions separately. From now on we will not write the
dependencies of the functions in the variables e, k. j.
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1. % €]0, X7

The term we compute is

Ae
/ da:sin{2—7TA(m)} = <
0 €

4 { /:jdxexp{?fx(x)}} (6.82)
+%{ / 15 dxexp{?mx) } (6.83)

where § < 1.

We extract the asymptotic behaviour of the first term (6.81) by integration
by parts:

/O xwdxexp{?A(x)} _ /0 N A:(x) {Ax(:c) exp{@A(x)}}

_ e {exp