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Abstract

In order to verify models of collective behaviors of animals, robots could be manipulated
to implement the model and interact with real animals in a mixed-society. This thesis
describes design of the behavioral hierarchy of a miniature robot, that is able to interact
with cockroaches, and participates in their collective decision makings. The robots are
controlled via a hierarchical behavior-based controller in which, more complex behaviors
are built by combining simpler behaviors through fusion and arbitration mechanisms. The
experiments in the mixed-society confirms the similarity between the collective patterns of
the mixed-society and those of the real society. Moreover, the robots are able to induce
new collective patterns by modulation of some behavioral parameters.

Difficulties in the manual extraction of the behavioral hierarchy and inability to revise
it, direct us to benefit from machine learning techniques, in order to devise the composition
hierarchy and coordination in an automated way.

We derive a Compact Q-Learning method for micro-robots with processing and memory
constraints, and try to learn behavior coordination through it. The behavior composition
part is still done manually. However, the problem of the curse of dimensionality makes
incorporation of this kind of flat-learning techniques unsuitable. Even though optimizing
them could temporarily speed up the learning process and widen their range of applications,
their scalability to real world applications remains under question.

In the next steps, we apply hierarchical learning techniques to automate both behavior
coordination and composition parts. In some situations, many features of the state space
might be irrelevant to what the robot currently learns. Abstracting these features and
discovering the hierarchy among them can help the robot learn the behavioral hierarchy
faster. We formalize the automatic state abstraction problem with different heuristics,
and derive three new splitting criteria that adapt decision tree learning techniques to state
abstraction. Proof of performance is supported by strong evidences from simulation results
in deterministic and non-deterministic environments. Simulation results show encouraging
enhancements in the required number of learning trials, robot’s performance, size of the
learned abstraction trees, and computation time of the algorithms.

In the other hand, learning in a group provides free sources of knowledge that, if
communicated, can broaden the scales of learning, both temporally and spatially. We
present two approaches to combine output or structure of abstraction trees. The trees
are stored in different RL robots in a multi-robot system, or in the trees learned by the
same robot but using different methods. Simulation results in a non-deterministic football
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learning task provide strong evidences for enhancement in convergence rate and policy
performance, specially in heterogeneous cooperations.

Key words: Behavior Combination, Micro-Robots, Mixed-Society, Robot-Animal Inter-
action, Q-Learning, Hierarchical Reinforcement Learning, State Abstraction, Splitting Cri-
teria, Cooperative Reinforcement Learning, Decision Tree, Merge, Balance, Prune



Résumé

Afin de vérifier les modèles des comportements collectifs de certains animaux, des robots
ont été programmés pour implémenter les modèles et les confronter avec de vrais animaux
dans une société-mixte. Cette thèse décrit la conception de la hiérarchie comportementale
d’un robot miniature, capable d’interagir avec des blattes et participer à leurs décisions
collectives. Les robots sont contrôlés par un contrôleur hiérarchique comportemental dans
lequel, des comportements complexes sont établis en combinant des comportements plus
simples par des mécanismes de fusion et d’arbitrage. Les expériences dans la société-
mixte confirment la similitude entre les modèles collectifs de la société-mixte et ceux de la
vraie société animale. D’ailleurs, les robots peuvent induire de nouveaux comportements
collectifs par la modulation de quelques paramètres comportementaux.

Les difficultés dans l’établissement manuel de la hiérarchie comportementale et l’impossibilité
de l’améliorer, nous ont poussés à tirer avantage des techniques d’apprentissage, afin de
concevoir la hiérarchie des compartements et leurs coordination d’une manière automa-
tisée. Nous avons conçu une méthode de Q-Learning compacte pour des micro-robots en
tenant compte de contraintes de mémoire et de puissance de calcul, et nous avons es-
sayé d’apprendre le coordination des comportements par cette méthode. La composition
du comportement est encore faite manuellement. Cependant, le gros problème de la di-
mensionnalité rend l’introduction de ce genre d’apprentissage peu convenable. Malgré le
fait que l’optimisation de ces méthodes pourrait temporairement accélérer l’apprentissage
et élargir leurs possibilités d’applications, leur scalability et l’application réelle reste une
question.

Dans les prochaines étapes, nous appliquons des techniques d’apprentissage hiérar-
chiques pour automatiser la composition et le coordination parmi des comportements.
Dans certaines situations, beaucoup de caractéristiques de l’espace des états pourraient être
non pertinentes pour l’apprentissage du robot. Faire abstraction de ces caractéristiques
et en découvrir la hiérarchie peuvent aider le robot à apprendre la hiérarchie comporte-
mentale plus rapidement. Nous formalisons le problème d’abstraction automatique d’états
avec une heuristique différente, et décrivons trois nouveaux critères de séparation qui per-
mettent d’adapter les techniques d’apprentissage par arbre de décision pour l’abstraction
d’état. La performance de ces techniques est prouvée par des résultats de simulations dans
les environnements déterministes et non déterministes. Les résultats des simulations mon-
trent des améliorations encourageantes du nombre d’étapes d’apprentissage requises, de la
performance du robot, la taille des arbres d’abstraction appris, et le temps de calcul des
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algorithmes.
Cependant, l’apprentissage dans un groupe fournit des sources de connaissances qui,

si communiquées, peuvent élargir l’échelle de l’apprentissage, temporellement et dans
l’espace. Nous présentons deux techniques pour combiner le résultat ou la structure des
arbres d’abstraction. Les arbres sont stockés dans différents robots s’ils font partie d’un
système multi-robot, ou dans les arbres appris par le même robot mais en employant dif-
férentes méthodes. Les résultats de simulations pour un apprentissage non déterministe du
jeu du football fournissent des preuves évidentes de l’amélioration du taux de convergence
et des performances de la tactique, particulièrement pour de la coopération hétérogène.

Mots clés: Combinaison de comportement, Micro-robots, Société-mixte, Interaction de
robots et animaux, Q-Learning, Apprentissage par renfort hiérarchique, abstraction d’état,
critères de séparation, Apprentissage par renfort coopératif, arbre de décision, fuser, équili-
brer, tailler
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Chapter 1

Introduction

This thesis consists of an introduction, four appended papers, and a conclusion. The papers
are arranged in three parts. The purpose of the introduction is to give a glimpse of behavior
coordination for robots in general and overview of the papers and my contributions.

1.1 Behavior Coordination
A behavior maps sensory inputs to motor outputs to achieve a particular task [2]. In
behavior-based systems a set of behavior modules is combined to provide the functionality
needed for a given application [3]. Behavior composition is the mechanism used for building
higher-level behaviors by combining lower-level ones [4]. Behavior coordination is concerned
with how to decide which behavior to activate at each moment [5]. In fact, behavior
composition specifies the hierarchy of behaviors however, behavior coordination specifies
their execution timing. The activities of lower-level behaviors are coordinated within the
context of the task and objective of a higher-level behavior.

Behavior coordination mechanisms are classified to fusion and arbitration [5]. Behavior
fusion allows multiple behaviors to contribute to the final output, while behavior arbitration
selects one behavior at a time. These mechanisms are often suitable for multiple-objective
problems. For example, driving a car, and trying to keep it inside the lane, while avoiding
collisions with other cars is a multiple-objective problem.

1.1.1 Fusion
Behavior fusion allows multiple behaviors to contribute to the final control of the robot.
This mechanism combines recommendations from multiple behaviors to form a behavior
that represents their consensus. Thus, all the behaviors simultaneously contribute to the
final output in a cooperative manner.

They can be divided into [5]: voting, fuzzy, multiple-objective, and superposition. Vot-
ing [6; 7; 8] techniques interpret the output of each behavior as votes. The outputs are
combined by tallying the votes. Then the action which has received the maximum number
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Figure 1.1: Fusion by superposition

of votes is selected. In fuzzy fusion mechanisms [9], fuzzy inferencing techniques are used.
Multiple objective behavior coordination classes [10] , provide a formal decision-theoretic
approach to making decisions based on multiple objective decision theory. Finally, superpo-
sition techniques combine behavior recommendations using linear combinations(Fig. 1.1).

The potential field approach [11] is a superposition-based fusion mechanism. The robot
is represented as a point in the configuration space and moves under the influence of an
artificial potential field. The field is produced by attractive or repulsive forces e.g. at goal
configuration or obstacles. The potential field approach was introduced as an approach
to motion planning. Its links to behavior coordination for behavior-based control was
established in the motor schema [12] approach.

Schema

Schema theory [2] describes models which explain how the mental process organizes per-
ception and coordinates responses to environmental stimuli. A schema is “the basic unit
of behavior from which complex actions can be constructed; it consists of the knowledge
of how to act or perceive as well as the computational process by which it is enacted” [11].

Schemas are parameterized potential functions that can be of two types: motor schemas,
which are concerned with control of actuators, and perceptual schemas, which are concerned
with sensing of features in the environment. A perceptual schema is embedded within each
motor schema.

Motor schemas can have different importance. Output of each motor schema has a
weight that is multiplied by its generated vector (Fig. 1.1). The weights are usually deter-
mined empirically for a given task and environment.

1.1.2 Arbitration
Behavior arbitration selects one behavior from a collection of behaviors and give it ultimate
control of the output for a period of time, until the next decision cycle in which another
behavior is activated. It is a competitive mechanism in which the behaviors are competing
for taking control of the output.
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Figure 1.2: Subsumption architecture

The criterion to select the winner is in accordance with the system’s objectives and
requirements under varying conditions. Arbitration mechanisms for behavior selection can
be divided into [5]: priority-based and state-based.

Priority-based Arbitration

In priority-based mechanism a behavior is selected by another behavior in higher layers of
the behavioral hierarchy based on some pre-assigned priorities. Behavior with the highest
priority, then, is allowed to take control of the output of the higher-level behavior.

The subsumption architecture [13; 14; 15] is classified in this category. It consists
of a series of behaviors, which constitute a network of hard-wired finite state machines.
Action selection consists of higher-level behaviors overriding (or subsuming) the output of
lower-level behaviors (Fig. 1.2). Each level is able to examine data from the levels below
and is also permitted to inject data into the internal interfaces of the levels below, thus
suppressing normal data flow.

State-based Arbitration

In State-based mechanism, the behavior that is the most competent of handling the given
situation is selected [16; 17]. Behavior selection is done using state-transition, where
upon detection of a certain event, a shift is made to a new state and thus a new behavior.
Using this formalism, systems are often modeled in terms of Finite State Automata (FSA),
where states correspond to execution of actions/behaviors. Events, which correspond to
observations and actions cause transitions between the states.

The class of learning techniques for action/behavior selection can be classified under
this category. These techniques can be used to learn how to select an action or a behavior.
The most popular technique in this category is Reinforcement Learning (RL) [18].

In RL, the robot learns, by trial and error, a mapping from states to actions. Execution
of actions subsequently lead to a reward. The mapping, known as a policy, maximizes the
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expected reward return. The reward function is designed so to encourage desired behaviors
and suppress unwanted actions. The size of the state-space increases dramatically, as the
complexity of the problems scales up. This makes the learning mechanism practically
intractable.

To avoid the scaling problem, the task is broken down to a set of simpler tasks. Rather
than attempting to solve the whole problem at once, a decomposition is performed to
create a hierarchical structure of sub-problems [19].

1.2 Hierarchical Reinforcement Learning
Hierarchical RL [19] is a divide-and-conquer approach to solve the problem of large-scale
reinforcement learning. Rather than attempting to find a solution for the whole problem
at once, a decomposition is performed to create a hierarchical structure of sub-problems.
The structure of the decomposition is often supplied as a prior knowledge to an algorithm
however, we are interested in the methods that automatically derive it.

Many HRL methods are not designed to find the optimal policy. Instead, a policy with
“good” performance is found in orders of magnitude less time [20]. One of these methods
is abstraction technique. Temporal abstraction refers to techniques that group sequences
of actions together and treat them as one abstract action. State abstraction refers to the
technique of grouping many states together and treating them as one abstract state.

1.2.1 Temporal Abstraction
Temporal abstraction refers to techniques that group sequences of actions together and
treat them as one abstract action. Abstract actions are closed-loop partial policies that are
generally defined for a subset of the state set [19]. They must have well-defined termination
conditions. These partial policies are sometimes called macro-actions, temporally-extended
actions, options [21], skills [22], behaviors [13], partial programs [23], sub-tasks [24], etc.
They usually are policies for efficiently achieving subgoals, where a subgoal is often a state,
or a region of the state space, such that reaching that state or region is assumed to facilitate
achieving the overall goal of the task [19].

Hierarchies of Abstract Machines [23] or HAMs consist of a hierarchy of learning ma-
chines, with a low-level machine representing an abstract action available to a high-level
machine. Each machine is defined by a partial program, which constrains the range of poli-
cies the machine can learn. The program is a finite state machine with non-deterministic
choice points. The optimal choice at each point is learned with RL.

The MAXQ [24] decomposition method combines both state and temporal abstraction.
The task is decomposed to a hierarchy of sub-tasks. Actions consist of either executing
primitive actions or policies that solve the subtasks, which can in turn invoke primitive
actions or policies of other subtasks, etc. Hierarchy of sub-tasks, their termination condi-
tions, and their pseudo-reward function are specified by the programmer. The structure of
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the hierarchy is summarized in a task graph. State abstraction could be exploited within
the sub-tasks. RL finds a policy for choosing actions within each sub-task.

MAXQ [24] and HAMs [23]) have a strict, predefined hierarchy of abstract actions.
Some researches try to determine useful task decompositions without prior knowledge.
This obviously makes the learning problem much more difficult. McGovern [25] developed
a method for automatically identifying potentially useful subgoals by detecting regions that
the agent visits frequently on successful trajectories but not on unsuccessful trajectories.

HEXQ [26] sorts state features into an ordered list, beginning with the feature that
changes most rapidly. It builds a task hierarchy, consisting of one level for each state
feature. The very first level is the only level that interacts with the environment using
primitive actions. Each level contains some sub-tasks that are connected through a set of
“bottleneck” states. HEXQ is limited to considering each state feature in isolation. This
approach fails for more complex problems.

Nested Q-learning algorithm [27] creates new sub-tasks, called skills, online while an
agent is learning using Q-learning. It creates new skills by examining the frequency of state
visits and the reward gradient at each state. States that are visited frequently or states
where the reward gradient has high change are chosen as subgoals for new skills. These
new skills take the agent from any state in the environment to the subgoal.

1.2.2 State Abstraction
State abstraction/aggregation [28] is based on grouping the sets of the original low-level
states into a number of high-level abstract states. In some situations, knowing value of a
particular feature is not necessary for selecting the optimal action. For example, what I
have had last week might not be related to the action I should currently do to drive my
car. By grouping the states that only differ in terms of this particular feature, the size of
the state space can be reduced.

Feudal RL [29] is a fixed-resolution state abstraction algorithm, applied to navigational
learning problems. The states are grouped according to spatial proximity. It creates a
managerial hierarchy in which, high level managers learn how to set tasks to their sub-
managers at the level below them, who in turn, learn how to satisfy them. The very
lowest level managers can actually act in the world. The intermediate-level managers have
essentially two instruments of control over their sub-managers: they can choose amongst
them and they can set them sub-tasks. Managers reward sub-managers for doing their
bidding, whether or not this satisfies the commands of the super-managers.

Although state abstraction is applied in Feudal RL, size of the state-space is not re-
duced; the managerial hierarchy helps only in decreasing the learning time. Moreover, It
requires the user to pre-specify how the state space is discretized. Some styles of state
abstraction attempt to automatically discover how the state should be abstracted, e.g.
variable-resolution techniques and regression-tree techniques.

Parti-game [30] is a variable-resolution state abstraction algorithm. It starts with a
single large abstract state. Then abstract states for which the resolution is too low, are
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split into smaller ones. An abstract state is divided either halfway along its longest axis
or halfway along each axis.

Regression-tree techniques, e.g. U-Tree [31; 32], similar to variable resolution tech-
niques, generate a flexible discretization of the state space using a tree structure. However
unlike variable resolution techniques, they attempt to find the right attribute and location
to split an abstract state, rather than just dividing down the middle.

1.3 Project Goal
This work is performed under the frameworks of the LEURRE, European project. This
multi-disciplinary project gathers the competence of biologists, ethologists, chemists, and
engineers coming from different European universities: Université Libre de Bruxelles, Uni-
versité Paul Sabatier, Université de Rennes and École Polytechnique Fédérale de Lausanne.

The aim of the project is to understand and describe the computational behavioral
nature of a group of animals, interacting and communicating together. The behavioral
model must permit a description of the behaviors, from their most high-level definitions
to their physical definitions and implementations. Some coarse-grain classifications must
give a decomposition of the behaviors in several levels.

In order to verify the biological model of the collective behaviors, they must be im-
plemented on a group of robots. The robots are placed in a mixed-society and interact
with real animals. If the model is perfect enough, the arisen collective pattern would
quantitatively be indistinguishable from the pure-animal pattern.

Biological studies give us a preliminary list of elementary behaviors of the animals.
These behaviors are typically of the stimulus/response type. All the behaviors needed for
modeling the system can be build on the elementary behaviors. It should be possible to
describe more complex behaviors by combining elementary behaviors, using combinators
such as logic connectors (and, or, . . .) and/or modal operators.

A special robot, equipped with the necessary sensors and actuators to interact directly
with the animals, must be built. Each elementary behavior must be implemented on the
robot. However these behaviors, although considered as elementary for animals, might
not necessarily be elementary for the robots. They could be broken to more primitive
behaviors, which are meaningful to robotics engineers, but might have no counterpart in
biology.

In this project, our team was mainly involved in designing and building the robots and
all tools that were needed to work efficiently with them. I was, personally, responsible for
developing the behaviors of the robots according to the models developed by the biologists.
I should interpret the model and derive the behavioral hierarchy and the primitive behaviors
for the robots.

In order to derive the behavioral hierarchy, I applied different techniques from manual
design of the hierarchy to automatically learning the hierarchy. In the manual design,
behavior coordination was accomplished using fusion (motor schemas and potential fields)
and arbitration (finite state machines) techniques. In the automatic hierarchy extraction,
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new methods for state abstraction using regression trees were developed. I started from
pure robot experiments (the first two parts), but as the task became unfeasible on real
robots mainly due to the necessary learning time, I switched to simulation (the third
part).

1.4 Organization of the Thesis
In the first part of my work, I try to specify the primitive behaviors, combine them together,
and build more complex behaviors, heuristically. The hierarchy extends to a level that can
implement the elementary behaviors, intended by the biological model. However, the
hierarchy can be extended beyond the elementary behaviors if needed.

In the next parts, I examine machine learning techniques to automate some parts or the
whole procedure of behavior composition and coordination. Specifically, in the second part,
I apply flat RL to behavior coordination. The behaviors are combined and a new behavior
is composed in a bottom up manner. However, the combination sequence is specified by
the designer and it is not learned.

In the third part, I incorporate Hierarchical RL (HRL) techniques. There, the behav-
ioral hierarchy is represented as a decision tree and is derived in a top-down manner. This
part includes two separate papers. The first paper introduces some new splitting criteria
for extraction of the decision trees. The second paper mixes HRL with Cooperative Learn-
ing (CL), in order to enable the learning robots cooperatively derive the hierarchy. There,
new algorithms to combine and purify the decision trees are introduced.

The last chapter of the thesis includes summary of the results and concluding remarks.
They are accompanied with some suggestions for future researches.

1.5 Publications
The thesis is constituted from four papers. The papers are extended versions of the ones
that have already been published in conference proceedings and journals. The sketch of
the papers is almost same as the published versions. However, mathematical proofs and
detailed results, that had been ignored due to space limits, are added here. The papers
constituting the thesis are:

Paper A: Mixed-Society of Robots and Animals (Ch.2)
The paper is coauthored with F. Tâche, G. Caprari, W. Karlen and R. Siegwart. It de-
scribes hardware and software implementation of the miniature robot, InsBot, built for
mixed-society experiments. The robot is able to establish social interaction with cock-
roaches and modify their collective behavior. It is equipped with infra-red proximity sen-
sors, luminosity sensors, and a linear camera.
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The robots are controlled via a hierarchical behavior-based approach. Behaviors consist
of a perceptual schema and a motor schema. Motor schemas are developed using the po-
tential field concept. Complex behaviors are built by combining simpler behaviors through
fusion and arbitration mechanisms.

Paper A corresponds to the following publications:

• M. Asadpour, F. Tâche, G. Caprari, W. Karlen, and R. Siegwart, “Robot-animal
interaction: Perception and behavior of insbot,” International Journal of Advanced
Robotics Systems, vol. 3, pp. 93–98, 2006.

• M. Asadpour, F. Tâche, G. Caprari, W. Karlen, and R. Siegwart, “Robot-animal
interaction: Perception and behavior of insbot,” in Conceptual Modeling and Simu-
lation Conference [CMS], (Marseille,France), 2005.

Paper B: Compact Q-Learning (Ch.3)
The paper is coauthored with R. Siegwart. It describes the concept and implementation
of learning and combining multiple behaviors with the autonomous micro-robot, Alice.
A Compact Q-Learning algorithm that is optimized in speed and memory consumption
is introduced. Based on this algorithm, a simple method to compose and learn a new
behavior from combination of two simpler behaviors is presented.

Paper B corresponds to the following publications:

• M. Asadpour, and R. Siegwart, “Compact Q-learning optimized for micro-robots
with processing and memory constraints,” Journal of Robotics and Autonomous Sys-
tems, vol. 48, pp. 49–61, 2004.

• M. Asadpour and R. Siegwart, “Compact Q-learning for micro-robots,” in Proceed-
ings of the first European Conference on Mobile Robots [ECMR], (Poland), 2003.

Paper C: Hierarchical Reinforcement Learning (Ch.4)
The paper is coauthored with M.N. Ahmadabadi and R. Siegwart. It addresses the auto-
matic state abstraction problem and discovering hierarchies in the state space. It formalizes
the problem and derives three new criteria that adapt decision tree learning techniques to
state abstraction. The first criterion maximizes the expected reward return. The sec-
ond one maximizes the amount of reduction in the uncertainty on selection probability of
actions. And, the last one minimizes the mean squared error on action-values.

Paper C corresponds to the following publication:

• M. Asadpour, M. N. Ahmadabadi, and R. Siegwart, “Reduction of learning time
for robots using automatic state abstraction,” in Proceedings of the First European
Symposium on Robotics (H. Christensen, ed.), vol. 22 of Springer Tracts in Advanced
Robotics, (Palermo, Italy), pp. 79–92, Springer-Verlag, Mar. 2006.
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Paper D: Hierarchical Cooperative Learning (chapter 5)
The paper is coauthored with M.N. Ahmadabadi and R. Siegwart. It addresses two ap-
proaches to combine and purify the available knowledge in the abstraction trees, stored on
different RL agents in a multi-agent system, or in the decision trees learned by the same
agent using different methods.

Paper D corresponds to the following publication:

• M. Asadpour, M. N. Ahmadabadi, and R. Siegwart, “Heterogeneous and hier-
archical cooperative learning via combining decision trees,” in Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems [IROS], (Beĳing, China),
Oct. 2006.

1.6 Contribution of the Author
In paper A, all hardware parts of the robot and the necessary tools for debugging or working
with them have been designed or assembled by G. Caprari and F. Tâche. The low-level
layer of the local communication protocol has been developed by F. Tâche. Evaluation
of the perceptual schema and some debugging have been done by W. Karlen. The other
parts including sensory processing, motor control, high-level layer of local communication,
perception algorithms, calibrations, and behavioral architecture have been developed by
the first author.

In papers B, C, and D, the basic ideas and all theories and simulations were developed
and implemented by the first author. The coauthors took the role of advisors, evaluating
the developed theories, and pointing out unclear parts of arguments.
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Chapter 2

Mixed-Society of Robots and
Animals

Masoud Asadpour, Fabien Tâche, Gilles Caprari,
Walter Karlen, and Roland Siegwart

Published in:
Proceedings of the Conceptual Modeling and Simulation conference, 2005 [33]

International Journal of Advanced Robotics Systems, 2006 [34]

Abstract. This chapter describes behavior implementation of a miniature robot that simulates
collective behavior of cockroaches, in order to establish social interaction with them, and modify
their collective behavior. Equipped with infra-red proximity sensors, luminosity sensors, and
linear camera, they are able to discriminate cockroaches, walls, shelters, and other robots.

The robots are controlled via a hierarchical behavior-based approach. Behaviors consist of
a perceptual schema that directs and organizes perception, and a motor schema that takes the
output of the perceptual schema and produces a pattern of motor activity. Complex behaviors are
built by combining simpler behaviors. Behaviors are coordinated through fusion and arbitration
mechanisms.

Key words: Collective Behavior, Aggregation, Mixed-Society Control, Robot-Animal Interac-
tion, Behavior-Based Architecture, Fusion, Arbitration

2.1 LEURRE Project
The present work is a part of the LEURRE, European project, which aims to study mixed-societies
of animals and robots. This multi-disciplinary project gathers the competence of biologists,
ethologists, chemists, and engineers coming from different European universities: Université Libre
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de Bruxelles, Université Paul Sabatier, Université de Rennes and Ecole Polytechnique Fédérale
de Lausanne.

In this project, our team is mainly involved in designing and building the robots and of course
all tools that are needed to work efficiently with them. Another important task is to program the
behaviors according to the models developed by the biologists. The resulting system is a useful
toolbox for biological researches.

The project studies two major topics:

• Collective decision-making in animals

• Controlling mixed-societies of robots and animals

2.1.1 Collective Decision-Making
Our short-term goal is to have robots which integrate into animal’s society, live inside the society,
and interact with the animals. The focus of our work is on the collective level. So, there is no
need to have the same appearance as animals, but functionality of the robot must permit it to
integrate into their society and produce statistically same collective behaviors.

By “integration” we mean not only the animal’s behavior is affected by the robots, but also
the robot’s behavior is affected through interaction with the animals in the mixed-society. In fact
every decision is made collectively by the whole society in such a way that, a top-level observer
would not see any difference between the animal society and the mixed one. In our model, the
animal is thus considered as a black box, and the important characteristics for our robot is to fit
in the mathematical model of the collective interactions among the individuals involved in the
group.

2.1.2 Mixed-Society Control
The long-term goal of the project is to manipulate the collective response of the society by
modulating the behavioral parameters of the robots in order to lead the society toward a specific
goal. We hope, then, to propose guidelines towards a general methodology for performing such a
control on mixed-societies in general.

The mechanisms of effective leadership in biological systems have already been studied [35;
36; 37]. It is known that in many collective behaviors, only a few individuals among a group of
animals that, e.g. forage [36] or travel [37], have pertinent information such as, knowledge about
the location of a food source or of a migration route. Couzin et al. [35] showed by simulation
that, the larger the group the smaller the proportion of informed individuals needed to guide the
group, and that only a very small proportion of informed individuals is required to achieve great
accuracy. Our project aims at realizing such achievements.

Potential applications of the control in mixed-societies are very vast; Stabilizing or changing
the economical system of a country by controlling some informed-agents that are injected to the
system, and habituating people to a specific culture can be of its potential applications. The
same mechanism might be involved in the system of marketing for fashions by means of model
persons. In agriculture and ecology, controlling wild populations (endangered, invasive and pest
species) and managing exploitation of environment resources could be two possible applications.
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2.1.3 Previous Works
Among the projects that have tried to interact with animals and influence their behavior using
robots, we can mention the Robot Sheepdog [38] that controls a flock of duck by moving them
safely to a pre-determined position. The W-M6 rat-like robot [39] by Ishii et al. tries to create a
symbiosis between creature and robot by teaching a rat to push a lever to access a food source.

Butler et al. [40] considers the problem of monitoring and controlling the position of herd
animal. They use Smart Collars, small position-aware computer device worn by the animal,
which applies a stimulus to the animal as a function of its pose with respect to a virtual fence
line. Multiple fence lines define a region, and the fences can be static or dynamic. The stimulus
can typically be an odorous spray, a sound, or an electric shock.

These projects are different from what we are investigating in that, their robots or devices
are not trying to integrate into the society. Instead, they are trying to affect or supervise the
society in a centralized manner.

Boehlen developed a robot [41] that interacts with three chickens in a cage. He manipulates
some techniques to mechanically reduce chickens’ anxiety towards moving machinery. The goal
of the robot is to integrate with the chickens but does not try to affect their behavior.

The chapter is organized as follows: first the reason behind choosing cockroach and aggrega-
tion for our studies is explained. In the next section, the biological experiments, the experimental
setup, and the required functionality of the robots are described. Next, the hardware architecture
of the robot is summarized. Then, the perceptual and motor schemas are presented. The chapter
is finalized with the test results, conclusions, and future works.

2.2 Biological Experiments
This section explains why cockroaches and their aggregation has been selected as the base of the
biological studies.

2.2.1 Why Aggregation?
One of the fundamental questions in social biology is to understand the link between individual
and collective behavior, in order to address the larger picture of what happens at the group or
population level, based on an understanding of the behavior of the individuals. Self-Organization
theory [42] tries to explain how group patterns arise from the interaction of individuals in relation
to their local environment, without reference to the global structure or long range information
transfer. The rules specifying the interactions in a self-organized system are assumed to be on
the basis of purely local information.

We believe that an elegant way to identify individual behavioral algorithms consists of re-
placing some animals in a group by robots, and comparing the collective responses in mixed and
natural groups. If the robots are programmed according to the developed behavioral algorithms
and are tested on a mixed group, the outcome can give better understanding on the computational
capabilities of the animal society.

The most common collective behavior among living organisms is probably grouping, which
occurs in a wide range of taxa, from bacteria to mammals via arthropods, fishes, or birds [43].
Depending on the species, these assemblages are labeled as herds, shoals, flocks, schools, swarms,
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and more broadly denoted as aggregation [44]. Aggregation therefore, is defined as any assemblage
of individuals that results in a higher density than in the surrounding area [42].

2.2.2 Why Cockroach?
Ideally, biologists that study collective behaviors like to work with social insects, in particular
ants. However, this is currently rather difficult because the size of the robots is constrained to
centimeters, due to technological limits, that is still big compared to ants. Moreover, from the
point of view of collective behavior, cockroaches are very interesting animals since their collective
behavior is less complex than that of social insects [45]. They are therefore good case studies to
investigate the origin of the mechanisms involved in collective behaviors.

Robots Inspired by Cockroach

Over the last decades, researchers in bio-inspired robotics have mimicked cockroaches to design
hardware and software structure of the robots. The RobotV [46], RHex [47], Biobot [48], HEL-
roach [49] and the hexapod micro-robot [50] are examples of legged-robots which have been me-
chanically inspired by cockroaches. Cowan et al. [51] present a mobile-robot doing wall-following
with a simplified antenna, inspired from cockroaches.

Some researches have developed hybrid robots by mixing the artificial and biological systems.
The PheGMot-III [52] by Nagasawa et al. uses real cockroach antennas as a chemical sensor to
follow pheromone tracks. Holzer [53] designed a system which controls the cockroaches’ actuators
by electric stimulation. Hertz [54] developed the reverse case, a cockroach is used atop a modified
track-ball to control a three-wheeled mobile robot. Infra-Red (IR) emitters provide navigation
feedback and help the cockroach navigate the robot away from obstacles. As the robot approaches
an obstacle the IR emitters send more light to the cockroach. The robot is steered into a clear
space, as the cockroach moves on the track-ball to scuttle into a dark region.

Instead of building exactly the same mechanism as cockroaches, our goal is to have robots
which integrate into their society, and participates in their collective decision-makings as an
individual.

Cockroach Aggregation

Actually, in nature some places are more attractive for cockroaches. This attraction, thus, pro-
motes aggregation in particular sites. For instance, cockroaches prefer to aggregate in dark
places [55]. Experimentally, if one puts a dark shelter in a lighted arena, one could observe that
cockroaches strongly aggregate under this shelter. And, if two or more dark shelters are placed
in the arena, one can observe that the majority of cockroaches aggregates under only one of these
shelters, rather than spreading evenly among all the aggregation sites [56]. Hence, cockroaches
are able to collectively choose an aggregation site, even if the sites are identical.

2.2.3 Aggregation Model
In this project, cockroach aggregation is modeled based on the Self-Organization theory [42].
Self-organization relies on four basic ingredients [57]:

1. Positive feedbacks, that promote creation of a collective patterns e.g. reinforcement signals
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2. Negative feedbacks, that counterbalance the positive feedback and helps to stabilize the
collective pattern.

3. Random fluctuations, which enables exploration of the solution space.

4. Multiple individuals, that interact in the system.

Many studies have tried to model cockroach behaviors, both in individual level [58] and
collective level [43; 59; 60]. In summary, dynamics of the aggregation process at microscopic level
can be described by the following dynamic equations [60]:

dzi

dt
= Ii · ze−Oi · zi i = 1, . . . , p (2.1)

Z = ze +
p

∑
i=1

zi (2.2)

where p is the number of shelters in the system, zi is the number of individuals in the shelter i, ze

is the number of individuals outside the shelters, Ii is the probability that an exploring individual
outside the shelters joins the shelter i, Oi is the probability that an individual, that is currently
inside the shelter i, leaves it and starts to explore, and Z is the total number of individuals.

Ii decreases when the ratio between the number of individuals, currently inside the shelter i,
and its carrying capacity increases. It changes according to the following equation:

Ii = Ki

(
1− zi

Ci

)
(2.3)

where Ki is a factor denoting the maximal kinetic constant for entering the shelter i, and Ci is the
carrying capacity of the shelter i.

Oi decreases with the number of individuals zi present in shelter i, according to the following
equation:

Oi =
θ i

1+λ

(
zi
Ci

) f (2.4)

where λ is the reference surface ratio for estimating carrying capacities, f is the inter-attraction
factor, and θi is a factor that depends on the quality of the shelter i.

The four ingredients of this self-organizing system are clearly distinguishable. In this model,
Ii denotes the positive feedback which encourages aggregation in a specific site. In the other
hand, Oi corresponds to the negative feedback that discourages aggregation in that site. Random
fluctuations happen both in Ii and Oi, since they are probability numbers. Finally, it is evident
that the system needs Z > 1 individuals to work.

2.2.4 Mixed Aggregation
To verify the biological model of cockroach aggregation [58; 43; 59; 60], it must be implemented on
a group of micro-robots. The robots are then placed in a mixed-society consisting of robots and
cockroaches. It must be shown that this implementation indeed results in a collective aggregation,
that is quantitatively indistinguishable from pure-cockroach aggregation.
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Figure 2.1: Experimental setup composed of suspension hook (1), aluminium ring (2), neon
light (3), top camera (4), curtain (5), electric fence (6), white plastic arena (7), paper layer
(8), phonic layer (9) and wooden layer (10), acoustic insulator (11), DC power supply (12).
Shelters are not represented on the illustration

Next, when this aggregation behavior is restricted to certain zones in the environment (for
instance by natural preferences for dark places as in cockroaches), the robots along with the cock-
roaches must preferentially aggregate in only one of these zones, i.e. they must collectively choose
a single “rest” site. When these zones are of different sizes the robots must, like cockroaches,
preferentially choose the biggest of the two, but without being individually able to measure their
size. Finally, when the robots’ preference for site selection is reversed to oppose the cockroach’s
preference, it must be shown that the robots can influence the cockroach and change their site
selection preference, provided that the number of the robots is bigger than a limit.

2.2.5 Experimental Setup
The experimental setup (Fig. 2.1) is a circular white plastic arena (1 m diameter, 20 cm high)
with an electrical fence to avoid the cockroaches standing up or escaping. The floor is composed
of different layers, which reduce the amount of vibrations that could potentially frighten the
cockroaches. The ground white paper is changed after each experiment to avoid cockroaches
being influenced by the remaining pheromone of the previous experiments. To avoid disturbance
to the cockroaches’ behavior and the robots’ IR sensors, illumination is given by 4 neon-light
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Figure 2.2: Left: InsBot without cover. Right: InsBots with their paper-covers aggregated
with cockroaches under a shelter

bulbs with low IR emission. Finally, two circular shelters are suspended from the roof.
To enhance the acceptance of the robots into the cockroach’s colony, they are covered by

a paper that is impregnated with cockroaches’ pheromone. It has been collected by extracting
cuticular hydrocarbons of adult male cockroaches in dichloromethane [61].

2.2.6 Functionality of Robots
In summary, requirements of the robot[62] do not specify that it should look like a real cockroach,
but it should:

• Be accepted by the cockroaches as a congener

– Have a small size, preferably same size as cockroaches
– “Smell” like a cockroach.
– Behave like a real cockroach in the mixed society
– Be able to detect them and interact with them in a safe manner

• Be able to influence the global behavior of their society

• Have an easy-to-modify behavioral architecture

• Be equipped with monitoring and debug facilities

The required sensory capability of the robot mainly depends on the environment conditions.
It is also limited by its low-power consumption and small-size.

2.3 InsBot: The Insect-like Robot
The designed robots are finally 41×30×19 mm3. Figure 2.2 shows the robots with (right) and
without (left) the pheromone cover. They are called InsBot, which stands for “Insect-like Robot”.
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Figure 2.3: Control and electronic architecture of InsBot

Their rigid body is composed of PCBs which allow mechanical and electronic connections at once.
They hold a 190 mAh Li-Poly battery that allows at least three hours of autonomy required for
the biological experiments. They include two miniature step motors for locomotion in differential
drive configuration. A nail head is used as the third contact point. The robots weigh 17 gr and
can move up to 4 cm/s. They are equipped with two micro-processors dedicated to hardware
processing and behavior generation.

2.3.1 Sensors and Communication Tools
In spite of their compact size, several sensors and communication tools are embedded in InsBots:

• Two photodiodes on top of the robots allow for shelter detection.

• 12 IR proximity sensors, three on each side, placed at different heights allow discrimination
of different objects in the environment. They are also used for short range robot-to-robot
communication in order to detect the other robots in vicinity.

• A linear camera in front of the robot, combined with IR sensors, enhances cockroach
detection process.

• An IR receiver allows to command the robots with a standard TV remote control in order
to supervise the biological experiments.

• A radio transceiver (at 868 MHz) provides a communication media with an external com-
puter. This radio link is mainly used for debugging or monitoring purposes.

2.3.2 Control and Electronic Architecture
Each robot includes two PIC18F6720 micro-processors as depicted in Fig. 2.3. Both processors
have a 16 MHz external clock, 128 KB program memory, 3840 byte of SRAM data memory and
1024 byte of ROM.

The“Hardware Processor” is connected to most of the hardware resources. It prepares sen-
sory information and applies noise reduction, scaling and calibration techniques. The sensory
information is then feeded to the perception process for sensor fusion and recognition of around
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objects. Sensory information and output of the perception process are periodically transmitted
through a 400 KHz I2C bus to the “Behavior Processor”.

The first plan was to run low-level hardware processing on the hardware processor and to
put all behaviors on the behavior processor. The name of the processors comes from this plan.
However finally, we had to distribute behavior generation on both processors. Collective behavior
of cockroaches is implemented on the Behavior Processor, while individual behaviors are imple-
mented on the Hardware Processor. Since individual behaviors need fast reaction, placing them
on the Hardware Processor facilitates their access to hardware resources.

2.3.3 Calibration
Due to several reasons a calibration phase should be repeated once upon every setup change.
The inclination angle of proximity sensors is hard to adjust precisely. Also, they are not precisely
placed at the same height, so they have different initial values. The floor paper and its flatness
highly affect the bottom sensors. The illumination condition varies in experimental setups and
the amount of light under the shelters changes as well. Orientation of shelters might vary for
each experimental setup, thus changing gradient of light under the shelters.

The calibration procedure developed for proximity sensors and shelters are activated via
TV remote control upon the user requests. The computed calibration vectors are saved in the
EEPROM and loaded after each restart. During regular process, these vectors are used to adjust
the value of sensors and filter the noise part.

2.4 Behavioral Architecture
The robots are controlled via a hierarchical behavior-based approach [11; 2]. A behavior, maps
sensory inputs to motor outputs to achieve a particular task. A behavior consists of a perceptual
schema that directs and organizes the perception and a motor schema that takes the output of
the perceptual schema and produces a pattern of motor activity.

The layers of the hierarchy have been designed manually. The lowest behavioral layer consists
of primitive behaviors. Behaviors in the higher layers are constructed by combining the behaviors
in the lower layers. When execution, the behaviors are coordinated through two schemes: fusion,
and arbitration. In fusion, behavioral responses are represented in vectors, generated using a
potential field approach. The vectors indicate the direction and the magnitude of the relevant
forces. Coordination of behaviors is achieved through cooperative means by vector addition.
The resultant vectors are finally mapped to proper actions. In arbitration, a finite-state machine
stochastically selects a behavior among its subordinates.

2.4.1 Perceptual Schema
In this section we focus on the detection algorithm that has been tuned for optimal environment
perception. In fact, to behave like a real cockroach, the robot must first be able to detect the
relevant features of the experimental setup which are the inputs of the motor schemas. These
features are the living cockroaches, the setup walls, the shelters and the other robots. The per-
ceptual schemas have been tuned to work in this particular environment. It is executed on the
Hardware Processor due to having faster access to sensors.
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Figure 2.4: Left: IR sensors activated by a cockroach. Right: Response of IR sensors when
a cockroach is placed on the right-front side of the robot

Shelter Detection

The two different circular shelters (called “dark” and “bright” shelters hereafter) are composed of
dark plastic layers hanged at 5 cm from the ground. To create different levels of shadow, different
number of layers are grouped.

For detection and differentiation of both shelters, the light intensity is measured by two
photodiodes, mounted on top of the robot. Then, their value is compared with the thresholds,
computed during the calibration procedure at the beginning of the experiment. As light intensity
in the “center” of both shelters is distinct enough, detection and differentiation quality is perfect.

A gradient of light stretches from the center of the created shadow towards the borders, with
the maximum light intensity at the borders. As a result, some regions have the same luminosity
under both shelters. In these parts, the robot treats both shelters as the bright one. This induces
no bias in the results, since real cockroaches also confront the same problem.

Cockroach Detection

The cockroaches used in the mixed-society experiments are Periplaneta Americana which are
domiciliary species [45]. They are 24-44 mm long and shine red-brown. They have 6 legs and
two long (around 3 cm) antennas. Having dark skin, they are hardly detectable by IR sensors,
but thanks to the particular sensor placement on the robots, the calibration procedure and some
heuristic rules, they can be distinctively detected from 1.5 cm distance.

Of the three IR sensors on each side of the robot (Fig. 2.2), the two lateral sensors are close
to the ground (called “bottom sensors” hereafter) and the other one is placed at the center of
each side, at the maximum possible height (called “top sensor” hereafter). Due to the short
height of the cockroaches, top sensors are less affected than bottom sensors, as illustrated in
the left schematic of Fig. 2.4. The solid curves on the right side show the response of the IR
sensors to a cockroach placed at different distances on the right side of the robot. It shows, at
far distances (more than 2.5 cm) no response from the sensors is received; the cockroach is thus
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Figure 2.5: IR sensors are activated when the robot follows the wall and meets a cockroach.
Left: Real situation, Middle:The front-left and rear-left sensor are activated, even without
presence of any cockroach. Right: Response of the linear camera in presence/absence of
cockroach.

invisible. Between 2.5 to 1.5 cm, response of both sensors are almost equal; the cockroach is
visible but not differentiable from the wall(See 2.4.1 for comparison). From 1.5 cm, detection of
cockroach becomes possible through thresholding the difference between the top and the bottom
sensors (dashed curves of Fig. 2.4).

Enhanced Cockroach Detection: In some situations, IR sensors could not reliably help
in discrimination of different objects, specially when a cockroach is located in vicinity of the wall.
As illustrated in Fig. 2.5, the front-left and rear-left sensors are activated without presence of any
cockroach. This is due to the large aperture angle of the IR sensors. We would like to decrease
the amount of collision with cockroaches, as much as possible, by enhancement of cockroach
detection algorithms. In this situation using the linear camera could help declining the number
of false detections.

Therefore, the cockroach detection schema for the front side of the robot -where collision
risk is the highest- uses combination of IR sensing and linear camera processing. The algorithm
for processing the linear camera encounters the magnitude and the length of the discontinuous
patches on the camera image (Fig. 2.5 right side), which appears due to the dark skin of the
cockroaches. The length and the magnitudes are, then, compared with some thresholds that have
been computed during the calibration phase.

Wall Detection

Periphery of the circular arena is composed of a white plastic, partially covered by a black colored
electric fence. The electric fence starts from 3 cm height up to the top edges of the wall. So, the
visible part of the wall to the IR sensors is only the lowest 3 cm section. A simple schematic of
the situation in Fig. 2.6 (left side) clarifies that, value of the top sensor should be roughly close
to the mean of the two lateral sensors.

The solid curves on the right graphics (Fig. 2.6) show response of the right sensors, when
the robot is placed at different distances, making 45◦ angle with the wall. It shows, at distances
further than 7 cm, no response from the sensors is received, and the wall is invisible. Between
6.5 to 0 cm, the wall becomes more visible. The sensor values confirm that, the value of the top
sensor is close to the average of the bottom sensors (dashed curve). This graphics also shows that,
the difference between the top and the bottom sensor (solid curve) is at some parts negative; this
could make confusion with the cockroach case. That is why, the threshold for cockroach detection
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Figure 2.6: Left: IR sensors activated by the wall. Right: Response of IR sensors when the
robot is placed near a wall (at 45◦). For comparison with cockroach detection case, right-top
minus right-front curve is also plotted.

–and consequently detection range– is decreased (Fig. 2.4 for comparison)

Robot Detection

Finally, InsBot must be able to distinguish the other InsBots, from the cockroaches and the wall.
In the current experiments an InsBot is treated like a cockroach, but for future experiments, we
would like the robot to interact with cockroaches and robots in different ways. However, detection
of the robots using only proximity value of the IR sensors is not feasible; they might look like the
wall or a cockroach, depending on their relative orientations (as depicted in Fig. 2.7). Therefore,
a local communication protocol that allows for marking the robots with IR tags is developed.

Local Communication: Since the IR sensors include an emitter and receiver, they can be
used as a transceiver as well as a proximity sensor. Hence, if the robot receives any signal while
its emitters are silent, it means another robot is emitting, either for communication or proximity
sensing. This idea is used to establish a local range, one-to-one, communication protocol between
nearby robots. Due to electronic limitations and computation economy, it is implemented only
on the four top sensors.

Communication Protocol: The protocol (Fig. 2.7) includes a “hello/wakeup” signal (11
2©) in order to differentiate it with the signal, emitted during proximity measurements 1© (which

is similar to 1). When this message is received by another robot (B), it becomes master and
begins sending a message that starts with 3 start-bits (111 5©). If the robot (A), which has sent
the “hello/wakeup” signal, receives these 3 start-bits after a given time 3©+ 4©, it becomes slave
and listens for the message. The message includes 8 bits, 6 bits for data 6© followed by 2 stop
bits (11 7©). The data bits specify the unique ID of the master. The perceptual schema counts
the number of unique IDs to find the number of surrounding robots.

Neighborhood Range: Communication throughput with this protocol is very low (max. 7
msg/s = 56 bit/s). Therefore, the robots might not have the chance to communicate quite often.
Hence, the protocol must be combined with a software solution to provide a short-term memory
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Figure 2.7: Top: Response of IR sensors when two robots meet. They might look like a
cockroach (as in this case) or the wall. A local communication protocol, based on IR signals,
allows for detecting and counting the robots. Bottom: Chronogram of the communication
protocol

of the around robots.
The information, that the robot extracts out of the local communication, is registered in a

log table. It is tagged with a time-stamp and the ID of the sensor that receives the message
(It roughly indicates the relative position of the sender). The robot then has at its disposal,
information about when, where, and who has been around him.

A fixed time-window of T seconds is defined to limit the neighborhood range. The message
expires after this time, and only the robots that have been around within the last T seconds are
counted as neighbors. The neighborhood range can increase/decrease by setting the time-window
to longer/shorter duration.

The log table has a limited size. In case of experimenting with a large group of robots, it can
hold only a part of the signals, the most fresh ones. If an already-registered robot is detected
next time, its corresponding record is updated with the recent information. Otherwise the oldest
record of the table is deleted.

2.4.2 Motor Schema
The implemented behavioral model is a hierarchical behavior-based approach [11] distributed
on the two processors. Each behavior can take input from the sensors directly, the perceptual
schema, and/or the other behaviors. They can send their output to the actuators or the other
behaviors.

Behaviors are arranged in a hierarchy in which, the ones on the higher levels fuse or arbitrate
the ones in the lower levels. At the highest level, an arbiter that implements the mixed-aggregation
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Figure 2.8: Overview of the behavioral architecture. Rob, Obs, L, R, B, F , +, -, and
± stand for robot, obstacle, left, right, back, and front, attraction, repulsion, and following
(combination of attraction and repulsion), respectively. S1, S2, and S3 are the three front-side
sensors. Weights and some other details are not shown.

behavior decides which behavior to execute. At the next level, the selected behavior activates one
or more behaviors from the lower levels. Decomposition continues downward until the primitive
behaviors in the lowest layer. Behavior coordination is, therefore, competitive at the highest level,
and cooperative at lower levels. The final output is the result of cooperation among the activated
behaviors.

The arbiter runs on the behavior processor. Lower level behaviors (e.g. obstacle avoidance
and wall following) are managed in the hardware processor, since they need faster access to
the perceptual schema. The running cycle of the reactive behaviors is 10 times faster than the
centralized arbiter (50 vs. 500 ms).

Behavior Fusion

Behaviors are fused by means of the potential field method [11; 63]. Each behavior generates a
potential field. Potential fields map the sensory space into the motor space, through attraction
or repulsion force, (rx,ry). The final velocity of the robot corresponds to the resultant force,
(Rx,Ry), which is the weighted sum of the force vectors. The weights are specified empirically.
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The resultant force is, then, transformed to the speed of the wheels.

Behavior Layers: Fig. 2.8 shows a typical architecture of the behaviors. For the sake
of clarity, we had to assume the robot is equipped only with IR proximity sensors and the
distinguishable entities are limited to robots, obstacles, and ambient light. Also, some behaviors
in the three first layers are hidden.

The first layer (lowest) includes the primitive behaviors that deal with a specific sensor. Each
primitive behavior assign different levels of attraction or repulsion toward the direction that the
sensor actually points. The magnitude of the force is a function of the value of the sensor s, i.e.
(rx,ry) = f (s). In the simplest forms it can be constant ( f (s) = a), proportional ( f (s) = a · s), or
piece-wise e.g.

f (s) =

{
a if s > c
b otherwise

(2.5)

By defining f (s) = a · s−b, where a 6= 0, a mixture of attraction and repulsion is created; when
s > b

a the force is attractive and when s < b
a the force becomes repulsive. This form of functions

is suitable to create following behaviors, i.e where it is expected from the robot e.g. to keep a fix
distance from an object.

The second layer deals with a group of sensors, the ones that lie on the same side of the
robot. Here a group of primitive behaviors of the first layer are combined to generate a force
toward/from the left, right, front, and back directions. For instance, move-forward behavior
is achieved by assigning a constant attraction force to the sensors in front side, or turn-in-
place behavior is achieved by setting an attraction force toward right (clockwise rotation) or left
(counter-clockwise) direction.

The third layer includes the behaviors that deal with the objects, perceived by the perceptual
schema i.e. dealing with multiple type of sensors. For instance, obstacle-avoidance is sum of left-
avoidance if an obstacle is detected at left side, plus right-avoidance if an obstacle is detected at
right side, and so on.

The fourth layer deals with a group of objects. This layer composes collective behaviors, like
dispersion, cohesion, watching, etc. For instance, watching is the result of robot-following and
obstacle-following, or grouping is the sum of robot-following and obstacle-avoidance.

It is possible to add more layers and create more complex behaviors. For instance, light-search
behavior is built from wandering 1 and light-attraction, where wandering is composed of avoidance
and move-forward, where avoidance itself is composed of robot-avoidance and obstacle-avoidance.

Behavior layers are designed carefully to maintain scalability and reusability of the com-
ponents, both when adding more layers and when implementing on another robot. We have
implemented the same architecture (with slight weight modification) on Alice micro-robots [64].

Transformation to Speed: Finally, the resultant force (Rx,Ry) is transformed to the speed
of wheels. Inspired by law of physics for force and torque, we can write for Fig. 2.9:{

∑F = 0⇒ Ry = Fl +Fr

∑τ = 0⇒ L′Rx = L(Fl−Fr)
L′/L=k−−−−→

{
Fl = Ry+kRx

2

Fr = Ry−kRx
2

(2.6)

1Wandering is frequently referred to, in the other papers, as obstacle avoidance. The goal is to move
in the environment safely, without hitting the objects.
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Figure 2.9: Converting resultant force to speed vector

The vector (Fl,Fr) is a force vector that must be simulated by the wheels, so that an observer
perceives a force vector (Rx,Ry) affecting the movement of the robot. (Fl,Fr) is mapped to a
feasible speed vector (Vl,Vr). We used k = 2 in our application. Bigger k values create sharper
rotations, since Rx in (2.6) is magnified.

Behavior Arbitration

Mathematical model of cockroach behavior is implemented as a random-walk in form of a prob-
abilistic Finite State Machine (Fig. 2.10). The state-machine has four states: {random-decision,
moving, turning, stopped}. The trajectory of the robot is characterized by a series of straight-
moves (free paths), turning angles, and stops [58].

The robot starts from the random-decision state. State transitions occur upon selection of a
specific behavior. The selected behavior is activated and executed for a fixed period, ∆T (500 ms
here). After this period, the current state returns back to the initial state, and the decision
making process is repeated again and again.

When the robot is near the periphery, it can select either:

1. Wall-following behavior: to move along the periphery, following its circular shape

2. Wall-avoidance behavior: to turn away from the periphery toward the center of arena, or

3. Stop behavior: to turn off the motors and be immobile for ∆T seconds.

Upon selecting one of these behaviors, the current state is changed to moving, turning, or
stopped, respectively. The robot stays in that state during the whole ∆T period and returns to
the initial state, afterwards.

When the robot is in the center (i.e. not near the periphery), it can select either:



2.5. RESULTS 29

Moving Stopped Turning

Random
Decision

Obstacle Avoidance,
Wall Following

ΔΤ

Rotate,
Wall Avoidance

ΔΤ

ΔΤ
Stop

state
stopP

state
moveP state

turnP

Figure 2.10: The state-machine for generation of aggregation in the mixed-society

1. Obstacle-avoidance behavior: to move forward while avoiding the obstacles on its way

2. turn-in-place behavior: to change movement direction, or

3. Stop behavior: to get immobile

Selecting these behaviors changes the robot’s state to moving, turning, or stopped, respectively.
The turning angle for turn-in-place behavior is drawn from a pre-specified angle range, with
uniform random distribution.

A probability table specifies the chance of each behavior to get selected among the possible
mentioned behaviors in a specific state. Entries of the table assign probability to behaviors
(move, stop, or turn), based on the position of the robot (periphery or center), shelter type
(dark, bright, no shelter), and number of cockroaches, and/or robots around the deciding robot
(0, 1, 2, 3, ≥4 in our case). The table thus has totally 3×5+3×3×5=15+45=60 entries, 15 entries
for the cases where the robot is moving along the periphery and 45 entries for the cases where
the robot is moving in the center. The entries of the probability table and the other parameters
have been extracted by extensive statistical data gathering on real cockroaches using a tracking
software [58; 59].

In some cases, the robot has to terminate the currently running behavior, earlier than usual,
and switch to the initial state. For instance, when a robot that is moving in the center encounters
the periphery, or when a robot that is making a small turn accomplish the task sooner than ∆T .

2.5 Results
This section presents performance analyze of the sensor fusion algorithms and a summary of the
outcomes of the biological experiments in mixed-society of InsBots and cockroaches.
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Figure 2.11: Cockroach/wall detection accuracy vs. robot-cockroach/wall distance

2.5.1 Performance of the Perceptual Schema
Cockroach and Wall Detection

Fig. 2.11 displays the accuracy of the cockroach and wall perception methods. These results were
obtained by manually analyzing 900 different situations, extracted from a movie taken by the
overhead camera, and linking them to the information provided by the wireless communication
interface. For cockroach detection, the distance is measured from the body-borders of the robot
to the closest point of the cockroach’s body (excluding legs and antennas).

The graphs confirm that, cockroaches are visible from 2.5 cm but, optimal detection is reached
only when they are very close to the robot. The dashed curve corresponds to the detection
accuracy, based only on the IR sensors (without using the linear camera). It is clear that,
accuracy in this side is close to the left and right side. However, after introducing the linear
camera, performance in the front side is enhanced around 20%.

The graphs also shows that the wall, thanks to its reflective material, is detectable from
further distances and with more accuracy than the cockroaches. The rather poor performance of
the cockroach-detection, even at short distances, could emanate from several facts:

• Certain parts of the cockroach’s body are less visible than the others. Its round head reflects
IR signals appropriately, whereas the rear of its body, that is composed of thin horizontal
wings, disperses IR signals. Hence, the robot detects the approaching cockroaches better,
since its head appears first.

• Some positions around the robot are not entirely covered by the IR sensors, as depicted on
Fig. 2.12. The dashed shapes indicate the regions where the cockroaches initially activate
the IR sensors (from 2.5 cm), and the solid shapes indicate the regions where the cockroaches
are effectively detected by the perception algorithms (from 1.5 cm).
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Figure 2.12: Sensory coverage around robot: Dashed shapes: indicate the regions where
cockroaches start to activate the IR sensors (from 2.5 cm). Solid shapes: indicate the regions
where cockroaches are effectively detected by the perception algorithm (from 1.5 cm).

Robot Detection

Robot detection mainly depends on the reliability of the local communication protocol. This is
rather difficult to characterize because, it depends on several factors. The communication rate
between two robots depends on the distance between them; higher rates are obtained when robots
are closer to each other. Further, it also depends on the relative orientation of the robots; the
more the overlap between the IR emitting and receiving cones is, the higher the communication
rate is.

Fig. 2.13 shows performance of the local communication protocol. The left sub-figure shows
communication rate between two robots. A robot is placed at different distances (granularity:
2cm) and with different orientations (granularity: 45◦) to a fixed robot (dark square in the center
of the picture). For each position, the number of received messages (8 bits including 2 stop bits)
during a 30 s period is recorded. The right sub-figure shows the percentage of correctly received
messages out of the set of all received ones.

The maximum achieved communication rate is 7 Hz. It is achieved when the sending and re-
ceiving sensors are nearby and face to face. These results are rather good; even in situations where
communication is difficult (darker spots in Fig. 2.13-left), the percentage of correct messages is
rather high (between 70-100%).

Because of the difference between length and width of the robot, communication range in
left/right sides is higher than front/back sides. That is why the pixels of Fig. 2.13 form an
ellipse, rather than a circle. The maximum possible distance between the robots is 22.5 cm for
left/right sides and 15 cm for front/back sides. To constrain detection range of the robot to
short distances, the data received via the local communication is combined with the IR proximity
values, and only the robots that are in vicinity of the current robot are counted.
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Figure 2.13: Performance of Local communication between two robots. Left: communica-
tion rate. Right: success rate

2.5.2 Performance of the Motor Schema

To show the reusability and the extensibility of the architecture, similar architectures were imple-
mented on both Alice [64] and InsBot [62] micro-robots. The architecture was first implemented
for Alice and was extended then to work for InsBot, which has more sensors. However, we had
only to modify the weights of the behaviors and the perceptual schema. The hierarchy of the ar-
chitecture remained untouched. Experiments with the Alice micro-robots were done in pure-robot
groups, but the InsBots were tested in both pure-robot and robot-cockroach groups.

Some parts of the behavioral architecture have been re-used successfully in other projects
by other people, e.g. inspection of jet turbines by a swarm of Alice robots [65], and a realistic
computer simulation of mixed-societies [66].

Collective Robotics Experiments

Statistical analysis of the Alice behavior shows that most of the behavioral parameters of the
Alice robot are very close to the corresponding cockroach parameters [67]. Moreover, preference
for a given type of environment heterogeneities (e.g. preference for dark places in our case) can
lead the group of the robots to a collective choice for an aggregation site [68].

Interestingly, when the robots are exposed to homogeneous shelters2 with different sizes, the
group of the robots are able to sense, somehow, the size of the shelters and choose the biggest one,
while the robots are not equipped with any sensor for measuring the size of the shelters [68; 69].
This is an emerging consequence of the social amplification.
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Table 2.1: Probability to leave the bright and the dark shelters for alone cockroaches and
InsBots.

Probability to leave (s−1)
Bright Shelter Dark Shelter

Cockroach 0.030 0.006
InsBot 0.021 0.008

Mixed groups are as selective as pure cockroaches groups
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Figure 2.14: Collective choice between homogeneous shelters for pure cockroach and mixed
cockroach-robot groups. c©ULB

Mixed-Society Experiments

Biological experiments3 show that the movement pattern of the robots is similar to the ones of
cockroaches. The mean speed of the robot (17.56±2.57 mm/s) is close to the one of cockroaches
(19.04±2.5 mm/s) during their calm phase 4. Moreover, cockroaches and InsBots have similar
probabilities to leave a bright or a dark shelter (Table 2.1). The probability of leaving a shelter
decreases when the shelter is darker. It also decreases when the number of neighbors increases.

Biological experiments also show that, the mixed-society of InsBots and cockroaches generate
similar aggregation patterns to pure-cockroach groups. In more than 85% of the experiments,
both pure cockroach and mixed groups choose only one shelter, out of two identical shelters
(Fig. 2.14).

Moreover, heterogeneous shelter experiments, in around 60% of the trials, end up with se-
lection of the dark shelter, and around 25% with the selection of the bright one, in both pure
cockroach and mixed groups (Fig. 2.15). Around 15% of the experiments are finished with no
clear choice between the shelters.

2shelters are built with same materials, therefore create shadows with same luminosity
3We can not present the detailed results of the biological experiments, instead a summary of the results

is explained. The detailed results will be submitted to biological journals by other team members.
4During an experiment (3 hours), the mean speed of a cockroach is characterized by two distinct phases.

During the first 90 minutes, it has a very mobile phase during which, it explore the experimental setup.
A less mobile phase, called calm phase, starts 90 minutes after.
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Figure 2.15: Collective choice between homogeneous shelters for pure cockroach and mixed
cockroach-robot groups. c©ULB

Biological experiments, also, show that the aggregation site is selected collectively by both
InsBots and cockroaches. In fact, both of them modulate each other’s behavior. InsBots are
found more often under the shelter that contains most of the cockroaches. Cockroaches are found
more often under the shelter that contains most of the InsBots.

It is proven that the chemical marking is necessary for the InsBots to get accepted by the
cockroaches as a congener [70]. The mean contact time between cockroaches and marked-robots
is very similar to the encounters between cockroaches themselves.

The most important results proves that, robots are able to induce a new collective pattern
and modify the collective behavior of cockroaches. InsBots in this case are programmed to
prefer the bright shelter, contrary to the cockroaches, simply by swapping the entries of their
probability tables. Under this conditions, the bright shelter is selected by the mixed groups in
59% of the experiments, while it was selected, before modification of the robots, only in 38% of
the experiments (Fig. 2.16). Despite the individual preference of the robots, the cockroaches are
able to socially drive the robots to the dark shelter in 32% of the trials.

The detailed results will be published by the group of Prof. Jean-Louis Deneubourg in Uni-
versité Libre de Bruxelles, Belgium.

2.6 Conclusion and Future Works
Details of the hardware and behavior implementation of a miniature robot, InsBot, are explained
in this chapter. Due to the limitations in the size of the robot, and the necessary long-time auton-
omy required in biological experiments with cockroaches, the hardware parts and the behavioral
algorithms had to be optimized extensively.

The robots are controlled via a hierarchical behavior-based approach. Behaviors consist of
a perceptual schema and a motor schema. The perceptual schema (sensor-fusion methods),
associated with the heuristic rules that come from our knowledge about the experimental setup,
allows the robots to well discriminate the different objects in the environment. Cockroaches
and walls are detected using the IR proximity sensors, emplaced in different heights around the
robot. To enhance the cockroach-detection procedure, a linear camera is added to the front side
of the robot. Also, for discrimination of robots from cockroaches and wall, a simple local-range
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Figure 2.16: Collective choice between heterogeneous shelters in a mixed group, when
preference of the robots are intentionally modified. c©ULB

communication protocol through IR sensors is established.
The motor schema takes the output of the perceptual schema and produces a pattern of

motor activity. The layers of the motor schema start from some primitive behaviors at the lowest
layer. The behaviors in the higher layers combine the behaviors in the lower layers and build
new (more complex) behaviors. At the highest layer, the aggregation model of the cockroaches
is implemented in the form of a probabilistic state-machine.

The designed hierarchy is extensible through adding more behavior layers. However it needs,
like other behavior-based systems [71; 11], a high degree of hand design. It consequently becomes
intractable for large scale problems [72]. Also, the major criticisms against the behavior-based
approach, i.e. lack of facilities for explicit system level control and planning [73], is still an open
issue here.

Biological experiments shows that, the robots are accepted by the groups of cockroaches.
Moreover, the mixed-society of robots and cockroaches have statistically close characteristics to
a pure-cockroach society. Also, the robots are able to control the mixed-society and induce new
collective patterns.

More investigation should be carried out to completely solve the emerged problems. Using
local communication for robot detection introduced noise on the sensors of the adjacent robots.
This mainly rises from the periodical “hello/wakeup” signals that the robots emit to declare
their presence. This noise initiates an abrupt change in the value of the IR sensors, and as a
consequence diminish the performance of the perceptual schema. We must work on appropriate
filters to reduce it.

The initial tests were done with cockroaches however, more experiments will be carried out
with other type of animals, like sheep and chicken, in order to develop and verify a methodology
for mixed-society control.
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Abstract. Scaling down robots to miniature size introduces many new challenges including mem-
ory and program-size limitations, low processor-performance and low power-autonomy. In this
chapter, we describe the concept and implementation of learning and combining multiple behav-
iors with the autonomous micro-robot, Alice. We propose a simplified and compact Reinforcement
Learning (RL) algorithm based on one-step Q-learning, that is optimized in speed and memory
consumption. This algorithm uses only integer-based sum operators, and avoids floating-point
and multiplication. Performance of the method is tested on safe-wandering and light-attraction
behaviors. Finally, the safe-wandering and the light-attraction behaviors are combined and the
robot learns light-search behavior.

Key words: Reinforcement Learning, Q-Learning, micro-robots.

3.1 Introduction
Small-sized robots are suitable tools to study biology [67; 62]. Small mobile machines could one
day perform noninvasive microsurgery [76], miniaturized rovers [77] could greatly reduce the cost
of planetary missions, and tiny surveillance vehicles [78] could carry equipment undetected.

Miniaturizing robots introduces many problems in hardware modules and behavior implemen-
tations [79]. The robot parts must have low power-consumption. This fact compels the designers
to add modules like sensors, conservatively. Due to the simplicity of hardware modules, then,
the control program must handle all un-handled tasks, such as noise filtering. Moreover, the

39
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instruction-set of the processors is reduced. Behaviors of the robot must be coded compactly and
efficiently, due to the limitations on program-size, and memory and processing-speed. Addition-
ally, because of the limited power-autonomy, long tasks such as learning, confront with serious
restrictions.

In this chapter, we describe how to practically tackle on-line learning problems on micro-robots
with processing constraints. We reveal the problems that arise when modifying the one-step Q-
learning algorithm, in order to fit it to the micro-robot, Alice [64]. As a result, an optimized algo-
rithm in terms of size, processing time, and memory consumption, called Compact Q-Learning
is introduced. It is designed on the basis of integer-calculation and low-level micro-processor in-
structions. The Compact Q-Learning is verified on learning of safe-wandering(obstacle avoidance)
and light-attraction behaviors.

We also test the feasibility of behavior-combination using the Compact Q-Learning algorithm.
We know that, learning complex behaviors requires often to combine outputs of different -and
sometimes competing- behaviors. In this chapter, a simple method to learn and combine light-
attraction and safe-wandering behaviors, in parallel, and create the new behavior, light-search, is
tested.

This chapter is organized as follows. The next section deals with the previous works in
micro-robots and RL. The third section explains the rising problems for floating-point based Q-
learning and introduces the Compact Q-Learning algorithm. Then, learning of safe-wandering
and light-attraction is described, and experimental results are demonstrated. Next, performance
of the Compact Q-Learning is compared to the floating-point based Q-Learning. Then, a simple
method to learn different behaviors in parallel, and combine them and create new behaviors is
explained. Finally, conclusions and future works are discussed.

3.2 Related Works
Processing power of a micro-robot, which is related to its available energy, scales down by L2

factor (where L is length) [79]. This fact drastically limits the capacity of control algorithms.
As a consequence, the robot designers are compelled to reduce the calculation-power in order
to increase the energy autonomy, e.g. by using 8-bit instead of 16 or 32-bit micro-controllers.
Therefore, intelligence of micro-robots are somehow limited. Nevertheless, small robots, assisted
by external supervisors (computer, human), appropriate collective approaches, or suitable sim-
plification in control program, might still be able to fulfill complex learning tasks.

Researchers in micro-robots have implemented different learning algorithms. Floreano et
al. [80] used evolutionary algorithms, in combination with spike neurons, to train the old version
of the Alice micro-robots for safe-wandering. The spiking neural networks are encoded into genetic
strings, and the population is evolved. Crossover, mutation and fitness evaluation procedures are
optimized and use bitwise operators. But, since no learning is done during fitness evaluation of
a newly generated individual, the training task requires a long time (3 hours), even for such a
simple task.

Dean et al. [81] applied ROLNNET (Rapid Output Learning Neural Network with Eligibil-
ity Traces) neural networks to mini-robots for backing a car with trailers. ROLNNET [82] is
a mixture of Neural Networks and RL. It has been designed for real robots with very limited
computing power and memory. Input and output spaces are divided into discrete regions, and a
single neuron is assigned to each region. Neurons are provided with regional sensitivity through
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using eligibility traces. Response learning takes place rapidly using cooperation among neigh-
bor neurons. Although the mathematical formulation is simple (It consists only of summation,
multiplication and division operations), the required floating-point operations might still cause
processing problem on autonomous micro-robots with limited processing capabilities.

Various implementations of micro-robots have been developed for different applications. Among
them we can point to Sandia MARV [83], MIT Ants [84], Nagoya MARS [85], KAIST Kity [86]
and ULB Meloe [87]. However, to our best knowledge, no implementation of learning has been
reported on them.

3.2.1 Reinforcement Learning
RL [18] is one of the widely used online-learning methods in robotics. In this method, the robot
learns during action and acts during learning. This facility is absent in supervised learning
methods. In RL, the learner perceives the state of the environment (or feature at higher-levels)
and selects an action (or behavior). This action changes the environment’s state, and the agent
receives a feedback signal from the environment or a critic, called reinforcement signal. The signal
indicates how much the selected action is appropriate in that situation. It can be either positive
(that is referred to as reward) or negative (that is called punishment). The agent then updates
the learned policy, based on the sign and magnitude of the signal.

The RL formulation that we use in this work is the one-step Q-learning method [88; 89].
The algorithm however, should be adapted to the limitations of our robots. In the one-step Q-
learning, the external world is modeled as a Markov Decision Process (MDP) with discrete and
finite states. Immediately after each action, the agent receives a scalar reinforcement signal.

The learned policy of the agent is stored in a table, called Q-table. Cells of the Q-table
are action-value functions (called hereafter Q-values), which estimate the long-term discounted
reward of the state-action pairs. Given the current state x, and the available actions, ai , i =
1 . . . |A|, where A is the set of actions, a Q-learning agent selects an action, a, with the probability,
P, given by the Boltzmann probability distribution:

P(ai|x) =
eQ(x,ai)/τ

∑
|A|
k=1 eQ(x,ak)/τ

(3.1)

where τ is a temperature parameter that adjusts randomness of action-selection. Bigger τ values
give more randomness to selection.

The Boltzmann selection is able to adjust exploration and exploitation rates. At the beginning,
action-values are almost equal. Therefore, selection of actions is close to uniform random selection
(more exploration). As learning continues, some action-values might increase. Those actions are,
then, selected more frequent than the others (more exploitation).

After selecting an action, the agent executes it, receives an immediate reward r, moves to the
next state y, and updates Q(x,a) as following:

Q(x,a)← (1−α)Q(x,a)+α(r + γ V (y)) (3.2)

where α (0 ≤ α ≤ 1) is the learning rate, r is the reinforcement signal that is received from the
environment, and γ (0 ≤ γ ≤ 1) is the discount factor, which determines the present value of
future rewards. If the discount factor is zero, the agent is concerned with maximizing immediate
rewards. As the discount factor approaches one, the agent takes future rewards more into account.
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Table 3.1: Comparing the floating-point with the integer operations on Alice micro-robots
Floating-point number of Call % of memory Execution

operator instructions overhead for the first call time (µs)
+,- 322∗ 26 4.25 154
× 119 25 1.76 613
/ 204 25 2.8 1121

total (only for one call to each operator) 8.81 1888
8-bit integer number of Call % of memory Execution

operator instructions overhead for the first call time (µs)
+,- 3 0 0.04 3
× 37 7 0.54 43
/ 21 7 0.34 87

total (only for one call to each operator) 0.92 133
*Float numbers are represented in mantissa-exponent form. The generated code for float + is
larger than × and / since in + the second operand is changed to have the same exponent as the
first one.

V (y) estimates state-value of y, which is the long-term discounted reward, if the agent starts
from state, y, and select the next actions according to the current policy. It is estimated by the
currently best action-value:

V (y) = max
b∈A

Q(y,b) (3.3)

If the state and action spaces are finite, the agent visits every possible pair (x,a) infinitely
often, the immediate rewards are bounded, and the learning rate is decayed over time so that
∑

∞
i=t αi = ∞ and ∑

∞
i=t α2

i < ∞ , Q-learning is proved to converge, eventually [90; 91].

3.3 The Compact Q-Learning Algorithm
The existing RL algorithms are not limited to specific type of operations. Numbers are floating-
point, or at least, floating-point operations are employed. However, in order to implement Q-
learning on the micro-robot Alice, we need a simplified algorithm that is able to cope with its
limited memory, processing resources, and power autonomy. Thus, we propose a new algorithm
based only on integer operations.

3.3.1 Integer vs. floating point operators
Floating-point operations take too much processing time and program memory. For the sake of
comparison, the number of instructions generated by our C compiler 1 and the average execution
time for 4 floating-point operations: a = b+c, a = b−c, a = b∗c, and a = b/c is listed in Table 3.1.
They are compared to the integer-based operations.

1PCWr Compiler, from Custom Computer Services Inc.
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Every instance of the operators in the program (except for integer sum) is accompanied
actually with a call overhead for preparing the registers, and copying the results back to the
memory. Call overheads include both processing time and program memory. Functions fill
program memory once, but take processing time in every call. Therefore, we prefer to use only
integer-sum operators, since they have no call overhead, require fewer instructions, and run very
fast. Moreover, we prefer to use unsigned numbers to save memory bits, facilitate computations,
and reduce overflow/underflow checking.

3.3.2 Q-Learning problems with Integer operators
Proofs of convergence for RL algorithms are valid when numbers are real. In this section, we
discuss some problems that happen when switching to integer numbers and operations.

The first problem appears in the Boltzmann probability distribution (3.1). Because of com-
puting powers of e. This formula is time-intensive. It needs also a float-type memory cell (at
least 4 bytes) to be assigned to the probability of each action, since they will be used then to
select an action accordingly. So, the action selection mechanism needs revision.

Assume at the beginning, Q cells are initialized to c. Since the Q-values must be of type
integer, they must be incremented or decremented by one (not a fraction). Applying these
conditions to (3.2) and assuming α = m

n , γ = p
q , where m, n, p, and q are positive integer numbers,

it is straightforward to show that value of the reward at the beginning must be at least:⌈
n
m

+
c(q− p)

q

⌉
=
⌈

1
α

+ c(1− γ )
⌉

(3.4)

to affect the new Q-value. Otherwise, the table remains unchanged and learning task will not
converge. If the learning rate is fixed to e.g. 0.1, the reward must be at least 10. Moreover, value
of the reward should be increased according to Q-value increments (see the c factor in (3.4) ).
This implies that the reward might need too many bits.

Furthermore, some state-actions are not accompanied with any reward, but lead the learner
to the states in the vicinity of the goal states. Responsibility of the future reward term γ V (y) in
(3.2) is to augment the value of such state-actions. It can be shown that the value of V (y) must
be at least: ⌈

q
p
(c+

n
m

)
⌉

=
⌈

1
γ
(c+

1
α

)
⌉

(3.5)

for example if α = 0.1, γ = 0.9, and c = Q(x,a) = 0, then V (y) must be at least 12 to increment
the Q-value by one i.e. it takes a long time to build action chains from initial states to goal states.

Furthermore, if we take V (y) out and consider only the rewards around zero, or punishments,
Q-values will decrease by time, because of the integer division operator2 i.e.:

Q(x,a)← (1− m
n

)Q(x,a)+
m
n

r ≈
⌊
(1− m

n
)Q(x,a)

⌋
≤ Q(x,a)−1 (3.6)

In these cases, however, it is more appropriate to leave the Q-value unchanged.
Also, assume after some learning episodes, the value of a cell in the Q-table increases up to

a large integer value. Since, Q-values are incremented at least by one, this circumstance easily
happens. Therefore, the Q-value of the previous state-action would increase by a large number.

2Remember that e.g. 9/5 =1 in integer division
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Figure 3.1: Simplification of Boltzmann Selection to Roulette-Wheel Selection

This results in overflow of all action-values in the transition history, quickly. Then, even a big
punishment would not decline the Q-values.

3.3.3 The proposed algorithm
Considering the problems, described in the previous section, we propose a very simple algorithm
that requires only unsigned integer summation. We assume that Q-values are unsigned integers.

The action probability assignment is changed to Roulette-Wheel Selection [92] as the following:

P(ai|x) =
Q(x,ai)+1

|A|+∑
|A|
k=1 Q(x,ak)

(3.7)

Q-values are summed by one so that, zero-valued actions have still a small chance to be selected.
Roulette Selection method has been widely used in the Genetic Algorithm.

The idea behind the simplification could be illustrated by an example. Assume that, the
action set includes 10 actions, nine of them have Q-values fixed to zero –at a specific state– and
Q-value of the last one varies. The assigned probabilities by the two selection methods to the
last action is shown in Fig. 3.1. Note that, for negative Q-values the Boltzmann function assigns
small probabilities around 0.1. The Roulette selection, although dealing only with non-negative
numbers (and therefore saving one bit of sign-bit), assigns them 0.1 probability as well. For
positive Q-values, comparing the shape of the two curves shows both of them are log-incremental.
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The Roulette-Wheel Selection is capable of adjusting exploration and exploitation rates dur-
ing the learning process. At the beginning, randomness of selection is high, since all Q-values
are nearly equal. But as learning continues, some Q-values might become large. Hence, the
summation term in the divisor of (3.7) would also become large. Thus, selection probability of
non-efficient actions declines to zero, and exploitation rate augments.

In implementation, the action selection mechanism could be optimized even more, in terms
of processing time and memory. The optimized procedure is as follows: First, a uniform random
number between 0 and |A|+∑

|A|
k=1 Q(x,ak) is generated. The drawn random number is then com-

pared to the partial sum ∑
i
k=1(Q(x,ak)+ 1) in a loop, starting from i = 1. The first action for

which, the random number is less than or equal to the partial sum, is selected. This way, only
summation operator is used. Also, it is not required to temporarily save a chain of probabilities.

The policy update formula is changed to:

Q(x,a)← Q(x,a)+ r +ν(y) (3.8)

where r is the immediate (positive or negative) reinforcement signal, and ν(y) is the discount
function –like γ V (y)– that depends on the value of the state y, and could be implemented via
conditional operators (or a lookup table), without using multiplication (e.g. if (V (y) > 32) then
ν(y) = 1 else . . . ). Using the ν function limits the effect of large Q-values, discussed earlier in
Sec. 3.3.2.

The reinforcement signal r could be defined as:

r =


1 reward
0 don’t care
−1 punishment

(3.9)

If so, it can be handled by increment and decrement operators, which exists usually in the
instruction set of all micro-processors. In order to work with unsigned numbers, reinforcement
signals could be shifted one unit up, i.e. to 2, 1, and 0, respectively, and then decremented one
unit when adding to Q-value.

A drawback of the proposed algorithm is the lack of the learning rate, but we do not have any
better choice, since each reward must result in increment of the Q-value, as described previously.
In order to decrease negative effects of missing the learning rate, we have to scale down r and ν

as much as possible.

3.4 The Alice Micro-Robot
The Compact Q-Learning Algorithm has been tested for light-attraction and safe-wandering tasks
with the micro-robot Alice. Alice (Fig. 3.2) is one of the smallest (22 × 21 × 20 mm) and lightest
(5 gr) autonomous mobile robots in the world [64]. In its basic configuration it is equipped with
a PIC16F877r micro-controller3. It has two bi-directional watch motors for locomotion (up to
40 mm/s), four active Infra-Red (IR) proximity sensors, a NiMH rechargeable battery, and an IR
TV remote receiver for communication. All equipments are mounted on a PCB and folded in
a plastic frame. Its power consumption has been highly optimized to 12-17 mW, providing high

3from Microchipr Corporation
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Figure 3.2: The Alice micro-robot

energetic autonomy, up to 10 hours. The autonomy can be increased by adding an extra battery,
if required. This makes the robot suitable for collective robotics and learning experiments.

Alice is a programmable and modular robot and a number of modules can be added to it
such as, linear camera, wireless radio or IR communication, touch sensor, interface to personal
computers, and automatic recharging pack. Thanks to its programmability and interface with
personal computers, it has been used in various research [64; 93; 65] and educational projects [94;
95].

The micro-processor is an 8 bit RISC (Reduced Instruction Set Computer) micro-controller. It
has only 35 basic instructions, including bit-wise sum, and conditional and unconditional jumps.
It has 8K×14-bit Words of flash program memory and 368×8-bit RAM data memory. It directly
drives two low-power watch motors through 6 pins, and reads the value of the proximity sensors
through A/D converters. To save energy, its clock speed is set to 4 MHz. Each instruction takes
four clock-cycles, so each instruction takes 1µs (except for jumps which require 2µs).

A reasonable portion of the memory is assigned to management of the sensors and the motors.
The software core is composed of a simple operating system, which handles different real-time
tasks:

1. Communication with the TV remote-control, to receive commands from an operator or an
external computer. Currently, four commands for supervision of the learning process are
available:

• Start: Initialize the Q-table (with fixed or random values).
• Stop: Pause the learning process, and demand the robot to behave according to

the learned policy. The robot then selects greedy actions (actions with maximum
Q-values) in each state.

• Save: If the learned behavior is satisfactory, the corresponding policy could be saved
into the EEPROM of the robot so that, it could be retrieved for future use, and

• Load: The saved policy could be resumed, afterwards. This facility is useful when the
learning task is too long to be completed within autonomy cycle of one battery.

2. Reading the proximity sensors, and updating the current state,
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Figure 3.3: Light attraction task

3. Selecting the next action,

4. Controlling the motors to execute the selected action, appropriately. The motors are con-
trolled by placing delays between their six operational phases.

5. Computing the reward function, and updating the Q-table accordingly, and

6. Computing performance measures, and writing them to the EEPROM for later analyze.

3.5 Learning Light-Attraction Behavior
Performance of the simplified algorithm has been tested on different tasks. In the simplest task,
Alice learns the light-attraction behavior. The goal is to follow a moving light source, which is
displaced manually around a simple rectangular maze (Fig. 3.3). The IR sensors are used to
measure the ambient light on different sides of the robot. No obstacle is placed in the robot’s
path at this step. Learning cycle is repeated every 200 ms (5 Hz). Every 15 s, the sum of the
received rewards, from the previous period till now, is recorded in the EEPROM.

The current state is specified by the most illuminated side (totally 4 states). The action set
consists of three actions: {move-forward, turn-right, turn-left} with the fastest speed. The robot
is rewarded when it is faced toward the light source, and receives punishment in the other cases.
The reinforcement signal is given by a manually programmed function. Cells of the Q-table are
one-byte unsigned integers and their value ranges from 0 to 240. The reason behind setting the
maximum to 240 is to avoid overflows in addition or subtract operations.

The discount function, ν , is defined as the following:

ν(y) =


2 64≤V (y)
1 32≤V (y) < 64
0 otherwise

(3.10)
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Figure 3.4: History of the received rewards during every 15 s of light-attraction learning

V (y) is calculated according to 3.3.
Fig. 3.4 shows an example of the effectiveness of the algorithm. Each point in the figure shows

the sum of the received rewards by the robot within every 15 s of the experiment. It needs less
than three minutes to converge. The learned behavior is comparable to our hand-coded program.

3.6 Learning Safe-Wandering Behavior
The next learning task is safe-wandering in the two cross and H-shape mazes, shown in Figs. 3.5
and 3.7. The H-maze is a narrow labyrinth and has a complex shape. The cross-maze is simpler
and its walls are at farther distance to each other. The robot’s task is to wander in the maze, as
straight as possible, without bumping into the walls.

The current state is defined based on the value of the four IR proximity sensor at front, front-
left, front-right and rear side of the robot. Each sensor corresponds to one bit of the state, and
shows presence or absence of an obstacle at its pointing direction. The number of states is 16,
but it can be reduced to 15, since no situation where obstacles surround the robot from all sides
occurs. The action set again includes three actions: {move-forward, turn-right, turn-left}. The
Q-table is thus 15 × 3 = 45 bytes totally. The reward function is defined as the following:

r =


1 forward move,
−1 hitting the walls,
0 otherwise

(3.11)

Hitting the walls is defined as “getting closer than 0.5 cm to the walls”. A critic, programmed as
a procedure in the program of the robot, compares the values of the IR proximity sensors with a
threshold, and sends the appropriate reinforcement signal to the learning procedure, immediately
after execution of actions.

A sample of the learned safe-wandering behavior in the cross-maze is shown in Fig. 3.5. The
robot has learned to avoid obstacles and move straight forward efficiently. Fig. 3.6 shows the
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Figure 3.5: A sample of the learned safe-wandering behavior in the cross-maze
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Figure 3.6: History of the received rewards during safe-wandering in the cross-maze
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Figure 3.7: A sample of the learned safe-wandering behavior in the H-maze
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Figure 3.8: History of the received rewards during safe-wandering in the H-maze
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history of the received rewards during an experiment in the cross-maze. Each point corresponds
to the sum of received rewards during one minute. The experiment could be terminated in minute
7, but we intend to compare it with the floating-point based algorithm.

If the robot moves forward forever, the maximum achievable reward during one minute could
be 300. But, the maximum is not reachable since the robot is forced some times to turn, due
to the geometry of the maze. Also, the current state indicates only presence or absence of the
obstacles (0 or 1), and does not provide more details. As a result, the robot passes some times
beyond the distance threshold –especially at sidewalls– and receives punishment, although it had
not actually bumped into the obstacles. However, after 7 minutes the received rewards converges
to around 160.

A sample of the learned trajectory and the received rewards for H-maze is illustrated in
Figs. 3.7 and 3.8 respectively. The experiment takes 30 minutes to finish. The sum of rewards
changes from -213 at the initial steps to 33 finally. The poor performance in the 5th minute is
because of an unexplored situation in the maze, where the robot has not learned how to deal
with.

The two learning tasks converge in 7 and 30 minutes, respectively. Comparing to 10 hours
autonomy of the Alice robots, it seems that implementation of more complex learning tasks is
feasible.

3.7 Integer vs. Floating-point
To measure the introduced error due to the simplification of the algorithm, performance of the
proposed algorithm is compared to the floating-point based algorithm (one-step Q-learning).
Different combination of learning rates and temperature parameters were tested on the safe-
wandering task in the cross-maze: learning rate changed from 0.01 to 0.1 (0.01 steps), and from
0.1 to 0.5 (0.1 steps). Temperature parameters changed from 0.1 to 1 (0.1 steps).

Finally, the three best results were obtained by setting the learning rate to 0.1, 0.2, 0.3, and
temperature parameter to 0.5. The discount parameter was fixed to 0.9. Learning experiments
lasted 20 minutes. Then, the learned behavior was tested for 10 minute. The robots are placed
in the same positions, at the beginning of learning and test phases. The experiment is repeated
5 times.

The methods are compared in terms of four measures: Convergence rate, performance, mem-
ory, and program size. The first two measures are learning measures, and the two last ones are
implementation measures. The averaged received rewards during learning phase gives an indirect
indication of the convergence rate. The faster the learning procedure converges, the higher this
average is. In the other hand, the average received rewards during the test phase gives a measure
to compare performance of the learned policies.

3.7.1 Learning measures
The charts in Fig. 3.9 show the averaged received rewards during one minute of learning and test
phases, respectively. Among the three float-based experiments, α = 0.1 has the most conservative
updates (the lowest α). Therefore, its average during learning is less than the others (Fig. 3.9-
left). However, results of the test phase indicates that, it could come up with the best policy
(Fig. 3.9-right). On the other hand, α = 0.3 (the biggest α) has the best convergence rate but,
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Figure 3.9: The averaged received rewards per minute during learning (left) and test (right)
phases

Table 3.2: Comparing the percentage of memory and program size between the Compact
Q-Learning and the floating-point based Q-Learning algorithm.

Memory Operating Compact Regular
System Q-Learning Q-Learning

Data 29 13 60
Program 19 25 64

it has the worst performance in the test phase. In this case, learning policy gets stuck very early
in a local optimum.

Comparing these results to the integer-based algorithm, one can see that for both measures,
the Compact Q-Learning algorithm stands in the middle, between the α = 0.1 and α = 0.3 cases.
Therefore, we can argue that the proposed algorithm comprises a satisfying trade-off between the
convergence rate and the optimality of the learned policy.

3.7.2 Implementation measures

Table 3.2 compares the occupied percentage of data and program memories by the Compact Q-
Learning algorithm and the floating-point based one. The Compact Q-Learning takes totally (the
algorithm itself and the operating system) around 40% of both data and program memories. The
learning procedure plus save, load, and evaluation procedures occupy only 13% of the data and
25% of the program memories. Recall from Table 3.1 that, only three floating-point operations
fill around 9% of the program memory.

On the other hand, the whole floating-point based program takes more than 80% of the both
memories. Roughly speaking, since the required data memory depends mainly on the Q-table,
using one-byte Q-values can reduce memory consumption to, at least, three times comparing to
the (4-byte) floating-point representation.
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Figure 3.10: History of the received rewards during every two minutes of light-search
learning in the Cross-maze

3.8 Learning Light-Search Behavior
In this section, light-search behavior is composed, in a bottom-up manner, from combination of
the light-attraction and the safe-wandering behaviors. State vector of the light-search behavior is
the Cartesian product of the state vectors of the light-attraction and the safe-wandering behaviors.
In general, common features of the state vectors could be factored. In our case, the state-vectors
have different features. The new vector is, therefore, composed of information about the objects
and the light intensity around the robot. The number of states is 15×4=60.

Reward function of the new behavior is defined as weighted sum of the reward function of
the two behaviors [96]. The weights depends on the importance of each behavior in achieving the
ultimate goal. This might not be trivial to define. We define the new reward function for this
case as: two times the reward function of the safe-wandering behavior, plus one times the one of
the light-attraction behavior, i.e.:

r = 2 · rsw + rla = (3.12)
+3 = 2× 1+1× 1 moving forward

∧
¬ hitting obstacles

∧
faced toward the light source

+1 = 2× 1+1×−1 moving forward
∧
¬ hitting obstacles

∧
¬ faced toward the light source

+1 = 2× 0+1× 1 ¬ moving forward
∧
¬ hitting obstacles

∧
faced toward the light source

−1 = 2× 0+1×−1 ¬ moving forward
∧
¬ hitting obstacles

∧
¬ faced toward the light source

−1 = 2×−1+1× 1 hitting obstacles
∧

faced toward the light source
−3 = 2×−1+1×−1 hitting obstacles

∧
¬ faced toward the light source

The robot is tested in the Cross-maze (Fig. 3.5). The light source (Fig. 3.3) is manually
moved along the periphery of the maze. History of the sum of received rewards during every two
minutes of a learning experiment is shown in Fig. 3.10.

Maximum reward that the robot can receive in two minutes is +1800. The robot starts with
around -600 punishment and ends up with around +200 rewards. The Q-table is four times bigger
than the Q-table of safe-wandering. The experiment takes one hour to converge, about 8 times
longer than safe-wandering in the Cross-maze. However, the quality of the learned behavior is



54 CHAPTER 3. COMPACT Q-LEARNING

not visually as good as that of light-attraction. This means the robot still needs longer training
time to fine-tune its behavior in different situations.

Due to hardware limitations of our robots, we could not add more behaviors, since the new
Q-table had already filled 75% of the memory (180 bytes). Although, the proposed method is
simple to be implemented on the robots, it is not scalable since the size of the Q-table, as well as
the required learning time, increase exponentially.

3.9 Conclusion and future works
In this chapter, the problems we faced in programming micro-robots for learning tasks are de-
scribed. The major challenges with micro-robots are limitations in power autonomy, processing
power, and memory (both in program and in data memory). These limitations obliged us to
avoid floating-point operations and, hence, to develop a simplified learning algorithm, that rely
mainly on integer-based addition and subtraction operations.

We proposed a simple and fast RL algorithm optimized for data and program memory con-
sumption. It was implemented and verified on light-attraction and safe-wandering task with two
test environments. The fast convergence of the algorithm made it possible to save at least 95%
of the power autonomy, while performance of the learned policies remain competitive to regular
Q-learning. The small number of required instructions leaves around 60% of both, program and
data memory unused. Therefore, it offers potential for more time-critic and complex learning
behaviors.

Learning combination of two behaviors was implemented by combining the state vectors of
the behaviors with Cartesian product, and combining their reward functions with weighted sum.
Common features of the state vectors are factored. Maximum number of states of the combined
state-space is the product of the number of states of the behaviors. Weights of the reward
functions might not be trivial to define.

Convergence of the proposed algorithm has been demonstrated by experiments. However
mathematical analysis and prove has still to be made. Scalability of the algorithm is quite limited.
In fact, representation of the state space in a table might not be optimal. Some parts of the table
might be too much detailed, and some other parts might be too much general. Some features
of the state space might be irrelevant to what the robot is currently learning. Abstracting these
features can help the agent learn faster. We would like to work on this issue for future works.
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Hierarchical Reinforcement Learning
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Abstract. The required learning time and the curse of dimensionality restrict applicability of
Reinforcement Learning (RL) on real robots. Difficulties in inclusion of available knowledge and
interpretability of learned rules must be added to the mentioned problems. In this chapter, we
address the automatic state abstraction problem and discovering hierarchies in the state space,
as two major approaches for reducing the number of learning trials, simplifying inclusion of
prior knowledge, and making the learned rules more abstract and understandable. We formalize
the automatic state abstraction and hierarchy creation and derive three new criteria that adapt
decision tree learning techniques to state abstraction. Proof of performance is supported by
strong evidences from simulation results in deterministic and non-deterministic environments.
Simulation results show encouraging enhancements in the required number of learning trials,
agent’s performance, size of the learned trees, and computation time of the algorithm.

Key words: State Abstraction, Hierarchical Reinforcement Learning, Splitting Criteria

4.1 Introduction
It is well accepted that utilization of proper learning methods reduces the after-design problems.
These problems are caused naturally due to use of inaccurate and incomplete models and inade-
quate performance measures at design time. However, confronting unseen situations and changes
in the environment and the robot must be added to it.

1Control and Intelligent Processing Center of Excellence, ECE Dept., University of Tehran, Iran,
mnili@ut.ac.ir
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Figure 4.1: state abstraction concept

The existing learning methods that are capable of handling dynamics and complicated situa-
tions are slow. Moreover, they produce rules –mostly numerical– that are not abstract, modular,
and comprehensible by human. Therefore, designer’s intuition cannot be simply incorporated
in the learning method and in the learned rules. In addition, the existing learning methods
suffer from the curse of dimensionality, requiring a large number of learning trials and lack of
abstraction capability. RL [18], despite its strength in handling dynamic and non-deterministic
environments, is an example of such learning methods. In this research, we try to solve some of
the mentioned problems in RL domain. We have chosen RL, because of its simplicity and variety
of its applications in robotics field in addition to its mentioned advantages.

It is believed that, the curse of dimensionality can be lessen, to a great extend, by imple-
mentation of state abstraction and creation of hierarchy in the behavioral architecture. Having
abstract states and hierarchies in the agent’s mind, accompanied by a careful design of the learn-
ing method, the learned rules would be partitioned, and the number of learning trials could be
reduced. In addition, incremental improvement of agent’s performance becomes straight-forward.

Different approaches have been proposed so far, for state abstraction, creation of hierarchies,
and implementation of RL in those architectures. One group of these methods incorporate a
fixed Artificial Neural Network, and use RL methods to learn both the hierarchy and the rules in
each layer [98]. Another group of researches proposes hand-designing the sub-tasks and learning
them in a defined hierarchy [99]. These two approaches require much design effort for explicit
formulation of hierarchy and state abstraction. Moreover, the designer should, to some extent,
know how to solve the problem before s/he designs the hierarchy and the sub-tasks. The third
approach uses decision-tree learning methods to automatically abstract the states, detect sub-
tasks and speed up the learning process (Fig. 4.1).

The devised approaches, however, do not take the exploratory nature of RL into account. This
results in non-optimal solution. In this chapter, we take a mathematical approach to develop new
criteria for utilization of decision trees in state abstraction. Our method outperforms the existing
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solutions in performance, number of learning trials, and size of trees.
Related works are reviewed in the next section. U-Tree algorithm and its drawbacks are briefly

described in the third section. In the fourth section we formalize state abstraction according to
different heuristics and derive new splitting criteria. The fifth section describes the simulation
results. Conclusions and future works are discussed finally.

4.2 Related Works
The simplest idea to gain abstract knowledge is detection of sub-tasks, specially repeating ones [100],
and discovering the hierarchy among them. Once the agent learned a sub-task (which is faster and
more efficient, due to confronting with smaller state space), it is potentially able to use it after-
wards. Sub-tasks in Hierarchical RL(HRL) are closed-loop policies that are generally defined for
a subset of the state space [19]. These partial policies are sometimes called temporally-extended-
actions, options [21], skills [22], behaviors [13], etc. They must have well-defined termination
conditions.

Hierarchies of Abstract Machines(HAM) [23], partially reduces the state space by constraining
the actions that the agent can take in each state. Although, this allows for transferring prior
knowledge to an agent, it needs the agent designer to spend much more design effort than regular
RL. Moreover, the number of states of the induced Markov Decision Process (MDP) is quite bigger
than MDP itself. In MaxQ Value Function Decomposition [24], the core MDP is decomposed into
a set of sub-tasks, each with a termination condition and a pseudo-reward function. Hierarchy of
sub-tasks is summarized in a manually-designed task graph.

Although these methods give more understanding about underlying aspects of HRL, since
particular features are designed manually based on the task domain, it is hard to apply them to
complex tasks. The general problem that should be solved first, either when designing manually
or extracting structures automatically is the state abstraction. In many situations, significant
portions of a large state space might be irrelevant to a specific goal. They can be aggregated into
few, relevant states. As a consequence, the learning agent can learn sub-task reasonably fast.
Our work addresses this problem.

Techniques for non-uniform state-discretization are already known e.g. Parti-game [30], G
algorithm [101], and U-Tree [31]. They start by modeling the whole world with a single state
and recursively split it when necessary. Continuous U-Tree [32] extends U-Tree to work with
continuous state variables. TTree [102] applies Continuous U-Tree to SMDPs. Jansson and
Barto [103] applied U-Tree to options but they use one tree per option and build the hierarchy of
options manually. We adopt U-Tree as our basic method, because the reported results illustrate
it as a promising approach to automatic state abstraction.

In this chapter, we show that the employed U-Tree methods ignore the explorative nature of
RL. This imposes a bias in the distribution of the samples that are saved for introducing new splits
in U-Tree. As a result, finding a good split becomes more and more difficult and the introduced
splits could be far from optimality. Moreover, U-Tree-based techniques have been excerpted in
essence from decision tree learning methods. Therefore, their utilized splitting criteria are very
general and can work with any sort of data. Here, we devise some splitting criteria that are
specialized for state abstraction in RL. We show that, they are more efficient than the general
ones both in learning performance and computation time.
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Dean and Robert [104] have developed a minimization model, known as ε-reduction, to con-
struct a partition space that has fewer number of states than the original MDP, while ensuring
that utility of the policy learned in the reduced state space is within a fixed bound of the optimal
policy. Our work is different because, ε-reduction does not extract any hierarchy among state
partitions; while, building a hierarchy can reduce search time in partitions from O(u) to O(logu),
u being the number of partitions. Also, their theory is developed based on immediate return
of actions instead of long-term return. We can argue that, ε-reduction is a special case of our
method.

4.3 Formalism
We model the world as a MDP, which is a 6-tuple (S,A,T,γ,D,R) , where S is a set of states (here
can be infinite), A = {a1, . . . ,a|A|} is a set of actions, T = {Pa

ss′} is a transition model that maps
S×A×S into probabilities in [0,1], γ ∈ [0,1) is a discount factor , D is the initial-state distribution
from which the start state is drawn (shown by s0 ∼ D ), and R is a reward function that maps
S×A×S into real-valued rewards.

A policy π maps from S to A, a real-valued value function, V , on states or a real-valued
action-value function (also called Q-function), Q, on state-action pairs. The aim is to find an
optimal policy π∗ (or equivalently, V ∗ or Q∗) that maximizes the expected discounted rewards of
the agent. We assume that, each state s is a sensory-input vector (x1, . . . ,xn) where xi is a feature
(called also state-variable, or attribute).

An abstract state S̄ is a subset of state space S such that all states within it have “close”
values. Value of abstract state S̄ is defined as the expected discounted reward return if the agent
starts from a state in S̄ and follows the policy π afterwards:

V π(S̄) = ∑
s∈S̄

{
P(s|S̄) ∑

a∈A

[
π(s,a)∑

s′
Pa

ss′(R
a
ss′ + γV π(s′))

]}
(4.1)

where π(s,a) is the selection probability of action a in state s under policy π, Pa
ss′ is the probability

that environment goes to state s′ after doing action a in state s, and Ra
ss′ is the expected immediate

reward after doing action a in state s and going to state s′. Action-value Qπ(S̄,a) is similarly
defined as:

Qπ(S̄,a) = ∑
s∈S̄

P(s|S̄)∑
s′

Pa
ss′(R

a
ss′ + γV π(s′)) (4.2)

4.4 U-Tree
The U-Tree [31] [32] abstracts the state space incrementally. Each leaf Li of the U-Tree corre-
sponds to an abstract state S̄i . Each leaf stores the action-values Q(S̄i,a j) for all available actions
a j. The tree is initialized with a single leaf, assuming the whole world as one abstract state. New
abstract states are added if necessary. Sub-trees of the tree represent sub-tasks of the whole task.
Each sub-tree can have other sub-sub-trees that correspond to its sub-sub-tasks. The hierarchy
breaks down to leaves which specify primitive sub-tasks.

The procedure for construction of the abstraction tree loops through a two-phase process:
sampling and processing phases. During the sampling phase, the algorithm behaves as a standard
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RL algorithm, with the added step of using the tree to translate sensory input to an abstract
state. In the sampling phase, a history of transition steps, i.e. Ti = (s,a,r,s′), composed of the
current state, the selected action, the received immediate reward, and the next state is recorded.
The sample is assigned to a unique leaf of the tree, based on the value of the current state.

After some number of learning episodes the processing phase starts. In the processing phase
a value is assigned to each sample:

V (Ti) = Ti.r + γV (Ti.s̄′)
V (Ti.s̄′) = maxa∈A Q(Ti.s̄′,a)

(4.3)

where s̄′ is the abstract state that s′ belongs to.
If a significant difference in distribution of sample-values within a leaf is found, the leaf is

broken up to two leaves. To find the best split point for each leaf, the algorithm loops over the
features. Samples within a leaf are sorted according to a feature, and a trial split is virtually
added between each consecutive pair of feature values. This split divides the abstract state into
two sub-sets. A splitting criterion compares the two sub-sets, and returns a number indicating
the different between the two distributions. If the largest difference among all features is bigger
than a confidence threshold, then the split is introduced. This procedure is repeated for all leaves.

Although the original algorithm for U-Tree construction [31] can function in partially observ-
able domains, for the sake of simplicity, we make the standard assumption that the agent has
access to a complete description of environment. Also, since structure of the tree is not revised
once a split is introduced, we assume the environment is stationary.

4.4.1 Splitting Criteria
Two types of splitting criteria have been used, so far, for state abstraction: the non-parametric
Kolmogorov-Smirnov(KS) test [31; 32] from Statistics, and Information Gain Ratio(IGR) test [105]
from Information Theory.

The non-parametric KS-test looks for violation of Markov property 2. It computes the statis-
tical difference between the distribution of samples on either side of the split using the difference
in cumulative distributions of the two data-sets.

IGR-test measures the amount of reduction in uncertainty of sample values. Given a set of
samples T = {Ti}, i = 1, . . . ,M from abstract state S̄, labeled with V (Ti) –computed according to
(4.3)– the entropy of the sample-values is computed as:

EntropyS̄(V ) =−∑
v

P(V (Ti) = v|S̄) log2 P(V (Ti) = v|S̄) (4.4)

where P(V (Ti) = v|S̄) is the probability that samples in T have value v.
The Information Gain of splitting the abstract state S̄ to S̄1 and S̄2 is defined as the amount

of reduction in the entropy of sample-values i.e.:

In f oGain(S̄, S̄1, S̄2) = EntropyS̄(V )−
2

∑
i=1

Mi

M
EntropyS̄i

(V ) (4.5)

2A stochastic process has the Markov property if, the conditional probability distribution of future
states of the process, depends only upon the current state and not on any past states.
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where Mi is the number of samples from T that fall in S̄i. IGR is defined as:

IGR(S̄, S̄1, S̄2) =
In f oGain(S̄, S̄1, S̄2)
−∑

2
i=1

Mi
M log2

Mi
M

(4.6)

4.4.2 Computation Time of U-Tree
If we assume processing phase takes place after each learning episode, number of leaves 3 at
episode t is L(t), and sample size in each leaf is M, the best sort algorithms, i.e. Quicksort, would
sort the samples based on a feature in O(M logM). Maximum number of split points could be
(M−1). KS and IGR tests need the samples in the either sides of the virtual splits to be sorted
based on their values. This needs at least O(2 M

2 log M
2 )). Then a pass through all sorted samples

needs O(M). Totally the order of the algorithm, assuming n being dimension of the state vectors,
is:

O
(

L(t) n
[

M logM +(M−1)(2
M
2

log
M
2

+M)
])

= O
(
L(t) n M2 logM

)
(4.7)

4.4.3 Biased Sampling Problem
In implementation, each leaf of U-Tree could hold a limited number of samples. If the number
of samples exceeds an upper limit, an old sample is selected randomly and is replaced by the
new sample. However, selection probability of an action in a state depends on its action-value
function. Thus, the actions that have higher action-value functions are selected more than the
others. As a result, the distribution of samples in the leaves are biased. We call this the biased
sampling problem.

The biased sampling problem has a defective effect. RL escapes from local optimums by
making a trade off between exploration and exploitation. If the size of the sample lists is not big
enough, then number of samples with explorative character would not be statistically significant to
introduce any split, until the confidence threshold for the splitting criterion is dropped. Reducing
the threshold increases the occurrence of non-optimal splits. If a split is introduced on the basis
of a wrong feature, then in the next steps the correct split have to be repeated multiple times, in
all sub-trees.

This problem can be solved by spreading the entries of the big sample list over the actions.
Instead of one big list with capacity M, we could form |A| smaller lists with capacity M

|A| . Then, the
algorithm is modified so that, when new samples arrive while the sample list is full, an old sample
from the list that corresponds to the current action field of the new sample is deleted randomly. As
a positive side-effect sorting the new sample lists would be of order |A|O( M

|A| log M
|A|) = O(M log M

|A|)
which is a bit faster than O(M logM). 4

4.5 New Splitting Criteria
In this section we formalize the state abstraction problem and describe three new splitting criteria
that are specially derived for HRL. They are called:

3Total number of nodes is 2 L(t)−1.
4Note however that, according to complexity theory the two time orders are still equal.
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1. SANDS: State Abstraction for Non-Deterministic Systems

2. SMGR: SoftMax Gain Ratio

3. VAR: VAriance Reduction

4.5.1 SANDS
To derive the SANDS criterion, we formulate the state abstraction as an optimization problem
and solve it incrementally. From the set theory, a set partition of a set S, is defined as a collection
of disjoint subsets of S whose union is S. So U = {S̄1, . . . , S̄u} is a set partition of S if and only if:

S̄i ⊆ S,∀i ∈ {1, . . . ,u}
S =

⋃u
i=1 S̄i

S̄i
⋂

S̄ j = /0,∀i, j ∈ {1, . . . ,u}, i 6= j
(4.8)

State abstraction could be formalized as an optimization problem, which aims at finding a set
partition U and a policy π on the state space S, where u the number of partitions is minimum,
and the value of the learned policy π is within a fixed bound ε of the optimal policy π∗ i.e.:

|V π∗(s)−V π(S̄i)|< ε,∀s ∈ S̄i,∀S̄i ∈U (4.9)

It is easy to prove that U-Tree generates a set-partition of state space. It is clear from
definition of state abstraction in (4.9) that we are minimizing the difference between the optimal
policy and the policy that a U-Tree represents. However, instead of walking toward the optimal
policy which is unknown, we try to walk away from the current policy toward the optimal policy.

Assume that we have a U-Tree that defines a policy π. We would like to enhance it to a policy
π̃ by finding a partition S̄ (one of the leaves in the tree) and splitting it to unknown partitions
S̄1 and S̄2 so that, the expected return of the resulting tree is maximized. We should maximize,
then, the following goal function:

G = ∑
s∼D

P(s)[V π̃(s)−V π(s)] (4.10)

where D is the distribution of the initial states.
Using the modified Bellman equations in (4.1) we can write:

G = ∑
s∼D

P(s)
(

∑a∈A[π̃(s,a)∑s′ Pa
ss′(R

a
ss′ + γV π̃(s′))]

−∑a∈A[π(s,a)∑s′ Pa
ss′(R

a
ss′ + γV π(s′))]

)
(4.11)

G = ∑
s∼D

∑
a∈A

∑
s′

P(s)Pa
ss′

(
Ra

ss′(π̃(s,a)−π(s,a))
+γ(π̃(s,a)V π̃(s′)−π(s,a)V π(s′))

)
(4.12)

V π̃(s′) is unknown; we can use V π(s′) as an estimation. For the states that fall outside of S̄, the
policy remains unchanged after splitting i.e ∀s 6∈ S̄, π̃(s,a) = π(s,a). For the states within S̄ or
within the new abstract states S̄1 and S̄2, we define πa = π(s,a),s∈ S̄ and π̃a

i = π̃(s,a),s∈ S̄i, i = 1,2.
Hence:

G = ∑
a∈A

2

∑
i=1

(
(π̃a

i −π
a) ∑

s∈S̄i

∑
s′

P(s)Pa
ss′(R

a
ss′ + γV π(s′))

)
(4.13)
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According to properties of the conditional probabilities, we can write P(s) = P(s|S̄i)×P(S̄i|S̄)×
P(S̄),∀s ∈ S̄i, i = 1,2. Considering the definition in (4.2), we can write:

G = P(S̄) ∑
a∈A

2

∑
i=1

[
(π̃a

i −π
a)Qπ(S̄i,a)P(S̄i|S̄)

]
(4.14)

This way, the learner finds the split that maximizes performance of the tree over the “whole
action set”, provided that actions are always selected according to Softmax distribution. However,
after learning the learned policy is freezed and the greedy action will always be selected. An
important point here is that, the learner can not revise the tree after initiating the split. This
means in this level, it is fixing somehow a part of the policy. Therefore, it is more valuable to
judge the splits based on performance of the greedy action instead of Softmax. The optimization
term, then, should change from summation to maximum. Moreover, P(S̄) is same for all states
in abstract state S̄. So, the final formulation is simplified to:

SANDS(S̄) = max
a∈A

2

∑
i=1

[
(π̃a

i −π
a)Qπ(S̄i,a)P(S̄i|S̄)

]
(4.15)

In fact, SANDS tries to find a point that well differentiates both value and selection probability
of actions before and after introducing the split.

Optimality of Partitions

U-Tree generates a set-partition of the state space. Although the algorithm starts with one
partition and adds more partitions if required, optimality of the number of partitions is not
guaranteed. In fact, the splits here are Univariate [106; 107] that break the state space parallel
to an axis. The necessary (but not sufficient) condition to have minimum size tree, in most tasks,
is to have Multivariate splits [108; 109; 110], which can split the state space in any direction.
Multivariate splits are not covered in the current version of the algorithm. We will discuss more
about the size of the trees in the result section.

Computation Time of SANDS

If we assume the processing phase starts after one learning episode, number of leaves in episode t
is L(t), sample size of the |A| sample-lists in the leaves is m = M

|A| , and space dimension is n, time
order of the new algorithm would be:

O(L(t) n |A| [m logm+(m−1) m]) = O
(
L(t) n |A| m2)= O

(
L(t) n

M2

|A|

)
(4.16)

which is faster than (4.7) by |A| logM factor.

Mont Carlo Methods for SANDS

Using the samples recorded during the learning episodes, we can compute the SANDS criterion
by Mont-Carlo methods. Each logged sample is a 4-tuple Ti = (s,a,r,s′), corresponding to the
current state, the selected action, the received reward, and the next state, respectively. If among
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ma samples for action a in S̄ , ma
1 and ma

2 = ma−ma
1 samples correspond to S̄1 and S̄2 respectively,

we can compute:

SANDS(S̄) = max
a∈A

2

∑
i=1

(π̂a
i − π̂

a)µ̂
a
i ρ̂

a
i (4.17)

Where µ̂a
i is the action-value function Q(S̄i,a) estimated from the samples, π̂a and π̂a

i are the
selection probabilities of action a, i.e. π(S̄,a) and π(S̄i,a), which are computed according to
the Boltzmann distribution from the estimated action-value functions, and ρ̂a

i is the fraction of
samples that their current state fall within S̄i. They can be computed as follows:

ρ̂a
i = ma

i
ma , i = 1,2 ρ̂i = ∑a∈A ma

i
∑a∈A ma , i = 1,2

µ̂a
i = 1

ma
i

∑
ma

i
j=1 [Tj.r + γ maxb Q(Tj.s′,b) ] , i = 1,2 µ̂a = ρ̂a

1 µ̂a
1 + ρ̂a

2 µ̂a
2

π̂a
i = exp(µ̂a

i /τ)
∑b exp(µ̂b

i /τ) , i = 1,2 π̂a = exp(µ̂a/τ)
∑b exp(µ̂b/τ)

(4.18)

4.5.2 SMGR
SMGR tries to find the splits that results in more certainty on selection probability of actions.
Instead of defining the entropy function on the sample-values, like what IGR does in (4.6), it is
defined here on the selection probability of actions:

SMGR(S̄) = max
a∈A

−π̂a log π̂a +∑
2
i=1 ρ̂a

i π̂a
i log π̂a

i

−∑
2
i=1 ρ̂a

i log ρ̂a
i

(4.19)

where π̂a, π̂a
i , and ρ̂a

i are defined according to (4.18).
We prove that SMGR and SANDS have some similarities in their preference over the splits.

We show that SMGR combines SANDS with other heuristics. Like what we did for SANDS in
Sec. 4.5.1, we initially work on summation function (∑a∈A) instead of maximum (maxa∈A). By
expanding π̂a and π̂a

i we can write:

SMGR(S̄) = ∑
a∈A

− exp(µ̂a/τ)
∑b exp(µ̂b/τ) log exp(µ̂a/τ)

∑b exp(µ̂b/τ) +∑
2
i=1 ρ̂a

i
exp(µ̂a

i /τ)
∑b exp(µ̂b

i /τ) log exp(µ̂a
i /τ)

∑b exp(µ̂b
i /τ)

−∑
2
i=1 ρ̂a

i log ρ̂a
i

(4.20)

= ∑
a∈A

− exp(µ̂a/τ)
∑b exp(µ̂b/τ)(

µ̂a

τ
− log∑b exp( µ̂b

τ
))+∑

2
i=1 ρ̂a

i
exp(µ̂a

i /τ)
∑b exp(µ̂b

i τ)(
µ̂a

i
τ
− log∑b exp( µ̂b

i
τ

))

−∑
2
i=1 ρ̂a

i log ρ̂a
i

Substituting µ̂a with ρ̂a
1 µ̂a

1 + ρ̂a
2 µ̂a

2 results in:

SMGR(S̄) = ∑
a∈A

1
τ

∑
2
i=1 ρ̂a

i µ̂a
i ( exp(µ̂a

i /τ)
∑b exp(µ̂b

i /τ) −
exp(µ̂a/τ)

∑b exp(µ̂b/τ))

−∑
2
i=1 ρ̂a

i log ρ̂a
i

+ (4.21)

∑
a∈A

exp(µ̂a/τ)
∑b exp(µ̂b/τ) log∑b exp( µ̂b

τ
)−∑

2
i=1 ρ̂a

i
exp(µ̂a

i /τ)
∑b exp(µ̂b

i /τ) log∑b exp( µ̂b
i

τ
)

−∑
2
i=1 ρ̂a

i log ρ̂a
i
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We can approximate ρ̂a
i with ρ̂i, and ∑

2
i=1 ρ̂a

i log ρ̂a
i with ∑

2
i=1 ρ̂i log ρ̂i, in order to bring them out

of summation:

SMGR(S̄) =
1
τ

∑a∈A ∑
2
i=1 ρ̂a

i µ̂a
i ( exp(µ̂a

i /τ)
∑b exp(µ̂b

i /τ) −
exp(µ̂a/τ)

∑b exp(µ̂b/τ))

−∑
2
i=1 ρ̂i log ρ̂i

+ (4.22)

∑a∈A exp(µ̂a/τ)
∑b exp(µ̂b/τ) log∑b exp( µ̂b

τ
)−∑

2
i=1 ρ̂a

i
∑a∈A exp(µ̂a

i /τ)
∑b exp(µ̂b

i /τ) log∑b exp( µ̂b
i

τ
)

−∑
2
i=1 ρ̂i log ρ̂i

=
1
τ

∑a∈A ∑
2
i=1 ρ̂a

i µ̂a
i (π̂a

i − π̂a)
−∑

2
i=1 ρ̂i log ρ̂i

+ (4.23)

log∑b exp( µ̂b

τ
)−∑

2
i=1 ρ̂i log∑b exp( µ̂b

i
τ

)
−∑

2
i=1 ρ̂i log ρ̂i

We know that:

µ̂
b = ρ̂

b
1 µ̂

b
1 + ρ̂

b
2 µ̂

b
2 ≈ ρ̂1µ̂

b
1 + ρ̂2µ̂

b
2 (4.24)

⇒ log∑
b

exp(
µ̂b

τ
) ≈ log∑

b
exp(

ρ̂1µ̂b
1 + ρ̂2µ̂b

2
τ

) (4.25)

= log∑
b

[
exp(

µ̂b
1

τ
)
]ρ̂1 [

exp(
µ̂b

2
τ

)
]ρ̂2

(4.26)

Thus, the last terms of (4.23) can be rewritten as:

log∑
b

[
exp(

µ̂b
1

τ
)
]ρ̂1 [

exp(
µ̂b

2
τ

)
]ρ̂2

− log

[
∑
b

exp(
µ̂b

1
τ

)

]ρ̂1

− log

[
∑
b

exp(
µ̂b

2
τ

)

]ρ̂2

(4.27)

= log ∑
a∈A

[
exp(µ̂a

1/τ)
∑b exp(µ̂b

1/τ)

]ρ̂1
[

exp(µ̂a
2/τ)

∑b exp(µ̂b
2/τ)

]ρ̂2

= log ∑
a∈A

2

∏
i=1

[π̂a
i ]ρ̂i (4.28)

Putting (4.23) and (4.28) together we can write then:

SMGR(S̄) =
1
τ

∑a∈A ∑
2
i=1 ρ̂a

i µ̂a
i (π̂a

i − π̂a)+ log∑a∈A ∏
2
i=1 [π̂a

i ]ρ̂i

−∑
2
i=1 ρ̂i log ρ̂i

(4.29)

The first term is the SANDS criterion (see (4.14)) and the second one is a “penalty term”. In
fact, SMGR scales SANDS and combines it with another heuristic:

SMGR(S̄) =
1
τ
SANDS(S̄)+ log∑a∈A ∏

2
i=1 [π̂a

i ]ρ̂i

−∑
2
i=1 ρ̂i log ρ̂i

(4.30)

Penalty Term

We give an example, in order to understand the underlying mechanism of penalizing the splits
by the penalty term. Assume the action set includes only two actions {a,b}. The figures 4.2 to
4.4 show the penalty term for one of the actions in three different cases.
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Figure 4.2: The penalty term when ρ̂1 = 0.01, ρ̂2 = 0.99
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Figure 4.3: The penalty term when ρ̂1 = 0.99, ρ̂2 = 0.01
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Figure 4.4: The penalty term when ρ̂1 = ρ̂2 = 0.5

Fig. 4.2 shows a case where, only 1% of the samples fall in the left side of the split, and 99%
of them fall in the right side. The biggest penalty is given to (π̂a

1 = 1, π̂a
2 = 0) point. Fig. 4.3

shows the reverse case, when 99% of the samples fall in the left side of the split, and 1% of them
fall in the right side. The biggest penalty is given this time to (π̂a

1 = 0, π̂a
2 = 1) point. In fact,

the penalty term punishes the splits that result in giving “high” probability to a specific action
without support of “enough” evidence (samples).

Fig. 4.4 shows a case where, the samples are evenly distributed between the two sides of the
split. The biggest penalties are given to two points: (π̂a

1 = 0, π̂a
2 = 1) and (π̂a

1 = 1, π̂a
2 = 0). In

both cases, the action a is estimated as the best action in one side, but at the same time, it is
estimated as the worst action in the other side. In fact the penalty term punishes contradicting
estimations on selection probabilities of a specific action in either side of the split.

4.5.3 VAR
The VAR criterion is developed on the basis of Mean Square Error (MSE) reduction technique
on action-value functions of abstract states. Given that, a trial split breaks the abstract state S̄
to S̄1 and S̄2, the preferred trial split would be the one that maximizes the amount of reduction
in MSE over the whole action set:

VAR(S̄) = max
a∈A

[
σ

2 (Q(S̄,a)
)
−

2

∑
i=1

P(S̄i|S̄) σ
2 (Q(S̄i,a)

)]
(4.31)

where A is the set of actions, and σ2(X) is the statistical variance of the random variable X .
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Sampled data-points of action a in S̄, i.e. T = {Ti = (s,a,r,s′)|s ∈ S̄}, can be grouped to two
parts based on whether their current state falls in S̄1 or S̄2:

T j = {Ti ∈ T |Ti.s ∈ S̄ j}, j = 1,2 (4.32)

Action-values of action a in abstract states S̄, S̄1, and S̄2 can be estimated by averaging the
sample-values as mentioned in (4.18). According to definition of µ̂a and ρ̂a

i we can write:
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Statistical variance of Q(S̄,a) is estimated from the samples as the following 5:
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Knowing that ∑
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5For unbiased estimation, 1
ma should be replaced by 1
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Figure 4.5: A screen-shot from the simulator

Therefore, equation (4.41) can be written as:

σ
2 (Q(S̄,a)

)
= ρ̂

a
1 σ

2(Q(S̄1,a))+ ρ̂
a
2 σ

2(Q(S̄2,a))+ ρ̂
a
1 ρ̂

a
2 (µ̂

a
1 − µ̂

a
2 )2 (4.45)

Putting (4.31) and (4.45) together, we can write:
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4.6 Simulation results
Performance of the new splitting criteria has been tested on a simplified football task. It is very
similar to the classic Taxi problem [19], with the additional possibility of having players with
different movement patterns, to create environments with different non-deterministic levels. The
playing field is an 8×6 grid (Fig. 4.5). The x axis is horizontal and y axis is vertical. The goals
located at (0,3) and (8,3).

The learning agent plays against two “passive” opponents and learns to deliver the ball to the
left goal. By passive we mean the opponents move in the field, only to restrict the movements of
the learner, and do not perform any action on the ball. The learner can choose among 6 actions:
{Left, Right, Up, Down, Pick, Put}. If a player selects an action that results in touching the
boundaries or going to a pre-occupied position by another player, the action is ignored. Also, if
the owner of the ball hits the other player or the boundaries, the ball would fall down.

The opponents can be selected from three types: Static, Offender, and Midfielder. Static
players do not move at all. Offenders move randomly in x direction (i.e. they select Left and
Right actions, randomly). Midfielders move randomly in all directions.

States of the learner consist of (x,y) coordinates of the ball and the players, and status of
the ball from {Free, Picked} states, and two terminal states for left and right goal. It sums up
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to 3,001,252(= 2× (7×5)4 +2) states. The players act in parallel. So, next state of the learner,
when playing against offenders or midfielders, would be a stochastically selected state among 4
or 16 different states, respectively.

Learning experiment consists of 100,000 episodes of which, the last 10,000 episodes are referred
as test phase. Episodes start by placing the players and the ball in random (and unoccupied)
positions. Episodes last up to 1000 steps. Steps include one movement by each player in turn.
An episode is finished if, either a player scores, or the maximum number of steps is passed. The
learner receives +1 reward for correct scores, -1 punishment for wrong scores, and -0.01 otherwise.
For each episode, the number of actions and the sum of the received reinforcement signals by the
learning agent is recorded.

All methods use SARSA [18] with decaying ε-greedy for sampling phase. The learning rate,
α, is 0.1 and the discount factor, γ, is 0.95. The exploration rate, ε, is initialized with 0.2. After
each episode, it is decayed by multiplying with the decay factor 0.99999 . The total size of the
sample lists of the leaves is 360 samples (60 samples per action).

For each state abstraction method different confidence thresholds are tried to find the best
range in terms of convergence. The best range is, then, divided to 10 equal-size regions and center
of each region is picked up as a confidence threshold. For each of these 10 confidence thresholds,
30 simulation runs (with different random seeds) are executed. The results that are presented in
this chapter are averaged over all confidence thresholds. In Appendix A you can find the best
results, acquired by the splitting criteria, among all thresholds.

The methods are compared in terms of the performance of their learned policies, the size of
their learned trees, and their computation time. The performance of the policies are quantified
by computing the average number of actions executed by the learner during the learning episodes
(or equally the number of steps per episodes). It shows how effective has the agent learned to
score in fewer moves.

As mentioned earlier, the agent receives rewards only at the end of the episodes (of course, if it
scores correctly), and in the other cases it is punished. Therefore, the number of actions indirectly
indicates the sum of the received reinforcement signals. The fewer the number of actions in each
episode is, the more reinforcements the agent has received (except the episodes that end up with
scoring in the wrong goal, which does not happen in the final episodes). That is why we do not
add dedicated tables to compare the sum of the received reinforcement signals.

4.6.1 A Sample Tree
An example from the learned trees, saved from one of the simulations in the static-player case, is
shown in Fig. 4.6. The static-players are located in front of the left goal at (2,2) and (2,4). The
hierarchy of sub-tasks is clear in the figure. The whole task is divided to two main sub-tasks: If
the learner does not own the ball, it Switches to the sub-tree that corresponds to the sub-task
of navigating the learner from its current position to the ball. Otherwise, it follows the sub-tree
that navigates it (while carrying the ball) to the left goal.

If the opponents occlude the learner’s path to the left goal, it focuses on the obstacle-avoidance
sub-task (not expanded in the figure). Otherwise, it focuses on the path to the left goal, without
being worried about contacts (i.e. position of opponents are abstracted). In this case, the splits
are based only on the position of the ball (which is the same as the position of the learner).

It is observed that tree structure is able to maintain not only the hierarchy of sub-tasks, but
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Figure 4.6: A typical decision tree, learned in static-player case

Table 4.1: Comparing the biased and unbiased U-Tree construction methods in terms of
the number of actions per episodes during the test phase. It also indirectly indicates the sum
of the received reinforcement signals.

Player KS IGR UKS UIGR
Static 11.25±0.05 11.52±0.11 11.52±0.11 11.54±0.1
Offender 15.1±0.14 14.7±0.1 14.93±0.18 14.66±0.17
Midfielder 18.9±1.15 18±0.44 17.76±0.28 17.47±0.64

also the priority among them in different situations.

4.6.2 Unbiased Sampling
Table 4.1 compares biased versions of U-Tree construction methods with unbiased versions in
terms of policy performance i.e. the number of actions per episodes during the test phase. UKS
and UIGR are new versions of KS and IGR with unbiased sampling, respectively. Confidence
intervals are computed with significance level α=0.05. Table 4.1 shows as environment becomes
more non-deterministic, positive effect of unbiased sampling appears more. Although, the number
of actions in UKS and UIGR is a little bit bigger than KS and IGR for static players, it is much
smaller in midfielder case.

Table 4.2 compares the number of leaves in the learned trees. It is clear that, the number of
leaves in the unbiased versions are always fewer than the biased versions. In the midfielder case,
the unbiased versions select the splits in a more optimal way because, not only their trees are

Table 4.2: Comparing the biased and unbiased U-Tree construction methods in terms of
the number of leaves in the learned trees

Player KS IGR UKS UIGR
Static 719±20.7 650±11.9 579±15.3 576±16.8
Offender 1724±113.2 1563±150.3 1365±52.2 1412±115.8
Midfielder 1960±141.1 1947±332.8 1639±61.2 1623±102.9
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Table 4.3: Comparing the learning methods in terms of the average number of actions per
episode during the test phase. It also indirectly indicates the sum of the received reinforce-
ment signals.
Player SARSA KS IGR SANDS SMGR VAR
Static 10.85±.01 11.25±.05 11.52±.11 11.18±.02 11.18±.01 11.17±.02
Offender 19.63±.06∗ 15.1±.14 14.7±.1 14.46±.04 14.44±.03 14.59±.06
Midfielder 668±.1∗∗ 18.9±1.15 18±.44 17.08±.07 17.07±.06 17.26±.09
* 14.72 after 106 episodes ** 18.92 after 15×106 episodes

Table 4.4: Comparing the learning methods in terms of the average number of leaves in the
learned trees. For flat Q-learning with SARSA, the number of states is mentioned.
Player SARSA KS IGR SANDS SMGR VAR
Static 2452 719±20.7 650±11.9 466±4.1 505±4.2 472±4.9
Offender 120052 1724±113.2 1563±150.3 1231±15.4 1194±29.5 1288±22
Midfielder 3001252 1960±141.1 1947±332.8 1406±31.6 1498±47.5 1523±39.3

smaller, but also their policy performance is higher. In the static and the offender case, the rather
poor performance of the unbiased versions could possibly be due to having smaller (in fact, not
enough big) trees.

The confidence intervals of the unbiased versions are always samller than the biased ones.
This means that, the number of leaves in the generated trees by the biased versions change a
lot. This confirms our arguments that the splits, selected by the biased versions, are not optimal
sometime; therefore, some sub-trees have to be repeated multiple times.

4.6.3 Policy Performance and Tree Size
Table 4.3 shows the average number of actions per episodes during the test phase for flat SARSA
and different HRL methods. Table 4.4 shows the average number of leaves in the learned trees.
Results of KS and IGR are duplicates of Sec. 4.6.2 for simplicity of comparison.

Although the flat SARSA has better performance against the static players, it has quite poor
performance in the other cases. Even, we let the learning agent prolong the learning episodes to
10 and 150 times more for offender and midfielder cases, respectively. But, its performance is
still poor compared to performance of the hierarchical methods.

Table 4.3 shows in all cases, our proposed criteria –SANDS, SMGR, and VAR– create trees
with better performance than the other methods. The difference becomes more clear when
the environment becomes non-deterministic. In midfielder player case, differences between the
proposed criteria and the existing ones are between one and two actions per episode. Table 4.4
shows our proposed criteria generate smaller trees in all cases. The difference becomes bigger as
the environment becomes more non-deterministic.

The results confirm that, SANDS, SMGR, and VAR select the splits in a more optimal manner
because, not only their tree is smaller, but also their policy performance is higher. Among our
proposed criteria, SMGR shows a small enhancement in offender and midfielder case compared
to SANDS and VAR. It is due to the penalty term that SMGR assigns to the splits and rejects
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Figure 4.7: Computation time of the algorithms in minutes for 100,000 learning episodes.
The flat SARSA needs 16 min to run 106 episodes in offender case, and 370 min for 15×106

episodes in midfielder case.

some inefficient ones. However, SMGR generates slightly bigger trees than SANDS. In static and
offender case, it is not evident that which one generates fewer partitions, but in midfielder case,
SANDS generates trees with around 100 leaves less. In terms of both measures, VAR stands after
SANDS and SMGR in the third place.

4.6.4 Computation Time
Fig. 4.7 compares simulation time of the different methods 6. It is observed in deterministic cases
that, the flat SARSA needs only one minute to learn playing against the static players. However,
when the environment becomes more non-deterministic, the required computation time increases
rapidly.

An interesting result for HRL algorithms is that, the required learning time does not increase
with the same rate as the flat SARSA. Although the order is still exponential, the increment rates
are visibly smaller than that of the flat SARSA. These results show HRL have a great potential
in decreasing the required learning time and the number of trials for online robot learning tasks.

As explained in Sec. 4.4.3, time order of SANDS, SMGR, and VAR is less than KS and IGR.
The difference is not clear in the static player case, but in other cases, SANDS and VAR decrease
the required computation time to more than half compared to KS and IGR. Among all methods,
VAR and then SANDS are the fastest.

A part of the reduction in the computation time is due to the reduction in the time order

6Tests were done on a Dell R© InspironTM5150 laptop with CPU@3.06 MHz. However, since a part of
the computation time depends on e.g. CPU, operating system, and compiler we compare the methods
only by minutes.
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of the sort algorithm in the sample lists. Another part is due to more efficient splits and as a
result reduction in the number of actions per episodes. Another part is due to creating smaller
trees. This is important, because it also affects the search speed and the required memory for
the trees.

4.7 Conclusion
In this chapter we, formalized the state abstraction problem and derived three new criteria for
split selection called SANDS, SMGR, and VAR. SANDS tries to maximize the expected reward
return by finding a point that well differentiates both value and selection probability of actions,
before and after introducing a split. SMGR looks for the splits that results in more certainty on
selection probability of actions. VAR minimizes the MSE on the action-value functions of the
abstract states over the whole action set. The new criteria adapt decision tree learning techniques
to the state abstraction task. We showed in simulation that, the new criteria outperform the
existing ones, not only in efficiency and size of the learned trees, but also in computation time.

Other splitting criteria, like Information-Gain [111], Gini-Index [112] and Student’s T-test [31]
were also tested, but the results were with limited success, as reported in [31]. Because of a
variance term in its divisor, the Student’s T-test has poor performance when the variance gets
close to zero. Moreover, Information-Gain and Gini-Index had very poor performance in non-
deterministic environments, even worse than KS and IGR.

The main reason behind the performance of our proposed methods is that, criteria like KS
and IGR judge the splits based only on the “rank” of the sample-values, without taking their
magnitude into account. However, value of samples is very informative for state abstraction.
SANDS, SMGR, and VAR exploit this information.

Among the proposed criteria, SANDS generate the smallest trees. After SANDS, SMGR
often generates smaller trees than VAR. In the other hand, SMGR generates the most efficient
trees, however it needs longer time to execute. In terms of efficiency of the generated trees,
SANDS criterion stands higher than VAR in the second place. Among the proposed criteria,
VAR runs faster than SANDS and SMGR. However, SANDS stands in the second place in terms
of execution time. In terms of all quality measures together, SANDS is the best one, since it
generates the smallest trees, its efficiency is very close to SMGR, and its execution time is very
close to VAR. However, attention must be paid when applying the split criteria to other tasks,
as the mentioned ranking among the methods might slightly change.

At first look, size of the trees does not seem to be an important issue. However, our experiences
shows it becomes a critical issue in large state spaces. Methods that create big trees completely fill
memory of robot very early and will not allow the robot to enhance its knowledge anymore. The
learning robot have to incorporate the splitting criteria that generate smaller trees in advance,
or it should find a ways to filter the generated trees and make them more lightweight. This issue
will be discussed in the next chapter.

Although the proposed criteria generate smaller trees than the existing criteria, we think their
size are still big and inefficient to be applied to more complex tasks like realistic soccer learning.
Like all Univariate-based methods, inability to revise the tree in non-stationary environments is
another drawback of our methods. Using Multivariate splits [108; 109; 110] are perhaps more
suitable candidates, because they use a linear or non-linear combination of the features at the
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split point. This can greatly reduce the number of required leaves. Moreover, the linear weighted
sum mechanism in the Linear Multivariate Decision Trees [109] allows for revising the learned
tree, through changing the weights assigned to the features in a split point.
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Abstract. Decision trees, being human readable and hierarchically structured, provide a suit-
able mean to derive state-space abstraction and simplify the inclusion of the available knowledge
for a Reinforcement Learning (RL) agent. In this chapter, we address two approaches to combine
and purify the available knowledge in the abstraction trees, stored among different RL agents
in a multi-agent system, or among the decision trees learned by the same agent using different
methods. Simulation results in non-deterministic football learning task provide strong evidences
for enhancement in convergence rate and policy performance, specially in heterogeneous cooper-
ations.

Key words: Decision Tree, Merge, Balance, Pruning, Cooperative Reinforcement Learning,
Hierarchical State Abstraction, Heterogeneous Cooperation

5.1 Introduction
The existing learning methods suffer from the curse of dimensionality, i.e. requiring a large
number of learning trials as state-space grows. RL [18], despite its strength in handling dynamic
and non-deterministic environments, is an example of such learning methods.

On the other hand, agents in a multi-agent system –although dealing with more dynamic and
as a result tougher learning task– confront with two rich sources of knowledge which, if appro-

1Control and Intelligent Processing Center of Excellence, ECE Dept., University of Tehran, Iran,
mnili@ut.ac.ir
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priately exploited, could greatly expand horizon of the learning process: the learned knowledge
in the subtasks, and the existing knowledge in the agents.

If agents encounter a multitude of learning subtasks over their entire learning time, there is
not only an opportunity to transfer knowledge between them [114], but also a chance to generalize
subtasks and construct a hierarchy among them. It is believed that the curse of dimensionality
can be lessen, to a great extent, by implementation of state abstraction methods and hierarchical
architectures. Moreover, incremental improvement of agent’s performance becomes much simpler.

Most of the different approaches, proposed so far for state abstraction and hierarchy creation,
require a pre-designed sub-task hierarchy ( HAM [23], MaxQ [24], FeudalQ [29]). In addition to
requiring intensive design effort for explicit formulation of the hierarchy and abstraction of the
states, the designer should, to some extent, know how to solve the problem before s/he designs
the hierarchy and subtasks. To simplify this process, automated state abstraction approaches
use decision-tree learning methods and incrementally construct the abstraction hierarchy from
scratch [31] [32] [97].

Every learning agent in a multi-agent system constructs it’s own individual abstraction hier-
archy. However, due to confronting with different situations or heterogeneity in the abstraction
method that each agent utilizes, those abstraction hierarchies might be quite different in essence.
Moreover, wider spatial and temporal coverage of a group [115] brings a potential benefit out of
sharing, adopting, adapting, and applying the stored knowledge in the group, in a way that helps
individuals to build more deliberate and accurate abstraction levels.

Many researches have been inspired by cooperative learning schemes in human and animal
society. Advice taking [116], imitation [117], ensemble learning [118], and strategy sharing [119]
are among many recent researches. However, none of them address utilization of both hierarchical
and cooperative learning methods.

In this chapter, we present two methods to combine the output or the structure of the ab-
straction trees. The abstraction trees are learned online by different RL agents in the society or
by the same agent but with different abstraction methods. We also introduce the methods and
the criteria to balance and prune the merged decision trees, in order to purify and condense the
shared knowledge, and prepare it for further developments.

This chapter is structured as follows: The next section overviews the most recent works on
Cooperative RL (CRL), Hierarchical RL (HRL), and combining decision trees. The third section
introduces the new algorithms to combine the output of the abstraction trees or to combine their
structure through merge, balance, and pruning algorithms. The fourth section describes the
simulation task and results. Conclusions and future works are discussed finally.

5.2 Related Works
This section give an overview of the most recent works on CRL, HRL, and combining decision
trees and explains the ways our work is distinct

5.2.1 Cooperative Reinforcement Learning
Cooperative Learning attempts to benefit from the existing knowledge, stored in the knowledge
base of different agents, through explicit and implicit exchange of the learned rules, gathered
information, etc. This term is sometimes confused with, what we call Cooperation Learning [120],
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which is learning how to coordinate a joint action in cooperative multi-agent systems. We focus
our attention to the methods that enable a group of agents to share their learned knowledge with
their colleagues, instead of methods that require a mentor or a higher levels of cognition like
imitation [117] and advice taking [116].

Cooperative learning makes continuous learning possible, regardless of the power autonomy
of the individuals [115]. A group of robots is able to accumulate knowledge about the task to be
learned and pass it across generations. Then, eventual “death” of a robot would not lead to lose
of the learned knowledge. It is shown that, a group of robots with short life-spans benefit more,
from cooperative learning, than those with long life-spans [115].

Cooperative RL aggregates different approaches from sensor sharing to strategy sharing. In
its very basic form, agents serve as a scout by sharing sensory data in order to augment their
eyesight [121]. In Episode Sharing, agents share (state, action, reward, next state) triples letting
their colleague explore in a virtual world [121]. Although requiring long communication time,
sharing Q-tables is a reasonable supplement, provided that validity and level of their encoded
knowledge is regarded.

Simple Strategy Sharing [121] blends Q-table of agents into one unique table through averaging
the corresponding cells. However it homogenizes the Q-tables and is unsuitable combination when
levels of expertise of the agents are different. Weighted Strategy Sharing (WSS) [122; 123; 119]
tries to resolve the problem by introducing some expertness measures and assigning different
weights to the Q-tables accordingly. The proposed expertness is evaluated as a function of the
history of the received rewards and punishments (e.g. sum of the absolute values of the received
signals), as a function of action-values (e.g. certainty measure or entropy functions [124]), or as
a function of state transitions [125].

As agents might have quite different experiences, they might be expert in some parts of the
state-space and novice in other areas. Extensions of WSS try to discover the areas of expertise
by measuring their expertness in state-level [124; 125; 126] or using pattern recognition tech-
niques [127]. Being too much elaborated, these methods becomes impractical when state space
enlarges.

In this chapter decision trees help us categorize similar states to one group by abstraction
techniques. This provides the chance to enlighten the expertness assessment in state-level and
decrease the amount of communication. Moreover, since decision trees are more human readable
than Q-tables, combination of them would also result in interpretable rule sets.

5.2.2 Hierarchical Reinforcement Learning
Techniques for non-uniform discretization of state space are already known e.g. Parti-game [30],
G algorithm [101], and U-Tree [31]. U-Trees use decision tree to incrementally derive the abstrac-
tion hierarchy. Continuous U-Tree [32] extends U-Tree to work with continuous instead of only
propositional features.

In the previous chapter, we showed that the existing U-Tree based methods ignore explorative
nature of RL. This imposes a bias on the distribution of the samples saved for introducing new
splits in U-Trees. As a consequence, finding a proper split point becomes more and more difficult
and the introduced splits are far from optimality.

Moreover, since U-Tree-based techniques have been excerpted in essence from decision tree
learning methods, the splitting criteria that they utilize are very general. By reformulation of
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state abstraction with different heuristics, three specialized criteria (SANDS, SMGR, and VAR)
were derived, and their efficiency was compared to some widely used ones, like non-parametric
Kolmogorov-Smirnov and Information Gain Ratio tests.

5.2.3 Combining Decision Trees
Having abstraction trees provided by different sources, we are interested in combining them
and extracting an enhanced interpretation. A similar problem has already been studied in data
mining on very large data sets, distributed over a network of computers. Hall et al [128] describe
an approach for classification problem in which, decision trees are learned from disjoint subsets of
a large data set. In combination process, the learned trees are converted to rule sets, similar rules
are combined into a more general one, and contradicting ones are resolved. Although suitable
for off-line classification, it is not applicable to continuous online learning, since the final rule
set is not (in general) convertible back to a decision tree. This is necessary in our case for
further improvement and learning. Moreover, generalization and conflict resolution techniques
are context-dependent and must be adapted to our case.

Another direction of combining multiple trees, known as ensemble methods, is to construct
a linear combination of the outputs of some model fitting methods, instead of using a single fit.
Bagging [129] involves producing different trees from different sample sets of the problem domain
(or from one training set) in parallel and then aggregating the results on a set of test instances.
Boosting [130] is another technique that involves generating a sequence of decision trees from
the same data-set, whereby attention is paid to the instances that have caused error in previous
iterations. Ultimate output of the ensemble is specified by majority voting or weighted averaging.

We will apply both merge and ensemble techniques to state abstraction task. However, in
our merge algorithm, generalization and conflict resolution will be solved by applying cooperative
learning techniques to leaf combination procedure.

5.3 Combining Abstraction Trees
Cooperative learning among abstraction trees 2 could be realized by combining either their
output or their structure. The former is called Ensemble Learning. For the latter, we introduce
a new algorithm to merge, balance, and prune the abstraction trees. It is called CLASS, which
stands for Combining Layered Abstractions of State Space.

Cooperative learning enables us have heterogeneous cooperation between different abstraction
algorithms. Here, heterogeneity refers to diversity in the abstraction methods, which can arise
from variations, either in parameter settings, or splitting criteria. We argue that, introducing
the heterogeneous cooperation would simplify the tough task of method selection or parameter
adjustment for abstraction methods.

5.3.1 Ensemble Learning
We use the idea of Bagging [129] and Boosting [130] and let the learning agent construct mul-
tiple abstraction trees in parallel from the same learning episodes (Fig. 5.1). It is hoped that,

2To review abstraction methods using U-Tree please read Sec. 4.4 and 4.5.
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Figure 5.1: Ensemble of abstraction trees jointly selects the next action

the ensemble guide the abstraction trees to get specialized in different areas of state-space by
introducing splits in different axis.

In action-selection phase of the ensemble, the agent combines the probability distribution of
actions proposed by each tree by simple averaging. The action is, then, selected according to this
combined distribution. Finally, the reinforcement signal is feeded back to all trees. Combining
the outputs via averaging is reasonable, since all trees receive the same reinforcement signals and
therefore their expertness measures are equal.

5.3.2 CLASS
The CLASS algorithm includes applying sequences of merge, balance, and pruning procedures to
abstraction trees. We explain the procedures in this section. The goal is to put the knowledge,
acquired from different sources, together and purify it. However, the balance and the pruning
algorithms are not constrained to cooperative learning application. They could be applied to any
abstraction tree in general.

The CLASS algorithm could start by merging the two abstraction trees. Then, the resulted
tree is balanced and pruned. Another sequence could be to apply the balance and the pruning
procedures twice, once to the abstraction trees before merge, and once to the resulted tree after
merge. Our experiences show that, this way the resulted tree after merge is more lightweight. As
a consequence, the balance procedure, which is the bottleneck of the algorithm, is accomplished
faster.

Merge

Given the abstraction trees, T1 and T2, learned on the same state-space, a new decision tree
T3 = T1 +T2 is formed from pairwise intersection of the leaves of T1 and T2. The merge algorithm
in our case is non-commutative i.e. in general T1 +T2 6= T2 +T1. However, the final partitions are
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Figure 5.2: An example for merging abstraction trees. top and middle: input abstraction
trees, bottom: merge result
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Algorithm 1 Merging abstraction trees
Input: Two abstraction trees with root nodes r1 and r2
Output: Root node of the merged tree
Node MergeTree(Node r1, Node r2)

1: if r1.Boundary overlaps with r2.Boundary then
2: if r2 is Leaf then
3: MergeLeaf(r1,(Leaf)r2)
4: else
5: r1 = MergeInternalNode(r1, (InternalNode)r2)
6: r1 = MergeTree(r1, ((InternalNode)r2).Left)
7: r1 = MergeTree(r1, ((InternalNode)r2).Right)
8: end if
9: end if

10: return r1

Node MergeInternalNode(Node n1, InternalNode n2)

1: if n1.Boundary overlaps with n2.Boundary then
2: if n1 is Leaf then
3: if n1.Boundary is splittable by n2.Split then
4: Create a new internal node with the same split as n2
5: Duplicate n1
6: Place n1 and its duplicate as children of the new internal node
7: Update their boundaries and pointers
8: return the new internal node
9: end if

10: else
11: n1.Left = MergeInternalNode(n1.Left, n2)
12: n1.Right = MergeInternalNode(n1.Right, n2)
13: end if
14: end if
15: return n1

void MergeLeaf(Node n1, Leaf l2)

1: if n1.Boundary overlaps with l2.Boundary then
2: if n1 is Leaf then
3: Combine n1.QFunctions with l2.QFunctions (e.g.by averaging)
4: else
5: MergeLeaf(n1.Left, l2)
6: MergeLeaf(n1.Right, l2)
7: end if
8: end if
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same. Merging can be illustrated by simply overlaying the two partitions on top of each other, as
shown in left column of Fig. 5.2 for a simple 2D state-space. T1 and T2 are different abstractions
of the same state-space and T3 shows the overlayed partitions. The pseudo-code in Algorithm 1
describes the merge algorithm.

It is assumed in the algorithm that a node is either a leaf or an internal node. Every node has
a boundary which specifies its corresponding hypercube in the state-space e.g. boundaries of the
hypercube marked as 3 in Fig. 5.2 (top) is [x0→ x1,y2→ y3]. Hypercubes that correspond to leaves
are basic hypercubes whereas the ones that correspond to internal nodes are complex. Internal
nodes denote splits points. A univariate split, X = a, is a hyperplane that breaks a hypercube
from point a along X axis to two smaller hypercubes (From now on, we refer to univariate splits
as “split” simply). Internal nodes have two children specified by left (X ≤ a) and right (X > a).
A hypercube(or equally a boundary) is splittable by a split, X = a, if the split point, a, is between
(and not on) the start and the end point of the hypercube boundary on the split axis, X .

The merge algorithm starts by traversing T2 in pre-order 3 and inserting the visited nodes
one by one into T1, if required (MergeTree function in Algorithm 1, see also the trees in the right
column of Fig. 5.2). If the boundary of a leaf of T1 is splittable by a split in T2, that split is
initiated in T1 by replacing the leaf with a sub-tree, consisting the split as root and the leaf and
its copy as children (MergeInternalNode function in Algorithm 1, see also the inserted sub-tree
at the bottom-right of Fig. 5.2). Merging the leaves of T2 is done by combining their Q-functions
with the one of the overlapping leaves of T1 (MergeLeaf function in Algorithm 1, see also the
leaves of T3 in Fig. 5.2). Leaf combination process is carried out by applying WSS (Sec. 5.2.1)
and expertness measures.

Balance

Mapping from partitions to abstraction trees is not always one-to-one. While only one repre-
sentation is possible for T2 (Fig. 5.2-middle), multiple trees can represent T1 (Fig. 5.2-top). The
structure of the trees, produced by abstraction methods, depends on the algorithm and sequence

3First the root, then the left sub-tree, finally the right sub-tree
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Algorithm 2 Balancing an abstraction tree
Input: An abstraction tree
Output: The balanced tree
Tree Balance(Tree tree)

1: NodeList[] list = new NodeList[tree.LeafCount]
2: for i = 0 to tree.LeafCount-1 do
3: list[0].Add(tree.Leaf[i])
4: end for
5: for i = 2 to tree.LeafCount do
6: for j = i

2 down to 1 do
7: NodeList n1 = list[j-1]
8: NodeList n2 = list[i-j-1]
9: if n1 6=n2 then

10: for p = n1.Count-1 down to 0 do
11: for q = n2.Count-1 down to 0 do
12: Combine(list, n1[p], n2[q])
13: end for
14: end for
15: else
16: for p = n1.Count-1 down to 1 do
17: for int q = p-1 down to 0 do
18: Combine(list, n1[p], n2[q])
19: end for
20: end for
21: end if
22: end for
23: end for
24: Tree newtree = Build tree recursively from list[tree.LeafCount-1][0]
25: return newtree

void Combine(NodeList[] list, Node n1, Node n2)

1: if n1 and n2 are combinable then
2: n12 = n1 + n2
3: best = list.FindNode(n12.Boundary)
4: if best 6= null then
5: if n12.BalanceFactor > best.BalanceFactor then
6: list.Replace(best, n12)
7: end if
8: else
9: list.Add(n12)

10: end if
11: end if
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of the incoming samples (experiences). Although the structure is not important for the final
policy -since all represent the same policies- it becomes crucial when traversing the tree to find
the value of a specific state, and when pruning the tree to form a lightweight tree with “nearly”
same efficiency.

For the decision trees that are constructed from off-line data, restructuring the tree is not
relevant. however, when constructing abstraction trees from online data, we must be able to
restructure the tree, since the already introduced splits might be inefficient. Fig. 5.3 (left) shows
a simple case where the whole state-space is representable by only one split at x1 and two abstract
states. Now, if by chance the sampled data points are distributed like the dark circles, the
abstraction algorithm might introduce a split at y1 followed by the splits at x1(Fig. 5.3-middle). In
reality, this happens very often, since number of the sampled data-points are very few comparing
to the size of the state-space. Moreover, state transitions that an online learning agent encounters
would actually occur in vicinity.

Utile Distinction Memory [131] partially solves this problem by virtually generating all po-
tential splits. When the agent is insured of the efficiency of a virtual split, it would upgrade it to
an actual one. This method is not applicable to continuous features as the number of potential
splits grows enormously.

A possible solution would be the combination of balance and pruning mechanisms. The
balance algorithm restructures the tree according to a balance factor (see below). By choosing
a proper balance factor inefficient splits are shifted down to leaves and removed by the pruning
procedure. The pseudo-code in Algorithm 2 describes the balance algorithm.

The algorithm tries every possible tree to find the best balanced tree for the whole space.
However, the algorithm does not recursively break the whole state-space in top-down manner.
Instead, in order to reduce the time order of the algorithm, it combines the smaller hypercubes
and build bigger hypercubes in a bottom-up manner. In top-down manner, some sub-problems
(i.e. balancing subsets of state-spaces) are solved multiple times, while in bottom-up manner, the
sub-problems are solved only once and the solution is saved and reused afterwards.

The algorithm starts from the basic hypercubes i.e. leaves. All leaves are tried in turn
and are combined with other combinable leaves to form complex hypercubes (Balance function
in Algorithm 2). Two non-overlapping hypercubes (or equally nodes) are combinable, if their
combination also forms a hypercube, i.e. they are neighbors and their boundaries are same in
all except one axes, e.g. leaf 4 in Fig. 5.2 (top-left) has two neighbors: 3 and 5, however it is
combinable only with 3.

A list records the root split for the sub-spaces that have been balanced up to now e.g. this
list stores X ≤ x1 as the root split of [x0 → x2,y0 → y4] in Fig. 5.2(middle). If two hypercubes
are combinable, then this list is checked to see whether their combination proceeds to a more
balanced tree for the combined sub-space or not. If so, the new combination replaces the existing
one (Combine function in Algorithm 2).

Finally, the best root split for the whole space is turned out. Putting this split as the root
of the balanced tree, we can recursively build the whole tree by finding the boundaries of the
sub-spaces at left and right side of the root split. The list is recursively looked up to find the
root split of these two sub-spaces and so on.

Different balance factors generate different types of balanced trees. By choosing the inverse
of average path-length from leaves to root as the balance factor, the balanced tree would have the
shortest depth among all possible trees. Fig. 5.4 shows the balanced version of T3 in Fig. 5.2 in
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Figure 5.4: Balanced version of T3 in Fig. 5.2 in terms of depth

terms of this factor. Combining path-length with the fraction of samples that belong to a specific
node generates abstraction trees that are optimized for search purpose in a way that, bigger
sub-spaces of the whole space are moved up, close to root, to minimize the number of conditions
that are checked until a leaf is found.

Pruning

To restructure the abstraction trees for pruning purpose, the balance factor could be defined
based on a similarity measure on the action-values of the sibling nodes. Balance according to
this measure restructures the tree so that nodes with similar action-values are placed in vicinity.
If the similarity between the sibling leaves is more than a threshold, they could be pruned and
replaced (including their immediate parent) by a single leaf.

In this chapter, similarity of two nodes is defined as a binary function: one, if the greedy
actions 4 of the nodes are equal, and zero otherwise. The balance factor for an internal node is
recursively defined as: the similarity between its children (0 or 1), plus sum of the balance factors
of its children.

The greedy action of a leaf is easily specified from its action-values. Since internal nodes
do not hold the action-values, their equivalent values have to be computed. Action-values of an
internal node, S̄, is a weighted sum of the action-values of its children, S̄1 and S̄2:

Q(S̄,a) =
2

∑
i=1

[
P(S̄i|S̄)Q(S̄i,a)

]
,∀a ∈ A (5.1)

where the assigned weight to each child is the probability P(S̄i|S̄), which is estimated by the
fraction of samples that belong to the child, S̄i, out of the total samples that belong to the
internal node, S̄.

Fig. 5.3 (right) shows the balanced version of the abstraction tree at its left according to this
balance factor. The split at y1 is moved down and the more efficient split, x1, is placed at root.
Since the children of y1 splits both represent the same action-values (and so they have the same
greedy actions), they can be replaced by one leaf.

4The action with the highest action-value
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Table 5.1: Results of the individual and ensemble learning

leaf/ action reward score ratio
Method tree lrn tst lrn tst lrn tst
SANDS 1723 136.4 43.2 .679 .894 3.2 13.9
SMGR 1665 123.6 36.9 .718 .931 4.3 18.3
VAR 1827 179.2 54.7 .663 .919 3.3 17.9

ind. avg. 1738 146.4 44.9 .687 .915 3.6 16.7
SANDS-SANDS 1660 42.8 22.3 .798 .919 5.0 15.7
SMGR-SMGR 1729 57.2 23.9 .801 .942 5.5 22.1
VAR-VAR 1864 61.5 23.5 .784 .912 4.7 14.0

homog. avg. 1751 53.8 23.2 .794 .924 5.1 17.3
SANDS-SMGR 1666 37.5 21.4 .862 .956 7.5 27.3
SANDS-VAR 1740 45.5 21.2 .787 .920 4.7 15.4
SMGR-VAR 1780 40.1 21.4 .837 .943 6.4 22.8
heterog. avg. 1729 41.0 21.3 .829 .940 6.2 21.9

5.4 Simulation Results

The presented algorithms have been tested on the simplified football task, explained in sec. 4.6.
However this time, the learning agent plays against an intelligent opponent. The intelligent player
is programmed manually to move toward the ball, pick it and carry it to the left goal. Meanwhile,
with certain probability (here 40%) it selects a wrong action to leave a bit chance for the learner
to score.

Here, the total number of states is 85752(= 2× (7×5)3 + 2) states. The learner receives +1
reward for correct scores, -0.1 punishment for wrong scores or scores by the opponent, and -0.0001
otherwise. All methods use SARSA with decaying ε-greedy for sampling phase. The learning
rate, α, is 0.1 and the discount factor, γ, is 0.95. The exploration rate, ε, is initialized to 0.1 and
is decayed by multiplying with 0.99999 after each episode. Leaf sample size is 360 (60 samples
per action).

Three type of splitting criteria are examined: SANDS, SMGR, and VAR. For each state
abstraction criteria, different confidence thresholds are tried in order to find the best range in
terms of convergence. The best range is then divided to 10 equal-size regions and center of each
region is picked up as a confidence threshold. Simulation experiments are executed with these 10
confidence thresholds.
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5.4.1 Ensemble Learning Results
Table 5.1 shows final results of the individual and the ensemble learning experiments in both ho-
mogeneous and heterogeneous cooperation cases. The individual learning experiments refer to the
experiments that engage only one abstraction tree. In this category, for every splitting criterion
and confidence threshold, 10 simulation runs (with different random seeds) are executed. The en-
sembles engage two abstraction trees in parallel. In this category, all possible two-combinations of
the splitting criteria and the confidence thresholds, that has been used in the individual learning
experiments, are tried in turn.

Heterogeneity, here, refers to the difference between the two splitting criteria used in the en-
semble. For example, SMGR-VAR is considered as a heterogeneous cooperation between SMGR
and VAR. It refers to all ensembles which create two abstraction trees, one of them using SMGR
and the other one using VAR. While, e.g. VAR-VAR, is considered as a homogeneous coopera-
tion. It refers to all ensembles in which, both trees use VAR criterion (with different confidence
thresholds, of course).

The first column of Table 5.1 shows the number of leaves in the generated trees averaged over
all the ensembles of a specific type. The rest show the average number of actions per episodes, the
average sum of the received rewards (either positive or negative) during episodes, and the score
ratio for learning and test phases. The learning and test phases let us compare convergence rate
and performance of learned policies, respectively. Score ratio is defined as: scores of the learning
agent divided by scores of the programmed agent. The score ratio provides a good differentiation
among the methods in terms of learning both attack and defense. If a method effectively learns
both strategies, it would have higher score ratios indeed.

Tree Size

Fig. 5.5 shows history of the number of leaves in the abstraction trees, created during the indi-
vidual and the ensemble learning experiments. Each individual splitting criterion is compared
with the three ensembles that involve it as one part.

It is clear from the figures that, at the beginning, the individual methods are not fast as the
ensembles in creating new leaves. This period starts from episode 5,000 and lasts until episode
50,000. Faster leaf creation could lead to faster convergence provided that the splits are efficient.
However, the size of the generated trees are, finally, very close.

Action

Fig. 5.6 shows the (accumulated) average number of actions per episodes during learning experi-
ments. At the beginning, the learning player learns how to prevent the intelligent opponent from
taking control of the ball. That is why the number of actions per episodes increases for a period.
This period matches the latency period in leaf creation of the individual methods in Fig. 5.5. As
soon as the learner finds how to intercept and catch the ball, it would start learning the way to
score it. At this time, the number of actions per episodes starts declining.

It is evident from the figures that, the heterogeneous ensembles converge faster than the
homogeneous ones (except for SANDS-VAR that converges slower than SANDS-SANDS). Also
both type of the ensembles converge reasonably faster than the individual methods.
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Figure 5.5: History of the number of leaves in the abstraction trees, created during the
individual and the ensemble learning experiments
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Figure 5.6: History of the (accumulated) average number of actions per episodes during
the individual and the ensemble learning experiments
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Reward

Fig. 5.7 shows the (accumulated) average sum of the received rewards per episodes. The hetero-
geneous ensembles gain more rewards than the homogeneous ones (except for SANDS-VAR), and
both of them gain more rewards than the individual methods. Among the individual methods,
graph of SMGR is the closest graph to the ensembles. The same thing could be perceived from
the previous figures. SMGR is the fastest converging method among the individual methods.

Score Ratio

Fig. 5.8 shows history of the score ratio during the individual and the ensemble learning exper-
iments. At the beginning, the opponent scores more than the learner. So, the ratio is less than
one until episode 50,000 and 20,000 for the individual methods and ensembles, respectively. The
ratio then grows with log-incremental rate.

If learning is continued the score ratio is expected to become constant at infinity. This means,
even if the learning player tries its best, the programmed opponent will still have some chances to
score. This small chance corresponds to the situations that, the programmed opponent is initially
placed near the ball and the left goal, while the learning player in placed very far from them.

Discussion

Table 5.1 and Figs. 5.5- 5.8 show the ensemble methods, almost in all cases, have much better
results than the individual methods in terms of both convergence rate and performance of the
learned policy. The average number of actions for the ensembles are less than the individual cases
both in learning and test phases. Also, the received rewards and the score ratios are all more
than the individual cases in both phases. However, the average number of leaves per trees are
close to the individual cases 5. Though, they are slightly smaller in the heterogeneous category.

The ensembles that involve VAR criterion are exceptions. Although their convergence is faster
than the individual cases, performance of their final policy degrades sometimes. In VAR-VAR
and SANDS-VAR, the score ratios are smaller than their individual cases. Perhaps, in some
situations multiple paths exist for catching the ball and scoring it. It is probable that one policy
tries e.g. to approach the ball first in x direction and then in y, while the other one tries the
opposite. Combining these conflicting policies could result in selecting an inefficient action and
losing time. Meanwhile, the opponent catches the ball and scores it.

Table 5.1 and Figs. 5.5- 5.8 show in almost all cases the heterogeneous ensembles have better
results than the homogeneous ones in terms of both convergence rate and policy performance.
SANDS-SMGR and SMGR-VAR, which are heterogeneous ensembles, are the two top methods
among all. In fact, performance of the heterogeneous combinations of the splitting criteria are bet-
ter than (or very close to) the best of their homogeneous combinations. For example performance
of SMGR-VAR is better than SMGR-SMGR and VAR-VAR. Also, performance of SANDS-VAR
is closer to SANDS-SANDS than VAR-VAR. This can be due to variety in the split axis. If the
trees in an ensemble break a subset of state space along different axis, the combined output could
be like a linear multi-variate split.

5Note that the total number of leaves in the ensembles are bigger than the individual cases.
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Figure 5.7: History of (accumulated) average sum of the received rewards during the indi-
vidual and the ensemble learning episodes
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Figure 5.8: The score ratio for the individual and the ensemble learning
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Table 5.2: Performance of the CLASS algorithm

leaf action reward score ratio
Method merge pruning reduction %
SANDS-SANDS 4551 2244 50.7 37.2 .904 17.6
SMGR-SMGR 4629 2254 51.3 32.9 .952 30.3
VAR-VAR 4281 2033 52.5 45.7 .929 22.8

homog. avg. 4487 2177 51.5 38.6 .928 23.6
SANDS-SMGR 6794 3175 53.3 33.6 .940 25.4
SANDS-VAR 5584 2454 56.1 39.5 .921 20.1
SMGR-VAR 7507 2964 60.5 36.9 .941 26.1
heterog. avg. 6628 2864 56.6 36.7 .934 23.9

5.4.2 CLASS Results
The second category of tests concerns the CLASS algorithm. For this purpose, the generated
trees in the individual learning experiments (Table 5.1) are used. All possible two-combinations
of the trees are selected and the CLASS algorithm is executed on them. Then, the resulted tree
is tested in the same simulation task for 30,000 episodes. The applied CLASS algorithm, firstly,
balances the input trees and prunes them in order to deal with smaller trees. Then, the input
trees are merged together. The merged tree is then balanced and pruned.

Table 5.2 displays the average number of leaves in the trees after merge, followed by the
average number of leaves after balance and pruning the merged trees, and percentage of reduction
in the size of the trees (i.e. 100× initial size−size a f ter pruning

initial size ). Next columns summarize the number
of actions per episode, the sum of received rewards per episode, and the score ratio.

Policy Performance

Table 5.2 shows that, the combined trees by the CLASS algorithm always find faster policies that
gain more scores and rewards than their individual versions (Table 5.1), e.g. the learned policies
in SANDS-VAR accomplish the task in 39.5 actions that is faster than their individual versions,
SANDS (43.2) and VAR (54.7). Moreover, the homogeneous combinations find policies that are,
in average, 6.3 actions faster than the individual policies. the heterogeneous combinations are
even better; they are 8.2 actions faster.

SMGR is the best method among the individual cases. Combining it with itself (i.e. SMGR-
SMGR) results in the best method among all. Its heterogeneous combination with SANDS or
VAR, also, have close performance to SMGR-SMGR. In fact, performance of SANDS-SMGR is
closer to SMGR-SMGR than to SANDS-SANDS. Also performance of SMGR-VAR is closer to
SMGR-SMGR than to VAR-VAR.
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Merge

The heterogeneous combinations have better performance than the homogeneous cases except in
the number of leaves (Table 5.2). In fact in the homogeneous cases, input trees have more similar
splits. As a result, the merged trees are smaller. Fig. 5.9 emphasizes that, the number of leaves
of the merged trees linearly increases with product of the number of leaves of the input trees in
both homogeneous (left) and heterogeneous (right) categories. However, slope of the line in the
heterogeneous merge is bigger, as was expected from Table 5.2.

Pruning

The number of leaves after pruning is around 30-40% less than the total number of leaves of the two
input trees of the merge algorithm; e.g., input trees of SANDS-SANDS have totally 1723×2=3446
leaves (Table 5.1), while results of the CLASS algorithm have 2244 leaves (Table 5.2). The resulted
trees are also smaller than their ensembles; e.g., results of the CLASS for SANDS-SANDS have
32% fewer leaves than SANDS-SANDS ensembles, which have 1660×2=3320 leaves (Table 5.1).

Pruning reduces the size of the input trees to less than half. Fig. 5.10 shows the number of
leaves after pruning is linearly increasing with the number of leaves before pruning. However,
slope of the line is smaller for the heterogeneous case. That means, percentage of reduction in
the heterogeneous case is higher than the homogeneous case. We saw that, the size of the merged
trees (which are inputs of the pruning procedure) are also bigger in the heterogeneous case. We
might conclude that in larger scales (like 100,000 leaves), increase in the number of leaves after
pruning would be log-incremental with respect to the number of leaves before pruning.

Processing Time

Balancing a tree with L leaves, according to Algorithm 2, needs O(L4) processing time. Pruning
procedure traverses the tree once, so it is O(L) 6. Merging two trees (Algorithm 1) with L1 and
L2 leaves needs traversing the first tree once for every nodes of the second tree, i.e. O(L1L2).

Now assume that, the number of leaves of the input trees to the CLASS algorithm are l1 and
l2. Also, assume after balance and pruning, their leaves are reduced to l′1 and l′2, respectively.
Moreover, assume that the number of leaves of the merged tree is l12. Balance and pruning the
input trees need O(l4

1 + l1 + l4
2 + l2). Merging the pruned trees is O(l′1l′2). Also, balance and pruning

the merged tree is O(l4
12 + l12). Therefore, time order of the version of the CLASS algorithm that

we used for our simulations is O(l4
1 + l1 + l4

2 + l2 + l′1l′2 + l4
12 + l12).

We know from the previous sub-sections that, the size of the merged tree increases linearly
with product of the sizes of the input trees, and the size of the pruned tree is linearly increasing
with its size before pruning. Therefore, the time order could be rewritten as O(l4

1 + l1 + l4
2 + l2 +

l1l2 + l4
1 l4

2 + l1l2). According to complexity theory, terms of lower degrees can be ignored. So, the
order is simplified to O(l4

1 l4
2). So, time order of the CLASS algorithm is mostly affected by the

balance procedure. It is specially affected by balancing the merged trees, since they have big
sizes. Fig. 5.11 confirms this argument. Its shows, how processing time of the CLASS algorithm
changes with respect to the number of leaves in the merged tree. It fits very well a polynomial
of degree 4.

6Note that a tree with L leaves has 2L-1 nodes
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Figure 5.9: Relation between the size of the input and output trees of the merge algorithm.
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Figure 5.11: Processing time of the CLASS algorithm

Discussion

In summary, combined trees by the CLASS algorithm, always, find faster policies that gain more
scores and rewards than their individual versions. Like in the ensembles, performance of the
heterogeneous combinations of the splitting criteria is very close to the best of their homogeneous
combinations. Therefore, in cases when, no idea about performance of different methods exists,
the best selection would be to mix the methods with a cooperative method, like ensemble learning
or CLASS. The mixture, then, would automatically benefit from the best of them. This outcome
confirms our argument that, using heterogeneous cooperative learning could simplify the task of
method selection and parameter tuning for learning algorithms.

Comparing to the ensembles, the CLASS algorithm creates smaller trees with almost better
performance in terms of the received rewards and the score ratio. However, the policies found by
the ensembles are faster. This means, although the developed policies by the ensembles are fast
in attack, they are inefficient in defence because, they let the opponent player score more and
faster. However, results of the CLASS have better defence and the episodes are, as a consequence,
prolonged.

5.5 Conclusion
In this chapter two approaches to create cooperation between different sources of knowledge
via ensembles of abstraction trees and via applying merge, balance, and pruning techniques
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(called together as the CLASS algorithm) were presented. The abstraction trees could come from
different abstraction methods or different agents in a multi-agent system. Ensemble learning
is suitable for single agent learning. While, the CLASS algorithm is applicable to multi-agent
systems in which, knowledge sources are separated and have different learning experiences.

Simulation results in non-deterministic football learning task provided strong evidences for
faster convergence rate and more efficient policies compared to individual learning. Simulation
results also showed that, using heterogeneous splitting criteria results in more efficient and faster
converging trees than the homogeneous ones in most cases. Using different criteria is perhaps eas-
ier when no idea about performance of different methods exists. Then, mixing them in ensembles
would result in a learning system that its performance is close to the best method.

Ensemble learning and CLASS algorithm create bigger trees than individual learning. Merging
the trees, that are created by the homogeneous criteria, result in smaller trees than the heteroge-
neous ones. Because, the homogeneous criteria generate similar splits which can be factored out.
Generating bigger trees could be fine as far as memory consumption does not matter. For exam-
ple, in real robot-learning tasks where faster convergence rate is more important than memory
consumption, this kind of methods could induce a great reduction in the required learning time.

Cooperative learning methods have no added-value in cases where, individual learning can
itself derive abstraction trees with reasonable performance in reasonable time. A similar argument
has already been emphasized in [119].

For future, we would like to apply these algorithms to a realistic soccer task with multiple
players in each team. Also we look for better abstraction methods to create smaller abstraction
trees. We think, this is a big drawback of the current abstraction methods when they are applied
to a complex task like soccer learning.



Chapter 6

Conclusion and Future Works

This chapter gives a summary of the results acquired in this thesis, accompanied by some
suggestions for future researches. The goal of the thesis was to investigate methods of
behavior composition and coordination; how to combine simpler behaviors and make a
more complex behavior out of them, and how to coordinate their execution time.

6.1 Manual Hierarchy Design
We started by manually designing the composition hierarchy and the coordination mecha-
nism. We applied it to the LEURRE, European project, which aimed at studying mixed-
societies of robots and animals.

The biological experiments was aggregation of cockroaches under shelters. Biological
studies showed that cockroaches are able to collectively choose an aggregation site, even
if the sites are identical. However, the darker the site is, the more likely the cockroaches
choose that site collectively.

The idea of the project was to inject some informed agents, here InsBot micro-robots, to
the society of cockroaches. The robots had to integrate themselves to the society, interact
with individuals (animals or robots) in the society, and participate in the collective decision
makings. In the next steps, the robots in coordination with each other should be able
change the collective behavior of the society through direct interactions. The robots could
affect the cockroaches via chemical communication; they were covered with a paper that
was impregnated with pheromone of cockroaches.

The robots were controlled via a hierarchical behavior-based controller, inspired from
schema theory[2]. The perceptual schema was responsible for sensor fusion and object
detection. The motor schema was responsible for selection of the proper behavior for the
current situation.

In the highest layer of the motor schema, an arbiter stochastically selected the next
behavior according to a probability table. The table was a probabilistic model of the
cockroach’s aggregation, acquired from extensive analysis of the experiments with real
cockroaches. The selected behavior by the arbiter was then decomposed to simpler behav-
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iors. Each behavior generated a potential field. The final outcome was the resultant vector
of the forces generated by the constituting behaviors. The resultant force was mapped to
an action for execution, afterwards.

Biological experiments showed that the mixed-societies of robots and cockroaches gen-
erate similar aggregation patterns to pure-cockroach groups. Biological experiments, also,
showed that the aggregation site is selected collectively by both robots and cockroaches.
In fact both of them modulate each other’s behavior. The most important results proved
that, the robots are able to induce a new collective pattern and modify the collective be-
havior of cockroaches. Provided that the number of robots is bigger than a threshold, they
are able to bring the aggregation site from the dark shelter to the bright one.

The initial tests were done with cockroaches however, more experiments should be
carried out with other types of animal, like sheep and chicken, in order to develop and
verify a methodology for mixed-society control. The theory is applicable to other aspects
of human life, anywhere that some informed agents in coordination with each other might
be able to control the collective behavior of a large group. It can include (but not limited
to) many problems in the domain of economy, education, culture and agriculture.

6.2 Compact Q-Learning
Although extensible and reusable, the manually derived behavioral hierarchy needed a high
degree of hand tuning. In the next step, we benefited from machine learning techniques
to automate the behavior coordination part, while still deriving the hierarchy for behavior
composition manually.

We derived a Compact Q-Learning method for micro-robots with processing and mem-
ory constrains, and tried to learn behavior coordination through it. It was implemented and
verified on light-attraction and safe-wandering task. Combination of multiple behaviors
was implemented by combining the state vectors of the behaviors with Cartesian product,
and combining their reward functions with weighted sum.

However, the problem of the curse of dimensionality made incorporation of this kind
of flat-learning techniques unsuitable. Even though optimizing them could temporarily
speed up the learning process and widen their range of applications, their scalability to
real world applications remained under question. Size of the combined space grew very
fast and learning time increased exponentially.

6.3 Hierarchical Reinforcement Learning
In the next step we automated both the behavior composition and coordination mecha-
nisms. We know that some features of the state space might be irrelevant to what the robot
is currently learning. Abstracting these features is the goal of Hierarchical Reinforcement
Learning. We used the U-tree [31] algorithm for State Abstraction. It starts with assuming
the whole state-space as one big abstract state. Then, it breaks the abstract state, if any
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violation of Markov property is detected.

6.3.1 Splitting Criteria
Violation of Markov property in the U-Tree algorithm is detected using a splitting criteria.
We could derive three new splitting criteria by formalizing the state abstraction problem
with different heuristics:

• SANDS (State Abstraction for Non-Deterministic Systems) maximizes the expected
reward return by finding a splitting point that well differentiates the selection proba-
bility of actions, before and after introducing the split, considering also the Q-values.

• SMGR (Softmax Gain Ration) maximizes the certainty on the selection probability
of actions. We proved that SMGR scales SANDS and combines it with a “penalty
term”.

• VAR (Variance Reduction) minimizes the Mean Squared Error on the action-values.

We showed that the new criteria adapt decision tree learning techniques to state ab-
straction, better than the generally used criteria like Kolmogorov-Smirnov or Information
gain Ratio tests. Proof of performance was supported by strong evidences from simulation
results in deterministic and non-deterministic football learning in grid-world. We showed
that, the new criteria outperform the existing ones, not only in efficiency of the policy
and size of the learned trees, but also in computation time. Among the proposed criteria,
SANDS generated the smallest trees, SMGR generated the most efficient policies, and VAR
executed faster than the others.

Although the proposed criteria generated smaller trees than the existing criteria, we
think their sizes are still big and inefficient to be applied to complex tasks like realistic
soccer learning. Inability to revise the tree in non-stationary environments is another
drawback of our methods. Using Multivariate splits [108; 109; 110] might be a suitable
solution.

6.3.2 Cooperative Learning
The existing knowledge in the agents of a multi-agent system, is a free source of knowledge
that, if transferred, can broaden the scales of learning, both temporally and spatially.
We presented two Cooperative Learning approaches for combining output or structure
of abstraction trees: Ensemble Learning and CLASS(Combining Layered Abstraction of
State Space) algorithm. Ensemble learning is suitable for single agent learning. While,
the CLASS algorithm is applicable to multi-agent systems in which, knowledge sources are
separated and have different learning experiences.

In Ensemble Learning, the learning agent constructs multiple abstraction trees in par-
allel from the same state-space. In action selection phase however, the agent combines the
probability distribution of actions proposed by each tree via simple averaging. The next
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action then is selected according to this combined distribution. Finally the reinforcement
signal is feeded back to all trees.

In CLASS, the structure of abstraction trees are combined with each other. The com-
bination process is done by applying a mixture of merge, balance and pruning techniques.
The merge algorithm creates a pairwise intersection of the leaves of the input trees. The
balance and pruning techniques eliminate some inefficient splits and make the abstraction
trees smaller. The balance algorithm restructures the tree so that leaves with similar Q-
values are placed nearby. These similar leaves are removed then by the pruning procedure.

Ensembles enable us to have heterogeneous cooperation between different abstraction
algorithms, as well as homogeneous cooperation between same abstraction methods but
with different parameters. They can simplify the tough task of parameter adjustment for
abstraction methods. They can guide the abstraction trees to get specialized in different
areas of state-space by introducing the splits along different axis.

Simulation results in non-deterministic football learning task provided strong evidences
for faster convergence rate and more efficient policies compared to individual learning. Sim-
ulation results also showed that, in most cases using heterogeneous splitting criteria results
in more efficient and faster converging trees than the homogeneous ones. Using heteroge-
neous criteria is perhaps easier when no idea about performance of different methods exists.
Then, mixing them in ensembles would result in a learning system that its performance is
close to the best method.

Ensemble learning and CLASS algorithm created bigger trees than individual learning.
Merging the trees, that were created by the homogeneous criteria, resulted in smaller trees
than the heterogeneous ones because, the homogeneous criteria generated similar splits
which could be factored out. Generating bigger trees could be fine as far as memory
consumption does not matter. For example, in real robot-learning tasks where faster
convergence rate is more important than memory consumption, this kind of methods could
induce a great reduction in the required learning time.

We look for better abstraction methods to create smaller abstraction trees. We think,
this is a big drawback of the current abstraction methods when they are applied to a
complex task like soccer learning.



Appendix A

Splitting Criteria Results

In this appendix, we compare the best simulation results of our proposed criteria with the
best results of the existing ones.

A.1 Unbiased Sampling
Table A.1 compares the best results acquired by the biased versions of the U-Tree construc-
tion methods with their unbiased versions in terms of the number of actions per episodes
during the test phase. UKS and UIGR are new versions of KS and IGR with unbiased
sampling, respectively. Table A.2 compares the number of leaves in the learned trees for
the same simulation experiments.

A.2 Policy Performance and Tree Size
Table A.3 shows the average number of actions per episodes during the test phase for
the flat SARSA and the best confidence thresholds of different Hierarchical RL methods.
Table A.4 shows the average number of leaves in the learned trees. The results for KS and
IGR are duplicates of the previous section to simplify the comparison.

Figure A.1 shows the number of actions per episodes recorded during the learning
episodes against different types of players. It shows that SANDS, SMGR, and VAR con-
verge slower than the others at the beginning. This can be problematic since performance

Table A.1: Comparing the biased/unbiased U-Tree construction methods in terms of the
number of actions per episodes during the test phase (best confidence threshold)

Player KS IGR UKS UIGR
Static 11.23±.2 11.21±.05 11.35±.22 11.23±.04
Offender 14.97±.57 14.55±.15 14.91±.14 14.58±.5
Midfielder 18.41±1.2 18.65±1.73 17.39±.21 17.39±.24
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Table A.2: Comparing the biased/unbiased U-Tree construction methods in terms of the
number of leaves in the learned tree (best confidence threshold)

Player KS IGR UKS UIGR
Static 692±118.9 703±34.6 596±91.8 666±27.6
Offender 1476±403.8 1536±301.5 1331±78.5 1242±23.2
Midfielder 1857±253.3 2263±503.6 1651±140.6 1533±47.7

Table A.3: Comparing the learning methods in terms of the average number of actions per
episode during the test phase (best confidence threshold)
Player SARSA KS IGR SANDS SMGR VAR
Static 10.85±.01 11.23±.2 11.21±.05 11.1±.04 11.12±.03 11.1±.04
Offender 19.63±.06∗ 14.97±.57 14.55±.15 14.39±.09 14.28±.07 14.4±.08
Midfielder 668±.1∗∗ 18.41±1.2 18.65±1.73 16.95±.2 16.84±.06 17.04±.16
* 14.72 after 106 episodes ** 18.92 after 15×106 episodes

Table A.4: Comparing the learning methods in terms of the average number of leaves in
the learned trees. For flat Q-learning with SARSA, the number of states is mentioned (best
confidence threshold)
Player SARSA KS IGR SANDS SMGR VAR
Static 2452 692±118.9 703±34.6 491±7.4 516±9.6 481±7
Offender 120052 1476±403.8 1536±301.5 1282±22.2 1259±26.3 1330±15.9
Midfielder 3001252 1857±253.3 2263±503.6 1313±77.5 1436±78.3 1310±98.5
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Figure A.1: History of the number of actions per episodes during the learning phase against
different player types. Note that for clarity reason, x axis are scaled differently. (best confi-
dence threshold)
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Figure A.2: History of the number of leaves in the trees during the learning phase against
different player types (best confidence threshold)

of our proposed criteria does not increase that much initially. But, it is expected that after
a duration, their performance anticipate the other criteria. This argument is supported by
the magnified part of the top chart of Fig. A.1.

Figure A.2 shows the number of leaves recorded during the learning episodes against
different types of players. The generated trees by our proposed criteria are visibly smaller.
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