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ABSTRACT. We survey the construction of the continuous wavelet trans-
form (CWT) on the two-sphere. Then we discuss the discretization of the
spherical CWT, obtaining various types of discrete frames. Finally we give
some indications on the construction of a CWT on other conic sections.

1. Introduction

Many situations in physics, astronomy and medicine yield data on spherical
manifolds. Also, some data may live on a two-sheeted hyperboloid, in cos-
mology for instance (an open expanding model of the universe). In optics
also, in the catadioptric image processing, where a sensor overlooks a mirror
with the shape of a hyperboloid or a paraboloid. So one needs a suitable
analysis tool for data living on a non-Euclidean manifold. This suggests
to adapt the continuous wavelet transform (CWT) to the three manifolds
above. In addition, all three constitute the so-called conic sections, gener-
ated by intersecting a double cone by a plane. Thus one may also try to
design a unified CWT formalism for all conic sections at once.

In this paper, we shall review the construction of the continuous wavelet
transform (CWT) on the two-sphere, both by the group-theoretical approach
and the geometrical method based on conformal invariance. Next, we briefly
discuss the discretization of this spherical CWT, leading to various types of
frames, first half-continuous ones (only the scale is discretized), then fully
discrete ones. Finally we give some brief indications on the construction of
a CWT on the other conic sections.
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c© 2004 Birkhäuser Boston. All rights reserved
ISSN 1069-5869



2 Jean-Pierre Antoine and Pierre Vandergheynst

2. The CWT on the two-sphere

Let us begin with the two-sphere S2. Fourier analysis on S2 is standard,
but cumbersome, since it amounts to work with expansions in spherical
harmonics. While the latter constitute an orthonormal basis of L2(S2),
they are not localized at all on the sphere, so that Fourier analysis is global.
Actually, there are specific combinations of spherical harmonics which are
well localized, the so-called spherical harmonics kernels [27], but then one
loses the simplicity of an orthonormal basis.

Thus it is not surprising that alternative solutions have been proposed
by several authors. We may quote, for instance, Gabor analysis on the tan-
gent bundle [34]; frequential wavelets, based on spherical harmonics [16]; or
diffusion methods with a heat equation [10]. Discrete wavelets on the sphere
have also been designed, using an S2 multiresolution analysis. For instance,
Haar wavelets on a triangulation of S2 and refined with the lifting scheme
[32]; C1 wavelets constructed by a factorization of the refinement matrices
[35]; or wavelets obtained by radial projection from a polyhedron incribed
in the sphere (typically locally supported spline wavelets on spherical trian-
gulations) [29, 30]. References to the (vast) literature on discrete spherical
wavelets may be found in [29, 35] for earlier work and in [21] for recent work.

However, various problems plague those constructions, such as an inad-
equate notion of dilation, the lack of wavelet localization, the excessive rigid-
ity of the wavelets obtained, the lack of directionality, etc. In this respect,
the continuous wavelet transform (CWT) has many advantages: locality is
controlled by dilation, the wavelets are easily transported around the sphere
by rotations from SO(3), efficient algorithms are available. Holschneider
[19] was the first to build a genuine spherical CWT, but his construction in-
volves several assumptions and lacks a geometrical feeling. In particular, it
contains a parameter that has to be interpreted as a dilation parameter, but
whose geometrical meaning is unclear. A satisfactory solution was obtained
in a series of papers from our groups [1, 2, 3, 9] that yield a rigorous and effi-
cient spherical CWT. A further simplification was obtained later by invoking
conformal arguments [36]. Of course, in practice, the usual two-dimensional
CWT in the plane is discretized and replaced with suitable discrete frames.
Thus, to complete the picture, one needs to design discrete spherical wavelet
frames as well, and this was indeed realized in [9].

This section is devoted to a rapid survey of the works mentioned above.
For 2-D wavelets in general, we refer to our recent monograph [4]. For the
convenience of the reader, we have collected in an appendix some basic
notions of group theory that are used in the text.
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FIGURE 1 Visual meaning of the stereographic dilation on S2.

2.1 The spherical CWT: heuristics

As we have learned from the previous cases, the design of a CWT on a
given manifold X starts by identifying the operations one wants to perform
on the finite energy signals living on X, that is, functions in L2(X, dν),
where ν is a suitable measure on X. Next one realizes these operations by
unitary operators on L2(X, dν) and one looks for a possible group-theoretical
derivation.

In the case of the two-sphere S2, the required transformations are of
two types: (i) motions, which are realized by rotations % ∈ SO(3), and (ii)
dilations of some sort by a scale factor a ∈ R∗+. The problem is how to
define properly the dilation on the sphere S2.

A possible solution is to use a (radial) stereographic dilation on S2,
which is obtained in three steps (Figure 1): (i) given a point A ∈ S2, different
from the South Pole S, project it stereographically to the point B in the plane
tangent to the sphere at the North Pole N; (ii) dilate B radially in the usual
way to B’; and (iii) project back B’ to the sphere, which yields A’. The map
A 7→ A’ is the required spherical dilation around N. In order to dilate around
any other point C, just bring it to N by a rotation % ∈ SO(3), dilate as above,
and go back to C by the inverse rotation %−1.

Our Hilbert space is L2(S2, dµ), where dµ = sin θ dθ dϕ, θ ∈ [0, π] is
the latitude angle, ϕ ∈ [0, 2π) the longitude angle, ω = (θ, ϕ) ∈ S2, and we
use the orthonormal basis of spherical harmonics {Y m

l , l ∈ N, |m| 6 l}.
Then the operations just defined have a natural realization by unitary

operators in L2(S2, dµ):

. rotation R% : (R%f)(ω) = f(%−1ω), % ∈ SO(3), (2.1)

. dilation Da : (Daf)(ω) = λ(a, θ)1/2f(ω1/a), a ∈ R∗+. (2.2)
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In these relations, ωa = (θa, ϕ), θa is defined by tan θa
2 = a tan θ

2 for a > 0
and the normalization factor λ(a, θ)1/2 (variously called cocycle or Radon-
Nikodym derivative) is needed for compensating the noninvariance of the
measure µ under dilation. Explicitly, this factor is given by

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
. (2.3)

Note that the rotation % may be factorized into 3 rotations (Euler angles):
R% = Rz

ϕ R
y
θ R

z
χ, ϕ, χ ∈ [0, 2π), θ ∈ [0, π].

The question now is, can one derive a CWT from these ingredients, as
for the 2-D plane CWT? Is this transformation unique?

2.2 The group-theoretical method

According to the general scheme [4], a possible way of answering the ques-
tion is to use the general coherent state formalism relying on square inte-
grable representations of a suitable transformation group. Thus we start
from the affine transformations on S2, namely, motions (here, rotations)
and dilations. But a problem arises immediately. On the one hand, motions
% ∈ SO(3) and dilations by a ∈ R+

∗ do not commute. On the other hand,
it is impossible to build a semidirect product of SO(3) and R+

∗ , since SO(3)
does not have any outer automorphism, so that the only extension of SO(3)
by R+

∗ is their direct product. However, this contradiction may be evaded if
one embeds the two factors into the Lorentz group SOo(3, 1), by the Iwasawa
decomposition [8, 18]:

SOo(3, 1) = SO(3) ·A ·N, (2.4)
where SO(3) is the maximal compact subgroup of SOo(3, 1), A ' SOo(1, 1) '
R ' R+

∗ (boosts in the z-direction) and N ' C. This procedure is justified
by the fact that the Lorentz group SOo(3, 1) is the conformal group both of
the sphere S2 and of the tangent plane R2.

Next we have to compute the action of the Lorentz group on the sphere.
The stability subgroup of the North Pole is P = SOz(2) · A · N . Thus
SOo(3, 1)/P ' SO(3)/SO(2) ' S2, so that SOo(3, 1) acts transitively on
S2. Then an explicit computation with help of the Iwasawa decomposition
(2.4) shows that the pure dilation by a, realized as a Lorentz boost along
the z-axis, coincides with the stereographic dilation (2.2).

Going over to the Hilbert space, we find [33] that the Lorentz group
SOo(3, 1) has a unitary irreducible representation (UIR) in L2(S2, dµ):

[U(g)f ] (ω) = λ(g, ω)1/2 f
(
g−1ω

)
, for g ∈ SOo(3, 1), f ∈ L2(S2, dµ), (2.5)

where λ(g, ω) ≡ λ(a, θ) is the Radon-Nikodym derivative (2.3).
Thus the parameter space of spherical wavelets is the homogeneous

space X = SOo(3, 1)/N ' SO(3) ·R+
∗ , which is not a subgroup of SOo(3, 1).
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Therefore, in order to apply the general formalism, we must introduce a sec-
tion σ : X → SOo(3, 1) and consider the reduced representation U(σ(%, a)).
Choosing the natural (Iwasawa) section σ(%, a) = % a, % ∈ SO(3), a ∈ A, we
obtain

U(σ(%, a)) = U(% a) = U(%)U(a) = R%Da, (2.6)

exactly as before, in (2.1)-(2.2).
The following three propositions show that the representation (2.6) has

all the properties that are required to generate a useful CWT. First of all, it
is square integrable on the quotient manifoldX = SOo(3, 1)/N ' SO(3)·R+

∗ .
For simplicity, we shall identify these two isomorphic manifolds.

Proposition 2.1 The UIR (2.5) is square integrable on X, that is, there
exist nonzero (admissible) vectors ψ ∈ L2(S2, dµ) such that∫ ∞

0

da

a3

∫
SO(3)

d% |〈U(σ(%, a))ψ|φ〉|2 := 〈φ|Aψφ〉 <∞, for all φ ∈ L2(S2, dµ) .

(2.7)
Here d% is the left invariant (Haar) measure on SO(3).

The resolution operator (also called frame operator) Aψ is diagonal in
Fourier space (i.e., it is a Fourier multiplier):

Âψf(l,m) = Gψ(l)f̂(l,m), (2.8)

where

Gψ(l) =
8π2

2l + 1

∑
|m|6l

∫ ∞

0

da

a3
|ψ̂a(l,m)|2, for all l ∈ N, (2.9)

and ψ̂a(l,m) = 〈Y m
l |ψa〉 is a Fourier coefficient of ψa = Daψ.

Next, we have an exact admissibility condition on the wavelets (this
condition was also derived by Holschneider [19] in a somewhat ad hoc way).

Proposition 2.2 An admissible wavelet is a function ψ ∈ L2(S2, dµ) for
which there exists a positive constant c <∞ such that

Gψ(l) 6 c, for all l ∈ N. (2.10)

Equivalently, the function ψ ∈ L2(S2, dµ) is an admissible wavelet if and
only if the resolution operator Aψ is bounded and invertible.

As in the plane case [4], there is also a weaker admissibility condition on ψ:∫
S2

dµ(ω)
ψ(θ, ϕ)
1 + cos θ

= 0. (2.11)
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Here too, this condition is only necessary in general, but it becomes sufficient
under mild regularity conditions on ψ. This is clearly similar to the “zero
mean” condition of wavelets on the line or the plane. As in the flat case,
it implies that the spherical CWT acts as a local filter, in the sense that it
selects the components of a signal that are similar to ψ, which is assumed
to be well localized.

Finally, our spherical wavelets generate continuous frames. Indeed:

Proposition 2.3 For any admissible wavelet ψ such that
∫ 2π
0 dϕ ψ(θ, ϕ) 6≡

0, the family {ψa,% := R%Daψ : a > 0, % ∈ SO(3)} is a continuous frame,
that is, there exist two constants m > 0 and M <∞ such that

m ‖φ‖2 6
∫ ∞

0

da

a3

∫
SO(3)

d% |〈ψa,%|φ〉|2 6 M ‖φ‖2, for all φ ∈ L2(S2, dµ),

(2.12)
or, equivalently, there exist two positive constants d > 0 and c < ∞ such
that

d 6 Gψ(l) 6 c, for all l ∈ N

(in other words, the operators Aψ and A−1
ψ are both bounded).

Note that the condition
∫ 2π
0 dϕ ψ(θ, ϕ) 6≡ 0 is automatically satisfied for any

nonzero axisymmetric (zonal) wavelet. Also the frame so obtained is most
probably not tight (we don’t have a definite result).

A simple example of admissible spherical wavelet is the Difference of
Gaussians spherical wavelet (SDOG), obtained by lifting onto the sphere
the usual plane DOG wavelet (Figure 2). More precisely, for φ(θ, ϕ) =
exp(− tan2( θ2)), the SDOG wavelet is defined as

ψ
(α)
G (θ, ϕ) = φ(θ, ϕ)− 1

α [Dαφ](θ, ϕ), for α > 0. (2.13)

Using the previous results, we may now introduce the spherical CWT.

Definition 2.4 Given the admissible wavelet ψ, the spherical CWT of a
function f ∈ L2(S2, dµ) with respect to ψ is defined as

Wf (%, a) := 〈ψa,%|f〉 =
∫
S2

dµ(ω) [R%Daψ](ω) f(ω) = (ψa ? f)(%). (2.14)

In the last equality, ? denotes a spherical correlation.

According to the general coherent state formalism, there is a recon-
struction formula. For any f ∈ L2(S2, dµ) and ψ an admissible wavelet such
that

∫ 2π
0 dϕ ψ(θ, ϕ) 6≡ 0, one has

f(ω) =
∫ ∞

0

da

a3

∫
SO(3)

d% Wf (%, a) [A−1
ψ R%Daψ](ω). (2.15)
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(a) (b) (c)

FIGURE 2 The spherical wavelet ψ
(α)
G wavelet, for α = 1.25: (a) Original (a = 0.125);

(b) Rotated; (c) Rotated and scaled (a = 0.0625).

Correspondingly, instead of the familiar isometry property, one gets a Plan-
cherel relation:

‖f‖2 =
∫ ∞

0

da

a3

∫
SO(3)

d% Wf (%, a) W̃f (%, a), (2.16)

where
W̃f (%, a) := 〈ψ̃a,%|f〉 = 〈A−1

ψ R%Daψ|f〉. (2.17)

The new fact here is the occurrence of the inverse resolution operator A−1
ψ

in these formulas. This results from the square integrability of the represen-
tation (2.5) over the quotient space X, instead of the group itself.

Note that all the formulas simplify if the wavelet is axisymmetric. In
particular, the third Euler angle χ drops out in R%, so that motions are now
indexed by points ω ∈ S2. Hence we may write R[ω] instead of R%. The
corresponding wavelet family is thus {ψa,ω := R[ω]Daψ : a > 0, ω ∈ S2},
and it is a frame under the same condition as in Proposition 2.3. Otherwise
there is no essential modification.

In order to illustrate the capabilities of our spherical CWT, we present
first, in Figure 3, an academic example, namely, the transform of the char-
acteristic function of a triangle with apex at the North Pole, 0◦ 6 θ 6
50◦, 0◦ 6 ϕ 6 90◦, obtained with the spherical DOG wavelet ψ(α)

G given in
(2.13), for α = 1.25. The transform is shown at three different, gradually
smaller, scales, a = 0.2, 0.1 and 0.035. As expected, it vanishes inside the
triangle, and presents a “wall” along the contour, with sharp peaks at each
vertex, and the North Pole does not play any particular role. This example
confirms that the spherical CWT behaves exactly as its plane counterpart.

Next we present, in Figure 4, a real life example, namely, the analysis
of an image of the Milky Way, based on data from the Hipparcos and Tycho
Star Catalogues.
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(a) (b)

(c) (d)

FIGURE 3 Spherical wavelet transform of the characteristic function of a triangle, ob-
tained with the spherical DOG wavelet ψ

(α)
G , for α = 1.25. (a) Original image. The

transform is shown at three gradually smaller scales, (b) a = 0.2; (c) a = 0.1; and (d)
a = 0.035.

2.3 The Euclidean limit

The geometry of the sphere suggests that, when the radius R increases to
infinity, the CWT on S2 should tend locally to the CWT on the tangent
plane at the North Pole. This condition, imposed for consistency reasons
by Holschneider [19], may actually be derived in the group-theoretical ap-
proach, using the technique of group contraction, with the sphere radius as
parameter, R→∞.

The limit R → ∞ must be taken at several successive stages. The
result of the analysis is the following.
(1) For the groups

SOo(3, 1) = SO(3) · R+
∗ ·N −→ R2 o SIM(2)

Thus the parameter space SO(3)·R+
∗ , which is not a group, becomes in the

limit the group SIM(2), that is, precisely the group underlying the 2-D plane
CWT.
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(a) (b)

(c) (d)

FIGURE 4 Spherical wavelet transform of an image of the Milky Way. (a) Original image.
The transform is shown at three successive scales, (b) a = 0.08; (c) a = 0.04; (d) a = 0.02.

(2) For the group actions
Let us replace the sphere S2 by the sphere S2

R of radius R. Then:

action of σ(X) ⊂ SOo(3, 1) on S2
R −→ action of SIM(2) on R2.

(3) For the representations
Define a family of representations UR on L2(S2

R, dµR(ω)), where dµR(ω) =
R2dµ(ω), by

UR(%, a) := U(σ(%, aR−1)),

where U is the representation of SOo(1, 3) given in (2.5) and (2.6). Then
UR → U as R→∞, as a strong limit on a dense set [11, 12].
(4) For the CWT on S2

Let ψ(~x) ∈ L2(R2, d2~x) and ψR = Π−1
R ψ, where ΠR : L2(S2

R, dµR(ω)) →
L2(R2, d2~x) is the unitary map induced by the stereographic projection (see
(2.18) below). Then

GψR
(l) 6 c ( for all l ∈ N) R→∞−→ cψ ∼

∫
R2

|ψ̂(~k)|2 d
2~k

|~k|2
<∞ .

Thus admissible vectors on S2 correspond to admissible vectors on R2, i.e.,
the Euclidean limit holds. In summary, for ψ = limR→∞ΠRψR :
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ψR admissible on S2
R =⇒

∫
S2

R

dµR(ω)
ψR(ω)

1 + cos θ
= 0

⇓ ⇓

ψ admissible on R2 =⇒
∫

R2

d2~x ψ(~x) = 0 .

To give an example, take the Difference of Gaussians wavelet. WhenR→∞,
the SDOG wavelet on S2

R tends to the usual DOG wavelet on R2.

2.4 The geometrical or conformal method

The group-theoretical method discussed so far yields an asymptotic connec-
tion with the plane CWT, via the Euclidean limit R → ∞. In fact, there
is also a direct connection (unitary map) through the inverse stereographic
projection and it is uniquely specified by geometrical considerations, as we
show now. The result is that one obtains uniquely the spherical CWT from
the plane (Euclidean) one, simply by lifting everything from the tangent
plane to the sphere by inverse stereographic projection, the wavelets, the
admissibility conditions, the directionality or steerability properties [36].
(1) Uniqueness of the stereographic projection

Let p : S2 \ {S} → R2 be a radial diffeomorphism from the 2-sphere to
the tangent plane at the North Pole:

p(θ, ϕ) = (r(θ), ϕ) with inverse p−1(r, ϕ) = (θ(r), ϕ).

Assume in addition that p is a conformal map, i.e., it preserves angles. Then
r(θ) = 2 tan θ

2 , i.e., p is the stereographic projection.
(2) Uniqueness of the stereographic dilation

Let Da be a radial dilation on the sphere S2:

Da(θ, ϕ) = (θa(θ), ϕ).

Assume Da is a conformal diffeomorphism. Then one has uniquely:

tan
θa
2

= a tan
θ

2
,

i.e., Da is the stereographic dilation (2.2).
Thus one obtains an equivalence between the two wavelet formalisms.

Let Π : L2(S2, dµ) → L2(R2, d2~x) be the unitary map induced by the stereo-
graphic projection (note that Π = ΠR for R = 1, as given in Section 2.3):

[ΠF ](~x) =
1

1 + (r/2)2
F (p−1(~x)), F ∈ L2(S2, dµ), (2.18)



Wavelets on the Two-Sphere and other Conic Sections 11

(a) (b)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

X
Y

Z

(c) (d)

FIGURE 5 The spherical Morlet wavelet is shown at two scales, (a) a = 0.3 and (b)
a = 0.03. Then displaced: (c) a = 0.03, centered at (π/3, π/3); and (d) The same, rotated
by π/2.

with inverse

[Π−1f ](θ, ϕ) =
2

1 + cos θ
f(p(θ, ϕ)), f ∈ L2(R2, d2~x). (2.19)

Then every admissible Euclidean wavelet ψ ∈ L2(R2, d2~x) yields an admissi-
ble spherical wavelet Π−1ψ ∈ L2(S2, dµ). In particular, if ψ is a directional
wavelet, so is Π−1ψ.

As an example, the (real part) of the spherical Morlet wavelet is shown
in various positions in Figure 5. In order to show its directional selectivity,
we present in Figure 6 the analysis of the triangle from Figure 3. The
wavelet is oriented in two ways, χ = 0◦ and χ = 90◦ (χ is the third Euler
angle (see Section 2.1), which describes a rotation of the wavelet around its
center). As expected, this wavelet filters out the directions perpendicular to
its orientation, keeping the great circles ϕ = const. in the first case and the
longitude circles θ = const. in the second case.

2.5 Wavelet frames on the 2-sphere

In order to discretize our spherical CWT, we have to generalize the notion
of frame. The classical notion [4] is that a countable family of vectors {φn :
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(a) (b)

FIGURE 6 Analysis of a triangle with the spherical Morlet wavelet, in two different
orientations: (a) χ = 0◦; (b) χ = 90◦, showing the directional selectivity of the wavelet.

n ∈ Γ} in a (separable) Hilbert space H is a (discrete) frame if there exist
two positive constants m > 0 and M <∞ such that

m ‖f‖2 6
∑
n∈Γ

|〈φn|f〉|2 6 M ‖f‖2, for all f ∈ H. (2.20)

The index set Γ may be finite or infinite. We introduce two variants to this
classical notion. The family {φn} is a controlled frame in H if there is a
positive bounded operator C, with bounded inverse, such that

m ‖f‖2 6
∑
n∈Γ

〈ψn|f〉 〈f |Cφn〉 6 M ‖f‖2, for all f ∈ H. (2.21)

The family {φn} is a weighted frame in H if there are positive weights wn > 0
such that

m ‖f‖2 6
∑
n∈Γ

wn |〈φn|f〉|2 6 M ‖f‖2, for all f ∈ H. (2.22)

These two notions are in fact mathematically equivalent to the classical
notion of frame [6], namely, a family of vectors {φn} is a controlled frame,
resp. a weighted frame, if and only if it is a frame in the standard sense (with
different frame bounds, of course). However, this is not true numerically,
the convergence properties of the respective frame expansions may be quite
different [4, 6]. And, indeed, the new notions are used precisely for improving
the convergence of the reconstruction process.

2.5.1 Half-continuous spherical frames

In a first step, we will build a half-continuous spherical frame, by discretizing
the scale variable only, while keeping continuous the position variable on
the sphere (this is exactly the approach adopted by Duval-Destin et al. for
designing the so-called continuous wavelet packets [14]).

Let us choose the half-continuous grid Λ = {(ω, aj) : ω ∈ S2, j ∈
Z, aj > aj+1}, where A = {aj : j ∈ Z} is an arbitrary decreasing sequence
of scales, and weights νj that mimic the natural (Haar) measure da/a3.
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If we start from the standard weighted frame condition given in (2.22),
we do obtain a weighted frame, but there is no way of getting a tight one.
The reason is obvious, the resolution operator Aψ has not been taken into
account. We start instead from the Plancherel formula (2.16) and write a
modified frame condition

m ‖f‖2 6
∑
j∈Z

νj

∫
S2

dµ(ω)Wf (ω, aj) W̃f (ω, aj) 6 M ‖f‖2. (2.23)

To give an example, choose the axisymmetric SDOG wavelet (2.13) ψ(α)
G (α =

1.25). Then, proceeding as before, with the same weights νj , one obtains
that the ratio M/m tends to 1 as the number of voices increases. Thus a
tight frame might be obtained by this method. Indeed:

Proposition 2.5 Let A = {aj : j ∈ Z} be a decreasing sequence of scales. If
ψ is an axisymmetric wavelet for which there exist two constants m,M ∈ R∗+
such that

m 6 gψ(l) 6 M, for all l ∈ N, (2.24)

where
gψ(l) =

4π
2l + 1

∑
j∈Z

νj |ψ̂aj (l, 0)|2,

then any function f ∈ L2(S2, dµ) may be reconstructed from the correspond-
ing family of spherical wavelets, as

f(ω) =
∑
j∈Z

νj

∫
S2

dµ(ω′)Wf (ω′, aj)
[
`−1
ψ R[ω′]Dajψ

]
(ω′), (2.25)

where `ψ is the (discretized) resolution operator defined by `̂−1
ψ h(l,m) =

gψ(l)−1 h(l,m).

Note that the resolution operator `ψ is simply the discretized version of the
continuous resolution operator Aψ. Clearly (2.25) may be interpreted as a
(weighted) tight frame controlled by the operator `−1

ψ .

2.5.2 Discrete spherical frames

Next, we design a fully discrete spherical frame, by discretizing all the vari-
ables. The scale variable is discretized as before: a ∈ A = {aj ∈ R∗+ : aj >
aj+1, j ∈ Z}. As for the positions, we choose an equiangular grid Gj indexed
by the scale level:

Gj = {ωjpq = (θjp, ϕjq) ∈ S2 : θjp = (2p+1)π
4Bj

, ϕjq = qπ
Bj
}, (2.26)

for p, q ∈ Nj := {n ∈ N : n < 2Bj} and some range of bandwidths B =
{Bj ∈ 2N : j ∈ Z}.
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Note that, in (2.26), the values {θjp} constitute a pseudo-spectral grid,
with nodes on the zeros of a Chebyshev polynomial of degree 2Bj . Their
virtue is the existence of an exact quadrature rule [13], namely,∫

S2

dµ(ω)f(ω) =
∑

p,q∈Nj

wjp f(ωjpq), (2.27)

for certain (explicit) weights wjp > 0 and for every band-limited function
f ∈ L2(S2, dµ) of bandwidth Bj (i.e., f̂(l,m) = 0 for all l > Bj). Thus the
complete discretization grid is Λ(A,B) = {(aj , ωjpq) : j ∈ Z, p, q ∈ Nj}.

As before, we are looking for a controlled frame. The result [9] is that
one can indeed get a discrete weighted, nontight, frame controlled by the
operator A−1

ψ , namely, {ψjpq = R[ωjpq ]Dajψ : j ∈ Z, p, q ∈ Nj}:

m ‖f‖2 6
∑
j∈Z

∑
p,q∈Nj

νjwjpWf (ωjpq, aj) W̃f (ωjpq, aj) 6 M ‖f‖2. (2.28)

A sufficient condition for (2.28) may be given, but it is very complicated,
involving the determinant of an ∞-dimensional matrix, unless f is band-
limited. Here again, the direct approach using a one voice discretization of
the scale variable fails to yield a tight frame.

As usual, when the frame bounds are close enough, approximate re-
construction formulas may be used. The convergence of the process may
still be improved by combining the reconstruction with a conjugate gradi-
ent algorithm. A spectacular example may be found in [9]. The signal is
a World map, reconstructed with a half-continuous spherical frame and the
SDOG wavelet, with a relative error of 1.1%. Adding the conjugate gradient
algorithm with 3 iterations only, the relative error drops to 2.10−3 %.

2.6 Applications of the spherical CWT

Up to now, the spherical CWT has been applied essentially in cosmology,
notably the analysis of the fluctuations of the Cosmic Background radiation
(CMB). Several astrophysics groups are by now using this approach, e.g.
in Santander, Cambridge, EPFL, or in China (see for instance [22]). Two
reviews of these applications, with references to previous work, may be found
in this special volume, namely [37] and [24].

In addition, we present here another application, which exploits ex-
plicitly our spherical frames, namely, a local enhancement of Jupiter’s Red
Spot. The method runs as follows. Before reconstruction, the coefficients at
the finest scale Wf (ω, a7) are multiplied by a Gaussian mask

M(ω) = 1 + na′
(
R[ω′]Da′G

)
(ω),
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(a) (b)

(c) (d)

FIGURE 7 Local enhancement of Jupiter’s Red Spot. (a) Original image; (b) Local mask;
(c) Zoom over the Red Spot; (d) Zoom over the Red Spot with sharper details.

localized on the center ω′ of the Spot. Here G is a Gaussian (this is only for
convenience), a′ a dilation factor such that the dilated Gaussian covers the
entire Spot and na′ a normalization factor ensuring that ‖M‖∞ = 2. This
mask increases the amplitudes of the fine scale coefficients by a factor up
to 2 in the vicinity of the Red Spot, but the rest of the coefficients are not
modified (the mask is thus a frame multiplier [6]). The reconstruction is
made with a half-continuous spherical frame with a SDOG wavelet and an
equiangular grid of size 512×512, which gives a good discretization for |j| 6
7. The tools are the SpharmonicKit package [28] and our own MATLAB c©

YAWtb toolbox [38]. The result is shown in Figure 7. Clearly, such a
technique is impossible to implement with a purely frequential spherical
decomposition; one really needs a spherical wavelet frame.

2.7 Recent developments

New techniques for spherical wavelets continue to emerge, mostly motivated
by the astrophysical applications described above. For instance, an alterna-
tive approach to the spherical CWT has been proposed very recently [23, 31].
The idea is to avoid the stereographic projection and to define dilations by a
scaling operation in spherical harmonic space (that is, effectively, in Fourier
space), an idea that goes back to Holschneider [19] and Freeden [15]. These
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new wavelets have been applied successfully to the detection of point sources,
but the full potential of the method has not yet been analyzed.

On the other hand, a new class of discrete spherical wavelets, called
needlets, has been introduced [7, 25]. These functions are derived by com-
bining three ideas, namely, a Littlewood-Paley decomposition, a suitable
distribution of (finitely many) points on the sphere, called centers, and an
exact quadrature rule. The upshot is a new class of tight frames on the
sphere. The frame functions, which are actually special spherical harmonics
kernels, are both compactly supported in the frequency domain (i.e., band-
limited in l) and almost exponentially localized around each center. When
combined with a new statistical method, they offer a powerful tool for an-
alyzing CMB (WMAP) data, in particular analyzing the cross-correlation
between the latter and galaxy counts from sky surveys [26].

3. Outcome: The CWT on other conic sections

According to Apollonius, the conic sections are the sphere S2, the paraboloid
P 2 and the two-sheeted hyperboloid H2. All three are obtained as sections
by a plane of a double null-cone

C3
0 = {(x0, x1, x2, x3) ∈ R4 : x2

0 − x2
1 − x2

2 − x2
3 = 0}. (3.1)

As we have seen in the previous section, there is a completely satisfactory
CWT on the two-sphere. What about the other cases? Interesting results
have been obtained, but much work still lies ahead. We will report in detail
on these nonspherical cases in a further publication [5] and give here only a
glimpse.

(1) The two-sheeted hyperboloid

H2 is the dual manifold of the sphere S2, with constant negative cur-
vature and a large isometry group, namely SOo(2, 1). As in the case of the
sphere, the latter yields motions on the manifold, but here dilations are
problematic. The hyperbolic analogue of the stereographic dilation is inad-
equate, since large stereographic dilations map the upper sheet of H2 onto
the lower sheet. Several other methods are available, however. In addition, a
reconstruction formula may be derived, with help of an appropriate integral
transform, the Fourier-Helgason transform, that defines harmonic analysis
on H2, including convolution theorems. Thus there exists a satisfactory
CWT on H2, even several, but no results are known concerning frames.

(2) The paraboloid

This is a limit case between the sphere S2 and the two-sheeted hyper-
boloid H2. Actually the paraboloid P 2 does not have a constant curvature,
and there is no large isometry group, so that the general method does not
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work. Therefore, designing a CWT on P 2, by a limiting procedure or oth-
erwise, is bound to be a hard process. One can design a certain integral
transform, but it does not involve proper dilations, hence it is not really a
wavelet transform.

(3) A unified approach to all conic sections

All conic sections may be obtained simply by varying the tilt angle α
of the plane intersecting the null-cone (3.1), i.e., writing the equation of the
plane as x0 = 1 + tanα(x3 − 2), 0 6 α 6 π. Thus it is tempting to try
to design a unified CWT. Several methods may be used, mostly relying on
group theory. The approach looks promising, but still incomplete.

The conclusion of this review is that wavelets on non-Euclidean man-
ifolds are an active field of research, that keeps finding new and exciting
applications, mostly, but not only, in astrophysics. Progress is also made
on the mathematical side, but much work remains to be done, especially on
the nonspherical cases.

Appendix: Some key facts from group theory

We collect here some key facts from group theory which are used in the text.
Further information may be found in standard textbooks, such as [8] or [17].

All the groups mentioned in the text are matrix groups, namely the
orthogonal groups SO(2), SO(3) and the pseudo-orthogonal ones SOo(1, 3),
SOo(1, 2). These are in fact Lie groups, that is, groups G which are at the
same time smooth manifolds such that the map G×G→ G, (g, h) 7→ g h−1

is (infinitely often) differentiable.
If G is a Lie group and H a closed subgroup of G, then the quotient

G/H, that is, the set of left cosets gH, is a smooth manifold. For instance,
SO(3)/SO(2) ' S2, the two-sphere, and the two are isomorphic smooth
manifolds. Given a quotient X = G/H, a section is a map σ : X → G such
that the composed map π ◦ σ : X → X is the identity; here π : G → X is
the (canonical) map g 7→ gH.

An isomorphism between two groups G,G′ is a bijection β : G → G′

that preserves the group law: β(g1g2) = β(g1)β(g2), for all g1, g2 ∈ G. An
automorphism of G is an isomorphism β : G→ G. An inner automorphism
is simply the conjugation by an element h ∈ G: g 7→ hgh−1, for all g ∈ G.
An outer automorphism of G is an automorphism which is not inner.

Let H,K be two groups for which there exists a map (in fact, a ho-
momorphism) α from K to the automorphisms of H. Then the semidirect
product of H (noted additively) by K (noted multiplicatively), with respect
to the map α, is the group G = H o K of all pairs (h, k) ∈ H × K, with
composition law

(h, k)(h′, k′) = (h+ α(k)(h′), kk′), for all (h, k), (h′, k′) ∈ H ×K.
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A typical example is the Euclidean group E(3) = R3o SO(3), with the
composition law (x,R)(x′, R′) = (x + Rx′, RR′), for all (x,R), (x′, R′) ∈
R3×SO(3). Thus, if the group K has no (outer) automorphism (i.e., α(k) ≡
identity), the only possibility for building a larger group out of H and K
is to take their direct product — but then the two factors must commute:
hk ≡ (h, eK)(eH , k) = (h, k) = (eH , k)(h, eK) ≡ kh (eH , eK are the units).

The Iwasawa decomposition: every connected Lie group G may be
decomposed uniquely into a product of three subgroups, G = KAN , where
K is the maximal compact subgroup, A is abelian and N is nilpotent [8, 18].

If G is a group, with unit e, and X is a set, an action of G on X is
a map (g, x) ∈ G×X 7→ g[x] ∈ X such that (i) g1g2[x] = g1[g2[x]], for all
g1, g2 ∈ G, for all x ∈ X, and (ii) e[x] = x, e ∈ G, for all x ∈ X. The action
of G on X is transitive if, for every pair x, x′ ∈ X, there exists an element
g ∈ G such that x = g[x′]. The canonical example is the action of a group
G on a quotient G/H, g[g′H] = (gg′)H, which is then called a homogeneous
space. For instance, the Lorentz group SOo(1, 3) acts transitively on the
two-sphere S2.

Every locally compact group, in particular, every Lie group, possesses
a unique (up to normalization) left invariant measure µ (called a Haar mea-
sure), that is, a measure µ on G which satisfies the following relation for
any µ-integrable function f :∫

G
f(g0g)dµ(g) =

∫
G
f(g)dµ(g), for all g0 ∈ G,

or, equivalently,
dµ(g−1

0 g) = dµ(g).

A unique right invariant measure also exists and it is equivalent to the left
invariant one. The Haar measures allow a full theory of integration on a
locally compact group.

A unitary representation of a group G in a Hilbert space H is a homo-
morphism U of G into the unitary operators on H:

U(g1g2) = U(g1)U(g2), for all g1, g2 ∈ G.

It follows that U(g−1) = U(g)−1 = U(g)∗ and U(e) = I. The representation
is irreducible if the only closed subspaces of H which are invariant under
U are the trivial subspace {0} and H itself. The unitary irreducible repre-
sentation U is square integrable if it possesses a nonzero (admissible) vector
η ∈ H such that ∫

G
|〈U(g)η|η〉|2dµ(g) <∞,

where µ is the left Haar measure on G, or, equivalently,∫
G
|〈U(g)η|φ〉|2dµ(g) <∞, for all φ ∈ H.
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The notion of square integrability of a representation may be extended to
a quotient, as follows (compare (2.7)). Let X = G/H be a homogeneous
space of G, with left invariant measure ν, and σ : X → G a suitable section.
Then the unitary irreducible representation U is square integrable on X for
the section σ if there exist a nonzero (admissible) vector η ∈ H such that∫

X
|〈U(σ(g))η|φ〉|2dν(x) <∞, for all φ ∈ H (x ≡ gH).
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généralisés, Bull. Soc. Math. France 91, 289–433.

[34] Torrésani, B. (2005). Position-frequency analysis for signals defined on spheres, Sig-
nal Proc. 43, 341–346.

[35] Weinreich, I. (2001). A construction of C1-wavelets on the two-dimensional sphere,
Applied Comput. Harmon. Anal. 10, 1–26.

[36] Wiaux, Y., Jacques, L., and Vandergheynst P. (2005). Correspondence principle
between spherical and Euclidean wavelets, Astrophys. J. 632, 15–28.

[37] Wiaux, Y., McEwen, J.D., and Vielva P. (2007). Complex data processing: Fast
wavelet analysis on the sphere, J. Fourier Anal. Appl. 13, this volume.

[38] http://www.fyma.ucl.ac.be/projects/yawtb.

Received ...., 2007
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