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Abstract— Real-world phenomena involve complex interactions
between multiple signal modalities. As a consequence, hums
are used to integrate at each instant perceptions from all thir
senses in order to enrich their understanding of the surrouning
world. This paradigm can be also extremely useful in many sigal
processing and computer vision problems involving mutualf
related signals. The simultaneous processing of multi-mad data
can in fact reveal information that is otherwise hidden when
considering the signals independently. However, in natudamulti-
modal signals, the statistical dependencies between modals
are in general not obvious. Learning fundamental multi-modal
patterns could offer a deep insight into the structure of sub
signals. Typically, such recurrent patterns are shift invaiant,
thus the learning should try to find the best matching filters.In
this paper we present an algorithm for iteratively learning multi-
modal generating functions that can be shifted at all positins
in the signal. The learning is defined in such a way that it can
be accomplished by iteratively solving a generalized eiggactor
problem, which makes the algorithm fast, flexible and free of
user-defined parameters. The proposed algorithm is appliedo
audiovisual sequences and we show that it is able to discover
underlying structures in the data.

I. INTRODUCTION

terest in the last years. Multi-modal signals are sets of h
erogeneous signals originating from the same phenome
but captured using different sensors. Each modality tylygica

brings some information about the others and their sima#tand

ous processing can uncover relationships that are otheomis
available when considering the signals separately. Muotdal
signal processing is widely employed in medical imagin
where the spatial correlation between different modalifeg.

magnetic resonance and computed tomography) is exploi{?eeg
for segmentation [1] or registration [2], [3]. In this work

we analyze a broad class of multi-modal signals exhibiti
correlations along time. In many different research fiettis,

temporal correlation between multi-modal data is studied
in neuroscience, electroencephalogram (EEG) and furajtioﬁ

magnetic resonance imaging (fMRI) data are jointly analyz
to study brain activation patterns [4]. In environmenténsce,

connections between local and global climatic phenomeB

are discovered by correlating different spatio-temporalm

surements [5]. Many multimedia signal processing problerﬁT%
involve the simultaneous analysis of audio and video daﬁg|
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e.g. speech-speaker recognition [6], [7], talking headation
and animation [8] or sound source localization [9]-[14} In
terestingly, humans as well are used to integrate acoustic a
visual inputs [15]-[17] or tactile and visual stimuli [1§],9]

to enhance their perception of the world.

The temporal correlation across modalities is exploited by
seeking for patterns showing a certain degree of synchrony.
Research efforts typically focus on the statistical madglbf
the dependencies between modalities. In [4], EEG and fMRI
structures having maximal temporal covariance are exdact
In [9] the correlation between audio and video is assessed
measuring the correlation coefficient between acousticggne
and the evolution of single pixel values. In [10], audio-
video correlations are discovered using Canonical Cdiogla
Analysis (CCA) for the cepstral representation of the awaatid
the video pixels. Smaragdis and Casey [11] find projections
onto maximally independent audiovisual subspaces penfigrm
Independent Component Analysis simultaneously on audio
and video features that are respectively the magnitudeeof th
audio spectrum and the pixel intensities. In [12] the videme
ponents correlated with the audio are detected by maxiizin

. . _ . . Mutual Information between audio energy and single pixel
Multi-modal signal analysis has received an increased i 9y gle p

Values. In [13] the wavelet components of difference images

%tre correlated with the audio signal applying a modified CCA

qaorithm which is regularized using a sparsity criterion.

While research efforts appear to be concentrated in the
evelopment of multi-modal fusion strategies, it seemg tha
the features employed to represent the different modsilitie
are often basic and barely connected with the physics of

$he observed phenomena (e.g. video sequences are typically

resented using time series of pixel intensities). This ¢
a limitation of existing approaches : multi-modal feasur
having low structural content can be difficult to extract and

r]%anipulate. Moreover, the interpretation of the results lsa

problematic without an accurate modelling of the observed
henomenon. To cope with these limitations, the cross-inoda
orrelation problem can be attacked from a different pofnt o

Q/iew, by focusing on the modelling of the modalities, so that

meaningfukignal structures can be extracted and synchronous
8tterns easily detected.

In this paper we propose an algorithm that allows to learn
ctionaries of basis functions representing recurrenttimu
odal structures. Such patterns are learned using a recur-
sive algorithm that enforces synchrony between the differe
modalities and de-correlation between the dictionary elein

The learned multi-modal functions are translation invatria
I.e. they aregenerating functionslefining a set of structures
eorresponding to all their translations. The proposedrélyn

is applied to real audiovisual sequences and the learnéd-aud
isual dictionaries seem to capture well underlying strces

in the data. The dictionary functions are used to analyze-com



plex multimedia clips, showing the ability to detect meafin salient featured,,, involved in the models of each modality
correlated audio-video structures and to localize the douare not necessarily related to one another. An interesting

source in the video sequence. alternative consists in capturing truly multi-modal esebl
The structure of the paper is the following : Section Il dethe means of an intrinsicallyulti-modal dictionaryD = {¢}
scribes the proposed model for multi-modal signals. Sedtlo made ofmulti-modal atomsp;, = ( ,(:), e ,(f”)), yielding

constitutes the central part of this work, presenting taer@&g a multi-modal sparse signal model

algorithm for multi-modal signals. In Sec. IV experimental

results based on real audiovisual signals are shown. e¢tio s~y (e, Moy . (1)
concludes the paper with a discussion of the achieved sesult kel

and of the possible developments of this research. Here, a common sek of salient multi-modal features forces

at the model levelsome correlation between the different
modalities.

Given the multi-modal dictionar® = {¢,} and the multi-

Multi-modal data are made up d¥/ different modalities modal signals, the inference of the model parametérand
and represented a/-tupless = (s, ..., s(*)) which are {c\™}4.m is not completely trivial : on the one hand, since the
not necessarily homogenous in dimensionality : for examplgictionary is often redundant, the are infinitely many polgsi
audiovisual data consist of an audio sigeéll (¢) and a video representations of any signal; on the other hand, choobiag t
sequences?)(Z,¢) with ¥ € R? the pixel position. Other pest approximation with a given number of atoms is known
multi-modal data such as hyperspectral images or biomedi¢g he an NP-hard problem. Fortunately, several suboptimal
sequences could be made of images, time-series and Vig@rithms such as multichannel Matching Pursuit [21]]]]22

sequences at various re_solutipns. _ _ can provide generally good sparse approximations.
To date, methods dealing with multi-modal fusion problems

basically attempt to build general and complex statistical

models to capture the relationships between the differe®t Synchrony and shift invariance in multi-modal signals
signal modalitiess(™). However, as underlined in the previous
section, the employed features are typically simple andlpar
connected with the physics of the problem. Efficient signgl\f
modelling and representation require the use of methods a
to capture particular characteristics of each signal. dfoee,

Il. MODELLING AND UNDERSTANDING
A. Sparse approximations of multi-modal signals

Very often, the various modalities in a multi-modal signal

ill share synchrony of some sort. By synchrony, we usually
fer to time-synchrony, i.e. events occurring in the same
ime slot. When multi-modal signals share a common time-

. : . . - _dimension, synchrony is a very important feature, usually
the idea is basically that of defining a proper model for Slgnatightly linked to the physics of the problem. As explained

instead of defining a complex statistical fusion model the h . . . . !
: . above, synchrony is of particular importance in audio-aisu
to find correspondences between barely meaningful featurese uences. Sound in the audio time series is usuallv lirked t
Applications of this paradigm to audiovisual signals ca R ' y

be found in [14], [20]. A sound is assumed to be generat occurrence of events in the vidabthe same momenif

through the synchronous motion of important visual element" example_ the sequence contains a character talkingdsoun
like edges. Audio and video signals are thus represenggasynchromze_d with lips movements. Mor_e gen_erally thaugh
in terms of their most salient structures using redunda plti-modal signal could share higher-dimensions, and the

dictionaries of functions, making it possible to define atmu notion of synchrony could refer to spatial co-localization

and visualevents An audio event is the presence of an audilz)Or example in multi-spectral images where localized fezdu

signal with high energy and a visual event is the motion of gppearin several fre_zqugn_cy bands_ atthe same ;patlaImDS|t|
Eor the sake of simplicity, we will focus our discussion on

important image edge. The synchrony between these event . .
reflects the presence of a common source, which is eﬁeytivgrne-synchrony and we now formalize this concept further.
localized. The key idea of this approach is to use high-le
features to represent signals, which are introduced by mgaki
use of codebooks of functions. The audio signal is approxi-

~ (1 (1)
;nated as a sparse sustt) N(l)z’ﬂeh %k Ok of.Gabor aloms o a multi-modal function whose modalities™, m =
rom a Gabor dictionary{¢, '}, while the video sequence| 2/ share a common temporal dimensione R. A
is expressed as a sparse combinatiéh ~ Y, ;. ¢ ¢f” modality is temporally localized in the interval c R if
of edge-like functions{gb,(f)}k that are tracked through time.¢("™ (Z,,,t) = 0, V¢ ¢ A. We will say that the modalities are
Such audio and video representations are still quite genesynchronous whenever alf™ are localized in the same time
and can be employed to represent any audiovisual sequenitgerval A.

One of the main advantage of dictionary-based techniquesMost natural signals exhibit characteristics that are time
is the freedom in designing the dictionary, which can bi@variant, meaning that they can occur at any instant in time
efficiently tailored to closely match signal structures.r Forhink once again of an audio track : any particular frequency
multi-modal data, distinct dictionarieB(™ = {fbém)}k for pattern can be repeated at arbitrary time instants. In dader
each modality do not necessarily reflect well the interplaaccount for this natural shift-invariance, we need to be abl
between events in the different modalities, since the skts ahift patterns on modalities. Let be a multi-modal function

o= (0@, 0" (@ 1)), T € RO



localized in an interval centered an= 0. The operatofl,, signals typically exhibit statistical properties invarido trans-
shifts ¢ to timep € R in a straightforward way : lation, and the use of generating functions allows to gdeera
huge dictionaries while using only few parameters. In order
Tpp = ((b(l)(fht—p),---7¢(M)(57M,t—19)) . (2) to make the computation feasible, the proposed algorithm
, . learns the generating functions by alternatively locatizand
This temporal translation is homogeneous across channeéls ﬂaarning interesting signal structures on the differegnal
thus preserves synchrony. With these definitions, it beso mponents. As detailed in the following, this allows maeo

easly_ to gxrress a S|gna;<l: as a superposmon Of_ Sync_hronﬂy%nforce synchrony between modal structures in an easy and
multi-modal patternsp,, k € I occurring at various time jnyitive fashion. Generating functions are learmned sssively
Instantsty, ..., t - and the procedure can be stopped when a sufficient number
s~ ZC T of atoms have been found. A constraint that imposes low
~ k tk(blm . . . .
correlation between the learned functions is also consijer

o o such that no function is picked several times.
where the sum and weighting coefficients are understood aSrhe goal of the learning algorithm is to build a sgt—

in (1). We often construct a large subset of a dictionary b, K . . .
apéljing such Synchronoustransgllationstoasingle mudtiiah : 9itiemy OF multl-m(_)d_al generating functiong;. such _that
a very redundant dictionar§p adapted to a class of signals

function. t!n trf'at ctgse, \éve will ll(l)f_teg_ re{er_tto .tt?]'s functios 4can be created by applying all possible translations to the
aglgenera 'Tg u!qc |qran .W(.e wiilin _'Cae(;#_v' ng. I enerating functions ofj. The functiong, can consist of
N complex situations, it Is sometimes difficult to manua ‘an arbitrary numbed/ of modalities. For simplicity, we will

design good dictionaries becguse the.re is no good a PrRBat here the bimodal case = 2; however, the extension
knowledge about the generating functiopsin these cases, to M > 2 is straightforward. To make it more concrete, we
one typically would want to learn a good dictionary from

° \ ONAY Myl write a bimodal functi = (¢, ¢ty wh
training data. Successful algorithms to learn dictiorsaiié W V:rrll eka f w(r;s) atiunc |0dn_ A d I(tgk ’gk(v)) where _Zne
basis functions have been proposed in the last years a(\:r?(lj]d I'Itn ?gkd_ as ar: :ut |0Mm0 allty anﬁk thas avl deo
applied to diverse classes of signal, including audio d283{ modality ot audiovisual data. Viore generally, the .Co_mp sen
[25], natural images [25]-[29] and video sequences [30]. 0 not have to be homogeneous in dimensionality; however,

the next section, we propose a learning strategy adaptedt 5 have to share a common temporal dlm.ensmn. _
synchronous multi-modal signals. For the rest of the paper, we denote discrete signals of

infinite size by lower case letters. Real-world finite signal
are made infinite by padding their borders with zeros. Finite
size vectors and matrices are denoted with bold characters.
Our goal is to design an algorithm capable of learning sef¢e need to define the time-discrete versigp, p € R
of multi-modal synchronous functions adapted to particul@f the synchronous translation operator (2). Since differe
classes of multi-modal signals. However, the design of #modalities are in general sampled at different rates ovee ti
algorithm for learning dictionaries of multi-modal atoms ithe operatorZ, must shift the signals on the two modalities
non-trivial and an extended literature survey showed thathy a different integer number of samples, in order to preserv
has never been attempted so far. Two major challenges héweir temporal proximity. We define it 85, = (7;(“),7;(”)) =

to be considered: (T, Tyr ), whereT ) translates an infinite (audio) signal

« Learning algorithms are inherently time and memor§y ¢’ € Z samples and’,., translates an infinite (video)
consuming. When considering sets of multi-modal sigignal byg(*) samples. In the experiments that we will conduct
nals that involve huge arrays of data, the computatior@l the end of this paper, typical values of the sampling rates
complexity of the algorithm becomes a challenging issu&'®’ = 1/8000 for audio signals sampled at 8 kHz anf) =

« Natural multi-modal signals often exhibit complex und/29.97 for videos at 29.97 frames per second. Therefore the
derlying structures that are difficult to explicitly definediscrete-time version of the synchronous translation atper
Moreover, modalities have heterogeneous dimensioﬂél with translationp € R is defined with discrete translations
which makes them complicated to handle. Audiovisual® := nint(p/v(®) € Z and ¢*) := nint(p/v\")) € Z
signals perfectly illustrate this challenge: the audiakra Wherenint(-) is the nearest integer function. Without loss of
is a 1-D signal typically sampled at high frequencgenerality we may assume that”) > v(*) and define ae-
rate (0(10%) samples/sec), while the video clip is asampling factorRF = () /v(®),

3-D signal sampled with considerably lower temporal For a given generating functiopy, the set{7Z,gx}pcr
resolution O(10!) frames/sec). contains all possible atoms generated by applying the {rans

We will design a novel learning algorithm that captures tHation operator tog,.. The dictionary generated by is then
underlying structures of multi-modal signals overcomimgio P = {{Zpgx}p,k = 1...K}. Learning is performed using

of these difficulties. We propose to leasgnchronous multi- @ training set ofV bimodal signals{ (1", f£")}Y_,, where
modal generating functiorss introduced in the previous sec-fff) and f,(f) are the components of the signal on the two
tion using a generalization of the MoTIF algorithm [25]. Bac modalities. The signals are assumed to be of infinite size but
such function defines a set of atoms corresponding to all tteey are non zero only on their support of si@ié}“),sgf)).
translations. This is notably motivated by the fact thaurgt Similarly, the size of the support of the generating funtsio

kel
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to learn is(S5", S{")) such thats{® < S;“) ands{"” < Sgc”).
The proposed algorithm iteratively learns translatioraimant
filters. For the first one, the aim is to fing = (gi“),gi”))

such that the dictionary (7, ¢\, 7, ¢{")}, is the most

grandg; (I =1,...,k— 1), which has at the same time to

be minimized, being represented by the denominator.
Finding the best solution to the unconstrained problem

(UP’) or the constrained problem (CP) is indeed hard. How-

correlated in mean with the signals in the training set. léenever, the problem can be split into several simpler steps

it is equivalent to the following optimization problem :

N
arg max Zmaxz | <f,(1i),7;(,j)g(i)> |27

lg@ ll2=llg l2=1 ;=1 Pn
3)

UP :¢g; =

which has to be solved simultaneously for the two modalities 1. Localize: for a given generating functiogl,i“) [/ —

following a localize and learmparadigm [25]. Such a strategy

is particularly suitable for this scenario, since we want to
learn synchronous patterns that are localized in time aat th
represent well the signals. Thus, we propose to perform the
learning by iteratively solving the following four steps:

1] at

(¢ = a,v), i.e. we want to find a pair of synchronous filters
(¢', g™)) that minimize (3). There are two main differences
with respect to classical learning methods, which make the
present problem extremely challenging. First of all, we db n
only want the learned functiogy to represent well in average

the training set (as expressed by the first maximization gyer o

but we wantg; to be the best representing function up to an
arbitrary time-translation on each training signal (addated
by the second maximization over,) in order to achieve
shift-invariance. In addition, we require these charasties
to hold for both modalities simultaneously, which implies
an additional constraint on the synchrony of the couple of
functions(g%"’,g%v)). Note that solving problem UP requires

to compute simultaneous correlations across channel$eln t

iteration j, find the best translations!” [j] := (@ .
ai”[j] with
a[j] = argmax | (£, T,0,"j — 1]) |
qEZ
Learn: updateg,(f) [4] by solving UP’ (4) or CP (5) only
for modality (v), with the translations fixed to the values
Pr = pﬁ{l)[j] found at step 1, i.eq)”) = nint (RF x

o ]);

3. Localize: find the best translations, [j] := v().¢\"[j]

using the functiory,(f) l11;

¢ [j) := argmax | (£, T, j]) |
qEZ

audio-visual case, the dimension of the video channel makes _ (@ _ ,

this numerically prohibitive. To avoid this problem, we firs 4 L€arn: updateg, “[j] by solving UP" (4) or CP (5)

solve UP restricted to the audio channel : only for modality (a), with the translations fixed to
the valuesp, = pgf) [/] found at step 3 i.e. using
g = nint (g1 [j]/RP).

The first and third steps consist in finding the location of the

_ , _ . maximum correlation between one modality of each training

wherei = a. We can then solve (4) fof = v but limit  giqna £() and the corresponding generating functiéh. The

the search for best translations around the time-shifeaély e mporal synchrony between generating functions on the two

obtained on the audio channel, thus avoiding the burden gt y,jities is enforced at the learning steps (2 and 4), where

long correlations between video streams. the optimal translatiop,, found for one modality is also kept

For learning the successive generating functions, the-prggy the other one.
lem can be slightly modified to include a constraint penaizi  \we now consider in detail the second and fourth steps. We
a generating function if a similar one has already been fourlﬂafineg,(f) c RS the restriction of the infinite size signal

Assuming thatk — 1 generating functions have been learnt, (i) to its support. We will use the easily checked fact that for

the optimization problem to fing, can be written as : any translatiorp, any signalf(® and any filterg® we have
Sy maxy, | (7, T g) 2

the equality(f@, 7, g} = <T,(2f(i),g(i)), in other words
k— i ;
) Ygez | (91, Tag®) 12

the adjoint of the discrete translation operafé?‘) is T,(;). Let

=0 F()[j] be the matrix (WithS*J(f) rows andN columns), whose
which again has to be solved simultaneously for the tweyjumns are made of the signaﬂg) shifted by—p,,[;]. More
modalities { = a, v). In this case the optimization problem isprecisely theat™ column of F()[j] is £9 the restriction
similar to the unconstrained one in (4), with the only diéiece ' S mmpalil
that a de-correlation constraint between the actual fancti
g\ and the previously learned ones is added. The constraiienote A()[j] = F(®)[j] . F® "
is introduced as a term at the denominator that accoumtansposition.
for the correlation between the previously learned geimggat With these notations, the second step (respectively fourth
functions (the first summation ovéj and the actual target step) of theunconstrainecproblem can be written as :
function shifted at all possible positions (the second swmr 0
q).- By maximizing the fraction in (5) with respect @ the
algorithm has to find a balance between the goodness of the
representation of the training set, which has to be maxidizevith v (respectivelyi = a). The best generating
being expressed by the numerator, and the correlation betwéunction g,(j) [7] is the eigenvector corresponding to the largest

N
= arg max E
gt ll2=1 5, =1

UP’ : g\" max | (£, T, g®) |2,

Pn

(4)

CP :g,(:) = argmax , (5)

gt fl2=1

of T_(Qn[j]fr(f) to the support ofgl(j), of size Séi). We also
, where.T' indicates the

iD)r - DT A ()1 (i
g [j] = argmax g AD[j] g .
Ig® [l2=1

(6)



eigenvalue ofA ([j]. Let us underline that in this case it isAlgorithm 1 Principle of the multi-modal learning algorithm
possible to easily solve the learning problem because of the i — ¢, training set{(£\", {")}
particular form of the function to optimize. In fact, it islgn 5. for £ — 1 to X do

because the objective function in (4) can be expressed as the je—0:

quadratic form (6), given the translatiops, that it is possible ;. random initialization Of{(g,(f) [j],g,(f) Y
to turn the learning problem into an eigenvector problem.

. () - 5. compute constraint matricd8\” andB\" as in (8);
For theconstrainedproblem, we want to forceg,’[j] tobe o \yhile no convergence reacheid
as de-correlated as possible from all the atom®jn;. This . jej41;
corresponds to minimizing & localize in modality (a):
k=1 @ @ 2 for each £\, find the translation
YD 1Ty 9 | (7) P[] = v@ -argmax, | (f57, Tog@ [ —11) |,
_ I=1 acn maximally correlatingf\* and g(®)[j — 1;
or, denoting o: learn modality (v):
k-1 ) N e(v) (v) T
B =3 > a6, . ® SetA ] = S €, o ot
=1 gcZ ’ 10: find g,(f) [7], the eigenvector associated to the biggest
S T . _ eigenvalue of the generalized eigenvalue problem
to minimizing g B{"g(®. With these notations, the con- AW[j]g = AB{"g, using (9);
strained problem can be written as : 11: localize in modality (v):

@ g™ AD[j] g
g, [j] = argmax =———————.

) ©)
Is0l.=1 g By g®

The best generating functiogﬁ) [4] is the eigenvector asso- 12:

ciated to the biggest eigenvalue of the generalized eigeava
problem defined in (9). Definin@Y) = Id, we can use CP

for learning the first generating functian . Note again that 13:

the complex learning problem in (5) can be solved as the
generalized eigenvector problem (9) because of the paticu

for each f,ﬁ”), find the translation
pi[j] = v - argmax, | (3, Tyg™[j)) |,
maximally correlating£”’ and ¢ [j;
learn modality (a):
(a)[s N () (a) T
SetA] = 2t £, ooy
find g,(f) [7], the eigenvector associated to the biggest
eigenvalue of the generalized eigenvalue problem

A@[jlg = AB”g, using (9);

quadratic form imposed to the objective function to optiegiz 14:  end while
when the translationg,, are fixed. 15: end for

The proposed multi-modal learning algorithm is summa-
rized in Algorithm 1.

It is easy to demonstrate that the unconstrained sing
modality algorithm converges in a finite number of iteration
to a generating function locally maximizing the unconsteai . o » S

. b?lng a more “general” set of audio-video atoms.
problem. It has been observed on numerous experiments

that the constrained algorithm [25] and the multi-modal-con FOr all sequences, the audio was recorded at 44 kHz and
strained algorithm typically converge in few steps to a letabSUP-Sampled to 8 kHz, while the gray-scale video was recbrde
solution independently of the initialization. at 29.97 frames/second (fps) and at a resolution ok 2.0

pixels. The total length of the training sequences is 1060
video frames, i.e. approximately 35 seconds, for, and
1140 video frames, i.e. approximately 38 seconds, TPor
Note that the sampling frequencies along the time axis for
The first experiment demonstrates the capability of the prthe two modalities are different, thus when passing from one
posed learning algorithm to recover meaningful synchrenomodality to the other a re-sampling factor RF equal to thie rat
patterns from audiovisual signals. In this case the two hod&etween the two frequencies has to be applied. In this case th
ities are audio and video, which share a common temposalue of the re-sampling factor is RE 8000/29.97 ~ 267.
axis, and the learned dictionaries are composed of gengrat/ideo sequences are filtered following the procedure sugdes
functions g, = (g,(f),g,(f)), with g,(f) and g,(j’) respectively in[30], in order to speed up the training. The video companen
audio and video component gf. Two joint audiovisual dic- is thus “whitened” using a filter that equalizes the variaote
tionaries are learned on two training sets. The first audi@ali the input sequences in all directions. Since the spatigteal
dictionary, that we calDictionary 1 (D,), is learned on a amplitude spectrum of video signals roughly fallsldg along
set consisting of four audiovisual sequences represettimg all directions [27], [31], whitening can be obtained applyi
mouth of the same speaker uttering the digits from zero #ospherically symmetric filte#V (f) = f that produces an
nine in English.Dictionary 2 (D,) is learned on a training approximately flat amplitude spectrum at all spatio-terapor
set of four clips representing the mouth of four differerfrequencies. The obtained whitened sequences are then low-
persons pronouncing the digits from zero to nine in Englispass filtered to remove the high-frequency artifacts typia

Bi'ctionary 1 should represent a collection of basis functions
adapted to a particular speaker, whidéctionary 2 aims at

IV. EXPERIMENTS
A. Audiovisual Dictionaries



digital video signals. We use a spherically symmetric lcagp |
filter L(f) = e~(//f)" with cut-off frequencyf, at 80% of
the Nyquist frequency in space and time.

The learning is performed on audio-video patch
(F$, £y extracted from the original signals. The size of th
audio patchesf,(l“) is 6407 audio samples, while the size o
the video patcheﬁ,(f) is 31x 31 pixels in space and 23 frame
in time. We learn 20 generating functiops consisting of an
audio componer;t,(f) of 3204 samples and a video componer@
g,i”) of size 16x 16 pixels in space and 12 frames in time,
The 20 elements oD, are shown in Fig. 1. The dictionary
D; has similar characteristics. The video compor@ﬁ’ﬁ of
each function is shown on the left, with time proceeding le
to right, while the audio parg,(f) is on the right, with time
on the horizontal axis.

Concerning the video components, they are spatially local-
ized and oriented edge detector functions that shift snipoth
from frame to frame, describing typical movements of difar
parts of the mouth during the utterances. The audio parts

the generating functions contain almost all the numbersgue ¥

in the training sequences. In particular, when listeningh®
waveforms, one can distinguish the womdso (functions #11,
#13, #16),0ne (#7, #9),two (#5, #6),four (#3), five (#1), six
(#4), seven(#8, #18),eight (#10). Functions #12, #14, #15,
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#17, #19, #20 express the first two phonemes of the Worgl. 2. Test sequences. Sample frames Mévie 1 (a), Movie 2 (b)
five (i.e. /fl,Jayl), and they are also very similar to the wordnd Movie 3 (c) are shown on the left. The original audio track

nine (i.e. /n/,/ay/). Typically, different instances of the sam

a (d), together with its noisy versions with additive gaussiaoise
a+AWGN (e) and added distracting speech and muaicspeech (f)

number have either different audio characteristics, l&@th are piotted on the right. All test clips can be downloadedough
or frequency content (e.g. compare audio functions #7 ahd p://Its2ww. epfl.ch/ ~nonaci/avlearn. htni.

#9), or different associated video components (e.g. fansti
#12, #14, #15, #17, #19, #20). As already observed in [25],

both components of generating function #2 are mainly higipeaker is the same subject whose mouth was used to train
frequency due to the de-correlation constraint with thet fir®;; however, the training sequences are different from the
atom. test sequences. In contrast, none of the four speaking mouth
The learning algorithm captures well high-level signalistr used to trainD, belongs to the speaker in the test data set.
tures representing the synchronous presence of meaningf@ want to underline that the test sequences are partigularl
acoustic and visual patterns. All the learned multi-modahallenging to analyze, since both persons are mouthing the
functions consist in couples of temporally close signals : same words at the same time. The task of associating the

waveform expressing one digit when played, and a movisgund with the “real” speaker is thus definitely non-trivial
edge (horizontal, diagonal or curved) that follows the ocont The clips can be downloaded throught p: / /| t s2wwv.

of the mouth during the utterances.

epfl.ch/ ~monaci /avl earn. htm .

With the experimental results that we will show in the

B. Audiovisual Speaker Localization

In this experiment we want to test if the learned dictiorarie
are able to recover meaningful audiovisual patterns in real
multimedia sequences. The dictionari2sand D, are used to
detect synchronous audio-video patterns revealing treepoe
of a meaningful event (the utterance of a sound) that we want,
to localize. We consider three test clipdovie 1, Movie 2
and Movie 3, consisting in two persons placed in front of
the camera arranged as in Fig. 2. One of the subjects is
uttering digits in English, while the other one is mouthing
exactly the same worddest sequences consist in an audio
track at 8 kHz and a video part at 29.97 fps and at a
resolution of 480x 720 pixeld. In all three sequences, the

10nly the luminance component is considered, while the chatanthan-
nels are discarded.

following we want to demonstrate that:

« For both dictionarie®; andD, the positions of maximal

projection between the dictionary atomg and the test
sequences are localized on the actual location of the
audiovisual source.

The detection of the actual speaker using WBthandD-

is robust to severe visual noise (the person mouthing the
same words of the real speaker) as well as to acoustic
noise. The mouth of the correct speaker is effectively
localized also when strong acoustic noise (SNR=1dB) is
summed to the audio track in the form of additive white
gaussian noise or out-of-view talking people.

« The detection of the speaker’s mouth is more robust and

accurate using dictionar$;, which is adapted to the
speaker, than using the general diction@xy.



Funct. # Video Audio

, SEEEEEEEEEEE
. IEEEEEEEEEEE
, INEEESCEEEEE &
. INEEEEEEEEEE
. INEEEEEEEEEE -
. IEEEEEEEEEEE
, INEEEEEEEEEE
. INEEEEEEEEEE
, IHSEEEEEEEEE ~
. INEEEEEEEEEE
. INHEESEENEEE -
. INDNEEEEEEEE ~
. INDNEAESEEEE ~
. INEEESEEEEREE
- INNNESEENEEE
. INEEEEEEEEEE
T TEECECELET T B
. INEEEEEEEEEE
. INENNEEEEEEEE
. INEEEEEEEEEE

Fig. 1. Audio-video generating functions &fictionary 2 Shown are the 20 learned functions, each consisting on dio @and a video component. Video
components are on the left, with time proceeding left totrigtudio components are on the right, with time on the horiabaxis.
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Fig. 3. Sample frames dflovie 1 [Left], Movie 2 [Center] andMovie 3 [Right]. The left person is the real speaker, the right stthjeouths the same words
pronounced by the speaker but his audio track has been reimdhe white cross highlights the estimated position of thensl source, which is correctly
placed over the speaker's mouth.

The audio tracks of the test clips are correlated with adif the maxima of the projections between the video basis
time-shifted version of each audio compon@ﬁf) of the functions and the sequence lie close to one another, and are
20 learned generating functiorg, which is efficiently done thus clustered together, it is highly probable that suclsteiu
by filtering. For each audio function we find the the timéndicates the real position of the sound source and the \alue
position of maximum correlatio@,(“), and thus the audio atom is high in this case. On the other hand, if maxima locations
¢\ with highest correlation. We consider a window of 38re placed all over the image plane forming small clusters,

frames around the time position in the video correspondifyen the biggest cluster will include a small fraction of the
to 731(:) which is computed 351(;)) _ nint(ﬁ,(f)/RF). This Whole data. In this situation it seems reasonable to deduce

that the estimated source position is less reliable, which i
eflected by the value aof being smaller in this case.

restricted video patch consists of frames in the intel P
15;15;”) + 15] and we compute its correlation with all spatiar
and temporal shifts of the video compon@rﬁf) of gr. The  As we have already observed, for all the test sequences the
spatio-temporal positio %kaﬁz(f) of maximum correlation sound source position is correctly localized. Moreoveliisit
between the restricted video patch and the learned videderesting to remark that in all cases, the detection of the

generating function yields the video atop)” with highest speaker's mouth is moneliable using dictionaryD;, which
correlation. The positions of maximal projection of therfeed 1S @dapted to the speaker, than using the general dictidhary

atoms over the image plang, k = 1,...,20, are grouped An example of the described situation is depicted in Fig. 4.
into clusters using a hierarchical clustering algorithiihe Th€ images show sample frames Mbvie 3. The positions
centroid of the cluster containing the largest number ofsoi ©f maximal projection between video functions belonging to
is kept as the estimated location of the sound source. \igtionariesD; (Left) and D, (Right) and the test sequence
expect the estimated sound source position to be close to @@ Plotted on the image plane. Points belonging to the same
speaker’s mouth. cluster are indicated with the same marker. In both cases
In Fig. 3 sample frames of the test sequences are shown. FHesSter 1is the group containing the largest number of points
white marker over each image indicates the estimated pasitPd it is thus the one used to estimate the sound source
of the sound source over the image plane, which coincidds wRROSition. When using dictionar, (Left), the biggest cluster
the mouth of the actual speaker. The sound source locatif® 17 elements and thus the reliability of the source jositi
is correctly detected for all the tested sequences and usfig’ = 17/20 = 0.85, while when usingD; (Right), the
both dictionariesD; and D,. Results are accurate when th®99€st cluster groups only 13 points and the reliabilityag
original sound tracka is used (signal in Fig. 2 (d)), as well” = 13/20 = 0.65. This behawor is !ndeed interesting, since
as when considerable acoustic noise (SNR=1dB) is presdnfudgests that the learing algorithm actually succeeds i
(signalsa+AWGN anda+speech in Fig. 2 (e-f)). its task. The algorithm appears to be able to learn general
In order to assess the goodness of the estimation of trﬁlganingful synchronous patterns in the data. Moreover, the

sound source position, a simple measure can be designed. @ that more reliable localization results are achieveuig
define thereliability of the source position estimation, as € dictionary adapted to the speakeén ] suggests that the

the ratio between the number of elements belonging to tHEO,pOTe? |;r]1ethod g(;lows(,jto capture important signal strastu
biggest cluster, which is the one used to estimate the sopgical of the considered training set.
source location, and the total number of elements considere 1o eynerimental results for all tested sequences and both
N (i.e. the total number of functions used for the analysis Qfitionariesp, and D, are summarized in Table I. The first
the sequence, in this case 20). The valuerainges from ¢, mn indicates the video clip used, the second one the@audi
1/N, when each point constitutes a one-element cluster, t0yack ysed and the third one the dictionary employed for the
when all points belong to the same group. Clearly, if mogha\ysis. The fourth column shows the source localization
) _ result and the fifth column indicates the reliabilityof the
The MATLAB function cl ust er dat a. mwas used. Clusters are formed

when the distance between groups of points is larger tharmx@gpAccording Iocallzqtlon. In all cases the audio source is correctlyalmed
to several tests, the choice of the clustering thresholdrsaritical. on the image plane.
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Fig. 4. Sample frames dflovie 3. The positions of maximal projection between video funwii@nd test sequence are plotted on the image plane. Points
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belonging to the same cluster are indicated with the samé&enafhe biggest cluster is in both caggkister J it contains 17 elements wheR; is used

[Left] and 13 whenDs is used [Right].

[ Video [ Audio [ Dictionary [| Localization correct] r |

Dy YES 0.75
. D, YES 0.75
Movie 1 | a+tAWGN D, YES 0.45
a+speech Dy YES 0.75
Do YES 0.40
a Dy YES 0.65
Do YES 0.45
. D, YES 0.65
Movie 2 | a+AWGN Dy YES 0.45
a+speech Dy YES 0.65

P D, YES 0.45 [1
a Dy YES 0.85
Do YES 0.65

. Dy YES 0.80 [2]
Movie 3 | a+AWGN Dy YES 0.65
Dy YES 0.85

a+speech Do YES 0.70 3]

TABLE |
SUMMARY OF THE SOURCE LOCALIZATION RESULTS FOR ALL THE [4]

TESTED SEQUENCESIN ALL CASES THE AUDIO SOURCE IS CORRECTLY
LOCALIZED ON THE IMAGE PLANE.

(5]

V. CONCLUSIONS [6]

In this paper we present a new method to learn translation
invariant multi-modal functions adapted to a class of multi[7]
component signals. Generating functions are iterativeiyntl
using alocalize and learrparadigm which enforces temporal
synchrony between modalities. Thanks to the particulantor
lation of the objective function, the learning problem can b
turned into a generalized eigenvector problem, which makéed
the algorithm fast and free of parameters to tune. A comgtraj; g
in the objective function forces the learned waveforms teeha
low correlation, such that no function is picked severalesm 11]
The main drawback of this method is that the few generatiJ“ug
functions following the first one are mainly due to the dei2]
correlation constraint, more than to the correspondentie wi
the signal. Despite that, the algorithm seems to capturé wgk,
the underlying structures in the data. The learned dictiera
include elements that describe typical audiovisual fessturl4]
present in the training signals. The learned functions baen
used to analyze complex multi-modal sequences, obtaining]
encouraging results in localizing the sound source in tlewi
sequence.

(8]

[16]

ties of the inner product, is to add to the translation iraacee
a Dy YES 0.40 the invariance to other transformations that admit a well
defined adjoint (e.g. translatiorsus rotations for images).
Moreover, the application of this technique to other typés o
multi-modal signals, like climatologic or EEG-fMRI dataea
foreseen.
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