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Learning Multi-Modal Dictionaries
Gianluca Monaci, Philippe Jost, Pierre Vandergheynst, Boris Mailhe, Sylvain Lesage, Rémi Gribonval

Abstract— Real-world phenomena involve complex interactions
between multiple signal modalities. As a consequence, humans
are used to integrate at each instant perceptions from all their
senses in order to enrich their understanding of the surrounding
world. This paradigm can be also extremely useful in many signal
processing and computer vision problems involving mutually
related signals. The simultaneous processing of multi-modal data
can in fact reveal information that is otherwise hidden when
considering the signals independently. However, in natural multi-
modal signals, the statistical dependencies between modalities
are in general not obvious. Learning fundamental multi-modal
patterns could offer a deep insight into the structure of such
signals. Typically, such recurrent patterns are shift invariant,
thus the learning should try to find the best matching filters. In
this paper we present an algorithm for iteratively learning multi-
modal generating functions that can be shifted at all positions
in the signal. The learning is defined in such a way that it can
be accomplished by iteratively solving a generalized eigenvector
problem, which makes the algorithm fast, flexible and free of
user-defined parameters. The proposed algorithm is appliedto
audiovisual sequences and we show that it is able to discover
underlying structures in the data.

I. I NTRODUCTION

Multi-modal signal analysis has received an increased in-
terest in the last years. Multi-modal signals are sets of het-
erogeneous signals originating from the same phenomenon
but captured using different sensors. Each modality typically
brings some information about the others and their simultane-
ous processing can uncover relationships that are otherwise un-
available when considering the signals separately. Multi-modal
signal processing is widely employed in medical imaging,
where the spatial correlation between different modalities (e.g.
magnetic resonance and computed tomography) is exploited
for segmentation [1] or registration [2], [3]. In this work
we analyze a broad class of multi-modal signals exhibiting
correlations along time. In many different research fields,the
temporal correlation between multi-modal data is studied :
in neuroscience, electroencephalogram (EEG) and functional
magnetic resonance imaging (fMRI) data are jointly analyzed
to study brain activation patterns [4]. In environmental science,
connections between local and global climatic phenomena
are discovered by correlating different spatio-temporal mea-
surements [5]. Many multimedia signal processing problems
involve the simultaneous analysis of audio and video data,
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e.g. speech-speaker recognition [6], [7], talking heads creation
and animation [8] or sound source localization [9]–[14]. In-
terestingly, humans as well are used to integrate acoustic and
visual inputs [15]–[17] or tactile and visual stimuli [18],[19]
to enhance their perception of the world.

The temporal correlation across modalities is exploited by
seeking for patterns showing a certain degree of synchrony.
Research efforts typically focus on the statistical modelling of
the dependencies between modalities. In [4], EEG and fMRI
structures having maximal temporal covariance are extracted.
In [9] the correlation between audio and video is assessed
measuring the correlation coefficient between acoustic energy
and the evolution of single pixel values. In [10], audio-
video correlations are discovered using Canonical Correlation
Analysis (CCA) for the cepstral representation of the audioand
the video pixels. Smaragdis and Casey [11] find projections
onto maximally independent audiovisual subspaces performing
Independent Component Analysis simultaneously on audio
and video features that are respectively the magnitude of the
audio spectrum and the pixel intensities. In [12] the video com-
ponents correlated with the audio are detected by maximizing
Mutual Information between audio energy and single pixel
values. In [13] the wavelet components of difference images
are correlated with the audio signal applying a modified CCA
algorithm which is regularized using a sparsity criterion.

While research efforts appear to be concentrated in the
development of multi-modal fusion strategies, it seems that
the features employed to represent the different modalities
are often basic and barely connected with the physics of
the observed phenomena (e.g. video sequences are typically
represented using time series of pixel intensities). This can
be a limitation of existing approaches : multi-modal features
having low structural content can be difficult to extract and
manipulate. Moreover, the interpretation of the results can be
problematic without an accurate modelling of the observed
phenomenon. To cope with these limitations, the cross-modal
correlation problem can be attacked from a different point of
view, by focusing on the modelling of the modalities, so that
meaningfulsignal structures can be extracted and synchronous
patterns easily detected.

In this paper we propose an algorithm that allows to learn
dictionaries of basis functions representing recurrent multi-
modal structures. Such patterns are learned using a recur-
sive algorithm that enforces synchrony between the different
modalities and de-correlation between the dictionary elements.
The learned multi-modal functions are translation invariant,
i.e. they aregenerating functionsdefining a set of structures
corresponding to all their translations. The proposed algorithm
is applied to real audiovisual sequences and the learned audio-
visual dictionaries seem to capture well underlying structures
in the data. The dictionary functions are used to analyze com-
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plex multimedia clips, showing the ability to detect meaningful
correlated audio-video structures and to localize the sound
source in the video sequence.

The structure of the paper is the following : Section II de-
scribes the proposed model for multi-modal signals. Section III
constitutes the central part of this work, presenting the learning
algorithm for multi-modal signals. In Sec. IV experimental
results based on real audiovisual signals are shown. Section V
concludes the paper with a discussion of the achieved results
and of the possible developments of this research.

II. M ODELLING AND UNDERSTANDING

A. Sparse approximations of multi-modal signals

Multi-modal data are made up ofM different modalities
and represented asM -tupless = (s(1), . . . , s(M)) which are
not necessarily homogenous in dimensionality : for example,
audiovisual data consist of an audio signals(1)(t) and a video
sequences(2)(~x, t) with ~x ∈ R

2 the pixel position. Other
multi-modal data such as hyperspectral images or biomedical
sequences could be made of images, time-series and video
sequences at various resolutions.

To date, methods dealing with multi-modal fusion problems
basically attempt to build general and complex statistical
models to capture the relationships between the different
signal modalitiess(m). However, as underlined in the previous
section, the employed features are typically simple and barely
connected with the physics of the problem. Efficient signal
modelling and representation require the use of methods able
to capture particular characteristics of each signal. Therefore,
the idea is basically that of defining a proper model for signals,
instead of defining a complex statistical fusion model that has
to find correspondences between barely meaningful features.

Applications of this paradigm to audiovisual signals can
be found in [14], [20]. A sound is assumed to be generated
through the synchronous motion of important visual elements
like edges. Audio and video signals are thus represented
in terms of their most salient structures using redundant
dictionaries of functions, making it possible to define acoustic
and visualevents. An audio event is the presence of an audio
signal with high energy and a visual event is the motion of an
important image edge. The synchrony between these events
reflects the presence of a common source, which is effectively
localized. The key idea of this approach is to use high-level
features to represent signals, which are introduced by making
use of codebooks of functions. The audio signal is approxi-
mated as a sparse sums(1) ≈

∑
k∈I1

c
(1)
k φ

(1)
k of Gabor atoms

from a Gabor dictionary{φ(1)
k }k, while the video sequence

is expressed as a sparse combinations(2) ≈
∑

k∈I2
c
(2)
k φ

(2)
k

of edge-like functions{φ(2)
k }k that are tracked through time.

Such audio and video representations are still quite general,
and can be employed to represent any audiovisual sequence.

One of the main advantage of dictionary-based techniques
is the freedom in designing the dictionary, which can be
efficiently tailored to closely match signal structures. For
multi-modal data, distinct dictionariesD(m) = {φ

(m)
k }k for

each modality do not necessarily reflect well the interplay
between events in the different modalities, since the sets of

salient featuresIm involved in the models of each modality
are not necessarily related to one another. An interesting
alternative consists in capturing truly multi-modal events by
the means of an intrinsicallymulti-modal dictionaryD = {φk}

made ofmulti-modal atomsφk = (φ
(1)
k , . . . , φ

(M)
k ), yielding

a multi-modal sparse signal model

s ≈
∑

k∈I

(
c
(1)
k φ

(1)
k , . . . , c

(M)
k φ

(M)
k

)
. (1)

Here, a common setI of salient multi-modal features forces
at the model levelsome correlation between the different
modalities.

Given the multi-modal dictionaryD = {φk} and the multi-
modal signals, the inference of the model parametersI and
{c

(m)
k }k,m is not completely trivial : on the one hand, since the

dictionary is often redundant, the are infinitely many possible
representations of any signal; on the other hand, choosing the
best approximation with a given number of atoms is known
to be an NP-hard problem. Fortunately, several suboptimal
algorithms such as multichannel Matching Pursuit [21], [22],
can provide generally good sparse approximations.

B. Synchrony and shift invariance in multi-modal signals

Very often, the various modalities in a multi-modal signal
will share synchrony of some sort. By synchrony, we usually
refer to time-synchrony, i.e. events occurring in the same
time slot. When multi-modal signals share a common time-
dimension, synchrony is a very important feature, usually
tightly linked to the physics of the problem. As explained
above, synchrony is of particular importance in audio-visual
sequences. Sound in the audio time series is usually linked to
the occurrence of events in the videoat the same moment. If
for example the sequence contains a character talking, sound
is synchronized with lips movements. More generally though,
multi-modal signal could share higher-dimensions, and the
notion of synchrony could refer to spatial co-localization,
for example in multi-spectral images where localized features
appear in several frequency bands at the same spatial position.

For the sake of simplicity, we will focus our discussion on
time-synchrony and we now formalize this concept further.
Let

φ =
(
φ(1)(~x1, t), . . . , φ

(M)(~xM , t)
)

, ~xm ∈ R
dm

be a multi-modal function whose modalitiesφ(m), m =
1, . . . , M share a common temporal dimensiont ∈ R. A
modality is temporally localized in the interval∆ ⊂ R if
φ(m)(~xm, t) = 0, ∀t /∈ ∆. We will say that the modalities are
synchronous whenever allφ(m) are localized in the same time
interval ∆.

Most natural signals exhibit characteristics that are time-
invariant, meaning that they can occur at any instant in time.
Think once again of an audio track : any particular frequency
pattern can be repeated at arbitrary time instants. In orderto
account for this natural shift-invariance, we need to be able to
shift patterns on modalities. Letφ be a multi-modal function
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localized in an interval centered ont = 0. The operatorTp

shifts φ to time p ∈ R in a straightforward way :

Tpφ =
(
φ(1)(~x1, t− p), . . . , φ(M)(~xM , t− p)

)
. (2)

This temporal translation is homogeneous across channels and
thus preserves synchrony. With these definitions, it becomes
easy to express a signal as a superposition of synchronous
multi-modal patternsφk, k ∈ I occurring at various time
instantst1, . . . , tk :

s ≈
∑

k∈I

ckTtk
φk,

where the sum and weighting coefficients are understood as
in (1). We often construct a large subset of a dictionary by
applying such synchronous translations to a single multi-modal
function. In that case, we will often refer to this function as
a generating functionand we will indicate it withgk.

In complex situations, it is sometimes difficult to manually
design good dictionaries because there is no good a priori
knowledge about the generating functionsg. In these cases,
one typically would want to learn a good dictionary from
training data. Successful algorithms to learn dictionaries of
basis functions have been proposed in the last years and
applied to diverse classes of signal, including audio data [23]–
[25], natural images [25]–[29] and video sequences [30]. In
the next section, we propose a learning strategy adapted to
synchronous multi-modal signals.

III. L EARNING MULTI -MODAL DICTIONARIES

Our goal is to design an algorithm capable of learning sets
of multi-modal synchronous functions adapted to particular
classes of multi-modal signals. However, the design of an
algorithm for learning dictionaries of multi-modal atoms is
non-trivial and an extended literature survey showed that it
has never been attempted so far. Two major challenges have
to be considered:

• Learning algorithms are inherently time and memory
consuming. When considering sets of multi-modal sig-
nals that involve huge arrays of data, the computational
complexity of the algorithm becomes a challenging issue.

• Natural multi-modal signals often exhibit complex un-
derlying structures that are difficult to explicitly define.
Moreover, modalities have heterogeneous dimensions,
which makes them complicated to handle. Audiovisual
signals perfectly illustrate this challenge: the audio track
is a 1-D signal typically sampled at high frequency
rate (O(104) samples/sec), while the video clip is a
3-D signal sampled with considerably lower temporal
resolution (O(101) frames/sec).

We will design a novel learning algorithm that captures the
underlying structures of multi-modal signals overcoming both
of these difficulties. We propose to learnsynchronous multi-
modal generating functionsas introduced in the previous sec-
tion using a generalization of the MoTIF algorithm [25]. Each
such function defines a set of atoms corresponding to all its
translations. This is notably motivated by the fact that natural

signals typically exhibit statistical properties invariant to trans-
lation, and the use of generating functions allows to generate
huge dictionaries while using only few parameters. In order
to make the computation feasible, the proposed algorithm
learns the generating functions by alternatively localizing and
learning interesting signal structures on the different signal
components. As detailed in the following, this allows moreover
to enforce synchrony between modal structures in an easy and
intuitive fashion. Generating functions are learned successively
and the procedure can be stopped when a sufficient number
of atoms have been found. A constraint that imposes low
correlation between the learned functions is also considered,
such that no function is picked several times.

The goal of the learning algorithm is to build a setG =
{gk}

K
k=1 of multi-modal generating functionsgk such that

a very redundant dictionaryD adapted to a class of signals
can be created by applying all possible translations to the
generating functions ofG. The functiongk can consist of
an arbitrary numberM of modalities. For simplicity, we will
treat here the bimodal caseM = 2; however, the extension
to M > 2 is straightforward. To make it more concrete, we
will write a bimodal function asgk = (g

(a)
k , g

(v)
k ) where one

can think of g(a)
k as an audio modality andg(v)

k as a video
modality of audiovisual data. More generally, the components
do not have to be homogeneous in dimensionality; however,
they have to share a common temporal dimension.

For the rest of the paper, we denote discrete signals of
infinite size by lower case letters. Real-world finite signals
are made infinite by padding their borders with zeros. Finite
size vectors and matrices are denoted with bold characters.
We need to define the time-discrete versionTp, p ∈ R

of the synchronous translation operator (2). Since different
modalities are in general sampled at different rates over time
the operatorTp must shift the signals on the two modalities
by a different integer number of samples, in order to preserve
their temporal proximity. We define it asTp = (T

(a)
p , T

(v)
p ) :=

(Tq(a) , Tq(v)), whereTq(a) translates an infinite (audio) signal
by q(a) ∈ Z samples andTq(v) translates an infinite (video)
signal byq(v) samples. In the experiments that we will conduct
at the end of this paper, typical values of the sampling ratesare
ν(a) = 1/8000 for audio signals sampled at 8 kHz andν(v) =
1/29.97 for videos at 29.97 frames per second. Therefore the
discrete-time version of the synchronous translation operator
Tp with translationp ∈ R is defined with discrete translations
q(a) := nint(p/ν(a)) ∈ Z and q(v) := nint(p/ν(v)) ∈ Z

wherenint(·) is the nearest integer function. Without loss of
generality we may assume thatν(v) ≥ ν(a) and define are-
sampling factorRF = ν(v)/ν(a).

For a given generating functiongk, the set {Tpgk}p∈R

contains all possible atoms generated by applying the trans-
lation operator togk. The dictionary generated byG is then
D = {{Tpgk}p, k = 1 . . .K}. Learning is performed using
a training set ofN bimodal signals{(f (a)

n , f
(v)
n )}Nn=1, where

f
(a)
n and f

(v)
n are the components of the signal on the two

modalities. The signals are assumed to be of infinite size but
they are non zero only on their support of size(S

(a)
f , S

(v)
f ).

Similarly, the size of the support of the generating functions
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to learn is(S(a)
g , S

(v)
g ) such thatS(a)

g < S
(a)
f andS

(v)
g < S

(v)
f .

The proposed algorithm iteratively learns translation invariant
filters. For the first one, the aim is to findg1 = (g

(a)
1 , g

(v)
1 )

such that the dictionary{(T (a)
p g

(a)
1 , T

(v)
p g

(v)
1 )}p is the most

correlated in mean with the signals in the training set. Hence,
it is equivalent to the following optimization problem :

UP : g1 = argmax
‖g(a)‖2=‖g(v)‖2=1

N∑

n=1

max
pn

∑

i

| 〈f (i)
n , T (i)

pn
g(i)〉 |2 ,

(3)
which has to be solved simultaneously for the two modalities
(i = a, v), i.e. we want to find a pair of synchronous filters
(g(a), g(v)) that minimize (3). There are two main differences
with respect to classical learning methods, which make the
present problem extremely challenging. First of all, we do not
only want the learned functiong1 to represent well in average
the training set (as expressed by the first maximization overg),
but we wantg1 to be the best representing function up to an
arbitrary time-translation on each training signal (as indicated
by the second maximization overpn) in order to achieve
shift-invariance. In addition, we require these characteristics
to hold for both modalities simultaneously, which implies
an additional constraint on the synchrony of the couple of
functions(g

(a)
1 , g

(v)
1 ). Note that solving problem UP requires

to compute simultaneous correlations across channels. In the
audio-visual case, the dimension of the video channel makes
this numerically prohibitive. To avoid this problem, we first
solve UP restricted to the audio channel :

UP’ : g
(i)
1 = arg max

‖g(i)‖2=1

N∑

n=1

max
pn

| 〈f (i)
n , T (i)

pn
g(i)〉 |2 , (4)

where i = a. We can then solve (4) fori = v but limit
the search for best translations around the time-shifts already
obtained on the audio channel, thus avoiding the burden of
long correlations between video streams.

For learning the successive generating functions, the prob-
lem can be slightly modified to include a constraint penalizing
a generating function if a similar one has already been found.
Assuming thatk − 1 generating functions have been learnt,
the optimization problem to findgk can be written as :

CP : g(i)
k = argmax

‖g(i)‖2=1

∑N
n=1 maxpn

| 〈f
(i)
n , T

(i)
pn g(i)〉 |2

∑k−1
l=0

∑
q∈Z
| 〈g

(i)
l , Tqg(i)〉 |2

, (5)

which again has to be solved simultaneously for the two
modalities (i = a, v). In this case the optimization problem is
similar to the unconstrained one in (4), with the only difference
that a de-correlation constraint between the actual function
g
(i)
k and the previously learned ones is added. The constraint

is introduced as a term at the denominator that accounts
for the correlation between the previously learned generating
functions (the first summation overl) and the actual target
function shifted at all possible positions (the second sum over
q). By maximizing the fraction in (5) with respect tog, the
algorithm has to find a balance between the goodness of the
representation of the training set, which has to be maximized
being expressed by the numerator, and the correlation between

gk and gl (l = 1, . . . , k − 1), which has at the same time to
be minimized, being represented by the denominator.

Finding the best solution to the unconstrained problem
(UP’) or the constrained problem (CP) is indeed hard. How-
ever, the problem can be split into several simpler steps
following a localize and learnparadigm [25]. Such a strategy
is particularly suitable for this scenario, since we want to
learn synchronous patterns that are localized in time and that
represent well the signals. Thus, we propose to perform the
learning by iteratively solving the following four steps:

1. Localize: for a given generating functiong(a)
k [j − 1] at

iteration j, find the best translationsp(a)
n [j] := ν(a) ·

q
(a)
n [j] with

q(a)
n [j] := arg max

q∈Z

| 〈f (a)
n , Tqg

(a)
k [j − 1]〉 |;

2. Learn: updateg(v)
k [j] by solving UP’ (4) or CP (5) only

for modality(v), with the translations fixed to the values
pn = p

(a)
n [j] found at step 1, i.e.q(v)

n := nint(RF×
q
(a)
n [j]);

3. Localize: find the best translationsp(v)
n [j] := ν(v)·q

(v)
n [j]

using the functiong(v)
k [j];

q(v)
n [j] := argmax

q∈Z

| 〈f (v)
n , Tqg

(v)
k [j]〉 |

4. Learn: updateg
(a)
k [j] by solving UP’ (4) or CP (5)

only for modality (a), with the translations fixed to
the valuespn = p

(v)
n [j] found at step 3 i.e. using

q
(a)
n = nint(q

(v)
n [j]/RF).

The first and third steps consist in finding the location of the
maximum correlation between one modality of each training
signalf (i)

n and the corresponding generating functiong(i). The
temporal synchrony between generating functions on the two
modalities is enforced at the learning steps (2 and 4), where
the optimal translationpn found for one modality is also kept
for the other one.

We now consider in detail the second and fourth steps. We
defineg

(i)
k ∈ R

S(i)
g the restriction of the infinite size signal

g
(i)
k to its support. We will use the easily checked fact that for

any translationp, any signalf (i) and any filterg(i) we have
the equality〈f (i), T

(i)
p g(i)〉 = 〈T

(i)
−p f (i), g(i)〉, in other words

the adjoint of the discrete translation operatorT (i)
p is T (i)

−p . Let

F(i)[j] be the matrix (withS(i)
f rows andN columns), whose

columns are made of the signalsf
(i)
n shifted by−pn[j]. More

precisely, thenth column ofF(i)[j] is f
(i)
n,−pn[j], the restriction

of T (i)
−pn[j]f

(i)
n to the support ofg(i)

k , of size S
(i)
g . We also

denoteA(i)[j] = F(i)[j] · F(i)[j]
T

, where .T indicates the
transposition.

With these notations, the second step (respectively fourth
step) of theunconstrainedproblem can be written as :

g
(i)
k [j] = arg max

‖g(i)‖2=1

g(i)T
A(i)[j]g(i) . (6)

with i = v (respectively i = a). The best generating
functiong

(i)
k [j] is the eigenvector corresponding to the largest
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eigenvalue ofA(i)[j]. Let us underline that in this case it is
possible to easily solve the learning problem because of the
particular form of the function to optimize. In fact, it is only
because the objective function in (4) can be expressed as the
quadratic form (6), given the translationspn, that it is possible
to turn the learning problem into an eigenvector problem.

For theconstrainedproblem, we want to forceg(i)
k [j] to be

as de-correlated as possible from all the atoms inDk−1. This
corresponds to minimizing

k−1∑

l=1

∑

q∈Z

| 〈T−qg
(i)
l , g(i)〉 |2 (7)

or, denoting

B
(i)
k =

k−1∑

l=1

∑

q∈Z

g
(i)
l,−q g

(i)
l,−q

T
, (8)

to minimizing g(i)T
B

(i)
k g(i). With these notations, the con-

strained problem can be written as :

g
(i)
k [j] = arg max

‖g(i)‖2=1

g(i)T
A(i)[j]g(i)

g(i)T

B
(i)
k g(i)

. (9)

The best generating functiong(i)
k [j] is the eigenvector asso-

ciated to the biggest eigenvalue of the generalized eigenvalue
problem defined in (9). DefiningB(i)

1 = Id, we can use CP
for learning the first generating functiong1. Note again that
the complex learning problem in (5) can be solved as the
generalized eigenvector problem (9) because of the particular
quadratic form imposed to the objective function to optimize,
when the translationspn are fixed.

The proposed multi-modal learning algorithm is summa-
rized in Algorithm 1 .

It is easy to demonstrate that the unconstrained single-
modality algorithm converges in a finite number of iterations
to a generating function locally maximizing the unconstrained
problem. It has been observed on numerous experiments
that the constrained algorithm [25] and the multi-modal con-
strained algorithm typically converge in few steps to a stable
solution independently of the initialization.

IV. EXPERIMENTS

A. Audiovisual Dictionaries

The first experiment demonstrates the capability of the pro-
posed learning algorithm to recover meaningful synchronous
patterns from audiovisual signals. In this case the two modal-
ities are audio and video, which share a common temporal
axis, and the learned dictionaries are composed of generating
functions gk = (g

(a)
k , g

(v)
k ), with g

(a)
k and g

(v)
k respectively

audio and video component ofgk. Two joint audiovisual dic-
tionaries are learned on two training sets. The first audiovisual
dictionary, that we callDictionary 1 (D1), is learned on a
set consisting of four audiovisual sequences representingthe
mouth of the same speaker uttering the digits from zero to
nine in English.Dictionary 2 (D2) is learned on a training
set of four clips representing the mouth of four different
persons pronouncing the digits from zero to nine in English.

Algorithm 1 Principle of the multi-modal learning algorithm

1: k = 0, training set{(f (a)
n , f

(v)
n )};

2: for k = 1 to K do
3: j ← 0;
4: random initialization of{(g(a)

k [j], g
(v)
k [j])};

5: compute constraint matricesB(a)
k andB

(v)
k as in (8);

6: while no convergence reacheddo
7: j ← j + 1;
8: localize in modality (a):

for eachf
(a)
n , find the translation

p
(a)
n [j]← ν(a) · arg maxq | 〈f

(a)
n , Tqg

(a)[j − 1]〉 |,

maximally correlatingf (a)
n andg(a)[j − 1];

9: learn modality (v):

setA(v)[j]←
∑N

n=1 f
(v)

n,−p
(a)
n [j]

f
(v)

n,−p
(a)
n [j]

T
;

10: find g
(v)
k [j], the eigenvector associated to the biggest

eigenvalue of the generalized eigenvalue problem
A(v)[j]g = λB

(v)
k g, using (9);

11: localize in modality (v):

for eachf
(v)
n , find the translation

p
(v)
n [j]← ν(v) · argmaxq | 〈f

(v)
n , Tqg

(v)[j]〉 |,

maximally correlatingf (v)
n andg(v)[j];

12: learn modality (a):

setA(a)[j]←
∑N

n=1 f
(a)

n,−p
(v)
n [j]

f
(a)

n,−p
(v)
n [j]

T
;

13: find g
(a)
k [j], the eigenvector associated to the biggest

eigenvalue of the generalized eigenvalue problem
A(a)[j]g = λB

(a)
k g, using (9);

14: end while
15: end for

Dictionary 1 should represent a collection of basis functions
adapted to a particular speaker, whileDictionary 2 aims at
being a more “general” set of audio-video atoms.

For all sequences, the audio was recorded at 44 kHz and
sub-sampled to 8 kHz, while the gray-scale video was recorded
at 29.97 frames/second (fps) and at a resolution of 70× 110
pixels. The total length of the training sequences is 1060
video frames, i.e. approximately 35 seconds, forD1, and
1140 video frames, i.e. approximately 38 seconds, forD2.
Note that the sampling frequencies along the time axis for
the two modalities are different, thus when passing from one
modality to the other a re-sampling factor RF equal to the ratio
between the two frequencies has to be applied. In this case the
value of the re-sampling factor is RF= 8000/29.97 ≈ 267.
Video sequences are filtered following the procedure suggested
in [30], in order to speed up the training. The video component
is thus “whitened” using a filter that equalizes the varianceof
the input sequences in all directions. Since the spatio-temporal
amplitude spectrum of video signals roughly falls as1/f along
all directions [27], [31], whitening can be obtained applying
a spherically symmetric filterW (f) = f that produces an
approximately flat amplitude spectrum at all spatio-temporal
frequencies. The obtained whitened sequences are then low-
pass filtered to remove the high-frequency artifacts typical of
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digital video signals. We use a spherically symmetric low-pass
filter L(f) = e−(f/f0)

4

with cut-off frequencyf0 at 80% of
the Nyquist frequency in space and time.

The learning is performed on audio-video patches
(f

(a)
n , f

(v)
n ) extracted from the original signals. The size of the

audio patchesf (a)
n is 6407 audio samples, while the size of

the video patchesf (v)
n is 31×31 pixels in space and 23 frames

in time. We learn 20 generating functionsgk consisting of an
audio componentg(a)

k of 3204 samples and a video component
g
(v)
k of size 16× 16 pixels in space and 12 frames in time.

The 20 elements ofD2 are shown in Fig. 1. The dictionary
D1 has similar characteristics. The video componentg

(v)
k of

each function is shown on the left, with time proceeding left
to right, while the audio partg(a)

k is on the right, with time
on the horizontal axis.

Concerning the video components, they are spatially local-
ized and oriented edge detector functions that shift smoothly
from frame to frame, describing typical movements of different
parts of the mouth during the utterances. The audio parts of
the generating functions contain almost all the numbers present
in the training sequences. In particular, when listening tothe
waveforms, one can distinguish the wordszero(functions #11,
#13, #16),one (#7, #9),two (#5, #6),four (#3), five (#1), six
(#4), seven(#8, #18),eight (#10). Functions #12, #14, #15,
#17, #19, #20 express the first two phonemes of the word
five (i.e. /f/,/ay/), and they are also very similar to the word
nine (i.e. /n/,/ay/). Typically, different instances of the same
number have either different audio characteristics, like length
or frequency content (e.g. compare audio functions #7 and
#9), or different associated video components (e.g. functions
#12, #14, #15, #17, #19, #20). As already observed in [25],
both components of generating function #2 are mainly high
frequency due to the de-correlation constraint with the first
atom.

The learning algorithm captures well high-level signal struc-
tures representing the synchronous presence of meaningful
acoustic and visual patterns. All the learned multi-modal
functions consist in couples of temporally close signals : a
waveform expressing one digit when played, and a moving
edge (horizontal, diagonal or curved) that follows the contour
of the mouth during the utterances.

B. Audiovisual Speaker Localization

In this experiment we want to test if the learned dictionaries
are able to recover meaningful audiovisual patterns in real
multimedia sequences. The dictionariesD1 andD2 are used to
detect synchronous audio-video patterns revealing the presence
of a meaningful event (the utterance of a sound) that we want
to localize. We consider three test clips,Movie 1, Movie 2
and Movie 3, consisting in two persons placed in front of
the camera arranged as in Fig. 2. One of the subjects is
uttering digits in English, while the other one is mouthing
exactly the same words. Test sequences consist in an audio
track at 8 kHz and a video part at 29.97 fps and at a
resolution of 480× 720 pixels1. In all three sequences, the

1Only the luminance component is considered, while the chromatic chan-
nels are discarded.
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Fig. 2. Test sequences. Sample frames ofMovie 1 (a), Movie 2 (b)
and Movie 3 (c) are shown on the left. The original audio track
a (d), together with its noisy versions with additive gaussian noise
a+AWGN (e) and added distracting speech and musica+speech (f)
are plotted on the right. All test clips can be downloaded through
http://lts2www.epfl.ch/∼monaci/avlearn.html.

speaker is the same subject whose mouth was used to train
D1; however, the training sequences are different from the
test sequences. In contrast, none of the four speaking mouths
used to trainD2 belongs to the speaker in the test data set.
We want to underline that the test sequences are particularly
challenging to analyze, since both persons are mouthing the
same words at the same time. The task of associating the
sound with the “real” speaker is thus definitely non-trivial.
The clips can be downloaded throughhttp://lts2www.
epfl.ch/∼monaci/avlearn.html.

With the experimental results that we will show in the
following we want to demonstrate that:

• For both dictionariesD1 andD2, the positions of maximal
projection between the dictionary atomsφk and the test
sequences are localized on the actual location of the
audiovisual source.

• The detection of the actual speaker using bothD1 andD2

is robust to severe visual noise (the person mouthing the
same words of the real speaker) as well as to acoustic
noise. The mouth of the correct speaker is effectively
localized also when strong acoustic noise (SNR=1dB) is
summed to the audio track in the form of additive white
gaussian noise or out-of-view talking people.

• The detection of the speaker’s mouth is more robust and
accurate using dictionaryD1, which is adapted to the
speaker, than using the general dictionaryD2.
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Fig. 1. Audio-video generating functions ofDictionary 2. Shown are the 20 learned functions, each consisting on an audio and a video component. Video
components are on the left, with time proceeding left to right. Audio components are on the right, with time on the horizontal axis.
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Fig. 3. Sample frames ofMovie 1 [Left], Movie 2 [Center] andMovie 3 [Right]. The left person is the real speaker, the right subject mouths the same words
pronounced by the speaker but his audio track has been removed. The white cross highlights the estimated position of the sound source, which is correctly
placed over the speaker’s mouth.

The audio tracks of the test clips are correlated with all
time-shifted version of each audio componentg

(a)
k of the

20 learned generating functionsgk, which is efficiently done
by filtering. For each audio function we find the the time
position of maximum correlation,̂p(a)

k , and thus the audio atom
φ

(a)
k with highest correlation. We consider a window of 31

frames around the time position in the video corresponding
to p̂

(a)
k , which is computed as̃p(v)

k = nint(p̂
(a)
k /RF). This

restricted video patch consists of frames in the interval[p̃
(v)
k −

15; p̃
(v)
k + 15] and we compute its correlation with all spatial

and temporal shifts of the video componentg
(v)
k of gk. The

spatio-temporal position
(
~̂xk, p̂

(v)
k

)
of maximum correlation

between the restricted video patch and the learned video
generating function yields the video atomφ(v)

k with highest
correlation. The positions of maximal projection of the learned
atoms over the image planê~xk, k = 1, . . . , 20, are grouped
into clusters using a hierarchical clustering algorithm2. The
centroid of the cluster containing the largest number of points
is kept as the estimated location of the sound source. We
expect the estimated sound source position to be close to the
speaker’s mouth.

In Fig. 3 sample frames of the test sequences are shown. The
white marker over each image indicates the estimated position
of the sound source over the image plane, which coincides with
the mouth of the actual speaker. The sound source location
is correctly detected for all the tested sequences and using
both dictionariesD1 andD2. Results are accurate when the
original sound tracka is used (signal in Fig. 2 (d)), as well
as when considerable acoustic noise (SNR=1dB) is present
(signalsa+AWGN anda+speech in Fig. 2 (e-f)).

In order to assess the goodness of the estimation of the
sound source position, a simple measure can be designed. We
define thereliability of the source position estimation,r, as
the ratio between the number of elements belonging to the
biggest cluster, which is the one used to estimate the sound
source location, and the total number of elements considered,
N (i.e. the total number of functions used for the analysis of
the sequence, in this case 20). The value ofr ranges from
1/N , when each point constitutes a one-element cluster, to1,
when all points belong to the same group. Clearly, if most

2The MATLAB function clusterdata.m was used. Clusters are formed
when the distance between groups of points is larger than 50 pixels. According
to several tests, the choice of the clustering threshold is non-critical.

of the maxima of the projections between the video basis
functions and the sequence lie close to one another, and are
thus clustered together, it is highly probable that such cluster
indicates the real position of the sound source and the valueof
r is high in this case. On the other hand, if maxima locations
are placed all over the image plane forming small clusters,
even the biggest cluster will include a small fraction of the
whole data. In this situation it seems reasonable to deduce
that the estimated source position is less reliable, which is
reflected by the value ofr being smaller in this case.

As we have already observed, for all the test sequences the
sound source position is correctly localized. Moreover, itis
interesting to remark that in all cases, the detection of the
speaker’s mouth is morereliable using dictionaryD1, which
is adapted to the speaker, than using the general dictionaryD2.
An example of the described situation is depicted in Fig. 4.
The images show sample frames ofMovie 3. The positions
of maximal projection between video functions belonging to
dictionariesD1 (Left) andD2 (Right) and the test sequence
are plotted on the image plane. Points belonging to the same
cluster are indicated with the same marker. In both cases
Cluster 1is the group containing the largest number of points
and it is thus the one used to estimate the sound source
position. When using dictionaryD1 (Left), the biggest cluster
has 17 elements and thus the reliability of the source position
is r = 17/20 = 0.85, while when usingD2 (Right), the
biggest cluster groups only 13 points and the reliability equals
r = 13/20 = 0.65. This behavior is indeed interesting, since
it suggests that the learning algorithm actually succeeds in
its task. The algorithm appears to be able to learn general
meaningful synchronous patterns in the data. Moreover, the
fact that more reliable localization results are achieved using
the dictionary adapted to the speaker (D1) suggests that the
proposed method allows to capture important signal structures
typical of the considered training set.

The experimental results for all tested sequences and both
dictionariesD1 andD2 are summarized in Table I. The first
column indicates the video clip used, the second one the audio
track used and the third one the dictionary employed for the
analysis. The fourth column shows the source localization
result and the fifth column indicates the reliabilityr of the
localization. In all cases the audio source is correctly localized
on the image plane.
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Fig. 4. Sample frames ofMovie 3. The positions of maximal projection between video functions and test sequence are plotted on the image plane. Points
belonging to the same cluster are indicated with the same marker. The biggest cluster is in both casesCluster 1; it contains 17 elements whenD1 is used
[Left] and 13 whenD2 is used [Right].

Video Audio Dictionary Localization correct r

Movie 1

a D1 YES 0.75
D2 YES 0.40

a+AWGN D1 YES 0.75
D2 YES 0.45

a+speech D1 YES 0.75
D2 YES 0.40

Movie 2

a D1 YES 0.65
D2 YES 0.45

a+AWGN D1 YES 0.65
D2 YES 0.45

a+speech D1 YES 0.65
D2 YES 0.45

Movie 3

a D1 YES 0.85
D2 YES 0.65

a+AWGN D1 YES 0.80
D2 YES 0.65

a+speech D1 YES 0.85
D2 YES 0.70

TABLE I

SUMMARY OF THE SOURCE LOCALIZATION RESULTS FOR ALL THE

TESTED SEQUENCES. IN ALL CASES THE AUDIO SOURCE IS CORRECTLY

LOCALIZED ON THE IMAGE PLANE.

V. CONCLUSIONS

In this paper we present a new method to learn translation
invariant multi-modal functions adapted to a class of multi-
component signals. Generating functions are iteratively found
using alocalize and learnparadigm which enforces temporal
synchrony between modalities. Thanks to the particular formu-
lation of the objective function, the learning problem can be
turned into a generalized eigenvector problem, which makes
the algorithm fast and free of parameters to tune. A constraint
in the objective function forces the learned waveforms to have
low correlation, such that no function is picked several times.
The main drawback of this method is that the few generating
functions following the first one are mainly due to the de-
correlation constraint, more than to the correspondence with
the signal. Despite that, the algorithm seems to capture well
the underlying structures in the data. The learned dictionaries
include elements that describe typical audiovisual features
present in the training signals. The learned functions havebeen
used to analyze complex multi-modal sequences, obtaining
encouraging results in localizing the sound source in the video
sequence.

One extension of the proposed method, based on the proper-

ties of the inner product, is to add to the translation invariance
the invariance to other transformations that admit a well
defined adjoint (e.g. translationsplus rotations for images).
Moreover, the application of this technique to other types of
multi-modal signals, like climatologic or EEG-fMRI data, are
foreseen.
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