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ABSTRACT
This paper proposes an application of information theoretic
approach for finding the most informative subset of eigen-
features to be used for audio-visual speech recognition tasks.
The state-of-the-art visual feature extraction methods in the
area of speechreading rely on either pixel or geometric based
methods or their combination. However, there is no common
rule defining how these features have to be selected with re-
spect to the chosen set of audio cues and how well they rep-
resent the classes of the uttered speech. Our main objective
is to exploit the complementarity of audio and visual sources
and select meaningful visual descriptors by the means of mu-
tual information. We focus on the principal components pro-
jections of the mouth region images and apply the proposed
method such that only those cues having the highest mutual
information with word classes are retained. The algorithm
is tested by performing various speech recognition experi-
ments on a chosen audio-visual dataset. The obtained recog-
nition rates are compared to those acquired using a conven-
tional principal component analysis and promising results are
shown.

1. INTRODUCTION

Research done in the area of audio-visual signal processing
shows clear benefits of using a multi-modal approach for var-
ious tasks such as: speechreading, bimodal speaker recogni-
tion, speaker detection, etc. The overall system performance
is improved when using the help of visual modality, espe-
cially in noisy and adverse environmental conditions. Still,
the main issue is the choice of adequate visual features. Var-
ious types of visual cues as well as various methods for their
extraction are proposed by the research community. A com-
prehensive overview can be found in [1].

Among those methods, area-based ones are of particular
interest due to the stability and robustness. They are based
on observing the whole mouth Region-of-Interest as a visual
feature vector. Some of the widely used are Principal Com-
ponent Analysis [2, 3] and the DCT transform [4]. No matter
what kind of image transform is applied, selection of the vi-
sual features among the possible candidates is usually done
following some a priori defined rule, inherited mainly from
image compression. Thus, in case of DCT coefficients those
with the highest energy are retained, while for eigenfeatures
the choice is made upon the highest eigenvalues. Although
the chosen features are suitable for image compression, it is
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not clear how ”good” they are in terms of representing the
class related information in multi-modal speech recognition.
Since the only performance measure for speech recognition
systems is recognition rate (or alternatively word error rate),
a suitable measure should be used to show how optimal the
chosen visual features are. A well known concept of mutual
information can be employed for such tasks. The informa-
tion theoretic approach for finding the most informative fea-
tures for speech recognition purposes was previously used
for audio-only feature selection in [5, 6]. Regarding the vi-
sual cues, to the best of our knowledge only the recent work
by Scanlon et al. [7] considers the use of mutual informa-
tion, as well as joint mutual information for feature selec-
tion tasks. The authors show the clear benefits of employing
DCT coefficients chosen using mutual information for large-
vocabulary visual speech recognition tasks.

In this paper we follow the same intuition that the most
informative visual features would have high mutual infor-
mation with respect to the speech classes. We consider the
possibility of using the information theoretic framework and
concept of mutual information for selecting the most in-
formative principal components. The obtained mouth im-
age projections on the maximum mutual information eigen
space can be regarded as mutual information eigenlips. Fur-
ther on we perform various visual-only and audio-visual iso-
lated word recognition experiments, and compare the overall
system performance to the one achieved using conventional
principal component analysis.

The paper is organized as follows. In Section 2 we re-
call fundamentals of Principal Component Analysis (PCA)
and describe the proposed information theoretic framework
in detail. The experimental setup and obtained results are
presented in Section 3, followed by conclusions and future
work directions in Section 4.

2. METHOD

2.1 Principal component analysis

Principal Component Analysis (PCA) is a widely used data-
driven approach for dimensionality reduction, optimal in
the sense of information preservation. Regarding the area
of visual speechreading this technique has been previously
used to obtain a compact representation of mouth Region-
of-Interest, known as eigenlips [3]. Visual features obtained
employing this technique show to work well for the tasks
of audio-visual speech recognition on different databases,
[4, 8, 9].

The main idea behind a PCA approach is to project the
data onto the directions of maximal variance. Thus, having



Figure 1: The first three principal components from the
Tulips1 database.

a set of N image training examples x1, . . . ,xN, each image
is considered as a d dimensional feature vector (d equals the
number of pixels in an image).

First, an average image x̄ over the entire image set is
found and subtracted from each image. Further on, N im-
age vectors are regarded as column vectors of the matrix X ,
having dimensions d ×N. Eigenvectors and eigenvalues are
extracted from the covariance matrix of image data. The ob-
tained eigenvectors are sorted on decreasing order of magni-
tudes of the corresponding eigenvalues. The most compact
image set representation is obtained by keeping the number
of principal components that account for 90 − 95% of the
variance. Figure 1 shows the first three eigenimages from
the observed image set.

However, the retained eigenvectors capture the major
variations across the training set (such as related to lighting
directions), but carry no information about the relevance of
selected features with respect to speech classes. Therefore,
we propose to use an information theoretic approach and the
basic principle of mutual information for selecting the rele-
vant eigenfeatures.

2.2 Information Theoretic approach
Mutual information is a quantitative measure of the statisti-
cal dependence between two random variables [10]. The use
of mutual information (MI) for finding the relevance of par-
ticular features with respect to a class is motivated by Fano’s
inequality [11] and data processing inequality. These well
established concepts from information theory give a lower
bound of the probability of error i.e. an upper bound of the
probability of correct classification.

Let yi denote elements of visual feature vector as samples
of the continuous random variable Y , such that yi ∈ R, i ∈
[1,N]. Let ci denote class labels as samples of the discrete
random variable C such that ci ∈ {1, . . . ,Nc}.

The mutual information I(C;Y ) is defined as:

I(C;Y ) = H(C)−H(C|Y ) = H(Y )−H(Y |C). (1)

where H(.) is Shannon’s entropy in bits.
Since our focus is on audio-visual speech recognition, the

classes of interest are those of the uttered speech. The en-
tropy of a speech class C is defined in terms of class prior
probabilities p(c) as:

H(C) = −∑
c

p(c) · log2 p(c). (2)

Knowing the elements of the feature vector, the conditional
entropy of a speech class given the feature vector can be ex-
pressed as:

H(C|Y ) = −
∫

y
p(y) ·

(

∑
c

p(c|y) · log2 p(c|y)
)

dy. (3)

Similarly, the conditional entropy of the feature vector given
the class is:

H(Y |C) = −∑
c

p(c) ·
∫

y
p(y|c)log2 p(y|c)dy. (4)

The main problem when trying to apply mutual informa-
tion criterion is the probability density function estimation.
Given a practical dataset we can only find an approximation
of the probability density function, and various parametric
or non-parametric methods can be used for such purposes.
Here, like in [7] a histogram-based method is employed for
estimating the required probabilities.

The important issue when using histogramming to esti-
mate probability density of a dataset, is the choice of bin
width i.e. number of bins. In this work we used Doane’s rule
for bin number calculation [12]. Thus, having N samples in
the dataset, the number of bins is J = 1+ log2(N)+ log2(1+

k̂
√

N/6) where k̂ stands for the standardized skewness coef-
ficient. By using this rule for the number of bins, there is no
a priori assumption whether the distribution of data is Gaus-
sian or not, and k̂ reflects the departure from normality.

Knowing the number of equally spaced histogram bins
j = 1, . . . ,J it is feasible to estimate the probability density
of the feature vector. In our case the continuous random vari-
able Y is represented by the set of values obtained after pro-
jecting each image on the eigenvector space. Hence,

p(y) ≈
n j

N
. (5)

where n j stands for the number of observations in a his-
togram bin j, and N is the total number of elements in a
training set.

Similarly, if we have nc samples for each speech class,
the class prior probabilities can be calculated from the data
sample as:

p(c) =
nc

N
, N =

Nc

∑
c=1

nc. (6)

In this work isolated-word speech recognition is consid-
ered and four different word (“digit”) classes are available.
Although lip movement vary along the different word pro-
nunciations, there are some distinct lip shapes particular to
each digit. Moreover, since we assume the audio and visual
modalities are correlated and synchronized, each observed
lip image sequence can be labeled with respect to the corre-
sponding audio class. Thus, it is possible to estimate the con-
ditional probability of the feature vector knowing the class,
such that:

p(y|c) ≈
n j|c

n j
. (7)

where n j|c is the number of features in the bin j belonging
to class c, while n j denote the total number of features in the
corresponding bin.

After calculating mutual information for each principal
component and word classes, eigenvectors are sorted on de-
creasing order of the mutual information values. The de-
sired number of the most informative eigenvectors is used
to find projections of each image from the database on the
eigenspace. The obtained projection coefficients are em-
ployed as inputs of the visual feature vector for the task of
isolated word recognition. Similarly to eigenlips where the



Figure 2: The first three mutual information principal com-
ponents from the Tulips1 database.

Figure 3: Lip image examples from the Tulips1 database,
[13]. Upper row: Original lip images. Lower row: Corre-
sponding normalized lip images.

projection coefficients are chosen due to the maximum eigen-
values, these projections can be viewed as mutual informa-
tion eigenlips. The first three mutual information principal
components are shown in Figure 2. If we compare these im-
ages to those shown in Figure 1, it can be seen that MI princi-
pal components emphasize the lip shapes (edges) and discard
the lighting directions.

3. EXPERIMENTAL FRAMEWORK

3.1 Audio-visual database
The work here utilizes material from the Tulips1 audio-visual
database [13]. It is a small, publicly available database of
12 subjects, pronouncing the first four digits in English two
times in repetition. The audio part is sampled at 11127 Hz
with 8 bits per sample. The video part consists of 934 gray
scale lip images of size 100 × 75, sampled at the rate of
30 fps.

3.2 Visual features
In order to account for possible head rotations, as well as
for translation and scaling, the images from the database are
further normalized. This task is performed in a similar way
as in [14] from the manually marked images. Some original
example images from the database, as well as the normalized
ones are represented in Figure 3.

Besides the original raw images, their first order time
derivatives i.e. delta images are taken into account. PCA and
MI PCA are also applied on this image set. Each image from
the dataset is projected onto the eigenfeature space and a cer-
tain number of projection coefficients is retained and used as
a visual input for the recognition.

Furthermore, in order to have invariance to unwanted

variations, a mean-removal PCA (MRPCA) as given in [9]
is considered. The method is similar to Cepstral Mean Nor-
malization [15]. Given the temporal mouth image sequence
x1, . . . ,xT, new mouth images x̂t are created by subtract-
ing the mean image x̄ = 1

T ∑t xt. PCA applied on this kind
of images is regarded as mean removal MRPCA and in our
case when using mutual information, denoted as mutual in-
formation mean removal PCA (MI MRPCA). Delta images
are also found after applying mean removal on raw mouth
images.

3.3 Acoustic features
Regarding the audio front end, the features of interest
are commonly used Mel Frequency Cepstral Coefficients
(MFCCs). These cues were calculated using HMM Toolkit
(HTK) [15]. In order to have the audio features at the same
rate as the visual ones the frame period is set to 30 Hz and
features are extracted from the overlapping Hamming win-
dow of 50 ms duration. After processing of speech input, 12
MFFCs, energy term and their first and second order deriva-
tives were extracted for each audio frame, resulting in a 39
dimensional feature vector.

After the audio and visual features are obtained, the cor-
responding feature vectors are provided as input to the Hid-
den Markov Model (HMM) based recognizer, built using
the HTK Toolkit 3.2 [15]. Whole-word HMMs are used,
one for representing each word class. Due to the small
database/vocabulary size, the sub-word recognition was not
feasible.

3.4 Results
Due to the limited size of the used database all experiments
were done using a ”leave-one-out” strategy. In each run 11
subjects were used for training and the remaining 12th was
used for testing. The same procedure was repeated for each
speaker and the results were averaged.

Audio-only recognition experiments were performed for
both clean and noisy speech. Noisy environment was simu-
lated by adding white Gaussian noise at different SNRs from
30 dB to −18 dB in steps of 6 dB. Training was done using
clean data, while for testing purposes noisy speech samples
were utilized. Several different system configurations were
tested by changing the number of HMM states from two to
five and the number of Gaussian mixtures from one to five.
The best performance was achieved using a 3-state model
with three mixtures per state and the obtained word accuracy
rates are presented in Figure 4.

Since the main objective of this work is to show the bene-
fits of using adequate visual cues, various visual-only recog-
nition tasks were conducted on available images from the
Tulips1 database. For the first set of experiments, traditional
PCA and MI PCA were applied on raw gray scale images
and the results are presented in Table 1.

The number of principal components retained for both
methods was varied between 5 and 100. The best visual-only
recognition results were obtained using HMMs with 5 or 6
states with one Gaussian per state and the highest rate was
achieved for 35 MI PCA features. It is important to notice
that no matter what the chosen number of features is, the
mutual information based method performs better than or-
dinary PCA. This improvement is up to 10%. Furthermore,
in order to capture the dynamics of lip movements besides
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Figure 4: Audio-only, visual-only and audio-visual recogni-
tion results.

word accuracy [%]
# of features original PCA MI PCA

5 65.62 68.75
10 67.71 72.91
15 70.83 72.91
20 69.79 70.83
25 69.79 73.95
30 69.79 75.00
35 72.91 79.17
40 72.91 73.95
50 70.83 77.08
60 66.67 68.75
80 65.62 66.67
100 64.58 66.67

Table 1: PCA and MI PCA of original images. Visual-only
recognition rates.

the original raw images we considered their first order time
derivatives i.e. delta images. The same visual feature se-
lection techniques were applied on such set. The inclusion
of delta image features yielded to improved performance in
both cases.

Table 2 shows the word recognition accuracy obtained
using mean-removal PCA and mutual information mean-
removal PCA, when changing the number of retained prin-
cipal components from 10 to 100. It can be seen that the
proposed method for feature selection using mutual informa-
tion criteria clearly outperforms the traditional PCA based
approach. The best results for visual-only recognition were
achieved when the number of features was equal to 10 using
mutual information principal components. Moreover, both
the mean-removal MRPCA and mean-removal MI MRPCA
perform better than those applied to the raw images. Tak-
ing into account delta features, the best achieved visual-only
recognition rates are 89.6% for MI MRPCA, and 81.25% for
MRPCA (see Figure 4). These rates were constant over the
whole range of SNRs.

Finally, after testing various visual features our goal was
to determine the accuracy of the audio-visual system when
using both modalities. The integration of two modalities has
been done utilizing feature fusion i.e. an early integration
approach. The composite feature vector was obtained by

word accuracy [%]
# of features MRPCA MI MRPCA

10 80.21 87.50
15 81.25 84.37
20 81.25 86.46
25 81.25 84.37
30 79.17 85.42
35 75.00 83.33
40 73.95 75.00
50 70.83 75.00
60 68.75 71.87
80 66.67 70.83

100 65.62 66.67

Table 2: Mean-removal PCA and MI PCA of original im-
ages. Visual-only recognition rates.

simple concatenation of audio and visual cues. The training
procedure was performed using joint feature vector of clean
speech samples and mean-removal MI PCA features, while
testing was done on noise-corrupted data. Figure 4 shows
the obtained results using 39 acoustic features together with
15 MI MRPCA eigenfeatures from the original images and
15 features from the corresponding delta images, or equiv-
alently a 69 dimensional feature vector. The HMM mod-
els used had 4-states with three Gaussian mixtures. Clearly,
an audio-visual approach outperforms audio-only recogni-
tion when noise is present in the scene, as well as visual-only
recognition. The improvement in word accuracy rate ranges
from around 30% when the SNR equals 0 dB to around 45%
at −18 dB. However, at low SNRs e.g. less than 0 dB the
accuracy drops bellow the visual-only rate. The reason is
the chosen feature fusion approach that reflects mismatch be-
tween visual and noise corrupted audio data.

4. CONCLUSION

We presented a novel approach for selecting the most infor-
mative eigenlips using mutual information criteria. Various
visual-only isolated word recognition experiments were done
using these features and recognition results show clearly that
our method outperforms the conventional based one. More-
over, the recognition accuracy can be further improved by
using the mean removal on an image sequence to reduce
unwanted variations. Regarding the multi-modal approach,
audio-visual recognition rates when using maximum mutual
information eigenfeatures are higher than those of audio-only
when the noise is present in the scene. Overall rates are also
higher than visual-only in all cases but for low SNRs (less
than 0 dB). The drop in accuracy rate is due to the chosen
feature fusion method.

Future work would be to test the proposed method on a
larger dataset and under the presence of different noise types.
Also, other more advanced fusion strategies should be em-
ployed in order to overcome the problem of lower accuracy
rates at low SNR levels, as well as to take into account visual
anticipation/retention phenomena [16]. Since the mutual in-
formation criterion highly depends on the correct probability
density estimation, one possible research direction is to uti-
lize other density estimation techniques. Another important
issue to consider is the extension of the proposed method to
joint mutual information estimation to reduce the possible



redundancy in the selected eigenfeature set.
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