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Abstract. In this paper we propose the use of Discrete Choice Analysis (DCA)
for static facial expression classification. Facial expressions are described with
expression descriptive units (EDU), consisting in a set of high level features
derived from an active appearance model (AAM). The discrete choice model
(DCM) is built considering the 6 universal facial expressions plus the neutral one
as the set of the available alternatives. Each alternative is described by an util-
ity function, defined as the sum of a linear combination of EDUs and a random
term capturing the uncertainty. The utilities provide a measure of likelihood for
a combinations of EDUs to represent a certain facial expression. They represent
a natural way for the modeler to formalize her prior knowledge on the process.
The model parameters are learned through maximum likelihood estimation and
classification is performed assigning each test sample to the alternative show-
ing the maximum utility. We compare the performance of the DCM classifier
against Linear Discriminant Analysis (LDA), Generalized Discriminant Analy-
sis (GDA), Relevant Component Analysis (RCA) and Support Vector Machine
(SVM). Quantitative preliminary results are reported, showing good and encour-
aging performance of the DCM approach both in terms of recognition rate and
discriminatory power.

1 Introduction

Facial expressions are probably the most visual method to convey emotions and one of
the most powerful means to relate to each other. An automatic system for the recogni-
tion of facial expressions is based on a representation of the expression, learned from
a training set of pre-selected meaningful features. For unseen expressions, the corre-
sponding representation has to be associated with the correct expression. In this process,
two are the key tasks: the choice of the set of features representing the expression and
the choice of the classification rule. In [1] the author focuses on optical flow analysis for
feature extraction, in order to model muscle activities and estimating the displacements
of salient points. This is a dynamic approach, where temporal information is used both
in the feature extraction and classification steps, the last performed through an Hid-
den Markov Models (HMM) scheme. Gabor wavelet based filters have been used in



[2], in order to build templates for facial expressions, over multiple scales and different
orientations. Template-based matching is used in order to associate an observed fea-
ture vector with the corresponding expression, in a static context. Statistical generative
models such as principal and independent component analysis (PCA, ICA) are used in
[3] and [4], in order to capture meaningful statistics of face images. Neural Networks
(NN) and HMMs are used for the classification step, respectively in static and dynamic
frameworks. Recent years have seen the increasing use of feature geometrical analysis
([5, 6]). The Active Appearance Model (AAM, see [7]) is one of these techniques which
elegantly combines shape and texture models, in a statistical framework, providing as
output a mask of face landmarks.
The contribution of this work is twofold. First, we propose Discrete Choice Models for
expression classification. These models have been recently introduced in the computer
vision community by [9], in the context of pedestrian modeling and tracking. DCMs
are econometric models designed to forecast the behavior of individuals in choice sit-
uations, when the set of available alternatives is finite and discrete. In this context, the
logic behind the use of DCMs is to model the choice process representing the human
observer labelling procedure. The DCM classifier is compared with several other classi-
fication methods: LDA, GDA, RCA and SVM. The LDA is a supervised discriminative
method to produce the optimal linear classification function. It transforms the data into
a lower-dimensional space where it is decided, according to some chosen metric, to
which class a given sample x belongs. The GDA is the kernel-based version of the
LDA. RCA is a method that seeks to identify and down-scale global unwanted variabil-
ity within the data. The method performs a projection of the input data into a feature
space by means of a linear transformation. In the transformed space, a nearest neighbor
classification based on the Euclidean distance is used, in order to assign the new sample
to a class (see [10]). Second, we propose a set of Expression Descriptives Units (EDU)
for static expression representation. They are derived from a set of 55 face landmarks,
obtained using an AAM model. The EDUs represent intuitive descriptors of the facial
components (eyebrows, eyes, nose and mouth) and the mutual interactions between
them. They have been derived taking inspiration from the Facial Action Unit Coding
System (FACS) [8] which is a human-observer based system designed to detect subtle
changes in facial features. FACS itself is purely descriptive, uses no emotion or other
inferential labels and provides the necessary ground-truth with which to describe facial
expression. On the other hand, FACS require a huge set of salient facial points, and for
most of them a tracking step is required, in order to capture variations over time. EDUs
can be considered as a more compact and static counterpart of the FACS.
The paper is structured as follows: in Section 2 we review the AAM and introduce the
DCM theory. In Section 3 a detailed description of the utility functions is given along
with the EDU description and the results of the learning process. We finally report the
experiments and a description of the data used to compare the different classifiers with
our approach in Section 4. Conclusions and future works are finally reported in Section
5.



2 Background

2.1 Active Facial Appearance Model

The AAM is a statistical method for matching a combined model of shape and tex-
ture to unseen faces. The combination of a model of shape variation with a model of
texture variation generates a statistical appearance model. The model relies on a set of
annotated images. A training set of images is annotated by putting a group of landmark
points around the main facial features, marked in each example. The shape is repre-
sented by a vector s brought into a common normalized frame -w.r.t. position, scale and
rotation- to which all shapes are aligned. After having computed the mean shape s̄ and
aligned all the shapes from the training set by means of a Procrustes transformation, it is
possible to warp textures from the training set onto the mean shape s̄, in order to obtain
shape-free patches. Similarly to the shape, after computing the mean shape-free texture
ḡ, all the textures in the training set can be normalized with respect to it by scaling and
offset of luminance values. PCA is applied to build the statistical shape and textures
models:

si = s̄ + Φsbsi and gi = ḡ + Φtbti (1)

where si and gi are, respectively, the synthesized shape and shape-free texture, Φs and
Φt are the matrices describing the modes of variation derived from the training set,
bsi and bti the vectors controlling the synthesized shape and shape-free texture. The
unification of the presented shape and texture models into one complete appearance
model is obtained by concatenating the vectors bsi and bti and learning the correlations
between them by means of a further PCA. The statistical model is then given by:

si = s̄ + Qsci and gi = ḡ + Qtci (2)

where Qs and Qt are the matrices describing the principal modes of the combined vari-
ations in the training set and ci is the appearance parameters vector, allowing to control
simultaneously both shape and texture. Fixing the parameters ci we derive the shape
and the shape-free texture vectors using equations (2). A full reconstruction is given by
warping the generated texture into the generated shape. In order to allow pose displace-
ment of the model, other parameters must be added to the appearance parameters ci:
the pose parameters pi. The matching of the appearance model to a target face can be
treated as an optimization problem, minimizing the difference between the synthesized
model image and the target face [7].

2.2 Discrete Choice Models

Discrete choice models are known in econometrics since the late 50’s. They are defined
to describe the behavior of people in choice situations, when the set of available alter-
natives is finite and discrete (choice set). They are based on the concept of utility maxi-
mization in economics, where the decision maker is assumed to be rational, performing



a choice in order to maximize the utilities she perceives from the alternatives. The al-
ternatives are supposed to be mutually exclusive and collectively exhaustive, while the
rationality of the decision maker implies transitive and coherent preferences. 3 The util-
ity is a latent construct, which is not directly observed by the modeler, and is treated as
a random variable. The discrete choice paradigm well matches the labelling assignment
process in a classification task. This approach can be interpreted as an attempt to model
the decision process performed by an hypothetical human observer during the labelling
procedure for the facial expressions.
Given a population of N individuals, the (random) utility function Uin perceived by
individual n from alternative i, given a choice set Cn, is defined as follows:

Uin = Vin + εin (3)

with i = 1, ..., J and n = 1, ..., N . Vin represents the deterministic part of the utility,
which is a function of alternatives’ attributes and socio-economic characteristics of the
decision maker. In the context of this paper, we only deal with attributes of the alter-
natives, represented by combinations of the chosen features. The εin term is a random
variable capturing the uncertainty. Under the utility maximization assumption, the out-
put of the model is represented by the choice probability that individual n will choose
alternative i, given the choice set Cn. It is given by:

Pn(i|Cn) = Pn(Uin ≥ Ujn, ∀j ∈ Cn, j �= i) =∫
εn

I(εn < Vin − Vjn, ∀j ∈ Cn, j �= i)f(εn)dεn (4)

where εn = εjn − εin and I(.) is an indicator function which is equal to 1 when
its argument is satisfied, zero otherwise. Based on Equation 4, in order to define the
choice probability, only the difference between the utilities matters. The specification
of the utility functions represents the modeler’s mean to add her prior knowledge on the
choice process (a similar interpretation of the decision theoretic approach can be found
in [11]). In this sense, the DCM approach is similar to graphical probabilistic mod-
els, such as belief networks and random fields, where the graph topology embeds the
prior knowledge, helping designing causal relationships. Different DCMs are obtained
making different assumptions on the error terms. A family of models widely used in
litterature are the GEV (Generalized Extreme Value) models, introduced by [12]. GEV
models provide a closed form solution for the choice probability integral, allowing at
the same time for a certain flexibility in designing the variance/covariance structure of
the problem at hand (i.e., several correlation patterns between the alternatives can be
explicitly captured by these models). Assuming the error terms being multivariate type
I extreme value distributed 4, the general expression of the GEV choice probability for

3 Transitive preferences means that if alternative i is preferred to alternative j which is preferred
to alternative k, then alternative i is also preferred to k. Coherent preferences means that the
decision maker will make the same choice in exactly the same conditions.

4 The main reasons for the choice of this kind of distribution derive from its good analytical
properties. More details can be found in [13]
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Fig. 1. a)Facial landmarks (55 points);b)Facial components descriptors;c)Expressions Descrip-
tive Units

a given individual to choose alternative i, given a choice set C with J alternatives, is as
follows:

P (i|C) =
eVi+logGi(y1,...,yJ)

∑J
j=1 eVj+logGj(y1,...,yJ)

(5)

where yi = eVi and Gi = ∂G
∂yi

. The function G is called generating function and it cap-
tures the correlation patterns between the alternatives. Details about the mathematical
properties of G are reported in [12] (differentiable and homogeneous of degree µ > 0,
among the others). Several GEV models can be derived from Equation 5, through differ-
ent specifications of the generating function. In this paper we use a Multinomial Logit
Model (MNL), which is largely the simplest and most used discrete choice model in lit-
erature. It is obtained assuming the following G function, which implies no correlations
between the alternatives:

G(y1, ..., yJ) =
∑
j∈C

yµ
j (6)

where µ is a positive scale parameter. Under these assumptions, the MNL choice prob-
ability is given by the following expression

P (i|C) =
eµVi∑

j∈C eµVj
(7)

3 DCM and facial expression classification

3.1 Expressions Descriptive Units

The use of AAM allows to detect facial components in a face (an example is shown
in Figure 1(c)). Figure 1(a) shows the 55 landmarks used to build the AAM model,
while Figure1(b) shows the descriptors we use for the facial components: eyes, eye-
brows, nose and mouth. These descriptors represent the width and the height of each



EDU1 lew+rew
leh+reh

EDU8 leh+reh
lbh+rbh

EDU2 lbw
lbh

EDU9 lew
nw

EDU3 rbw
rbh

EDU10 nw
mw

EDU4 mw
mh

EDU11 EDU2 / EDU4
EDU5 nh

nw
EDU12 EDU3 / EDU4

EDU6 lew
mw

EDU13 EDU2 / EDU10
EDU7 leh

mh
EDU14 EDU3 / EDU10

Table 1. Expressions Descriptive Units

Expressions edu1 edu2 edu4 edu5 edu6 edu7 edu8 edu10 edu11 edu13 edu14

anger � � � � �
disgust � � � � �

fear � � � � �
happiness � � � � �

neutral �
sadness � �
surprise � �

Table 2. Utility functions: each row corresponds to an expression while the columns are the EDUs
included in the utilities.

facial component. In order to give a useful representation of the expression in terms of
interactions among those descriptors, we define a set of EDUs, reported in Table 1. The
first 5 EDUs represent, respectively, the eccentricity of eyes, left and right eyebrows,
mouth and nose. The EDUs from 7 to 9 represent the eyes interactions with mouth and
nose, while the 10th EDU is the nose-mouth relational unit. The last 4 EDUs relate the
eyebrows to mouth and nose. Differently from other approaches [14, 10] that use the
combined AAM vector parameters as facial features, in our framework the 14 EDUs
represent the features describing the face. The intuitive interpretation and the reduced
number of dimensions make of the EDUs a valid set of descriptors for facial expres-
sions.

3.2 The model

The utility functions are specified using a linear-in-parameters form, combining the
expression descriptive units. Each EDU in each utility is weighted by an unknown de-
terministic coefficient, that has to be estimated. The choice for a linear form is based
purely on simplicity considerations, in order to reduce the number of parameters in the
estimation process. The general form of the utilities is given by:

Ui = αi +
K∑

k=1

IkiβkiEDUk (8)

where i = 1, ..., C with C = 7 is the number of expressions, K = 14 is the number of
EDUs, Iki is an indicator function equal to 1 if the k-th EDU is included in the utility for



expression i and 0 otherwise, βki is the weight for the k-th EDU in alternative i and αi

is an alternative specific constant. The αi coefficients represent the average value of the
unobserved part of the corresponding utility and one of them has to be normalized to 0,
in order to be consistent with DCM theory (see [13]). In our case, we normalize with re-
spect to the neutral expression. We summarize in Table 2 what are the EDUs included in
the different utilities, i.e. when the Iki = 1. Table 2 shows how, during the model spec-
ification step, we are free to customize the utilities of the different expressions. This
flexibility represents the strength of DCMs; note that the utility expressions reported
here are the result of a strong iterative process, where several hypothesis have been
tested and validated, starting from a uniform expression for every alternative, including
all the EDUs. In the final utility functions, only the EDUs corresponding to statistically
significant parameters (t-test statistic against the zero value) are reported, resulting in a
final model with 31 unknown parameters (6 αi and 25 βki). The parameters have been
estimated by maximum likelihood estimation, using the Biogeme package [15]. Bio-
geme is a freeware, open source package available from roso.epfl.ch/biogeme. It per-
forms maximum likelihood estimation and simulated maximum likelihood estimation
of a wide class of random utility models, within the class of mixtures of Generalized
Extreme Value models (see [16] for details ). The maximization is performed using the
CFSQP algorithm (see [17]), using a Sequential Quadratic Programming method. Note
that such nonlinear programming algorithms identify local maxima of the likelihood
function. We performed various runs, with different starting points (a trivial model with
all parameters to zero, and the estimated value of several intermediary models). They
all converged to the same solution. Most of the estimated utility parameters are signifi-
cantly different from zero. Classification is performed running the learned model on the
test set, using the BioSim package (available at the same address as Biogeme). BioSim
performs a sample enumeration on the test data, providing for each of them the utilities
and the choice probabilities for each expression in the choice set. The classification rule
consists in associating each sample with the alternative having the maximum probabil-
ity, whose equation is reported in (7). We can state the classification rule used here as
a soft max principle based on an entropy maximization criterion ([18]). However, such
a (only formal) ’equivalence’ arises on the base of the specific form of the GEV prob-
ability equation. Other discrete choice methods exist (Probit, Logit Kernel, [16, 19])
whose choice probabilities cannot be expressed by an analytical solution, leading to a
more general soft max classification scheme, not related with the maximum entropy
principle.

Learning results The learned parameters show important consistencies with the com-
mon reading of facial expressions in terms of facial component modifications. For space
reasons, we report in Table 3 only a subset of βki estimates.
The parameters β5a represents the coefficient of the 5th EDU (nose eccentricity) for
the anger alternative. Its positive value shows a positive impact on the respective utility.
It means that increasing nose eccentricity corresponds to higher utilities for the anger
alternative. Looking at the definition of this EDU, this is in line with our expectations,
showing that for an anger expression the nose width increases while its height decreases,
with respect to the neutral expression (the reference one in our model). The parameters
β1a represents the eye eccentricity (1st EDU) for the anger expression. A similar inter-



βki estimate t test 0

β5a + 1.238 + 4.298
β1a + 2.067 + 2.018
β10f - 14.69 - 1.871
β10h - 42.64 - 3.440

Sample size = 143
Number of estimated parameters = 30
Null log-likelihood = - 278.265
Final log-likelihood = - 88.317
Likelihood ratio test = 379.896
ρ̄2 = 0.575

Table 3. MNL Part of the estimation results

Expressions Training images Test images
Neutral 26 15

Happiness 20 18
Surprise 21 20

Fear 18 11
Anger 18 17

Disgust 22 17
Sadness 18 17

Table 4. Number of images in the classification
training and test set

Classifiers Classification Rate(%)
DCM 78.261
SVM 76.522
RCA 70.435
LDA 49.565
GDA 62.609
Table 5. Classification rates

pretation holds for this coefficient, in line with observations: the eye movement leads
to a lower eye’s height and a higher eye’s width, with respect to the reference alter-
native. The other two parameters relate the nostrils width with the mouth width. Their
negative sign induces a negative impact on the utilities of fear and happiness. This is
coherent with the data, where for these two expressions we note a characterizing in-
crease in the mouth width, leading to a decreasing nostril-mouth interaction parameter.
The coefficient estimates are significantly different from zero at 95%, with the excep-
tion of the β10f (significant at 90%). We finally report some interesting statistics. The
log-likelihood corresponding to a trivial model (all the coefficients equal to zero) is
consistently increased after the estimation process, rising its value from -278.265 to -
88.317. The likelihood ratio test and the ρ̄2 coefficient are also reported, showing the
good fitting of the estimated model.

4 Experiments

In order to test the proposed approach we use the Cohn-Kanade Database [20]. The
database consists of expression sequences of subjects, starting from a neutral expression



DCM/SVM happiness surprise fear anger disgust sadness neutral Overall(%)
happiness 16/16 0/0 2/1 0/0 0/1 0/0 0/0 88.88/88.88
surprise 0/0 19/19 0/0 1/0 0/0 0/0 0/1 95.00/95.00

fear 1/4 0/0 7/4 2/2 0/0 1/0 0/1 63.64/36.36
anger 0/0 0/0 1/2 10/9 3/1 2/3 1/2 58.82/52.94

disgust 0/1 0/0 0/0 2/2 12/12 0/1 3/1 70.58/70.58
sadness 0/0 0/0 0/0 2/0 0/1 15/14 0/2 88.24/82.35
neutral 0/1 0/0 2/0 1/0 0/0 1/0 11/14 73.34/93.33

Table 6. DCM and SVM confusion matrices

and ending most of the time in the peak of the facial expression. There are 104 subjects
in the database, but only for few of them the six expressions are available. From the
database we extrapolate 3 data sets:

– AAM training set: it consists of 300 images from 11 different subjects; it is com-
posed by 48 neutral images and 42 images for each of the 6 primary emotions.

– Classifiers training and test set: they consist respectively of 143 and 115 appear-
ance masks, as reported in Table 4.

The appearance model is built using 49 shapes modes and 140 texture modes leading
to 84 appearance modes, capturing the 98% of the combined shape and texture varia-
tion. The shape-free texture vector g is compose of 38310 pixels and the shape vector
dimension is 55. Concerning the implementation, we use the AAM C++ code available
at http://www2.imm.dtu.dk/∼aam/. The classifiers used in the comparison procedure
all share the same training and test sets. Their input consists in the EDUs built on the
matched appearance masks. For the other classifiers we implemented the related state
of the art. The SVM (using libsvm with radial basis functions) and DCM classifiers
have been tuned on the common training set. The test experiments reported in Table
5, although preliminaries, could be interpreted as a better transferability of the learned
DCM model over unseen samples. The intuition explaining this behaviour could lie on
the more flexible hypotheses at the base of the DCM approach. The verification of this
intuition will be part of our further investigations.
With the exception of RCA, the performance of the other nearest neighbor classifiers
are significantly lower than SVM and DCM. For this reason we report in Table 6 only
the confusion matrices for the two best performing methods.
A second empiric measure for classifiers performance comparison, related only to their
discriminatory power and not to the recognition rates, has been computed. It is de-
scribed in [21] and we report here a short explanation. For the various methods to
be compared, let m(wc) the mean probability assigned to well classified samples and
std(wc) the relative standard deviation. Similarly, let m(bc) and std(bc) the same values
for the bad classified samples.5 Good classification and bad classification thresholds are
defined as:

5 For the nearest neighbor classifiers the sample distances from the classes have been normal-
ized, in order to sum up to one.



Classifiers opp
DCM - 6.92
SVM - 3.60
RCA - 3.64
LDA - 4.51
GDA - 3.27

Table 7. opp values for the compared classifiers

gctr = m(wc) + std(wc) bctr = m(bc) − std(bc)

Based on these values, an overall performance parameter is defined as:

opp =
gctr − bctr

m(bc) − m(gc)
(9)

measuring how well a classifier discriminates. For a robust method we expect an opp
value as low as possible. If the value of opp is negative, the gctr and bctr thresholds
are well separated. In Table 7 we report the opp values for the tested classifiers. In
order to visualize the discriminatory power for DCM and SVM, it is worth to show, for
each set of correctly classified samples, the mean values of the probabilities assigned
to each of the other classes, as shown in Figure 2. The plots confirm the better class
discrimination performed by the DCM classifier, resulting in a sharper shape of the
output probabilities.

5 Conclusions and future works

In this paper we propose a new classifier based on discrete choice analysis and a set
of expression descriptive units for facial expression representation. Both the feature set
and the modeling approach are motivated by the research of methods able to bring into
the process the modeler prior knowledge. The set of the proposed EDUs is suitable be-
cause intuitively related to static expressions, describing the salient facial components
and their mutual interactions. The DCM modeling approach redefines facial expres-
sion classification as a discrete choice process, which well matches the human observer
labelling procedure. Prior knowledge can be included in the process customizing the
utilities. The result of the DCM is a set of probabilities assigned to the alternatives, rep-
resented by the possible expressions. The one with the maximum probability is chosen
for classification. We compared the DCM classifier with several other methods, finding
that only the SVM has comparable performance. However, the more flexible properties
of DCM lead to better results of this approach both in terms of classification rate on new
data and discriminatory power. We are currently working to include in the model both
the expression dynamics and the variation in a population of individuals performing the
labelling task. Based on our experience, we think that a subjective component biases the
labelling process, requiring a detailed statistical analysis on collected data from an het-
erogeneous population of human observers. DCMs, coming from econometric, provide
a strong statistical framework to include such a heterogeneity.
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(c) RCA
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(d) LDA
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(e) GDA

Fig. 2. Mean class probabilities for correct classification


