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Abstract

This report presents a new method to confront the Blind Audio Source Separation (BASS)
problem, by means of audio and visual information. In a given mixture, we are able to
locate the video sources first and, posteriorly, recover each source signal, only with one
microphone and the associated video.

The proposed model is based on the Matching Pursuit (MP) [18] decomposition of both
audio and video signals into meaningful structures. Frequency components are extracted
from the soundtrack, with the consequent information about energy content in the time-
frequency plane of a sound. Moreover, the MP decomposition of the audio is robust in
front of noise, because of its plain characteristic in this plane. Concerning the video, the
temporal displacement of geometric features means movement in the image. If temporally
close to an audio event, this feature points out the video structure which has generated
this sound.

The method we present links audio and visual structures (atoms) according to their
temporal proximity, building audiovisual relationships. Video sources are identified and
located in the image exploiting these connections, using a clustering algorithm that rewards
video features most frequently related to audio in the whole sequence.

The goal of BASS is also achieved considering the audiovisual relationships. First,
the video structures close to a source are classified as belonging to it. Then, our method
assigns the audio atoms according to the source of the video features related.

At this point, the separation performed with the audio reconstruction is still limited,
with problems when sources are active exactly at the same time. This procedure allows us
to discover temporal periods of activity of each source. However, with a temporal analysis
alone it is not possible to separate audio features of different sources precisely synchronous.

The goal, now, is to learn the sources frequency behavior when only each one of
them is active to predict those moments when they overlap. Applying a simple frequency
association, results improve considerably with separated soundtracks of a better audible
quality.

In this report, we will analyze in depth all the steps of the proposed approach,
remarking the motivation of each one of them.
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Chapter 1

Introduction

1.1 Problem Statement

It is relatively easy for a human to correctly interpret a scene consisting on a combination
of acoustic and visual stimuli and to take profit of both the information to experience
a richer perception of the world. On the contrary, computer systems have considerable
difficulties when having to deal with multimodal signals, and the information that each
component contains about the others is usually discarded.

Audio and video modalities experiment synchronous changes when these variations
are caused by the same physical phenomenon. This observation is the basis of the
proposed model. Assessing the temporal correspondence between audio and video parts
of the audiovisual sequence, we have the key to discover the relationships between both
modalities and to obtain the maximum of information.

The previous research work performed by Monaci, Divorra and Vandergheynst [19]
explored the capabilities of redundant parametric decompositions to describe audiovisual
sequences. These techniques allow to interpret signals in terms of their most salient
structures, preserving good representational properties thanks to the use of redundant, well
designed, dictionaries. In this way, it is possible to combine audio and video representations
using simple and intuitive, but effective, criteria.

Our project starts from this point. Only with the received signal of one single
microphone and the video associated we are already able to spatially locate the active
speaker of an audiovisual sequence.

The objective of our research is to perform a kind of Audiovisual Separation. First,
we want to separate and reconstruct the video sources combining information of both
modalities. Once located the video sources on the image, we only have to reconstruct
them by assuming that the structures close to a source belong to it. Second, the goal is to
perform a Blind Audio Source Separation (BASS) aided by video. This kind of Audiovisual

3
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separation was already studied by Smaragdis in [29], but in this case the objective of BASS
is much more ambitious for the complexity of speech signals.

The previous approach [19] lost a lot of information, since it only used the energy
feature in the audio part. Thus, we think it is possible to perform a good BASS by
incorporating audio processing. Then, in order to achieve this ambitious second objective,
we characterize the audio signal with a redundant parametric decomposition (the Matching
Pursuit technique [18]).

1.2 Proposed model

The proposed model is based on temporal synchrony between audio and video relevant
events. We assume that one observed physical phenomenon is generated by changes
temporally close in both features. For example, in our case it is clear that speech is
caused by a moving mouth, both events are synchronous and clearly related.

Therefore, the correspondence between both features can be evaluated with a temporal
analysis. The proposed model looks for related audiovisual features that characterize the
sequence to posteriorly analyze them and extract the maximum information to achieve our
purpose.

1.2.1 Audio and video representation

We have discussed before about the synchrony between audio and visual relevant events,
but what are these events we want analyze? Why have we chosen these events and not
others? What makes them relevant?

Concerning the video signal, we use redundant parametric decompositions as in the
previous research work [19]. Therefore, the Matching Pursuit (MP) algorithm proposed by
Divorra and Vandergheynst [10] is used to represent the video signal.

The sequence is decomposed into a set of 2-D atoms evolving in time. Relevant
geometric video components are represented and their temporal transformations tracked.
The video sequence is represented by meaningful unities, while other pixel-based analysis
have no visual global sense, representing a poor source of information.

This MP tracking algorithm characterizes the whole video signal with 6 parameters
describing the temporal evolution of the atoms. They are characterized by: a coefficient,
x position, y position, x scale, y scale and the angle of rotation.

The most important feature concerning our analysis is the variation of x and y position
parameters (modulus of displacement of atoms). This feature represents the modification
of the video atom situation in the image, and quantifies the movement present in the scene.
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As a result, the relevant events in the video part are the peaks in the video atoms
displacement.

Regarding the audio, we also perform the Matching Pursuit decomposition of the
signal, obtaining the resultant features in the time-frequency plane with the LastWave
software [1]. In this case, the elements coincide with the audio formants or the signal
frequency components.

Another advantage of this representation is the robustness in front of noise. The
plain characteristic of this element causes the apparition of audio atoms spread across
the time-frequency plane. However, the structures presents in the original signal are still
recognizable, due to the higher concentration of their energy in the time-frequency domain.
Thus, while important structures in the original signal are always represented (they are
chosen in the first iterations of the algorithm), part of the noise is filtered out.

This audio decomposition has a lot of output parameters, but the proposed model
uses only the time and frequency index, the windowSize used and the coefficient (energy of
the audio atom). However, the most important is the temporal situation, as our analysis
is based in the audiovisual correlation in this domain.

In the previous research work only the energy of the audio signal was used in the
analysis. This is the reason why this model has much more possibilities of discovering the
relationship between audio and video and extract the joint information they contain.

1.2.2 Procedure

The first goal to achieve is, like in the previous work of Monaci, Divorra and Vandergheynst,
to detect the speakers in an audiovisual sequence. As in [19], we will perform the speaker
detection task exploiting the temporal synchrony between audio and visual events, but now
the concept of event changes for the acoustic signal. As a result, it is necessary to change
the analysis principles.

In the previous work, there was only one feature that characterized all the audio signal,
and the algorithm looked for the video feature more correlated and decided wether it was
the cause of the audio event or not.

Now, each element of the audio decomposition has a feature associated. So, our
method looks for the video features temporally correlated to each one of the audio ones
(audio and video atoms assignation). Then, the video atoms related to higher number of
important (high energy) audio atoms have more possibilities to belong to one speaker’s
mouth. A clustering algorithm groups these video atoms and calculates their centroid,
estimating, thus, the spatial position of the video sources.
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Then, the most important part and the next objective of this research work is to
perform the Blind Audio Source Separation aided by video information. In our
sequence, we want to extract separately the signals that form the audio mixture.

Our method confronts these problem with the same information extracted from the
previous temporal analysis. At the end of the last part, we already know: the relationship
between audio and video atoms, with a correlation score measuring the synchrony between
them, the 2-D position of the sources over the image plane, and the video atoms belonging
to each speaker (defining a maximum distance in pixels from the mouth).

The method classifies each audio geometric feature in one of the sources, according
to which source the video atoms related to it belong. Therefore, if the majority of these
video elements with highest correlation score belong to one source, logically the acoustic
atom will belong to the same source.

The last part lies in reconstructing the audio signal of each source by adding the
energy distribution of all the audio atoms belonging to this source.

The implemented method allows us to separate quite well the mixture. The main
problem at this step of the processing is that the performed analysis is only temporal and,
as a result, our method is incapable of distinguish between two speakers when they are
speaking exactly at the same time (audio atoms with the same time index). However, at
this point we have already temporally separated the mixture, detecting clear periods with
only one active source. The goal is to learn the frequency behavior of each one of the
speakers in these periods in order to, posteriorly, predict them when they are mixed.

Therefore, a complementary frequency analysis is performed in order to improve the
present results. The audio features are situated in the time-frequency domain, and we were
not exploiting the information present in this second dimension to perform the BASS. Our
algorithm assigns the frequencies to the sources when they are alone (known cases) to later
classify the audio atoms into one of them when they are mixed. The past experience gives
us the key for future and more difficult situations.

Results show an important improvement in the Blind Audio Source Separation with
the addition of this frequency analysis. Now, the algorithm is able to separate both in time
and frequency, and a good BASS is performed.

The investigated approach is tested on a set of real-world sequences taken from the
CUAVE database [21], in order to test the proposed model in a multi-modal context.

To summarize, obtained results demonstrate that is possible to perform a good
Audiovisual Source Separation through a multimodal analysis, extracting the mutual
information between audio and video features. However, an adequate representation
pointing out relevant events is necessary.
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1.3 Report organization

This report is organized as follows. In Chapter 2, the previous work in the two main aims
of the proposed model are reviewed. Several methods to perform speaker localization based
on audio-visual synchrony, and Blind Audio Source Separation are explained. Chapter 3
describes the pre-processing performed to the audio and video part of the sequence, jointly
with the motivations of the MP decomposition. The phases of the temporal analysis are
carefully detailed and illustrated in Chapter 4: first, locate the sources, then, separate and
reconstruct them, and, finally, carry out the BASS aided by video. Chapter 5 describes
the frequency analysis applied to complement the temporal one when several sources are
active exactly at the same time. In Chapter 6 the CUAVE database and the methodology
of the analysis are presented. The obtained results are evaluated and discussed. Finally,
the conclusions and future work are analyzed in Chapter 7.
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Chapter 2

Related Work

This research work is based on the previous one by Monaci, Divorra and Vandergheynst
[19], which explored the capabilities of redundant parametric decompositions to describe
audiovisual sequences. These representations show the temporal evolution of the most
salient structures in both audio and video modalities, and, through an analysis to detect
multimodal synchronous relevant events, they allow to locate in the image the sources of
a given soundtrack.

This report presents an extension of this algorithm in order to aspire a higher
objectives. Now we introduce a new concept, the Audiovisual Separation, which is
achieved by exploiting the information contained in audio and video to perform a kind
of separation in each one of these modalities. First, as in the previous work [19], we use
multimodal relevant events, that is, the audio and video events generated by the same
physical phenomenon, in order to locate the video sources in the image. The visual
separation goal, which is the first part of the process, is achieved using audiovisual
synchrony. In this research work, the information relative to the speaker situation is
employed to determine which are the visual structures that generate the soundtrack (those
structures that are close to the detected speakers mouth) and reconstruct them separately.
Then, the innovation introduced by the present model consists on the analysis of these
multimodal relevant events in order to perform a Blind Audio Source Separation.
Therefore, the algorithm exploits the video information to separate the audio signals
corresponding to each source that are present in the mixture.

The proposed model achieves a satisfactory Blind Audiovisual Source Separation
analyzing the multimodal information extracted from one microphone soundtrack and the
video signal associated. Unlike most of the techniques for achieving Blind Audio Source
Separation, we do not use arrays of microphones. Therefore, we can consider, concerning
the audio analysis, that we are facing a Single Channel Source Separation, but employing
also the video information.

9
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As a result, taking into account the different parts of the Audiovisual Separation
process and the limited literature on this multimodal separation field, the state-of-the-art
is divided in three sections. In the first one, we show the evolution of the research works
on source localization using audio and visual information. The second one contains the
main motivations to perform the speaker detection task in a different way, that is, we focus
our work in the audio and video representations and not in building complex pixel-wise
models. This section also provides the summary of the main characteristics of the previous
research work [19], and the differences between this approach and the model proposed
in this report. Finally, an overview of the related work performed in the Single Channel
Source Separation field is exposed.

Next, we describe the related work performed in these three fields, with a brief
description of the problem, a general overview over the proposed algorithms, and, finally,
the description of some representative approaches.

2.1 Source localization using multimodal signal

analysis

The problem we confront here is that of detecting those audiovisual events generated by
the same physical phenomenon by means of the information present in both modalities.
Thus, a temporal analysis has to be performed in order to assess the synchrony between
audio and video events, build these multimodal structures and localize the present sources
in the image. However, the construction of these audiovisual pairs is a difficult task due
to the different and complex nature of the signals to analyze.

In this section we will first do a fast chronological overview of the related work in
the source localization field to later explain in detail four of the most representative
approaches already mentioned.

Hershey and Movellan [13] were the first to propose a method to locate the sound
sources in an image. This work was inspired by psychophysical and physiological evidence
[3,9] that the human spatial localization of acoustic signals is strongly influenced by their
synchrony with visual stimuli (ventriloquism effect). In [13], this synchrony is defined as
the degree of mutual information between the energy of a soundtrack and the intensity of
single pixels, which introduces the hypothesis that pixels are independent conditioned on
the speech signal. Assuming that the joint statistics of audio and video are Gaussian, the
mutual information between both features (pixels intensity in video and energy evolution
in audio) is computed by means of the Pearson correlation coefficient.

In [28], Slaney and Covell generalize this approach and look for a method that is
able to measure the synchrony between audio signals and video facial images. Canonical
Correlation Analysis, which is equivalent to maximum mutual information projection in the
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jointly Gaussian case, is used to deduce the multimodal relationship between the cepstral
coefficients of the audio signal and the value of single pixels for the video.

Nock et al. consider in [20] two mutual information approaches, one assumes
discrete distributions and the other one multivariate Gaussian distributions, and one third
algorithm that uses Hidden Markov Models trained on audiovisual data. The objective is
evaluate the consistency of these three different approaches. Audio features are extracted
from Mel-frequency cepstral coefficients, while different video features are tested: the
coefficients of the discrete cosine transform (DCT) and the pixel intensity changes. All
three methods utilize training corpus in order to build a priori models, like the methods
proposed in [13,28].

Recently, more general algorithms based on information theoretic features
optimization have been introduced.

Butz and Thiran [7] propose an approach based on Markov chains modeling audio
and video signals. The audiovisual consistency is assessed by maximizing the mutual
information between audio and video features, where the distributions of such features
are estimated using nonparametric density estimators. The video is represented by pixel
intensity change and the audio feature is the linear combination of the power spectrum
coefficients that brings biggest entropy. The framework developed in [7] is used in [4], to
extract optimal audio features with respect to video features. These audiovisual features
are then correlated by maximizing their mutual information, in order to locate the active
speaker among several candidates.

A similar multi-modal fusion framework was proposed by Fisher et al. [15] and has
been extended in their latest work [8]. The algorithm is based on a probabilistic generation
model that is used to define projection rules on maximally informative subspaces. The
learnt densities are used to define the relationship between different signal modalities
using a nonparametric density estimator. This approach is used to solve a conversational
audiovisual correspondence problem, obtaining encouraging results.

In [29], a slightly different approach is used to find, in a joint manner, an optimal
modeling and fusion criteria of data. Principal Components Analysis and Independent
Component Analysis are performed on audio and video features at the same time, in order
to find the maximally independent audio-video subspaces, and thus extract audiovisual
independent components. However, this technique is not able to deal with dynamic scenes.

2.1.1 Hershey and Movellan approach

The method introduced by Hershey and Movellan [13] in 1999 is based on the observation
of the ventriloquism effect. This effect causes a mislocation of sounds toward their apparent
visual source and depends strongly on the degree of synchrony between both signals [3,9].
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The synchrony is measured as the mutual information (MI) between the average acoustic
energy and the intensity of single pixels.

Modeling audiovisual signal as a non-stationary Gaussian process, the MI between
audio and video features (a(t) and v(x, y, t) respectively) can be written as follows:

I(A(tk); V (x, y, tk)) =
1

2
log(1− ρ2(x, y, tk)) (2.1)

where ρ(x, y, tk) is the Pearson correlation coefficient between A(tk) and V (x, y, tk)

This approach chooses, for each frame, the pixels with maximum MI, which correspond
to different parts of the current speaker face as shown in Fig. 2.1. As a result, a centroid
weighted by the estimated MI is computed in order to estimate the speaker position.

Figure 2.1: Estimated mutual information(MI) between pixel intensity and audio intensity
(bright areas indicate greater MI) overlaid on stills from the video where one person is in
mid-utterance, girl (left picture) and boy (right). These images are taken from [13].

To calculate the next frame centroid, a Gaussian influence function [11] is employed,
that is, this function reduces the weight given to MI from pixels far from the current frame
centroid. A threshold is introduced to reduce the effects of background noise, such as
camera and microphone jitter. Thus, the speaker estimated position is computed with:

Ŝx(t) =

∑
x

∑
y x θ(log(1− ρ̂2(x, y, t)))ψ(x, Ŝx(t− 1))

∑
x

∑
y θ(log(1− ρ̂2(x, y, t)))ψ(x, Ŝx(t− 1))

(2.2)

where Ŝx(t) represents the estimate of the x coordinate for the position of the speaker at
time t. θ(.) is the thresholding function, and ψ(x, Ŝx(t−1)) the influence function. Finally,
ρ̂2(x, y, t) is the estimate of the correlation when using the past 16 video frames.

The main limitation of this method concerning the video representation is that changes
in fundamental frequency are not captured if they do not affect the average energy.
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2.1.2 Nock approach

Nock et al. evaluated in [20] (2003) the performances of three different algorithms for
assessing face and speech consistency using audiovisual synchrony:

Gaussian MI Assumes continuous multivariate Gaussian distributions.

Discrete MI Assumes discrete distributions.

Audio-visual Likelihood (”AV-LL”) Uses Hidden Markov Models (HMMs) trained on
joint sequences of audiovisual data. Unlike the other two generic algorithms, this
one is an specific measure and requires that audio correspond to speech and images
contain faces.

Like [13,28] methods, all three algorithms require training datasets to build a priori models.
Existence of good face and speech detection is assumed. Audio features are Mel-frequency
cepstral coefficients (MFCCs). Concerning video, a normalized mouth region-of-interest
(ROI) is extracted of each frame and compressed using a discrete cosine transform(DCT).

This approach concludes that Gaussian MI obtains significantly better results than the
other two algorithms in identifying the active speaker, but not in determining the degree
of synchrony (can not distinguish between voiceovers and monologues).

Nock et al. also compare also the performances of Gaussian MI if the video feature is
related to pixel intensities or pixel intensity changes, the second one defined as:

F IC(x, y, t) =
1∑

l,m=−1

F (x + l, y + m, t + 1)− F (x + l, y + m, t− 1) (2.3)

where F (x, y, t) is the original image.

Results evaluated in one sequence of CUAVE database are shown in Fig. 2.2. As
desired, mutual information in 2.2(b) is highest around speaker’s mouth and jawline.

(a) (b)

Figure 2.2: Mutual Information Images: (a) Pixel Intensities (b) Pixel Intensity Changes.
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Finally, under the assumptions of known number of speakers in known regions
without background motion, pixel-wise Gaussian MI performance is close to two video
only techniques: Intensity Change Image Sums that compare the total pixel intensity
changes on the left and right halves, and Intensity Change Image X-Projection Peak that
chooses the column with maximum sum of intensity changes.

2.1.3 Fisher and Darrell approach

Fisher and Darrell proposed in [8] a general information-theoretic approach to identify
cross-modal correspondences without any assumption about the content of the audio and
video signals. It presents a probabilistic model for audiovisual signal generation, and
demonstrate that correspondences in both modalities can be discovered by applying lineal
projections that maximize the mutual information of the derived measurements.

This technique uses the probabilistic models of audiovisual fusion described in
Fig. 2.3. B represents the joint source (audio and video), while A and C represent
the background interferences in each single modality. {Xa, Xv} are the audio and video
observations respectively.

Figure 2.3: Graphs illustrating the various statistical models exploited by the algorithm:
(a) the independent cause model– Xa and Xv are independent of each other conditioned on
{A,B, C}; (b) information about Xa contained in Xv is conveyed through joint statistics
of A and B, (c) the graph implied by the existence of a separating function, and (d)
two equivalent Markov chains which can be extracted from the graphs if the separating
functions can be found.
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Supposing that decompositions of the measurement Xa and Xb exist such as the
model can be represented as in Fig. 2.3(c), then there is no influence due to A or C, the
interferences. Thus,

I(Xa
B; I(Xv

B)) ≤ I(Xa
B; B)I(Xa

B; I(Xv
B)) ≤ I(Xv

B; B) (2.4)

and, processing this inequality, the following conclusion can be extracted: maximizing
separate projections of the audio-video measurements with high mutual information we
are also maximizing a lower bound on I(Xa

B; I(Xv
B)).

After this demonstration, projections that maximize the mutual information of the
derived measurements have to be estimated, and can be parameterized as:

yv
t = hT

v xv
t (2.5)

ya
t = hT

a xa
t (2.6)

where xv
t and xa

t are lexicographic samples of images and periodograms, respectively, of an
A/V sequence. The linear projections hT

v and hT
a map A/V samples to low dimensional

features yv
t and ya

t .

Computing hv can be divided in three stages:

1. Prewhiten the images using the inverse of the average spectrum once followed by
iterations of

2. Updating the feature values yv
t

3. Solving for the projection coefficients using least squares and an L2 penalty in order
to introduce a capacity control mechanism.

The projection coefficients related to audio ha are solved in the same form but without the
prewhitening step.

Results are shown in Fig. 2.4. This approach can detect which speaker is active when
several are facing a device and distracting motion is present, and without making any
assumptions about acoustic or visual models.

2.1.4 Smaragdis approach

Smaragdis and Casey proposed in [29] (2003) a statistical method that operates in a fused
dataset, without distinguishing between the auditory and visual data. Thus, audiovisual
features corresponding to relevant events are extracted jointly from the stream, while other
approaches as those presented in [4, 7, 8, 13, 20, 28] only correlate the auditory with visual
cues.



16 CHAPTER 2. RELATED WORK

Figure 2.4: Video sequence containing one speaker (person on left) and one person who is
randomly moving their mouth/head (but not speaking): (a) one image from the sequence,
(b) pixel-wise image of standard deviations taken over the entire sequence, (c) image of
the learned projection, hv, and (d) image of hv for incorrect audio.

The soundtrack is processed by a short term Fourier transform, obtaining a time-
frequency representation f(t), and the video frames are reshaped as vectors m(t). Audio
and visual streams are treated as one set of data and combined into one vector:

x(t) =

[
α · f(t)
β ·m(t)

]
(2.7)

where the two scalars α and β are used for variance equalization (results influenced more
by video or audio components depending on their values).

The procedure is divided in two steps:

Dimensionality reduction Is performed by principal components analysis (PCA) over
x(t) with zero mean, a linear transform Wo that projects the input to make it
orthonormal:

xo(t) = Wo · x(t), (2.8)

so that E{xo · xT
o } = I. Then, the algorithm keeps the first few dimensions with

maximal variance, so that xr(t) = x1...m
o (t) and Wr(t) = W1...m

o (t).

Independence transform This step employs independent component Analysis (ICA)
[14], which ensures that the the output will be maximally statistically independent.
The linear transform is represented as

xi(t) = Wi · r(t), (2.9)
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where Wi is estimated using a natural gradient algorithm.

The two steps can be described by the linear transformation W = Wi ·Wr. And, to get
a better idea of what the component bases W mean, we can rewrite the equation to show
the audio and video parts:

xi(t) = W · x(t) ⇒
[

fi(t)
mi(t)

]
= [Wa,Wv] ·

[
f(t)
m(t)

]
(2.10)

We can visualize the results of a simple video example in Fig. 2.5. For the audio, the
rows of Wa representing spectral profiles are plotted, and, to visualize de video component
bases, each row of Wv reshaped to the size of input frames is represented. The component
weights xi(t) indicate the presence of each audiovisual component through time.

Figure 2.5: Simple video example. The left plot is a spectrogram of the soundtrack, which
consists of two periodically gated sine waves. The audio segment of the component bases
Wa is shown at the top right plots, and video segment Wv at the middle right. The
component weights xi(t) are shown on the bottom right.

This approach has good results in static scenes, but it has problems with dynamic
ones. An object moving through the image cannot be tracked by only one component and,
as a result, it will be distributed among many visual bases.

2.2 Why we perform the source separation in a

different way?

As we have explained before, this research work is based on the previous one performed by
Monaci, Divorra and Vandergheynst [19]. This work was also placed in the field of source
localization using multimodal signal analysis, but now with a different sight.
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In contrast to the previous works in this field, in [19] the attention is focused on
modeling the audiovisual sequence. This is because of the fact that features employed in
the other approaches (pixels) are poorly connected with the physics of the problem, so
that a huge and barely meaningful amount of data has to be analized. In this algorithm,
the scene content is described concisely, with a video decomposition into geometric 2-D
features evolving from frame to frame. These features describe the visual content of the
scene: when they experiment a movement what is moving is one structure representing
a part of a real object, while a change in the intensity of one pixel have no global visual
sense alone.

Such a representation allows the design of a intuitive audiovisual fusion criteria that
do not require the formulation of any complex statistical model describing the relationships
between both modalities. Thus, unlike the previous works in this field, the computational
cost is not very high as the dimensions of the problem have been significantly reduced.

In this research work, we use the same video features than [19], but now we exploit the
time-frequency characteristics of the audio sequence instead of using only the soundtrack
energy. This change affects both the audio representation and the fusion criteria applied
posteriorly, as we are adding information and dimensions in order to achieve more ambitious
objectives. Before, there was only one feature for the audio, its energy. Now, the energy
distribution of the audio in the time-frequency plane is captured by several audio features
(atoms). Therefore, the new fusion criteria has more dimensions to analyze, since it
evaluate the synchrony between each video and audio feature.

In the following subsection we scarcely explain the research work of Monaci, Divorra
and Vandergheynst [19] as it is on this algorithm that the proposed model is based.
Moreover, the importance of this approach consists in confronting the source localization
problem in a innovative way, and with successful results.

2.2.1 Monaci, Divorra and Vandergheynst Approach

In [19], Monaci, Divorra and Vandergheynst model audiovisual data in order to reduce
dimensionality and using only relevant signal information for the speaker localization
objective.

For the video representation, this approach employs the MP algorithm proposed
by Divorra and Vandergheynst in [10]. The video sequence is decomposed into a set of 2-D
atoms evolving in time, tracking, thus, temporal transformations of salient geometric video
components, that is, transformations that represent changes in the scene. The procedure
is the following:
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1. First frame of the sequence is decomposed over a redundant dictionary of 2-D atoms

I =
∑

γi∈ Ω

cγi
gγi

, (2.11)

where cγ corresponds to the projection coefficient for every atom gγ and Ω is the
subset of selected atom indexes from the dictionary.

2. For each frame we decompose it as for the first one, and the algorithm tries to track
the video atoms in the image through time, that is, it tries to find in the new frame the
video atoms presents in the last one. Thus, changes can be modeled as It+1 = Ft(It),
where Ft represents the set of transformations experimented by the video atoms from
frame to frame.

Each video atom is characterized by 6 parameters, but this approach uses only the x and
y positions as a measure of the video atoms displacement, which means movement in the
scene.

Concerning the audio representation, the MP algorithm for 1-D signals [18] is
used. The audio signal a(t) is decomposed over a dictionary of Gabor atoms DA. In each
iteration, the MP algorithm chooses the atom in the dictionary gγi in DA that maximizes
the projection |〈a, gγi〉| in order to minimize the residual part after the approximation of
a(t) in the subspace described by gγi. Thus, after N iterations

a =
N−1∑
n=0

< RNa, gγn > gγn + RNa, (2.12)

where R0 = a and RNa is the residual part after n iterations. The audio feature analyzed
in the fusion criteria is the average of the energy present at each time instant after perform
the MP decomposition.

The fusion criteria is shown in Fig. 2.6. The algorithm looks for audio energy peaks
temporally correlated to video displacement peaks in order to build audiovisual meaningful
structures. Scalar product is employed to measure the correlation between features in both
modalities: one audio feature representing the energy of the soundtrack along time, and
several video features showing the evolution of each video atom from frame to frame. The
algorithm select the video atoms with highest Synchronization Score (output value of the
scalar product).

Results involving two active speakers are shown in Fig. 2.7. This approach is able to
locate the mouth of the active speaker in an audiovisual sequence, and the accuracy results
are better than the obtained in the previous research works.
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Figure 2.6: Scheme of the audiovisual fusion criterion proposed by Monaci, Divorra and
Vandergheynst. The audio energy peaks and the displacement peaks for each video atom
are extracted and activation vectors are build. The Synchronization Scores between the
audio activation vector and the video activation vectors are computed as the scalar product
between those signals.

Figure 2.7: Four frames taken from a clip with two speakers in front of the camera taking
turn in reading digit string. In the first two frames the right person is speaking, while in the
last two the left one is speaking. The footprint of the most correlated atom is highlighted
in white. The mouth of the correct speaker is detected.

2.3 Blind Audio Source Separation

The most difficult step of this research work is the Blind Audio Source Separation (BASS).
The problem of the BASS consists in separating the audio signals present in a given mixture.
Existing solutions to this problem generally require microphone arrays and prior knowledge
of the sources, but that is not our case. We want to perform the BASS only with one
microphone and the video signal associated.

There are not a lot of studies in the field of BASS using audiovisual information,
and therefore, we focus on the related work performed in the case of BASS with only one
microphone. The temporal analysis of the proposed model determines the time instants
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with only one source is active. Thus, when both of them are active at the same time we
can consider we are facing a Single-Channel Source Separation with the prior knowledge
achieved in the temporal periods with only one active speaker.

This is a new, hard an still open problem, first time faced by Roweis in [26] (2000).
When only the input signal of one microphone is available, simple generic assumptions
do not suffice. For the Single-Channel Source Separation task is necessary to model
different characteristics of the speech signal, such as the spectral envelope, the fundamental
frequency or the temporal continuity. These known cues for the speech separation [5, 6]
have to be taken into account in order to build models that face this problem.

The main limitation of the Single-Channel Source Separation methods is the necessity
of noticeable differences between the sources spectrum. Their energy must be distributed
in a different way in the time-frequency plane, as it is in this domain that this methods
operate. This is the reason why in this field, and in the BASS field in general, the
performances of the developed approaches are tested with mixtures of one boy and one girl
speech.

The existent research works relative to the Single-Channel Source Separation can be
divided into two main groups according to their blindness:

Generative: Approaches in this group build their models according to the present
speakers in the mixture, that is, for each mixed speaker the algorithm is trained
in sequences where only he or she is speaking. Thus, these works are situated in a
non blind context. First approaches in this field belong to this group [16, 24, 26, 27].
The problem is that if the model is too simple, it does not separate, while, on the
other hand, if the algorithm is too complex we are facing an intractable inference of
huge dimensionality.

Discriminative: These approaches focus in the spectral separation task instead of
building complex models for each speaker. They try to exploit the sparsity of speech
signals in the time-frequency domain, and do not have any prior knowledge about the
present speakers in the mixture. Examples of algorithms in this blind group are [2,25].

Next, we describe the chronological evolution of the research works in the Single-
Channel Source Separation field.

The first approach to face the problem was proposed by Roweis in [26]. This technique
use a factorial Hidden Markov Model (FHMM) trained in sequences where the speakers
present in the mixture are recorded alone. Through HMM, binary mask functions are
computed for each frequency sub-band and applied to the mixture in order to extract the
original signal of each speaker. In [27], Roweis introduce to his previous model a factorial-
max vector quantization (MAXVQ), which combines the outputs from the various causes
and adds non-negative noise.
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Jang and Lee proposed in [16] a new technique that utilizes the time-domain ICA basis
functions previously learned from a training database which consists in sequences where
the speakers in the mixture speak alone. This method recovers original signals through
gradient-ascendent adaptation steps to found the maximum likelihood estimate.

In [24], Reyes-Gomez reduce the dimensions of the problem raised in [26] by dividing
the spectral representation of the source signals into multiple sub-bands, that is, multiple
parallel horizontal sections of the speactrogram. Then, this approach computes a separate
HMM to model each band, requiring many few states per model and, for comparable
computation expense, can achieve more accurate signal separations than full-band models.
This model also presents an interesting basis for learning source models directly from mixed
signals, since there are more opportunities to find a time-frequency space with the energy
of only one speaker. This observed characteristic is exploited by the same authors in [25].
This approach captures local deformations of the time-frequency energy distribution and
describes each frame with a lineal transformation applied to its predecessor. The spectrum
is analyzed as the addition of harmonics and formant structure and no prior models about
the present speakers are necessary.

A different approach is proposed by Bach and Jordan in [2]. This algorithm builds
affinity matrices combining classical cues for from speech psychophysics [5, 6]. These
matrices are employed to define a spectral segmenter, which, applied to the mixture,
performs the speech separation with one signal channel and without prior knowledge about
the speakers.

A selection of the most representative approaches in the Single-Channel Source
Separation field are described in the next subsections.

2.3.1 Roweis Approach

The method introduced by Roweis in [26] (2000) has an important relevance as it was
the first work in Single-Channel Source Separation. The proposed algorithm employs a
Factorial Hidden Markov Model (FHMM) system which is trained in one speaker sequences
to later separate mixtures of known speakers using only one audio signal. That is achieved
by computing binary masking functions of frequency sub-bands through HMM and then
refiltering the mixed signal.

The concept of refiltering is introduced. Unmixing algorithms try to reweight output
signals from the microphones to estimate the original source, using coefficients constant
over time for the weights. On the other hand, refiltering techniques reweight multiband
signals with masking signals, that is, the coefficients are no longer constant over time.
Thus, the estimated source can be represented as

s(t) =
K∑

i=1

αi(t)bi(t) (2.13)
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where bi(t) are the multiband signals and αi(t) the masking signals for each sub-band. This
refiltering concept is illustrated in Fig. 2.8.

Figure 2.8: The refiltering approach to one microphone source separation. Multiband
analysis of the original signal y(t) gives sub-bands signals bi(t) which are modulated by
masking signals αi(t) (binary or real valued between 0 and 1) and recombined to give the
estimated source or object s(t)

This unsupervised model first trains speaker dependent hidden Markov models (HMM)
on sequences with only one talker, and fits, thus, a simple HMM for each present speaker
in the mixture. Then, these models are combined into the factorial hidden Markov model
(FHMM) shown in Fig. 2.9 in order to perform the separation task. A FHMM consists on
two or more Markov chains (this approach uses only two) that evolve independently. At
each time,each chain proposes an output vector, axt and bzt , and the algorithm choses the
elementwise maximum of the proposals.

Figure 2.9: Factorial HMM with max output semantics. Two Markov chains xt and zt

evolve independently. Observations yt are the elementwise max of the individual emission
vectors max[axt ,bzt ] plus Gaussian noise.

Therefore, the binary masking signal is computed as

αt(i) = 1 if ax̂t(i) > bẑt(i) and 0 if ax̂t(i) ≤ bẑt(i) (2.14)

This masking signal is later applied to the mixture to obtain the separated signals in the
refiltering step.
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2.3.2 Bach and Jordan Approach

Bach and Jordan faced in [2] (2004) the problem of the single-channel speech separation
by segmenting the spectrogram of the signal into two or more disjoint sets, depending
on the number of speakers in the mixture, and without modeling individual speakers
as done in the previous works in this field [16, 26]. The proposed algorithm combines
classical cues from speech psychophysics [5, 6] into parameterized affinity matrices, which
are employed to define a spectral segmenter. To adjust the parameters of the affinity
matrices a learning algorithm trained with any speaker, in other words, it is not necessary
to train the algorithm with the present speakers in the mixture, and this can be considered
a really blind separation algorithm.

This approach takes into account the classical cues for speech separation [5,6] in order
to build the parameterized affinity matrices. These cues are associated to different time
scales depending on their duration in frames: small, medium and large. The speech cues
are divided into two groups

Non-harmonic cues Similar to vision cues.

• Continuity If two time-frequency points are close in one of both modalities, they
are likely to belong to the same segment. Features: time and frequency. Time
scale: small.

• Common fate cues Elements that exhibit the same variation (both in time or
in frequency) are likely to belong to the same source. The features are captured
using oriented filters. Time scale: medium.

Harmonic cues They act at all time scales: small, medium and large.

• Pitch estimation Several pitches are estimated

• Timbre Spectral envelope of the signal. Feature: reduced dimensionality of
spectral envelope using principal component analysis.

• Building feature maps from pitch information A set of features is built from the
pitch information.

From each one of this features, a basis affinity matrix is defined as Wj(βj), where βj

is a parameter. For non-harmonic features

Wab = exp(−‖fa − fb‖β) (2.15)

where fa is the value of the feature for data point a and β > 1. On the other hand, for
harmonic features the proposed method takes into account the strength of the feature

Wab = exp(−|g(ya, yb) + β3|β4‖fa − fb‖β2) (2.16)
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where ya is the strength of the feature in the data point a and the function g(u, v) =
(ueβ5u + veβ5v)/(eβ5u + eβ5v) ranges from the minimum of u and v for β5 = −∞ to their
maximum for β5 = +∞.

The spectral clustering algorithm used to segment the spectrogram of the mixed
signal is composed of the following steps

1. Build affinity/similarity matrix W ∈ <P×P . Given m basis matrices, the following
parametrization of W is used: W =

∑K
k=1 γk W αk1

1 × ... ×W αkm
m . A sum of K = 3

matrices is used in this algorithm, one matrix for each time scale.

2. Normalize the affinity matrix: W̃ = D−1/2WD−1/2 where D is diagonal with sums
of rows of W .

3. Compute the R largest eigenvectors U(W ) ∈ <P×R of W̃

4. Considering U(W ) as P points in <R, cluster U using weighted K-means.

Due to the huge dimensionality of the affinity matrices Wi, some approximations depending
on the time scale are done.

Results obtained by analyzing a mixture with this method are shown in Fig. 2.10.
The spectral segmenter has been trained with different speakers of those that contribute
to the mixture.

Figure 2.10: (Left) Optimal segmentation for the spectrogram in Figure 1 (right), where the
two speakers are black and grey; this segmentation is obtained from the known separated
signals. (Right) The blind segmentation obtained with Bach and Jordan algorithm.

The proposed approach obtains audible signals of reasonable quality, and the only
requirement is that the speakers in the mixture have distinct and far enough pitches most
of the time. The main problem is the long duration of the process and the high memory
requirements.
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2.3.3 Reyes-Gomez, Jojic and Ellis Approach

Reyes-Gomez, Jojic and Ellis introduced in [25] (2004) a new method to perform single-
channel source separation based on capturing the detailed dynamic of the speech describing
each spectral frame as a deformation of its predecessor, and without any pre-trained speech
or speaker models. The spectrum of the audio sequence is decomposed into two additive
layers, which describe separately the harmonics and formant structure. This approach have
very few parameters, only a limited set of initial states to cover the full spectra variety
through transformations, and these parameters can be learned from mixed data without
supervision.

The spectral deformation model captures the variations experimented by the
speech harmonics in the time-frequency plane. It can be represented as

X
[k−nc,k+nc]
t ≈ Tk

t ·X[k−np,k+np]
t−1 (2.17)

where Tk
t is the transformation matrix, and NC and NP are the number of frequency bins

of,respectively, frames t and t − 1 centered at the kth frequency bin, with NC < NP to
permit both upward and downward motions. Fig. 2.11 illustrates an example of this
procedure.

Figure 2.11: The NC = 3 patch of time-frequency bins outlined in the spectrogram can
be seen as an upward version of the marked NP = 5 patch in the previous frame. This
relationship can be described using the matrix shown.

The inference consists in finding probabilities for each transformation index at each
time-frequency bin, and this is approximated using Loopy Belief Propagation [32,33].

The two layer source-filter transformations separately model the deformation
fields for harmonics and formant resonance components. Thus, the mixed spectra X can
be modeled as the sum of variables F and H, harmonics and formants decomposition, as
shown in Fig. 2.12.

A Matching-tracking model is also implemented. A small set of initial states is
introduced to model translations between silence and speech or between speakers. Thus,
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Figure 2.12: Harmonics/Formants decomposition.

in this discontinuities the algorithm keeps on tracking the ”old” speaker at the same time
as estimating the initial state of the ”new” speaker.

This approach has an interactive model that implements a lot of applications: formant
and harmonics tracking, missing data interpolation, formant/ harmonics decomposition,
and semi-supervised source separation of two speakers. The dynamics of the speech are
captured with only a few parameters.
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Chapter 3

Audio and Video Representations

3.1 Introduction

The retrieval of correlation between audio and video signals is a problem with a very
high dimensionality. The goal is that of locating those spatio-temporal video regions
that are interrelated with a certain audio track. In order to make this problem feasible,
audiovisual data need to be modeled such that dimensionality gets reduced and only
relevant signal information is used. Data modeling is thus supposed to capture the
main characteristics of each signal modality that may contain information about the other
modality. However, existing approaches to multimodal processing typically focus on the
modeling of relationships between audio and video data, rather than on modeling the data
itself.

To date, methods dealing with audiovisual fusion problems basically attempt to build
complete, general and complex statistical models to capture the relationships between
audio and video features. But surprisingly, the employed features are extremely simple and
poorly connected with the physics of the problem, in particular for what concerns visual
information. Efficient signal modeling and representation require the use of methods able
to capture particular characteristics of each signal kind. A question that arises at this point
is: Why should we use a representation of video based on a basis of deltas (i.e. pixel wise
features), if video is made of moving regions surrounded by contours with high geometrical
content? Pixel-related quantities seem to us a relatively poor source of information that
has a huge dimensionality, it is quite sensitive to noise and does not exploit structures in
images. A very simple example can clarify this concept. If a person is moving back and
forth while speaking in front of a camera, the pixel values on the mouth region change
depending on the lips movements and on the person movement. The result is that pixel
intensities evolve in an undistinguishable way.

Therefore, the idea is basically that of defining a proper model for visual signals,
instead of defining a complex statistical fusion model that has, however, to find

29
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correspondences between barely meaningful features. If an accurate description of the
scene is available, we can actually think of detecting consistent audiovisual pairs generated
by the same phenomenon (in this case, a speaker uttering a sound), by simply observing
the co-occurrence of interesting audio and video events (i.e. the presence of sound and
the movement of the mouth). For particular applications, one may consider the use of
adapted template based approaches for video representation (in order to model particular
objects and their trajectories: Lips, faces, etc...). However, for generic non-application
constrained approaches, the answer seems to be that we should, indeed, use a signal
model capable of exploiting video structural properties while keeping generic and flexible
enough.

As we have already discussed, the proposed model is based on temporal synchrony
between audio and video features, looking for relevant events temporally close in both
modalities. This chapter explains the audio and video representations that extract these
meaningful events necessary for the later analysis.

In this research work, both audio and video signals are represented using the Matching
Pursuit (MP) algorithm [18], which decomposes them into a linear expansion of waveforms
chosen from a redundant dictionary of functions called atoms.

The decompositions used in this research work are described in the next sections.
MP algorithm for 1-D signals is used to represent the audio track. Concerning the video,
the complexity of the analysis causes the utilization of more complex techniques. MP
algorithm proposed by Divorra and Vandergheynst [10] decomposes the image into a set
of video atoms which represent salient video components and it tracks their temporal
transformation from frame to frame.

In this chapter, the features used for audio and video signals after their decomposition
are also presented. Those features determine the later analysis our method is capable to
perform. Thus, we detail which parameters of the decomposition in each modality are
more important for our algorithm.

Finally, the reasons of this choice concerning both audio and video representation
are detailed. The main reason is that these features are strongly related to the physics
of the problem. Video features indicate the movement of image structures (composed by
atoms) through time. Concerning the audio, the MP decomposition describes the energy
distribution of the signal in the time-frequency plane.

3.2 Audio representation

Audio signals have a rich variety of components that human auditive system is able to
perceive (Fig. 3.1). Correlations of the wide diversity of sounds with the also large variety
of geometric configurations of the visual stimulus of a mouth are possible. Indeed, this is
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the main basis for lip reading. A positional model of lips may be assigned to each sound
and transitional models between sounds can be established.

Figure 3.1: Audio signal of a subject uttering eight digits in English (top), its time-
frequency energy distribution Ea(t, ω) (bottom). The color map of the time-frequency
plane image goes from white to black, and the darkness of a pixel represents the value of
the energy at each time-frequency location.

We consider here a much simpler and generic approach. As already stated, we look
for synchrony between audio-video events. However, in contrast to the previous work [19],
we need more characteristics of the audio signal than only the temporal situation of a
sound. The proposed model tries to exploit all the information present in the audio signal
spectrum, that is, the situation of each relevant structure in the time-frequency plane and
its energy coefficient or importance in the whole sequence decomposition.

Typical features used to represent audio signals are the Mel-frequency cepstral
coefficients (MFCC) [23], mainly used in the speech recognition field, and employed
in [4,20,28]. In [7] the audio feature is obtained from the spectrogram of the audio track as
the linear combination of the power spectrum coefficients exhibiting the biggest entropy.
Fisher and Darrell [8] propose a similar feature that maximizes the mutual information
with the video.

Monaci, Divorra and Vandergheynst [19] give a different approach estimating the audio
energy contained par frame. To compute this estimation the MP decomposition [18] of the
audio signal over redundant dictionaries is used. The estimated energy present at each
time instant is the addition of the energy of all the 2-D Gaussian functions (atoms) in the
MP decomposition. The sparse decomposition of the audio track performs a denoising of
the signal, pointing out its most relevant structures.



32 CHAPTER 3. AUDIO AND VIDEO REPRESENTATIONS

In all cases, the final feature is a 1-D function that is downsampled in order to obtain
the same length for audio and video features.

In this research work, we exploit widely the properties the audio signal representation
over redundant dictionaries using also the MP algorithm. This decomposition in the time-
frequency plane gives us a complete description of the spectrum of the audio signal. As
well as the distribution of the energy along time, the information concerning the frequency
components of the signal is also included.

3.2.1 Signal decomposition

The Matching Pursuit algorithm [18] is used to decompose the audio signal a(t) into a
linear expansion of waveforms, that are chosen from a redundant dictionary DA of functions
in order to best match the signal structures. The unit norm functions in DA are called
time-frequency atoms, as is in this plane where they are situated.

Therefore, selecting an appropriate countable subset of atoms, any function a(t) can
be represented as

a(t) =
+∞∑
n=0

cngγn(t), (3.1)

where the expansion coefficients cn give us information about the function a(t).

A single window function, g(t) ∈ L2(R), generates all the atoms that compose the
dictionary DA. Each atom gγ = Uγg, is built by applying a geometrical transformation
Uγ to the mother function g. The possible transformations applied to the function are the
following: scaling by s > 0, translating in time by u and modulating in frequency by ξ.

Then, indicating with an index γ the set of transformations (s, u, ξ), an atom can be
represented as

gγ(t) =
1√
s

g

(
t− u

s

)
eiξt, (3.2)

where the value 1/
√

s makes g(t) unitary.

In this research work, a dictionary of Gabor functions is used. As a result, the
generating function g(t) is the normalized Gaussian window showed in figure 3.2, with
different possible values for the window size. The optimal time-frequency situation of the
function is the cause of its election [12].

To represent the audio signal with a set of waveforms selected from DA, MP algorithm
makes successive approximations of a(t) with orthogonal projections on elements of the
dictionary.

Thus, in the first step, MP algorithm decomposes the audio signal as

a =< a, gγ0 > gγ0 + R1a, (3.3)
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Figure 3.2: Gaussian distribution of the energy of one audio atom. In this case, the window
size is 2024 samples.

where R1a is the residual part after approximating a in the subspace described by the
atom gγ0. This atom is orthogonal to the residual part R1a and as a result the squared
norm of the audio signal is expressed as

‖a‖2 = | < a, gγ0 > |2 + ‖R1a‖2. (3.4)

Therefore, the algorithm chooses gγ0 ∈ DA such that the projection | < a, gγ0 > | is
maximal, in order to minimize the residual component ‖R1a‖.

Applying recursively the same procedure N times, the signal a is then represented as

a =
N−1∑
n=0

< RNa, gγn > gγn + RNa, (3.5)

where R0 = a and RNa is the residual part after n iterations.

3.2.2 Processed Features

In the previous research work of Monaci, Divorra and Vandergheynst [19], the feature used
in the analysis was the average of the energy present at each time instant. After the MP
decomposition of the audio sequence, this value was computed as the addition of all the
MP audio atoms energy.

With this audio feature we are loosing a lot of information present in the MP
decomposition. The proposed model tries to take advantage of all the output parameters
instead of using only the energy feature. These additional information allow us to aspire
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to the Audiovisual Separation objective. First, we perform the video separation aided by
audio as in the previous research work, with the resulting speaker detection. After, a new
concept of Audio Source Separation is introduced using the information present in the
video sequence. We will show that a good Audiovisual Separation is possible combining
the features of both modalities.

The most relevant parameters obtained by the Lastwave [1] MP audio decomposition
are the following:

timeId Temporal situation of the audio atom. One of the most important parameters, as
the analysis we perform is basically in the temporal domain.

freqId Localization in frequency of the atom. Used in the later frequency analysis.

coeff2 Coefficient of the audio atom. Measure of relevance of this audio atom in the
decomposition of the whole sequence. A big coefficient means that the atom is one of
the first ones obtained by the MP iterative decomposition and, as a result, one of the
most important in the representation of the audio signal energy in the time-frequency
plane.

windowSize Size of the window used for this atom. As we can see in figure 3.2, this
parameter gives us information about the energy distribution of the audio atom, as
it determines its duration. The smaller is the windowSize, the more concentrated is
the energy around the audio atom temporal center.

The proposed model uses all these Lastwave parameters. In the next chapter, the
time index and the coefficient are used to determine the relationship between audio and
video atoms, looking for synchronous relevant events in both features. Then, the audio
reconstruction takes into account the window size to compute the energy feature of each
atom. And, finally, the frequency index is utilized in the frequency analysis introduced
after the temporal one.

3.2.3 Motivation

The main motivation of the use of MP algorithm is the sparse representation of the
information present in the audio signal. These decomposition into atoms provides a clear
representation of the audio energy distribution in the time-frequency plane, showing the
frequency components evolution.

Another reason to choose this representation is that MP algorithm performs a
denoising of the input signal, pointing out the most relevant structures. This characteristic
of the decomposition is widely explained in [18].

The white characteristic of the noise causes the apparition of time-frequency atoms
spread across the time-frequency plane. However, the structures presents in the original
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signal are still recognizable, due to the higher concentration of their energy in the time-
frequency domain.

Therefore, the algorithm chooses the most relevant structure in each iteration. As a
result,the atoms created by the presence of noise are selected later than the structures in
the original signal, which have a bigger coefficient and importance in the decomposition.
The number of iterations determines how much of these noise atoms are created by the
algorithm. While important structures in the original signal are always represented (in the
first iterations), part of the noise disappears.

Moreover, the MP representation over redundant dictionaries in the time-frequency
plane provide a complete description of the spectrum of the audio signal. This
decomposition describes, for each relevant structure, its situation in the time-frequency
plane and its temporal energy distribution. All this information is exploited in this research
work in order to obtain a good Audiovisual Separation.

3.3 Video representation

Natural image sequences are composed of successive projected snapshots of 3-D objects.
Considering these objects to describe smooth trajectories through time as shown in Fig.
3.3, one usually assumes that image sequences are well modeled by smooth transformations
of a reference frame [31].

Figure 3.3: Schematic smooth evolution of an object through time.

A video sequence can thus be considered as a series of frames represented by a
mixture of homogeneous regions and regular contours, where the motion is represented by
smooth local deformations of those regions. Coping with regular geometric deformations
necessitates the use of flexible visual primitives. In order to achieve this, we advocate the
use of parametric over-complete dictionaries of basic waveforms, referred to as atoms. Local
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deformations are then propagated along the sequence by updating the atoms parameter
field in order to approximate the succession of frames.

3.3.1 Signal decomposition

In the proposed model, the video signal is represented using the Matching Pursuit
algorithm proposed by Divorra and Vandergheynst [10]. In this technique, the
image is decomposed into a set of video atoms which represent salient video components
tracking their temporal transformation through time. A modified MP approach based on
Bayesian decision criteria is used for the tracking.

Assuming that an image I(x1, x2) can be approximated with a linear combination of
atoms retrieved from a redundant dictionary DV of 2-D atoms, we can write:

I(x1, x2) ≈
∑

γn∈ Ω

cγnGγn(x1, x2), (3.6)

where n is the summation index, cγ corresponds to the coefficient for every atom Gγ(x1, x2)
and Ω is the subset of selected atom indexes from dictionary DV . We also require that
the representation is sparse, i.e. the cardinality of Ω is much smaller than the dimension
of the signal. The decomposition of I(x1, x2) on an overcomplete dictionary is not unique,
and several decomposition approaches have been proposed, like the method of frames [10],
Matching Pursuit [18] or Basis Pursuit [12]. Here we consider Matching Pursuit (MP), an
iterative greedy algorithm that selects the element of the dictionary that best matches the
signal at each iteration.

Each video frame is decomposed into a low-pass part, that takes into account the
smooth components of images, and a high-pass part, where most of the energy of edge
discontinuities lays. The low frequency component is obtained by lowpass filtering and
downsampling the images in the sequence, using the Laplacian pyramid scheme [13]. We
employ here the FIR low-pass filter proposed in [14]. The high-pass frames are obtained
by subtracting the low frequency parts from the original frames. These high frequency
residual frames which contain the geometric structures of images, are represented using
MP. The approach we consider here consists of decomposing a reference frame in terms of
geometric 2-D primitives and tracking them through time. Thus, starting from the first
frame of the sequence, I1, MP iteratively picks up the function belonging to DV that best
approximates the image I1.

The first step of the MP algorithm decomposes I1 as

I1 =< I1, Gγ0 > Gγ0 + R1I1, (3.7)

where R1I1 is the residual component after approximating I1 in the subspace described by
Gγ0. The function Gγ0 is chosen such that the projection < I1, Gγ0 > is maximal. At the
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next step, we simply apply the same procedure to R1I1, which yields:

R1I1 =< R1I1, Gγ1 > Gγ1 + R2I1. (3.8)

This procedure is recursively applied, and after N iterations, we can approximate I1 as Î1:

Î1 =
N−1∑
n=0

cγnGγn , (3.9)

where cγn =< RnI1, Gγn >.

As in the audio case, the dictionary DV is built by varying the parameters of a mother
function, in such a way that it generates an overcomplete set of functions spanning the input
image space. The choice of the generating function G(x1, x2) is driven by the observation
that it should be able to represent well edges on the 2-D plane. Thus, it should behave
like a smooth scaling function in one direction and should approximate the edge along
the orthogonal one. We use here an edge-detector atom with odd symmetry, that is a
Gaussian along one axis and the first derivative of a Gaussian along the perpendicular one
(see Fig. 3.4). The generating function G(x1, x2) is thus expressed as:

G(x1, x2) = 2x1 · e−(x2
1+x2

2) (3.10)

The codebook of functions DV can be defined as DV = {Gγ : γ ∈ Γ}. Each atom Gγ = Uγg

Figure 3.4: The generating function G(x1, x2) described by Eq. 3.10

is built by applying a set of geometrical transformation Uγ to the mother function G(x1, x2).
Basically, this set has to contain three transformations:
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• Translations ~t = (t1, t2) all over the image plane.

• Rotations θ to locally orient the function along the edge.

• Anisotropic scaling ~s = (s1, s2) to adapt the atom to the considered image structure.

Any atom Gγ in the dictionary rotated by θ, translated by t1 and t2, and anisotropically
scaled by s1 and s2 can thus be written as:

G(x1, x2) =
C√
s1s2

· 2u · e−(u2+v2) (3.11)

where C is a normalization constant and

u =
cos θ(x1 − t1) + sin θ(x2 − t2)

s1

, (3.12)

and

v =
− sin θ(x1 − t1) + cos θ(x2 − t2)

s1

. (3.13)

We consider an approach where 2-D spatial primitives obtained in the expansion of
a reference frame of the form of Eq. 3.9 are tracked from frame to frame. Given a set of
images belonging to a sequence, the changes suffered from a frame It to It+1 are modeled
as the application of an operator Ft to the image It such that

It+1 = Ft(It)

It+2 = Ft+1(It+1) = Ft+1(Ft(It)) (3.14)

It+3 = ...

where t is the time index.

Fig. 3.5 shows an example of the application of the operator Ft in a sequence of frames.
The possible situation in the image of some 2-D video atoms is schematically represented.
The transformations they experiment in each frame are symbolized by arrows, modeling
with the operator Ft their translations, rotations and changes in the scale.

From the model of Eq. 3.9 and 3.14, follows that

Î1 = Ft

(
N−1∑
n=0

cγt
n
Gγt

n

)
, (3.15)

Making the hypothesis that Ft represents the set of transformations F γ
t of all individual

atoms that approximate each frame, we obtain:

Ît+1 =
N−1∑
i=0

F γi
t (ct

γi
Gt

γi
) (3.16)
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Figure 3.5: Successive schematic updates of basis functions in a sequence of frames. In the
second row, ellipses represent schematically the possible positioning of some 2D atoms.

A MP-like approach similar to that used for the first frame is applied to retrieve the
new set of gt+1

γ (and the associated transformation Ft). At every greedy decomposition
iteration only a subset of functions of the general dictionary is considered to represent each
deformed atom. This subset is defined according to the past geometrical features of every
atom in the previous frame, such that only a limited set of transformations (translation,
scale and rotation) are possible. This imposes smoothness on the set of deformed primitives,
following the assumption of smooth transformation.

Due to dictionary coherence, and the fact that normally more than one atom is
necessary to represent a signal structure, direct MP full search in a frame at t+1 does not
have any guarantee to recover the corresponding deformed atoms from frame t.

Thus, a Bayesian framework is introduced to regularize motion among expansion terms
of frame representations. This method considers a modified MP approach based on a
Bayesian decision criteria to deform the atoms in a predictive fashion from frame to frame.

Motion is assumed to be uniform over the support of an atom, and consequently, a
local search on a reduced subspace is performed for each video atom, starting from higher
energy atoms (first in the MP expansion) to weaker ones.

In other words, the use of some a priori knowledge in the selection criteria give us the
most probable transformation, considering the constrained motion (translation, rotation,
scale and projection coefficient cγ).

The formulation of the MP approach to geometric video representation is complex and
is studied in detail in [10], to which the interested readers are referred.

A cartoon example of the used approach can be seen in Fig. 3.6(a), where the
approximation of a simple synthetic object by means of a single atom is performed. The first
and third row of pictures show the original sequence and the second and fourth rows provide
the approximation composed of a single geometric term. Fig. 3.6(b) shows the parametric
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(a) Synthetic sequence approximated by 1 atom: First and third row show the
original sequence made by a simple moving object. Second and fourth row depict
the different slices that form a 3-D geometric atom.

(b) Parameter evolution of the approximated object; from left to right and
from up down, we find: Coefficient cγ , horizontal position t1, vertical position
t2, short axis scale s1, long axis scale s2, rotation θ.

Figure 3.6: Approximation of a synthetic scene by means of a 2-D time-evolving atom.

representation of the sequence. We see the temporal evolution of the coefficient ct
γ, and

of the position, scale and orientation parameters. The MP decomposition of the video
sequence provides a parametrization of the signal which represents the image geometrical
structures and their evolution through time. In this way we can track the movements of
relevant image features, getting an accurate description of the scene content. Besides, it
is important to underline that the stream of video atoms that we consider is absolutely
generic. It could be generated using different approximation techniques and it can be used
to encode video sequences, as it is shown in [10].
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3.3.2 Processed Features

Clearly, video features need to capture temporal variations. To date, video features used for
multimodal audiovisual fusion are often based on pixel-wise intensity difference measures.
In [20] and [4], the pixel intensity change measured in a 3 × 3 averaging spatial window
is considered. The approach in [5] looks forward exploiting local motion information by
means of optical flow measures. In any case, none of the actual approaches try to exploit
the real structural nature of video signals.

We have decided thus to explore the possibilities offered by the MP video
decomposition technique presented before. In this way, we hope to be able to
track important geometric features over time and to effectively parameterize those
transformations that represent changes in the scene. The output of the MP algorithm
is a set of atom parameters that describe the temporal evolution of 3-D video features.
Each atom is characterized by a coefficient, 2 position parameters, 2 scale parameters
and a rotation, i.e. 6 parameters. Fig. 3.6(b) shows the atom parameters evolution as a
function of time.

The video features we consider, however, are not all these 6 video parameters. The
scale and orientation parameters have been discarded, since they carry few information
about the mouth movements. Clearly, they can be used if needed in a more complex
application, but in this context the natural choice seems that of considering a feature that
takes into account the movement of image structures. Therefore, for each video atom we
compute the absolute value of the displacement as

d =
√

t21 + t22, (3.17)

where t1 and t2 are the horizontal and vertical position parameters of the atom. The
quantity d is used as video feature, and indicates a sort of activation of the video structure
that it represents.

Modulus of the displacement of each video atom is computed as a measure of movement
in the image, from one frame to next one.

The video relevant events that the implemented method temporally compares to the
audio ones are the peaks in the video atoms displacement. These peaks mean movement
in the audio atom situation and, consequently, movement in the image. Thus, one peak
in the displacement of one video atom temporally close to the apparition of one sound is
studied as possible cause of this sound.

3.3.3 Motivation

An image sequence is decomposed in 3-D video components intended to capture geometric
features (like oriented edges) and their temporal evolution. In order to represent the large
variety of geometric characteristics of video features, redundant codebooks of functions
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have to be considered. The use of geometric video decomposition has at least two main
advantages:

• Unlike the case of simple pixel-based representations, when considering image
structures that evolve in time we deal with dynamic features that have a true
geometrical meaning. Thus, the considered video features reflect the movement, from
frame to frame, of the image structures associated with the corresponding geometric
primitives. A peak in the displacement suggests the presence of an event, that is, a
possible movement with respect to a certain equilibrium position (i.e. movement of
the lips in the speaker mouth).

• Geometric sparse video decompositions provide compact representations of
information, allowing a considerable dimensionality reduction of the input signals.
This property is particularly appealing in this context, since we have to process video
sequences, which have a very high dimensionality.

3.4 Discussion

We have now a generic representation of the video that describes synthetically how the scene
is composed and how image components evolve. Using such a parametric representation, we
try to follow the temporal evolution of relevant image features, like those constituting the
speakers mouth or chin. The whole set of 3-D geometric primitives used to represent
the video are considered, and they are sorted by correlation with the audio. Such
correspondence between acoustic and visual signals is assessed by comparing the evolution
of visual structures with that of some audio track descriptors.

Audiovisual pairs are considered to be correlated when we observe a temporal
synchrony between events present in both audio and video signals, that are thus supposed to
be caused by the same physical phenomenon. Events will be defined as local perturbations
of an equilibrium situation, exploiting the motion information of the geometric primitives
describing the scene and the energy distribution of the audio track in the time-frequency
plane.

The approach we propose is derived directly from the physics of the phenomenon. On
the one hand, the considered video features reflect the movement, from frame to frame,
of the image structures associated with the corresponding geometric primitives. On the
other hand, the audio feature provides a complete description of the soundtrack energy
distribution. Peaks in such signals suggest the presence of an event. In the video case, it
can be the movement with respect to a certain equilibrium position (i.e. lips opening or
closing). For the audio, the presence of an audio atom indicates the utterance of a sound.
If those audio and video peaks occur at time instants that are temporally close, we can
expect that they reflect the presence of two expressions (acoustic and visual signals) of the
same physical phenomenon (utterance of a sound).



Chapter 4

Phases of the Temporal Analysis

According to psychophysical experiments, temporal synchrony strongly contributes to
integrate cross-modal information in humans [9,30]. These observations motivated several
research works that used audio-video synchrony in order to locate the sources of a
multimodal sequence [8, 13, 20, 29]. Just like all these methods, the proposed model is
based on a temporal analysis that looks for audiovisual pairs generated by the same physical
phenomenon. Therefore, as in the previous research work performed by Monaci, Divorra
and Vandergheynst [19], the proposed model uses video 2-D geometric features instead of
pixel-related features.

Therefore, the detection of this audiovisual pairs is performed combining the features
extracted in Chapter 3. We want to associate temporally proximal relevant audio-video
events and extract in this way meaningful audiovisual structures. The determination of
this relationship is the most important step of the proposed algorithm, and provides all
the information necessary to perform a satisfactory Audiovisual Separation.

The temporal analysis that the proposed method uses can be divided in three different
parts. To achieve the Audiovisual Separation, first we situate the sources in the image
using the information present in the soundtrack, then we reconstruct them separately,
and, finally, the relationships established between features in both modalities are used for
the Blind Audio Source Separation objective. Thus, this chapter is structured as follows:

• In the first part, we use the information contained into the audio signal to situate
the video sources in the image, that is, the objective already achieved in the previous
research work performed by Monaci, Divorra and Vandergheynst [19], but now
correlating audio atoms instead of the soundtrack energy. The localization of the
video sources is performed with a temporal analysis of the video and audio atoms,
the most important step that provides us a measure of the synchrony between both
features, the correlation score.

43
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• The objective of the second part is to classify the video atoms into the detected video
sources. These assignation is carried out with a spatial proximity criterium, atoms
closer to the estimated source center in step 1 than a maximum distance defined in
pixels belong to this source.

• The last and more ambitious objective (the Blind Audio Source Separation) is
performed using the already extracted audiovisual features. At the end of step 2,
we have the video atoms classified into the sources, and their respective correlation
scores with the audio features. All what we need to do is to classify the audio
atoms into one of the sources using these scores and the source of each video atom
associated. Finally, the reconstruction of the audio signals is carried out by adding
the energy of the audio atoms belonging to each one of the sources.

4.1 Locate video sources of an acoustic signal

4.1.1 Introduction

The correct localization of the video sources in the spatial domain, speaker detection
problem, is the first part of the Audiovisual Separation and provides the relationship
between atoms in both features, a necessary step in order to face the Blind Audio Source
Separation (BASS). In this research work, the first of our objectives will be achieved by
characterizing the video through the audio information.

This problem was firstly faced by Hershey and Movellan [13], who design a simple
algorithm to locate sounds using audio-video synchrony. The correlation between audio
and video was measured using the correlation coefficient between the energy of an audio
track and the value of single pixels. Successive studies in the field [8,17,20,28,29] focused
on the statistical modeling of relationships between audio and video features, proposing
audiovisual fusion strategies based on Canonical Correlation Analysis [17,28], Independent
Subspace Projections [29] and Mutual Information maximization [8, 20]. Pixel-related
features typically used for video representations and employed in all these works were and
barely connected with the physics of the problem. This makes it difficult to deal with
dynamic scenes, since the variables that are observed (pixel values or related quantities)
are static. Moreover, pixel-related values have low semantic content, which makes it
impractical to extract and manipulate correlated audiovisual structures.

In order to understand more in detail audio-video structures and to improve the
performances of audiovisual fusion algorithms, an effort should be done to model the
observed physical phenomenon. As in the work [19], we introduce a new framework for
detecting meaningful events in audiovisual signals. The main difference is the dimension
of the problem. Now, we have one feature for each audio atom, whereas in the previous
work one unique feature represented all the soundtrack. Consequently, we confront a
problem with bigger number of dimensions now, but there is also more information to
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exploit. A new method to correlate audio and visual features is implemented in order to
confront the multi-dimensionality of the audio feature.

The problem we are studying in this work is that of correlating audio tracks with visual
data to detect those regions in an image sequence from which the sound is originated. This
problem can be divided into two different parts.

In the first one, the changes in the image which are related to the present acoustic
signals are detected. These resultant audiovisual events are represented, in our case, by
changes in the video atoms displacement temporally correlated to the apparition of the
audio atoms.

The second part consists on a spatial clustering which groups into possible sources
all the video atoms related to any audio atom in the whole sequence. At the end of the
process we will obtain the estimated spatial coordinates of the video sources.

4.1.2 Audio and Video Atoms Association

The association between visual features and acoustic signals is the most important part
in the process, which extracts all the relevant information used in the next steps of the
algorithm. All this resultant information is posteriorly processed in order to obtain the
spatial situation of the video sources. In the next sections we will show that a correct
audio-video association allows a good source localization, pointing out the video atoms
closest to the speaker mouth in our case.

As already discussed in Chapter 3, the features to analyze here have a true geometrical
meaning. Thus, the considered video features (displacement as modification of the position
with regard to the last frame) reflect the movement of the image structures associated with
the corresponding geometric primitives. A peak in the displacement suggests the presence
of an event, that is, a possible movement with respect to a certain equilibrium position
(i.e. movement of the lips in the speaker mouth). Concerning the audio signal, the
decomposition into atoms provides a clear representation of its energy distribution in the
time-frequency plane, showing the frequency components evolution. Thus, the temporal
situation of an audio atom indicates the presence of a sound in this period.

More concretely, considering the relevant events extracted in last chapter, the goal is
to discover all the video atoms with a peak in the displacement temporally close to the
center of the audio atom. In this way, the algorithm creates audiovisual relationships,
which are probably generated by the same physical phenomenon.

At this moment we know which ones are the relevant events in each modality, but
what we have to do to discover the relationships between them?

The proposed model performs a temporal analysis taking into account the temporal
index of relevant events in both modalities: the time center of the audio atoms and the
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moment when the peaks in the video displacement occur. Thus, for each video atom we
obtain its displacement function with several peaks as shown in Fig. 4.1, and, for each
audio atom we know their temporal center. As a result, the assignation consists in compare
for each audio atom (with one peak in its time index) all the video atoms features (with
several peaks). Then, for each audio atom, we select the video atoms with a peak close to
the audio atom temporal center in frames.

Figure 4.1: Displacement function and resulting peaks of a video atom.

This method uses a scalar product between audio and video features to obtain the
existent relationships between them, but many questions appear at this moment about
how to compute this scalar product: should we use deltas in both features (one for the
audio, as much as peaks for the video) or we would be too much restrictive? Should
we consider a possible delay between them with temporal windows? What would be the
appropriate length of those windows?

This part has gone through a lot of changes from the first stage of the investigation
until the last one, with important improvements in the results. The most representative
stages are explained in the following subsections.

Delta in audio, window in video

Concerning the audio part, we put a delta in the central frame of the audio atom, in other
words, we process it like a punctual event with duration one frame. Then, for the video, we
put a window of W=2 frames to all its displacement peaks, taking into account a possible
delay between audio and video features.

Fig. 4.2 illustrates the features analyzed in the scalar product, where W=2 implies a
maximum delay of 5 frames.

According to these characteristics, when we compute the scalar product the output
value is 1 or 0, respectively for a video atom synchronous or not. For each audio atom,
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W=2

Audio

Video

Figure 4.2: Scalar product between audio and video features, first stage (time index in
frames)

the proposed algorithm chooses the video atoms with this correlation score different from
zero.

The main problem is that we are not pondering the temporal superposition between
both features in this form, all the video atoms are equally associated to the audio atom,
correlation score 1. Therefore, a video atom with a peak in the displacement situated
exactly in the same frame than the audio atom center has the same correlation score than
another one shifted two frames away. We are not giving more importance to the more
synchronous video atom.

In addition, the real distribution of one video atom energy is not a delta but a gaussian
as shown in Fig. 3.2, so in the next stage we will change this representation to ponder the
audiovisual synchrony more accurately.

Gaussian in audio, window in video

For the audio, we consider a gaussian function in the central frame of the audio atom,
according to its characteristics of length and energy coefficient. For the video, we use the
same window of W=2 frames or 534 samples (1 video frame is equivalent to 267 audio
samples), 1335 samples of maximum delay. There is a representation of this scalar product
in figure 4.3.

This first significative change regarding the energy distribution of the audio atoms,
involves more variability in the result of the scalar product between both features.

Thus, every video atom has associated a correlation score, the result of the scalar
product. This value is higher if the audio atom and the peak of displacement of this video
atom have a bigger temporal overlap. In other words, a high correlation score means high
probability of being the structure that has generated the sound.
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W=2

Audio

Video

Figure 4.3: Scalar product between audio and video features, second stage (time index in
samples)

Gaussian in audio, window in video with peak constraint

The most relevant improvement in this stage has been to introduce a constraint relative
to the video atoms displacement. The gaussian for the audio and the window in video are
kept.

In this part, we define a peak in the modulus of the displacement of a video atom as
a positive slope followed by a negative one in the next frames. The peak detector used in
the other versions detected as a peak a positive slope, but it didn’t look what occurred
afterwards. Figure 4.4 shows the different peaks definition, the first one with considerable
improvements in the results.

CORRECT

INCORRECT

Figure 4.4: Peak current and former definition in the displacement evolution

The errors are video atoms temporally synchronous with an audio atom and not
belonging to the related source or belonging to it but localized far away form the center
of the source. Thus, possible errors could be the detection of the hair of the speaker, the
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eyes, etc. And still more dangerous in our case, the association with an atom in the mouth
of the other speaker.

Most of the errors in the other associations had this temporal comportment, only a
positive slope, and with this simple redefinition are now solved.

In this stage, the window length is bigger (W=6 frames) because we want to assign
all the audio atoms to almost one video atom. With the constraint we are removing a lot
of video atoms, and then some important audio atoms would be related to no video atom.
As a result we could not decide to which source they belong and these audio atoms would
be lost in the reconstruction.

Fig. 4.5 shows the considerable improvements in the audiovisual association when we
introduce the constraint relative to the form of the peaks in the video atoms displacement.
The frames are reconstructed by summing to the low-pass images those video atoms that
are associated to some audio atom temporally situated in this frame, that is, with the time
index in samples equivalent to the represented frame.

Figure 4.5: Audiovisual association in frames 30, 100 and 240 of the clip g20 of CUAVE
database. The video atoms related to some audio atom in this frame are highlighted. The
first row corresponds to the association performed in 4.1.2 while the second row corresponds
to this new procedure, which incorporates the constraint for the peaks in video atoms
displacement.

Thus, analyzing more accurately this figure, the principal improvements of this method
are represented. First column shows a frame where only the girl is speaking. The selection
of some video atoms far away from her mouth is removed with this new definition of peak
4.4. This improvement is also shown in the central column, since, now, the video atoms
in the boy head are not reconstructed. However, the most important change regarding
our objective of detecting the current speaker can be visualized in third column. Despite
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only the boy is speaking in this frame, if we perform the association according to 4.1.2,
that is, without constraint, several atoms are highlighted in the mouth of the incorrect
speaker. This would be a big problem for the proposed method, since this wrong association
would involve the detection by the proposed approach of a speaker that is not active in
this moment. Thus, this figure shows as most of the errors are removed only with this
redefinition of the concept of peak relative to the video atoms displacement.

4.1.3 Clustering

Our objective is to detect and locate the sources of an audio signal into the image. At this
moment we know the temporal relationship of audio and video atoms in this sequence, but
how we can localize the signals? The video atoms more frequently related to the audio
atoms are chosen in the proposed model as sources of this sounds, locating them in the
image.

The problem is that one visual structure is composed of several video atoms, each
one of them selected by a set of audio atoms. If one of the sources were considerably
more time active than the other one, selecting the video atoms with more associations
the algorithm would detect several sources in the same speaker and none in the other
one. In addition, some other structures such as the eyes are also usually correlated with
the soundtrack. Thus, the implemented clustering allows us to group spatially the most
important video atoms belonging to the same source.

In this section, we define the confidence value of a video atom as the addition of the
Matching Pursuit (MP) coefficients of all the audio atoms associated in the whole sequence.
Thus, this confidence value is a measure of the number of audio atoms related to it and
their weight in the MP decomposition of the sequence.

Looking at the figure 4.6, the idea of a clustering is very intuitive. We can see the
remarked video atoms (with confidence different from zero) grouped around the speakers
mouth, one at the left and the other at the right of the image. Atoms with higher confidence
value form two differentiated groups pointing out the sources, while the more separated
have a considerably smaller confidence. We can conclude that the audio and video atoms
association has been successful, detecting features close to the source center much more
usually than the others.

We have to point out one of the main advantages of this spatial clustering: it groups the
video atoms without any assumption about the number of sources present in the sequence.
This characteristic makes the proposed model robust to analyze any audiovisual sequence
without previous external information.

The algorithm is divided in three main steps: create clusters, calculate centroids and
eliminate bad clusters. Next, we explain them more accurately.
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Figure 4.6: Video atoms situation in the image. Their confidence value is represented in
the third dimension.

Create clusters

The clusters are created with the following iterative algorithm:

1. Initialization: the video atoms to be classified are all those related to almost one
audio atom in the whole sequence (confidence value different from zero).

2. The video atom with highest confidence value builds the first cluster. It has the most
important audio atoms associated, and consequently this video atom is the most
probable to be the center of a source.

3. Aggregate closest video atoms, spatial maximum distance from the center of the most
important atom (cluster size defined in pixels).

4. Remove the video atoms assigned to this cluster from the total of those to be classified.

5. Stop the algorithm when all the points with confidence over the mean are already
classified, otherwise go back to step 2. Only video atoms with significant confidence
value can be the center of a new cluster (possibly a source).
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We have to take into account some considerations about this algorithm.

Concerning the clusters creation, the most important parameter to fix is the cluster
size. This characteristic determines the number of clusters created by the algorithm, and,
consequently, the number of sources detected in a first stage of the clustering. However,
as we will prove after in the discussion, this characteristic does not affect significantly the
final result.

Thus, in the third step of the algorithm, a radius around the main video atom between
30 and 60 pixels (wide of the image: 176 pix) is appropriated to the case we are analyzing.
The database we are using contains sequences with 2 speakers significantly separated.
However, this algorithm has no problems with bigger cluster sizes (radius until 90 pixels).

As we can see in figure 4.6, most of the video atoms selected have a negligible confidence
value (related sometimes to only one audio atom). As a result, the threshold applied in
step 5 is not very high, and it is basically impossible to remove real sources.

Calculate centroids

This step computes the center of mass of the video atoms belonging to the clusters. In
order to perform it, the confidence value of every atom is taken as the mass, and ponders
its position in the image.

Thus, for each created cluster we calculate its centroid as:

Centroid =

∑
position i × confidence i∑

confidence i

(4.1)

where positioni are the coordinates of the video atoms belonging to the cluster and
confidencei their confidence values.

This centroids are the coordinates in the image where the algorithm locates the sources
of the audio feature. In this kind of sequences with several speakers, the centroid should
be close to their mouths.

An example of the created clusters and their calculated centroids is shown in Fig. 4.7.
We can see that some of the clusters are, as expected, close to the speakers mouth, while
others do not represent a source (orange cluster, the less important and created the last
one, with cluster size 40 pixels). The next step the proposed clustering algorithm takes
into account these bad clusters and eliminates them.

Eliminate bad clusters

We define the cluster confidence value as the addition of the corresponding confidence
values of the atoms that belong to this cluster.
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(a) Clusters creation with radius 40 pixels

(b) Clusters creation with radius 60 pixels

Figure 4.7: Clusters created using different cluster sizes in the step 4 of the algorithm. The
atom represented with a o is the one with higher confidence value that builds the cluster
in step 2 of the algorithm. Then, the + are the coordinates of the video atoms aggregated
to the cluster in step 3. Finally, the * are the calculated centroids of the cluster. Each
cluster is represented in a different color, from first to last created (descendent importance
of the cluster): yellow, cyan and, the last one, orange.
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Then, bad clusters, that is, clusters with slight confidence value are removed. Fig. 4.8
shows the centroids of the clusters created by the algorithm with different cluster sizes.
There are represented in cyan those clusters eliminated by the algorithm in this step.

(a) Clusters with 40 pixels of radius (b) Clusters with 60 pixels of radius

(c) Clusters with 90 pixels of radius

Figure 4.8: Bad clusters (cyan) and good clusters (yellow) created by the algorithm using
different cluster sizes. As shown in picture (a), a cluster size too small according to the scene
causes the apparition of undesired centroids. The last step of the algorithm successfully
removes them and selects only the centroids corresponding to the speakers mouths.

The threshold applied is 0.2 times the maximum value. There are two main factors
that influence this choice.

On the one hand, this threshold has to be high enough to eliminate the created clusters
that do not represent a speaker. Sometimes, a small cluster size involves the appearance
of more than one cluster per source

On the other hand, if this value is very high the algorithm can remove clusters
indicating real sources. This would be the case if one of the sources is active much more
time than the other ones. As a result, the video atoms belonging to these speakers would
have much more audio atoms related and their cluster confidence value will be considerably
bigger.
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Empirically, we observed than the threshold value we have applied is adequate to the
explained requisites.

4.1.4 Discussion

In the proposed model, a good speaker localization is achieved by means of the creation
of audiovisual synchronous structures combined with a robust clustering, which spatially
groups the video atoms that form these structures into sources. This is not an easy task,
and without these results we could not go on with the aspiration of the Blind Audio Source
Separation.

An important point to clarify is the setting of the cluster size parameter. Figure 4.8
shows the calculated coordinates of the sources, with a cyan point where the algorithm has
detected a bad source. Therefore, we can visualize the slight variations caused by different
choices concerning the cluster size.

Despite a small radius, taking into account our database (two speakers close to the
camera), last step 4.1.3 removes the clusters not belonging to an active mouth in the
sequence.

Thus, this algorithm is robust enough to not depending strongly on the parameters
we choose. Even if some of them are not adequate, we can perform a successful situation
of the video sources in the image.

4.2 Separation and reconstruction of video sources

Once the sources location is calculated, the next step to carry out is to extract the whole
visual structures, spatially separate them and then reconstruct the video sources.

The main characteristic to use in this point is the spatial distance between elements.
We can use pixels or video atoms close to the estimated source coordinates to carry out
the video reconstruction.

However, the most important function of this step regarding to the audio separation
objective is to classify the video atoms into the detected sources.

Thus, we define a maximum distance in pixels from the centroid. All the video atoms
located inside this region belong to this source.

To set this parameter, we have to take into account several conditions.

• Not to assign one vide atom to more than one source. In this case, we would not
be separating, and there will be errors in this classification and the posterior audio
separation.
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• At the same time, the radius has to be big enough to contain the maximum number
of atoms of each source. It is a very important aspect not to loose all the atoms
related to an audio atom (in that case it would not be possible to posteriorly assign
it to a source and reconstruct completely the sequence without energy losses).

• Not to classify into one source points belonging to another one. The activation of
these atoms will cause mistakes and remark the wrong source.

Empirically, a radius around the centroids of 60 pixels (width of the image: 176 pix) is
appropriated to the case we are analyzing. CUAVE database consists of different sequences
with two speakers significantly separated.

At the end of this phase, video sources are already detected and easily reconstructed
with a method lying in considering only the atoms closest to the source. Thus, the video
separation is satisfactorily performed.

Fig. 4.9 shows an example of the reconstruction of the current speaker detected by
the algorithm. For each frame, only video atoms close to the sources estimated by the
presented technique are considered. Thus, to carry out the reconstruction, the algorithm
adds their energy and the effect is a highlight of the speaker face. Therefore, we can see
as, in both frames, the correct speaker is detected.

4.3 Blind Audio Source Separation using video

4.3.1 Introduction

We confront now the most difficult part of the whole process, the problem of the Blind
Audio Source Separation.

The information of the other parts of the process will aid us in this task. We already
know the location of the video sources, the video atoms belonging to each one of this sources
and, finally, the temporal relation between audio and video atoms with their correlation
score.

From here we will combine all this elements to achieve the goal of the audio source
separation.

4.3.2 Procedure

The BASS objective is to extract separately the signals that form an audio mixture. What
we have to do, first, is to decide which audio atoms belong to each one of the sources.
Then, we will reconstruct every one of these separated audio signals by adding the energy
values of the atoms belonging to it.
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(a) (b)

(c) (d)

Figure 4.9: Example of the video sources reconstruction. Pictures (a) i (b) show two
original frames of an audiovisual sequence, where the speakers are the girl and the boy
respectively. (c) and (d) correspond to the frame reconstruction using only video atoms
close to the estimated source.

Assign every audio atom to one source

At this point, we know the video atoms belonging to each source and also the correlation
score, the measure of synchrony between audio and video atoms. What we are going to do
to assign the audio atoms to the sources?

The proposed model is the following. First, for every audio atom we have to take into
account the total of video atoms related to it, their correlation scores and their classification
into a source. According to this, the audio atom is assigned to the source with higher
number of video atoms belonging to it, but also rewarding the temporal synchrony of these
video atoms with the analyzed audio atom.

Therefore, here is the detailed description of the implementation steps for each audio
atom:

1. Take all the video atoms related to this audio atom with its correlation score.
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2. Add the correlation score of each video atom to the corresponding source. At the
end of this step the sources have a value associated, the sum of the scores of the
video atoms related.

3. Classify the audio atom into one source if its total score is big enough (more than
two times the value of the other sources). Otherwise, this audio atom belongs to
both sources.

For example, one audio atom has six video atoms associated (score different from 0).
Four of them belong to speaker 1, and two to speaker 2, with the correlation scores shown
in table 4.1. Then, the sum of the scores are 13.88776 and 1.71717 for sources 1 and 2
respectively. The score for the first source is much bigger (approximately eight times the
other) and, as a result, this audio atom will be assigned to source 1.

Source 1 Source 2
6.9348 1.1146
5.8186 0.60257
0.809

0.32536

Table 4.1: Example of one video situation atom before its assignation to one of the sources.
A description of the correlation values of each video atom related and their assigned source
is made. Four of them belong to source 1 and two to source 2.

Repeating this steps, all the audio atoms will be classified into one or more of the
sources, and can be used to reconstruct the corresponding one.

Fig. 4.10 shows an example of the audio atoms assignation into a source according
to the presented temporal analysis. The centers of the audio atoms in the time-frequency
plane are represented for the original sequence (mixture of two speakers, one boy and
one girl) and for the separated soundtracks. This temporal analysis determines the time
periods where only one source is active. The first part of the sequence corresponds to
speaker 1 and the last part to speaker 2, and, correctly, audio atoms in this periods are
assigned only to them. Additionally, when both sources are active at the same time some
audio atoms are related to one of them and some to the other.

Before continuing, it is necessary to do the following explanation about the decision
bound in step 3. Not all the audio atoms in this point are clearly classified into one of the
sources. Some of them are in an intermediate position and we cannot decide only with a
small difference of the source total score. This atom may belong to more than one source,
or we could be making a mistake choosing one speaker and not the other. Thus, with this
source total score bound, we can be more sure about the fact that the analyzed audio atom
belongs to this video source.
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Time

(a) Original sequence decomposed into atoms.

Time

(b) Atoms assigned to speaker 1.

Time

(c) Atoms assigned to speaker 2.

Figure 4.10: Example of the classification of the audio atoms into the correspondent source.
The points in the pictures represent the situation in the time-frequency plane of the audio
atoms centers. Therefore, (a) corresponds to the centers of the atoms in the original
mixture, and (b) and (c) to speakers 1 and 2 respectively.

Reconstruct the separated signals

The audio signal that comes from each source is reconstructed by adding the energy of the
audio atoms classified in this source. If the atom belongs to several sources, its energy is
equally distributed among all of them.

Therefore, to reconstruct the audio signal, we simply sum the selected atoms a(t)
together. Each atom a(t) is computed as:

a(t) = coeff · g(t− t̃) · cos(2π(ϕ + f(t− t̃))) (4.2)

where t̃ and f are, respectively, the time and frequency coordinates of the audio atom a(t) in
the time-frequency plane. ϕ is the phase of the atom in the dictionary that best matches the
analyzed signal and g is a gaussian function, the energy distribution of a(t). The gaussian
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form depends on its windowSize parameter in the Matching Pursuit decomposition. There
are 6 possible sizes in this decomposition, from 512 samples to 16384 depending on the
audio atom duration.

In the MP decomposition of Lastwave, coeff is the energy coefficient of the audio
atom, timeID and freqID are the central coordinates in the time-frequency domain.

Fig. 4.11 shows the reconstruction with LastWave software [1] of the separated
sequences for a boy and a girl obtained with the explained temporal analysis.

Time

Time

Figure 4.11: Reconstruction with LastWave software of the separated sequences obtained
with the explained temporal analysis. Left column shows the centers of the audio atoms
that are classified into the girl [up] and the boy [down]. Right column represents their
respective reconstructions using the Lastwave software

4.3.3 Discussion

In this form, the temporal Blind Audio Source Separation of the sources is performed. The
Blind concept is assured by the fact that the proposed model is not using any external
information, such as the number of sources in the mixture.

Combining the temporal information present in the audio and video features, this
method is capable to determine the number of speakers and their spatial situation, as
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well as perform an acceptable source separation. And the best part, all these results are
obtained with only a temporal analysis, without using the other information present in the
Matching Pursuit decomposition of the audio.

Nevertheless, difficulties appear when the sources are active exactly at the same
time. In these temporal periods we are not able to decide because we are not selective
in frequency, all the information that we use is relative to temporal events.

Therefore, it is logical to think that the results obtained with the implemented method
would be improved by adding some kind of frequency analysis.

The temporal separation of the audio signal we have already performed is the main
advantage in our case. We can use the periods where we know there is only one source
active to predict the sources behavior when they are mixed.
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Chapter 5

Time-Frequency Analysis

The main achievement of the implemented method until now is to determine clearly the
temporal periods where each one of the present sources is active. Therefore, the proposed
algorithm automatically detects when the sources are alone and when superposed to
another one.

The goal of the complementary analysis presented in this chapter lies in using the
temporal periods where a single source is active to learn its frequency behavior. Then,
we will try to predict this source evolution in those instants when more than one speaker
contributes to the mixture. And, as a result, this frequency analysis will make possible to
perform a better Blind Audio Source Separation.

Therefore, the idea is to establish, in temporal periods where only one speaker is active,
a probability for each frequency f to belong to one or the other speaker. In other words, we
assign the frequencies to a speaker, the other, or both of them taking into account the
frequency values of the audio atoms in temporal periods with only one active source, and,
as a result, a probability is obtained for each frequency f . Thus, combining the probability
of one speaker in this domain with his probability in time, that is, the number of atoms of
this speaker divided by the total, we can build a map of probabilities, where each point
in the time-frequency plane has a probability of belonging to one or the other speaker. In
temporal periods where both speakers are active at the same time, the proposed method
decides to what speaker belong the audio atom according to this probability values.

5.1 Motivation

At this point, we have exploited the temporal information present in the sequence in order
to have a first BASS approach. What is necessary to do now is to use the additional
information that the Matching Pursuit decomposition of Lastwave provides.

63
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Each audio atom has several parameters, but the most relevant are timeID, coeff2 and
freqID.

The most important parameter we have used until now is the timeID or temporal
center of the audio atom. The implemented method is based on the temporal synchrony
between audio and video events, and consequently this term has an important role. We
use this information to determine the relationship between atoms of both modalities
(audiovisual pairs), the most determinant phase in the whole process. Our method looks
for peaks in video atoms displacement temporally close to this audio atom parameter.

Another relevant parameter for the proposed model is the coeff2, which provide us
the information about the audio atom energy or, in other words, the importance of this
atom in the decomposition of the whole sequence. We use this parameter to calculate
the video atom confidence value, addition of the Matching Pursuit coefficient of the audio
atoms related. Then, we build the cluster around the most important ones to estimate
the coordinates of the video sources. So, this coefficient is mainly relevant concerning the
determination of the source position in the image.

So far, we have not used the last parameter. Just like the first one, the freqID is the
audio atom center, but now in the frequency domain. The audio atoms are situated in the
time-frequency plane, and so these two coordinates are very relevant to characterize them.
Therefore, the importance of this parameter consists in the addition of a second dimension
in the analysis and, as a result, a new possibility of separation.

Thus, in order to perform the Audio Source Separation task, the goal is to separate the
audio atoms of the sequence both in time and in frequency combining the time-frequency
information. Then, this second dimension will aid us to obtain better separation results
when the sources are temporally overlapped.

5.2 Frequency assignation

This step consists in using the audio atoms present in temporal periods where only one
speaker is active to characterize the frequency axis, so that, using these observations, the
proposed model can assign a probability to each frequency f of belonging to one or the
other speaker.

This method is based on the hypothesis that the speakers have pitches differentiated,
since, otherwise, their frequency assignation would be similar, and this second analysis
vain. Another characteristic of the speech signal is that frequency components tend to
move, they are not fixed in the pitch multiples. So, the frequency range of each component
is quite big with this assignation, involving a big improvement on the performance when
their pitches are well separated.

The proposed model consists of the following steps:

1. Extract the audio atoms in temporal periods with a single active source.
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2. The central frequencies (freqID) corresponding to these audio atoms are assigned to
the active source. Each frequency f has a number of atoms belonging to one speaker
and another value for the other one.

3. The probability of each frequency f of belonging to each one of the speakers is
computed as the number of atoms in this frequency that belong to one speaker
divided by the total number of atoms.

Figure 5.1 shows the frequency classification for a sequence with two speakers, one boy
and one girl. The figure represents the frequencies with probability 1 for the boy and the
girl in 5.1(a) and 5.1(b) respectively. Then, figure 5.1(c) shows the frequencies with value
different from 1, that is, frequencies with audio atoms of both speakers in the temporal
periods with only one source active.

(a) Speaker 1 (girl) (b) Speaker 2 (boy)

(c) Audio atoms of both speakers

Figure 5.1: Example of frequencies assigned by the algorithm only to speakers 1 and 2 or
with audio atoms of both of them in 5.1(c).

As expected, lower frequencies are assigned to the boy while higher ones are associated
with the girl. This characteristic remarks the pitch frequency for both speakers. Another
observation about the figure is that almost all the highest frequencies belong to the girl.
It is also possible to see the formant periodicity for both speakers, with their frequency
components situated in pitch multiples.

All these observations reinforce the theory that the temporal separation is well
performed, correctly discriminating, thus, the temporal periods with only one source active.
That allows to characterize clearly every speaker in the frequency domain.
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Furthermore, in the third picture of 5.1, we can notice that frequencies belonging to
both speakers are not very usual. Sequences with speakers with close pitches would mean
more overlapping in the frequency classification and, consequently, the impossibility to
perform a good separation in this domain using such a simple approach.

We have to take into account the following point: one frequency may belong to several
sources. Even though different speakers have different pitches, frequency components
tend to move in speech, and they may be overlapping fundamental frequencies of other
speakers. That is the main reason of the probabilistic time-frequency analysis, since, if
every frequency had belong only to one speaker, the probabilities would have been always
1 and the atoms assigned clearly into one or the other source.

5.3 Map of probabilities

Concerning the last step of the proposed model, the assignation of the audio atoms to one
of the sources, first we have to consider in which of the following cases we are situated:

Time period with only one source active We use the temporal analysis result to
classify this atom. We already know what source is active at this moment and
so it is not necessary to use the frequency information.

Time period with several sources actives There is a mixture in this period, and also
frequency analysis is required. Each audio atom in this period is classified into a
source according to the probabilities of its coordinates in the time-frequency plane.
Therefore, an audio atom with center in coordinates (t, f) is classified into source 1
if

P1(t, f) > P2(t, f) (5.1)

otherwise it is classified into source 2.

This map of probabilities is built computing the product between time and frequency
probabilities as following:

Pi(t, f) = P T
i (t) · P F

i (f) (5.2)

where P T
i (t) is the probability for an audio atom situated in the time index t of belonging

to source i, and P F
i (f) is the probability for an audio atom situated in the frequency index

f of belonging to source i. The probabilities are computed as:

P T
i (t) =

# atomsi in t

# atoms in t
(5.3)

and

P F
i (f) =

# atomsi in f

# atoms in f
(5.4)
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A product is employed in equation 5.2 in order to penalize sources with low
probabilities to belong to one source in time or in frequency. Therefore, if the analysis
in the temporal domain or in the frequency one are sure, independently of the analysis in
the other domain, the product favors this probability in front of others with less capacity
of decision (more close to probability 0.5).

One consideration has to be taken into account. Not all the frequency values have a
probability associated, only the values with some audio atoms in temporal periods where
only one source is active. The closest frequency with probability is used in equation 5.2,
in other words, the frequency probability of the audio atom is the same than that one
calculated for the closest point in the frequency assignation.

Fig. 6.5 show the comparison between video atoms resulting of temporal and frequency
analysis in a real-world mixture with one boy and one girl speaking at the same time. Fig.
5.3 makes the same comparison, but now with the separated signals already reconstructed
with the LastWave software [1].

Looking at this figures we can see the improvements introduced by the analysis in
this second dimension of the spectrogram. The temporal analysis limitations are visible in
the time period when the two sources are active exactly at the same time. This analysis
relative to the synchrony between audio and video relevant events discover the periods
were only one speaker is active with relative facility, but, logically, when there are audio
atoms of both speakers in the same time instant, this technique can not make a decision,
or it decides the speaker with more audio atoms in this moment. Thus, if we introduce the
analysis in the second dimension of the problem, these atoms can be separated according
to each speaker energy distribution in the frequency axe.

Therefore, comparing the temporal analysis alone, and after adding the frequency
analysis, considerable differences are illustrated.

• Temporal analysis can not decide most of the time when the two sources are active
at the same time, and, consequently atoms are assigned to both sources and their
energy split between them. This classification is performed with the analysis in
the second dimension, and consequently, the number of atoms classified into both
speakers descend considerably.

• Characteristic energy distribution in the time-frequency plane of each speaker is
extracted correctly when we analyze the two dimensions of the problem, but not
when only the temporal analysis is used. For example, in Fig. 6.4(b) we can see the
separated signal for a girl. The first part of the soundtrack only contains her speech,
so that it is possible to observe clearly her characteristic evolution of the frequency
components. The same evolution is repeated in the period were the two are speaking
at the same time with this time-frequency analysis(center of the spectrogram), but
not in the temporal alone as shown in Fig. 5.3(a). Another aspect to remark is
that low frequencies characteristics of boys are removed in the separation with time-
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Time

(a) Temporal analysis, speaker 1.

Time

(b) Frequency analysis, speaker 1.

Time

(c) Temporal analysis, speaker 2.

Time

(d) Frequency analysis, speaker 2.

Figure 5.2: Comparison between video atoms resulting of temporal and frequency analysis
in a real-world mixture with one boy and one girl speaking at the same time. The points
are the centers of the audio atoms, which the algorithm estimates that they belong to this
speaker.

frequency analysis, with and important improvement in the audible quality of the
resultant soundtrack.

All this improvements demonstrate the necessity of this second analysis in the
frequency domain, and its relevance in the achievement of a correct Blind Audio Source
Separation, with reasonable auditory quality in the case of a mixture of a boy and a girl
(more disjoint distribution of the energy in the time-frequency plane).

5.4 Discussion

This combined method is more robust than the temporal one alone. With a simple
probabilistic time-frequency analysis we obtain better audible results and a good Blind
Audio Source Separation.
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(a) Temporal analysis, speaker 1. (b) Frequency analysis, speaker 1.

(c) Temporal analysis, speaker 2. (d) Frequency analysis, speaker 2.

Figure 5.3: Comparison between LastWave reconstructed sequences resulting of temporal
and frequency analysis in a real-world mixture with one boy and one girl speaking at the
same time.

Concerning the conditions to perform this frequency separation, clear temporal periods
with only one source active are necessary to characterize the speaker. That is not a
too restrictive requirement, since one long sequence with both sources active all the time
simultaneously is a very unreal case. In this case, even if the observer were a human it
would be necessary a lip reading mechanism.

The source separation that we perform is totally blind because, while other methods
need previous knowledge as the number of sources, spatial situation of them, or training
datasets to characterize the speaker, we obtain all this information combining audio and
video features. Therefore, the temporal analysis already gives us these training sequences,
without previous knowledge or suppositions about the speakers present in the mixture. We
are performing a Blind Audio Source Separation aided by the visual component.

Some other difficulties appear when there is a frequency overlapping between the
sources. As a result, sequences with boy and girl are preferred for the analysis, as usual in
the Blind Source Separation research works.

More elaborated methods to separate in frequency could be:
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• Apply Hidden Markov Models, then create masks and refiltering as in [26].

• Represent speakers by dynamic models and then refiltering as in [2]. Method CUES:
Continuity of the speech signal, synchrony of movement of the frequency components
(oriented filters), pitch, etc.

• Follow the temporal evolution of harmonics and resonances as in [25]

All these models could obtain better results, but it is necessary to remark that
applying only a simple algorithm, it is already possible to obtain a good Blind Audio
Source Separation. Implementing one of these laborious methods is not the object of this
research work, the proposal is only to show the possible way to improve it.



Chapter 6

Analysis and Results

6.1 Introduction

The Audiovisual Separation task is divided into two main steps in the proposed model.
The first objective is to locate the speakers present in an audiovisual sequence into the
image, that is, the video separation part. This first goal is achieved by means of the
creation of multimodal relevant structures, which are audio and video features synchronous
and probably caused by the same physical event. The same structures that allow these
localization provide us the information to perform the Blind Audio Source Separation,
which is the second objective of this research work.

Results concerning these two main aims of the algorithm are presented separately
in this chapter. Performance of the proposed approach is evaluated in CUAVE database
clips [22] where two speakers, one boy and one girl, are active at the same time. Concerning
the BASS, results are also evaluated in synthesized sequences generated from the same
database, which allows the quantification of the results. The output sequences of the
algorithm are compared with the original ones, where each speaker is isolated, and the
percentage of correct atoms is computed. Another measure to evaluate the presented
algorithm is the percentage of the original energy that these correct atoms represent, that
is, the energy of the correct atoms assigned by the algorithm divided by the energy of all
the atoms of the speaker.

In the next sections we describe, first, the characteristics of the sequences to analyze,
and, next, the results obtained by this method concerning the two aims of the proposed
model.

71
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6.2 Test dataset: CUAVE database

Experiments have been carried out on clips taken from groups sections of the CUAVE
database [22] where two persons in the scene, one boy and one girl, are speaking at the
same time. First tests are performed in real-world sequences, extracted directly from this
database, while the others are artificially synthesized from sequences where the the two
talkers are speaking alternatively.

CUAVE database consists of sequences where one or two speakers (individuals and
groups sections, respectively) are uttering different sequences of numbers in front of a
camera. The video data was recorded at 29.97fps with a resolution of 480×720 pixels, and
the audio at 44kHz.

The sizes of audio and video data have been reduced to allow a quicker processing.
Therefore, concerning the video the dimensions of the images employed for this algorithm
are 120× 176 pixels. Applying the procedure described in section 3.3.1 the decomposition
of the video signal into 2-D time-evolving atoms representing the scene evolution is
obtained. For the audio, the signal is sub-sampled to 8kHz, with still a good audible
quality. Using the Lastwave software [1], the mixture soundtrack is decomposed into
1-D atoms, which are situated in the time-frequency plane and represent the energy
distribution of the audio sequence in this domain.

The input data of test 1 (real world clips) is obtained by choosing CUAVE audiovisual
sequences where one boy and one girl speak simultaneously. The steps carried out to
generate the synthesized sequences employed in test 2 are the following:

1. Choose a clip of the groups section of the CUAVE database where two speakers (boy
and girl) utter numbers in turns.

2. Shift the audio atoms of one speaker so that their voices are overlapped part of the
time. The Matching Pursuit decomposition of the audio [18] gives us the temporal
situation of the audio atoms belonging to each one of the speakers. Thus, we only
need to take all the atoms of one speaker, which are temporally separated from those
of the other one since they are speaking alternatively, and change their temporal
index appropriately. The same quantity is added or subtracted from all the atoms.
Fig. 6.1 illustrates an example of this procedure.

3. The same procedure is applied to the video atoms. After their decomposition in 2-D
time-evolving atoms [10], the feature to analyze is the evolution of the video atoms
displacement through time. In the CUAVE database, each speaker is situated at one
side of the image, so that video atoms belonging to one speaker have the abscissa
value extracted from the decomposition between pixels 1 and 88, and the other one
between 89 and 176 (the resolution of the video is 120 × 176). Thus, the procedure
consists in temporally shifting the video atoms corresponding to one speaker by the
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same temporal value of the corresponding audio atoms. Notice that the shift in audio
is in samples and we have to convert it in frames to apply the same shift to the video.

Time

(a) Clip g20 before shift.

Time

(b) Clip g20 after shift.

Figure 6.1: Shift applied to clip g20 of CUAVE database. The central part corresponding
to a boy has been shifted 150 frames to the left, that is, by subtracting the same quantity
in samples to the time index of all the audio atoms belonging to the boy.

This procedure shifts the whole part of the audiovisual sequence belonging to one
speaker in order to have a synthetic mixture where both speakers are uttering different
numbers at the same time. Therefore, the performance of the proposed model can be
compared with the original sequence, with the two speakers temporally separated.

6.3 Results concerning the Speaker detection task

Results are evaluated in clips of CUAVE database, with one girl and one boy uttering
sequences of numbers. First, the girl speaks alone, then both of them at the same time,
and, finally, the boy keeps on speaking while the girl has already stopped.

The first point to check is the performance of the proposed algorithm in locating the
sources of the soundtrack into the image. Fig. 6.2 shows an example of the obtained
results for sequence g20. The detected sources, that is, yellow points in the image, are
close to the speakers mouth, and, as a result, this first objective is satisfactorily achieved.

Another goal is to detect the current speaker, that is, the speaker active in each
moment. Results for clip g20 are illustrated in Fig. 6.3, with frames where only the girl
or the boy are speaking. The correct speaker is reconstructed in both cases.

As in the previous research work [19] the speaker detection task is satisfactorily
performed, detecting both, where are situated the sources in the image and in what moment
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Figure 6.2: Results concerning the speaker localization obtained by analyzing clip g20 of
CUAVE database.

(a) (b)

(c) (d)

Figure 6.3: Results concerning the current speaker detection for clip g20 of CUAVE
database. Pictures (a) i (b) show two original frames of the sequence, where the current
speakers are the girl and the boy respectively. (c) and (d) correspond to the frame
reconstruction using only video atoms close to the estimated source.

they are active in an audiovisual sequence. This challenge is more difficult in our case,
since in the analyzed mixture boy and girl are speaking at the same time. Therefore, we
can conclude that this procedure is more robust thanks to the applied clustering, and also
more precise since we associate video with audio atoms instead of audio energy feature.
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6.4 Results concerning the Blind Audio Source

Separation task

The performance of the proposed model in the BASS task is evaluated through two kind
of tests:

• Test 1 analyzes real-wold sequences extracted from the groups section of CUAVE
database.

• Test 2 is performed over synthetic sequences generated by following the steps
described in section 6.2. The main advantage in this case is the possibility of quantify
the results by comparing them with a known grown truth.

Results of both tests are presented in the next subsections, showing, for each one
of them, the performance of the presented technique, with quantitative and qualitative
evaluations. The percentage of correct atoms and the percentage of the original energy
that these correct atoms represent are assessed in Test 2.

6.4.1 Test 1: Real world mixtures

For this first test we clips of CUAVE database with one girl and one boy uttering sequences
of numbers. In this sequences, there are the three possible situations represented: girl and
boy speak alone and also both at the same time.

Qualitative results of analyzing a real-world mixture with the presented technique
are shown in Fig. 6.4. This sequence corresponds to clip g20 of CUAVE database. Figures
show the LastWave [1] reconstruction of the original sequence with all the atoms in the
decomposition in 6.4(a), first, and then of the audio atoms assigned to each one of the
speakers in the mixture, 6.4(b) and 6.4(c) for girl and boy respectively.

First consideration to do is that all the three situations are correctly interpreted and
delimited by the proposed approach, with the energy assigned to the correct speaker if he
is uttering the numbers alone or to both of them if their speech is overlapped.

Another point to remark is that the inherent structures in the time-frequency plane
for both speakers are correctly detected. Therefore, it is possible to see the same structures
repeated for the girl when she is speaking alone (2 first seconds in the spectrogram) and
when the boy is also speaking: her pitch and frequency harmonics evolution are clearly
represented. Concerning the boy, his structures are not so visible, neither in the period
when he speaks alone, due to his lower energy. However, as expected, the lowest frequencies
in the mixture are assigned to him and there are no presence of them in the girl spectrogram.

Thus, we can conclude that a satisfactory Blind Audio Source Separation is achieved
by the algorithm in real-world mixtures, and with a good audible quality.
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(a) Original sequence.

(b) Results speaker 1 (girl). (c) Results speaker 2 (boy).

Figure 6.4: Results obtained for clip g20 of CUAVE database with the explained time-
frequency analysis.

6.4.2 Test 2: Synthesized mixtures

Synthesized sequences are generated using clips of CUAVE database, with one girl and one
boy uttering sequences of numbers alternatively. The audio and the video atoms of one
speaker are temporally shifted as previously explained in 6.2. In the resultant synthetic
sequence, four cases are represented: both are speaking at the same time, only the boy or
the girl and, the last possibility, a period of silence.

The interest of analyzing synthesized mixtures resides in the fact that quantitative
results can be extracted. The features used to evaluate this technique are the percentage
of correct atoms for each one of the speakers and the percentage of the original energy that
these correct atoms represent.

First, the percentage of correct atoms is assessed. Fig. 6.5 shows, for a syntectic
sequence generated by shifting the boy 150 frames in clip g20 of CUAVE database, the
speakers video atoms estimated by the algorithm at left and the real ones at right.
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Time

(a) Time-frequency analysis, speaker 1.

Time

(b) Real video atoms belonging to speaker 1.

Time

(c) Time-frequency analysis, speaker 1.

Time

(d) Real video atoms belonging to speaker 2.

Figure 6.5: Comparison between video atoms resulting of time-frequency analysis in a
synthetic mixture with the original ones. The points are the centers of the audio atoms,
which the algorithm estimates that they belong to this speaker.

Results obtained by the proposed technique in this sequence are: 92% of correct atoms
for the girl and 90% for the boy. This one is a good result taking into account that is at
the atoms level that our algorithm is performed. Thus, in global, our algorithm classifies
91% of the audio atoms to the correct source.

However, another measure is employed in order to evaluate this method: the
percentage of the original energy that these correct atoms represent. This value
gives us the information relative to the difference of the original and estimated soundtracks
for each speaker after the reconstruction step. This measure is performed in order to discard
the very improbable fact that the 9% of audio atoms that the algorithm classifies into the
wrong source contribute to the separated soundtracks with the main part of the energy,
that is, this video atoms are the first in the 1-D MP decomposition [18] of the original
mixture.
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Time

(a) Estimated soundtrack for speaker 1 (girl).

Time

(b) Real soundtrack for speaker 1 (girl).

Time

(c) Estimated soundtrack for speaker 2 (boy).

Time

(d) Real soundtrack for speaker 2 (boy).

Figure 6.6: Comparison between estimated [left] and real[right] soundtracks for a synthetic
sequence generated by shifting the boy 150 frames in clip g20 of CUAVE database

For each source, this percentage is computed as the sum of the coefficients of all
the atoms correctly assigned by the algorithm to the source divided by the sum of the
coefficients of all the atoms belonging to this source. Therefore, this percentage can be
seen as the part of the estimated signal belonging to the original one. The remaining energy
is due to the assignation of the audio atoms to the incorrect speaker and constitutes the
noise of the separated signal estimated by the algorithm.

Fig. 6.6 shows an example of reconstructed waveforms, the originals at right and the
estimated by the proposed time-frequency analysis at left.

Waveforms are very similar in original and estimated sequences, and the percentage
of the original energy that the correct atoms assigned to each source represent are of
92% and 86% for boy and girl respectively. These percentages are considerably high and
similar of those obtained for the number of correct atoms assigned to each speaker (92%
and 90%). Thus, we can discard the fact that incorrect audio atoms represent most of the
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energy of each speaker separated signal.

Results obtained analyzing different sequences are summarized in table 6.1

Sequence
% correct atoms % correct energy
girl boy girl boy

g12 shift 100 frames 86 54 73 42
g20 shift 150 frames 92 90 92 86
g21 shift 130 frames 83 81 81 75
g21 shift 169 frames 82 78 84 73

Table 6.1: Results obtained with syntethic sequences generated for different clips of CUAVE
database.

Values obtained for the percentage of correct atoms and the percentage of energy that
these atoms represent are similar. As a result, we can conclude that the algorithm has
the errors distributed in audio atoms of all sizes, and the percentage of correct atoms is
already a good measure of the algorithm performance.

Results are quite good, around 80-90% except for sequence g12 of CUAVE database,
with a worse performance for the boy. Table 6.1 shows also that the results obtained are
linked with the sequence to analyze and they are independent of the shift we introduce.
The performance for sequence g21 is around 80% with a shift of 130 frames or one of 169,
with a small difference in favor of the first one.

Therefore, we can conclude that the proposed method presents a new and successful
approach for the Blind Audio Source Separation problem, with most of the atoms and
energy assigned to the correct source.
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Chapter 7

Conclusions

7.1 Conclusions

In this report, a new algorithm to perform Blind Audio-Visual Source Separation is
presented. This method is based on the representation of both, audio and video signals,
using sparse redundant dictionaries of functions. For the audio 1-D Matching Pursuit
decomposition [18] is employed, representing the soundtrack as the addition of Gabor
functions in the time-frequency plane. This representation provides, thus, the information
relative to the energy distribution of the soundtrack in this plane, denoising also the input
signal. Concerning the video, its most relevant structures are represented by a set of 2-D
atoms and their changes tracked from frame to frame using the video Matching Pursuit
algorithm proposed by Divorra and Vandergheynst [10].

The presented method uses the idea introduced in [19], that is, to look for the
synchronous relevant events in both modalities in order to build relationships between
them. The innovation now consists in assessing the synchrony between each audio and
video atom instead of using only one audio feature (the energy) for all the soundtrack.
Therefore, several video structures are related to the audio and selected by the algorithm,
and the introduction of a spatial clustering is required in order to locate the sources in
the image. The function of this clustering is to group the video atoms related to the
audio into bigger structures representing the speakers and compute the center of this
sources, the mouths in the speakers case. Another important innovation is the use of
this audiovisual relationships to confront the Blind Audio Source Separation problem.
Information present in video signal is employed to separate an audio mixture in the
time-frequency plane. One soundtrack and the video signal associated are the only features
used in this procedure, without the microphone arrays usually employed for the BASS task.

Several tests are performed in real-world and synthetic sequences, with
encouraging results obtained for both of them. As in the previous research work [19],
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the speaker localization is now successfully performed, with a more difficult challenge here,
since the two speakers are active at the same time. Therefore, the presented model is more
robust due to the clustering and more precise since we associate video with audio atoms.
Concerning the second part of this audiovisual separation, and also the most difficult one,
the audible quality of the separated audio signals is also quite good, with reconstructed
waveforms close to the original ones.

Synthetic mixtures are generated in order to obtain quantitative results for the
proposed model, since the analysis of real-world sequences gives us only a qualitative
idea of the algorithm performance. However, we have noticed that performance of the
algorithm in synthetic sequences is considerably better than in real ones. This effect is
caused by the change in the speakers fundamental frequency, and, consequently, spectral
harmonics, when they speak at the same time in the reality. Humans tend to change
this speech parameters in order to differ more from the others speakers and to be, thus,
easily heard. This change in their frequency behavior causes a worse performance of
the algorithm, since the speakers model is learned in temporal periods where they are alone.

Despite of the good performance of the proposed approach, some considerations
have to be taken into account.

First, the need of clear periods with only one source active to predict its behavior
in the mixture. This requisite is not a very restrictive one, since it is not usual that in
real-world mixtures the sources are active all the time, and, as a result, there are temporal
periods with only one speaker where the learning of frequency characteristics is possible.

Another point to considerate is the characteristic frequencies of the speakers. In a
mixture, if the two speakers are temporally overlapped, that is, they are speaking at the
same time, and also in frequency, with very similar pitches, the separation of the mixture
is almost impossible. For this reason, sequences with one girl and one boy are chosen,
since their characteristic frequencies and their harmonics are more separated. Then, the
frequency assignation performed in chapter 5 is more discriminative than in the case with
two boys or two girls.

Finally, the last consideration to do is that frequency components of the speakers
tend to move, taking thus a quite big band in the frequency axis for each harmonic. This
characteristic causes that, even though the speakers pitches are different, frequencies are
sometimes assigned to both speakers. However, this effect is solved with the introduction
of frequency probabilities, that combined with the temporal ones provide a more robust
assignation of the audio atoms to the correct speaker.
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7.2 Future Work

The Blind Audio-Visual Source Separation presented in this report can be improved mostly
in the Audio Separation field. The use of temporal and frequency probabilities to assign
the atoms to one of the sources represents only a first and simple approach to all the
possible ways to explore for the BASS goal. As already explained in the related work in
this field, we can consider that we are performing a Single-Channel Source Separation, but
aided with video information. Therefore, a possible future work is to apply some of the
methods in this field in order to separate the mixture in the time-frequency plane. Some
ideas to improve the proposed model in the future could be:

• To train factorial Hidden Markov Models (FHMM) in the temporal periods where
one source is active in order to, later, compute binary mask functions through HMM
and apply them to separate the mixture. This procedure is proposed in [26], but in
our case it would be blind because the proposed model automatically detects this
periods with only one speaker.

• To represent speakers by dynamic models and then apply them to the mixture
as in [2]. Classical cues from speech psychophysics [5, 6] are used to define these
models: pitch, continuity of the spectrum, synchrony of movement of the frequency
components, etc.

• Another possible work in this field would be to track the evolution of harmonics
and resonances through time due to their continuity in this domain. This idea is
introduced in [25].

• Refined processing of mixed parts using audio dictionaries adapted to the speakers.
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