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Abstract

In many applications, the sampling frequency is limited by the physical characteristics of the

components: the pixel pitch, the rate of the A/D converter, etc. A low-pass filter is then often applied

before the sampling operation to avoid aliasing. However, when multiple copies are available, it

is possible to use the information that is inherently present in the aliasing to reconstruct a higher

resolution signal. If the different copies have unknown relative offsets, this is a non-linear problem in

the offsets and the signal coefficients. They are not easily separable in the set of equations describing

the super-resolution problem. Thus, we perform joint registration and reconstruction from multiple

unregistered sets of samples. We give a mathematical formulation for the problem when there are

M sets of N samples of a signal that is described by L expansion coefficients. We prove that the

solution of the registration and reconstruction problem is generically unique if MN ≥ L + M − 1.

We describe two subspace-based methods to compute this solution. Their complexity is analyzed,

and some heuristic methods are proposed. Finally, some numerical simulation results on one and

two-dimensional signals are given to show the performance of these methods.
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I. INTRODUCTION

Aliasing, caused by undersampling of a signal, is generally considered as a nuisance and has

to be avoided. To this effect, an anti-aliasing low-pass filter is often placed in front of the actual

sampling operation, such that the sampled signal is not aliased. However, in super-resolution signal

reconstruction, aliased components contain valuable high frequency components that can be used to

recover a higher resolution reconstruction. In this paper, we study methods to reconstruct a signal,

including its high frequency information, from multiple aliased sampled signals with relative offsets.

The offsets are unknown, and need to be computed first. For the estimation of those offsets, we

explicitly use the information available in the aliased part of the spectrum.

Applications can be found in various domains, such as super-resolution imaging. A camera is held

manually while taking multiple images of the same scene. In satellite imaging, a satellite acquires

images of approximately the same region at different moments. For one-dimensional signals, we find

a similar setup in high rate A/D converters. A single high rate A/D converter is replaced by multiple

lower rate converters that operate with small offsets. These low rate converters are hard to synchronize

precisely, and can therefore be considered as converters with unknown offsets.

Aliasing is most often considered in a Fourier domain setup. It is seen as the replication of

frequencies above half the sampling frequency in the base spectrum of the sampled signal. In this

way, a frequency above half the sampling frequency is mapped onto a frequency below this limit after

sampling and the two cannot be distinguished from their samples. In this paper, we will consider

not only bandlimited functions, but more generally functions that belong to a finite-dimensional

Hilbert space. In this case, the interpretation of frequency replication is not valid anymore, and

the idea of aliasing needs to be broadened to this new signal space. We can then consider the

sampling process as a projection of a continuous-time signal in a finite-dimensional Hilbert space

onto the space of discrete-time signals. Aliasing occurs when the signal is undersampled, meaning

that different signals from the Hilbert space are projected onto the same set of samples. The mapping

between the continuous-time input signals and the discrete-time sampled signals is not a one-to-one

mapping anymore. This interpretation is valid for signals in arbitrary finite-dimensional Hilbert spaces,

including the bandlimited functions from the more restricted analysis. Some examples for different

signal types are shown in Figure 1.

Sampling methods can be classified into different categories, according to the type of sampling

that is performed (see Figure 2). A first important distinction is between uniform and non-uniform

sampling methods. With uniform sampling, a signal is sampled periodically at constant time intervals.
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Fig. 1. Examples of aliasing for different types of signals. (a) For a bandlimited signal, input signals of different frequencies

map into the same low frequency after sampling. (b) For a piecewise linear continuous signal, different input signals map

into the same set of samples (and reconstruction) after sampling.

This is the standard setup, which is described by the Shannon-Nyquist sampling theorem [3]. An

overview of some more recent results is given by Unser [4]. Among the non-uniform sampling

methods, a distinction needs to be made between methods using known sampling instants [5], [6],

and other methods where the sampling locations are unknown. If the sampling locations are unknown

and completely arbitrary, the problem cannot be solved. This can be shown using a simple counting

argument. Assume that the signal to be reconstructed has L unknown parameters. For every additional

sample, there is also an additional unknown (its location). Therefore the number of unknowns is always

larger than the number of measurements, and this problem is unsolvable. However, for discrete signals,

where the sampling locations can only take a finite number of values, a combinatorial solution can

be found, as described by Marziliano and Vetterli [7].

uniform sampling

multichannel sampling
with known offsets

multichannel sampling
with unknown offsets

with known locations
non−uniform sampling

general

with unknown locations
non−uniform sampling

general

Fig. 2. Classification of sampling methods. Sampling methods can be divided into uniform and non-uniform methods.

The non-uniform sampling methods can be subdivided depending on whether the locations are known and whether the

samples are grouped in uniform sets with only unknown offsets. In this paper, we discuss multichannel sampling methods

with unknown offsets.

An important subset of the non-uniform sampling methods is formed by multichannel sampling

methods. In these methods, multiple sets of uniformly spaced samples are measured. Each of the sets of



ALIASING IS GOOD FOR YOU 4

samples is uniform, but the different sets have a non-uniform offset. Papoulis [8] described a solution

for multichannel sampling with known sampling locations. He showed that a bandlimited signal can

be perfectly reconstructed from M sets of samples that are sampled at 1/M the Nyquist sampling

rate. This result was extended by Unser and Zerubia in their generalized sampling approach [9], [10].

The problem with multiple sets and unknown sampling locations was solved for discrete-time signals

by Marziliano and Vetterli [7]. In this paper, we will study the continuous-time case: multichannel

sampling with unknown, real-valued offsets.

A typical application of such a setup is super-resolution imaging. The goal in super-resolution

imaging is to reconstruct a high resolution image from a set of multiple images that are taken from

almost the same point of view. Most of the times, the images are assumed to differ by small, sub-

pixel shifts. This problem was first described by Tsai and Huang [11] in 1984. A good overview of

existing super-resolution methods is given by Borman and Stevenson [12], Farsiu et al. [13], and in

the special issues on super-resolution imaging in the IEEE Signal Processing Magazine [14] and in

the EURASIP Journal on Applied Signal Processing [15].

Different methods exist to compute a high resolution image from a set of low resolution images.

They mainly differ by the amount of prior information that is assumed to be available about the

images. The most generally applicable methods only require that the images belong to a broad signal

class, such as bandlimited signals [11], or signals with finite rate of innovation [16]. Other methods,

such as the hallucination method by Baker and Kanade [17], use more specific knowledge about the

image type (faces, printed text, etc.) to reconstruct a high resolution image. In general, there is a

trade-off between the amount of prior information and the number of images required to produce

good results. The methods described in this paper belong to the first category, and only use basic

assumptions about the signal class. As opposed to other methods, which consider the aliasing as part

of the noise, we will include the aliasing into our signal model, and use its information for both

registration and reconstruction.

This paper is structured as follows. First, a mathematical description of the problem is given in

Section II. Next, the uniqueness of the solution to this problem is discussed in Section III. Two

subspace-based solution methods are described in Sections IV and V, respectively. We discuss the

advantages and disadvantages of the different methods in Section VI, and we also present heuristic

solution methods. In Section VII, we derive the computational complexity of the different algorithms.

Results are presented in Section VIII, and finally some conclusions are drawn in Section IX. All

the results and figures presented in this paper are reproducible [18]. The Matlab code and data to

reproduce the results are available online at

http://lcavwww.epfl.ch/reproducible research/VandewalleSVV06a.
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II. MATHEMATICAL DESCRIPTION

We aim to reconstruct a continuous-time signal from multiple uniform sets of samples with unknown

offsets. The sampling frequency of each set is too low to allow direct reconstruction, but reconstruction

is possible from the joint set of all samples together. In this section, we formulate the mathematical

framework for this problem and fix notations.

Assume we have a finite dimensional1 Hilbert space H, for which we have a basis B = {ϕl(t)}l=0..L−1.

That is, H = span{ϕl(t)}l=0..L−1. For simplicity, let us consider the functions ϕl(t) defined on the

interval [0, 1]. For periodic functions, we will assume the period to be 1, such that we consider one

period. An arbitrary signal from this space can be expressed as

f(t) =
L−1
∑

l=0

αlϕl(t), (1)

where αl is the l-th expansion coefficient of f(t) in the basis B. Denote α as the vector of unknown

signal coefficients. Possible examples of spaces with associated bases include truncated Fourier series,

wavelets, splines, etc. Assume now that we sample f(t) uniformly at a rate N over the signal period

[0, 1]. This results in a first set of N samples taken at times

T0 =
(

0 1
N

2
N · · · N−1

N

)

. (2)

We take another set of samples at times

Tm =
(

tm
1
N + tm

2
N + tm · · · N−1

N + tm

)

. (3)

These are the sampling times of the first set, shifted by an unknown offset tm (tm ∈ R). As the

offsets are relative to the first set of samples, we have t0 = 0. We take M such sets of samples ym.

The samples can be written as

ym(n) = f
( n

N
+ tm

)

=
L−1
∑

l=0

αlϕl

( n

N
+ tm

)

, for 0 ≤ n < N.
(4)

We can write this more compactly using vectors and matrices as

ym = Φtm
α. (5)

In this equation, ym is the N × 1 vector with the m-th set of samples, and α is the L × 1 vector

of expansion coefficients. The N × L matrix Φtm
contains the undersampled basis functions that

1The extension to an infinite dimensional Hilbert space is theoretically possible, but of little practical interest since all

data and algorithms are finite.
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are uniformly sampled with an offset tm. In our setup, N < L, and the set of equations (5) is

underdetermined.

Now, all the sets of samples ym are combined into a single vector y and similarly the basis matrices

Φtm
are combined into Φt, with t =

(

t0 t1 · · · tM−1

)

denoting the offset vector. This can be

written as

y =

















y0

y1

...

yM−1

















=

















Φt0

Φt1

...

ΦtM−1

















α = Φtα. (6)

The matrix Φt has size MN ×L. Assuming that the total number of samples is larger than or equal

to the number of expansion coefficients, or MN ≥ L, this set of equations is in general well- or

over-determined if t is known. If, additionally,

MN ≥ L + M − 1, (7)

the number of equations is also larger than or equal to the number of unknowns (L expansion

coefficients and M − 1 offsets), and it should be possible to remove the uncertainty of the unknown

offsets. As we will show in the next sections, these additional equations allow us in general to

compute the unknown offsets. Note that the challenging part of the problem is that it is non-linear

in the offsets, and that α and t have to be found simultaneously. In summary, the most important

variables in this reconstruction problem are listed here (see also Figure 3):

• N : the number of samples in each set ym,

• ym : the length N vector of the m-th set of samples,

• L : the number of unknown expansion coefficients,

• α : the length L vector of the expansion coefficients αl to be reconstructed,

• M : the number of sets of samples,

• t : the length M vector of the offsets tm between the different sets of samples.

The unknown variables are the expansion coefficients α and the offsets t. We assume that all the

other variables are known. This is evident for the sets of samples ym, the number of samples per set

N and the number of sets M , as they form the input of the problem. We will also require that the

number of signal coefficients L, or at least an estimate for L, is available.

As we will often use bandlimited functions throughout this paper, we specifically write out the

equations (1)-(6) for this case. A bandlimited function can be expressed in the Fourier basis as

f(t) =
K

∑

l=−K

αle
j2πlt, (8)
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Fig. 3. Illustration of the different variables with M = 2 and a Fourier basis. (a) Time domain representation of the signal

f(t) and its sets of samples y0 (—) and y1 (– –). (b) Frequency domain representation of the absolute values of the signal

spectrum (—) and its aliased copies after sampling (– –).

where αl are the Fourier coefficients. Note that we index the coefficients from −K to K, instead of

0 to L − 1, because this is the usual way of indexing Fourier coefficients. We will assume that L is

odd, such that K = (L − 1)/2.

The first set of samples can be written as

y0(n) = f
( n

N

)

=

K
∑

l=−K

αlW
ln, (9)

with W = ej2π/N . We can also write this in matrix notation as

y0 =

















1 · · · 1 1 1 · · · 1

W−K · · · W−1 1 W · · · WK

...
...

...
...

...

W−(N−1)K · · · W−(N−1) 1 WN−1 · · · W (N−1)K



















































α−K

...

α−1

α0

α1

...

αK



































= Fα, (10)

where F is an N × L Inverse Discrete Fourier Transform (IDFT) matrix. Due to the undersampling

(L > N ), some of the columns in F are repeated.

Similarly, for the m-th set of samples ym(n), we obtain

ym(n) = f
( n

N
+ tm

)

=
K

∑

l=−K

αle
j2πl(n/N+tm) =

K
∑

l=−K

αlW
lnW l

tm
, (11)

with Wtm
= ej2πtm . In matrix notation, this can be expressed as

ym = FDtm
α, (12)
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with F the N × L IDFT matrix defined above, and Dtm
an L × L diagonal matrix with elements

Dtm
(l, l) = W l

tm
(−K ≤ l ≤ K). If we put all the M sets of N samples together, we obtain the

Fourier basis equivalent of (6):

y =

















y0

y1

...

yM−1

















=

















F

FDt1

...

FDtM−1

















α. (13)

The DFT of a set of samples ym can be written as

Ym =
1

N
F∗

Nym =
1

N
F∗

NFDtm
α, (14)

where F∗
N is a square N ×N DFT matrix, and F is the N ×L matrix defined in (10). The notation

F∗
N is used for the Hermitian transpose of FN . The resulting vector Ym has length N and is an

aliased and phase shifted version of α. If we take for example L = 3N , we get

Ym =
1

N
F∗

NFDtm
α =

1

N
F∗

N

(

FN FN FN

)

Dtm
α

=
(

I I I

)

Dtm
α =

1
∑

i=−1

W iN
tm

D′
tm

αi,
(15)

where D′
tm

is the N ×N central part of the L×L matrix Dtm
, and αi is the i-th block of length N

from the vector α. In general, if L is not a multiple of N , we can still perform the same decomposition

by adding zeros to α up to the next multiple of N .

Before tackling the problem in general, let us first analyze some very simple and intuitive examples.

Example 2.1 (Bandlimited functions): Take f(t) a bandlimited function (see Figure 4(a)), and M =

2, N = 2, and L = 3. Using (6), we can write

y =

















y0(0)

y0(1)

y1(0)

y1(1)

















=

















1 1 1

−1 1 −1

W−1
t1 1 Wt1

−W−1
t1 1 −Wt1



























α−1

α0

α1











= Φtα. (16)

The unknown offset in the matrix Φt is multiplied with the expansion coefficients in α and makes

the problem nonlinear. As described in (12), we can write Φt1 (the lower part of Φt) as an IDFT

matrix multiplied with a diagonal matrix:

Φt1 =





W−1
t1 1 Wt1

−W−1
t1 1 −Wt1



 =





1 1 1

−1 1 −1















W−1
t1 0 0

0 1 0

0 0 Wt1











= FDt1 . (17)

�
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Fig. 4. Examples of the general setup. (a) Bandlimited function with two sets of three samples and unknown offset between

the sets. (b) Second-degree polynomial with two sets of two samples and unknown offset between the sets. (c) One period

of a periodic, piecewise linear and continuous function with two sets of three samples and unknown offset between the sets.

Example 2.2 (Second order polynomials): Let f(t) be a second degree polynomial that is sampled

using two sets of two samples (see Figure 4(b)). We can write f(t) as f(t) = α0t
2 +α1t+α2. In this

case, we have M = 2, N = 2, and L = 3. Note that here, we do not consider a periodic signal, but

the samples are still taken in the interval [0, 1]. The rest of the setup is exactly as described above,

and (6) becomes

y =

















y0(0)

y0(1)

y1(0)

y1(1)

















=

















0 0 1

0.25 0.5 1

t21 t1 1

(0.5 + t1)
2 0.5 + t1 1



























α0

α1

α2











= Φtα. (18)

We can again see that the unknown offset t1 appears in the matrix Φt, and is multiplied with the

unknown signal coefficients in α, making the equations nonlinear. �

Example 2.3 (Periodic piecewise linear and continuous functions): Consider a continuous, periodic

function with period 1 that is piecewise linear on intervals [l/L, (l + 1)/L] (with 0 ≤ l < L). This is

the space S = span{ϕl,circ(t)} for 0 ≤ l < L, with

ϕ(t) =



















−L + 1 + Lt 1 − 1/L < t < 1

1 − Lt 0 ≤ t < 1/L

0 otherwise,

with t ∈ [0, 1) (19)

and ϕl,circ(t) the periodic extension of ϕ(t− l/L) with period 1. An example is given in Figure 4(c)

for L = 4. In this case, we can write the signal f(t) as

f(t) = α0ϕ0(t) + α1ϕ1(t) + α2ϕ2(t) + α3ϕ3(t). (20)
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If we take two sets of three samples, we obtain the following equations:




























y0(0)

y0(1)

y0(2)

y1(0)

y1(1)

y1(2)





























=





























1 0 0 0

0 2/3 1/3 0

0 0 1/3 2/3

1 − t1 t1 0 0

0 2/3 − t1 1/3 + t1 0

0 0 1/3 − t1 2/3 + t1













































α0

α1

α2

α3

















. (21)

We assume that the second set of samples is taken in the same [l/L, (l + 1)/L] interval as the first

set (in this example 0 < t1 ≤ 1/12). Other values of t1 do not cause any fundamental changes, they

simply change the above equations because the basis function ϕ(t) is described by different equations

on the intervals [1− 1/L, 1], [0, 1/L] and outside of these intervals, as can be seen in (19). Because

of the finite support of the basis functions, the matrices Φtm
have a banded structure. �

From the above examples, we see that the unknown offsets and signal coefficients are mixed up,

which makes the problem hard to solve. Once the offsets are known, (6) is reduced to a set of

linear equations in the unknown signal coefficients. This can be solved straightforwardly using a

least squares method. From this description, we clearly see that the hardest part of the reconstruction

problem is the estimation of the offsets. In the next sections, we will concentrate on this problem,

and present methods to compute these offsets based on subspaces.

III. UNIQUENESS OF THE SOLUTION

In this section, we discuss the existence and uniqueness of a solution to the super-resolution

problem with unregistered sets of samples. It follows straightforwardly from the description above

that a solution exists (at least in the ideal, noiseless case). The uniqueness of such a solution is less

trivial.

A. General case

Let us start with an intuitive statement for the general problem. A unique solution exists if there

is a unique mapping from each set of samples to a single space generated by the columns of Φt. In

other words, the intersection of the spaces generated for two different offset vectors t only contains

the trivial zero vector, except for possibly some degenerate cases. This argument follows the one

made by Marziliano for discrete sampling with unknown locations [19]. More formally, we have the

following lemma.

Lemma 3.1 (Uniqueness of the general problem): If the L-dimensional subspaces (in the MN -

dimensional measurement space) generated by the columns of Φt for any pair of different offset
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vectors t and t′ have a low-dimensional intersection, then a unique signal f(t) belonging to the

finite-dimensional Hilbert space H can be reconstructed from the sample vector y, except if the

sample vector y is an element of the intersection.

Proof: We prove this by contradiction. Assume that there are two different offset vectors t and t′,

and that the sample vector y is not in the intersection between the spaces generated by the columns

of Φt and Φt′ . We can then write the sample vector y in two ways, namely:

y = Φtα = Φt′α
′. (22)

Because the vector y is not in the intersection of the spaces spanned by Φt and Φt′ , this cannot be

true. Our assumption was wrong, and t = t′.

In general, the space of sample vectors that belong to the intersection is low-dimensional and thus,

the set of sample vectors for which a unique solution exists, is dense in the Hilbert space H. We shall

therefore ignore the degenerate cases. Nevertheless, we will specifically calculate such an example

of a degenerate case for polynomial signals in Section III-C.

Unfortunately, this theorem does not give any specific conditions for the uniqueness of the solution.

We will therefore analyze a few specific signal types to gain understanding.

B. Bandlimited signals

First of all, we consider the space of bandlimited functions with the Fourier basis. As we discussed

in Section II, the matrix Φtm
can then be written as the product of an N × L IDFT matrix F with

an L × L diagonal matrix Dtm
. For aliased signals, some of the columns in F are repeated, and

the corresponding columns of Φtm
only differ by their multiplication factor W l

tm
. These columns

correspond to overlapping frequencies in the sampled spectrum.

If all the sets of samples are considered together, the l-th column φl
t of the matrix Φt is a repetition

of M times the same basis vector Fl, the l-th column of F, multiplied by the different factors W l
tm

:

(

φl
t

)T
=

(

FlT W l
t1F

lT · · · W l
tM−1

FlT
)

. (23)

Example 3.1: For example, if we take M = 2, L = 5, and N = 4, there are two overlapping
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frequency components (see Figure 5). We have

Φt =





Φ0

Φt1



 =





F

FDt1



 =









































1 1 1 1 1

W 2 W 3 1 W W 2

1 W 2 1 W 2 1

W 2 W 1 W 3 W 2

W−2
t1 W−1

t1 1 Wt1 W 2
t1

W−2
t1 W 2 W−1

t1 W 3 1 Wt1W W 2
t1W

2

W−2
t1 W−1

t1 W 2 1 Wt1W
2 W 2

t1

W−2
t1 W 2 W−1

t1 W 1 Wt1W
3 W 2

t1W
2









































, (24)

with W = ej2π/4. The first and the fifth column of F are equal, such that the corresponding columns

of Φt only differ by their factors W−2
t1 and W 2

t1 from Dt1 . �

PSfrag replacements

α

Y

l−2 −1 0 1 2

(a)

3 4−3−4

PSfrag replacements

α

Y

l−2 −1 0 1 2

(b)

Fig. 5. Signal spectrum before (a) and after sampling (b), for L = 5 and N = 4. The base spectrum (—) and aliased

spectrum (– –) overlap for the first and last spectral component, corresponding to the first and fifth column in (24).

Because the Fourier basis vectors Fl of the N × L matrix F are orthogonal (note that we use

W = ej2π/N in this matrix, and not ej2π/L), the vectors φl
t are also orthogonal to each other for

any set of offset values t. Only the vectors corresponding to overlapping spectrum coefficients (like

the first and fifth column in Example 3.1) are not orthogonal, because they are composed by the

same Fourier vector Fl but have different coefficients. Each vector describes a trajectory in CMN for

varying values of t. This trajectory is defined more precisely in the following theorem:

Theorem 3.1: For varying t, any vector φl
t describes a trajectory in the M -dimensional subspace

Vl of CMN :

Vl = span
{

A ⊗ Fl
}

with A =

















1 1 · · · 1

1 −1 1
...

. . .
...

1 1 · · · −1

















, (25)

where A is an M × M matrix, and ⊗ represents the Kronecker product. The vectors φl+iN
t

corre-

sponding to overlapping spectrum coefficients belong to the same space Vl, while other vectors φk
t
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belong to orthogonal subspaces Vk ⊥ Vl.

Proof: The trajectory of φl
t as a function of t is in Vl iff we can write any arbitrary φl

t as a linear

combination of the columns of A ⊗ Fl. From (23) and (25), we can write the vector φl
t as a linear

combination of the columns of A ⊗ Fl by solving the set of linear equations
















1 1 · · · 1

1 −1 1

1
. . .

...

1 1 · · · −1

































a0

a1

...

aM−1

















=

















1

W l
t1

...

W l
tM−1

















. (26)

As this set of M equations is of full rank, it always has a unique solution, and our vector is therefore

part of Vl. Vectors corresponding to overlapping Fourier coefficients are composed from the same

Fourier basis vectors Fl, and therefore belong to the same space Vl.

The orthogonality between two subspaces Vk and Vl for k 6= l can easily be seen. As each of the

subspaces is generated by the columns of the matrices defined in (25), it is sufficient that we prove

that any arbitrary column of A⊗Fk is orthogonal to any column of A⊗Fl. Denoting the i-th column

of A as Ai, we can write the inner product between two such vectors as

〈

Ai ⊗ Fk,Aj ⊗ Fl
〉

=
M−1
∑

n=0

(±1)
〈

Fk,Fl
〉

= 0 if k 6= l. (27)

This is valid because
〈

Fk,Fl
〉

= 0 from the orthogonality of the Fourier basis.

From this analysis, we can see that the problem can be considered in each of the N subspaces

separately by projecting y onto the different M -dimensional subspaces. The projection of y onto the

subspace Vl is called

y(l) = PVl
y. (28)

An illustration for two overlapping vectors in a three-dimensional space is sketched in Figure 6.

Assuming that MN ≥ L + M − 1, at most M columns of Φt belong to the same subspace

Vl. If there are M vectors φl+iN
t

from Φt in a particular subspace Vl, these vectors form a basis

for Vl. As the vector y(l) is also in Vl, it belongs to the subspace spanned by these vectors φl+iN
t

for any value of t. However, for the subspaces containing less than M vectors φl+iN
t

, the span of

these vectors does not cover the entire space Vl. Hence, the projection of y onto Vl generally only

belongs to span(φl+iN
t

)0≤i<M−1 for a single offset vector t. The offset vector t can then be uniquely

determined from these subspaces, and the signal coefficients α are thus also uniquely determined.

Using the Fourier basis, there are certain cases for which it is not sufficient to require MN ≥

L + M − 1. The vectors in the space V0 (the columns l = iN ) do not depend on t, and therefore, no

information about the offsets can be derived from these vectors. So if only the space V0 contains less
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PSfrag replacements Φ0

Φt

Φ
t′

y(l)

Fig. 6. Illustration of the trajectory of the span of two columns φl
t (the planes in this drawing) in a three-dimensional

space Vl for different offset values (0, t and t′). Only for the correct offsets t, the vector y(l) belongs to the space spanned

by the two columns.

than M vectors, it is not possible to derive the offsets from the sets of samples. This happens when

the number of overlapping parts of the frequency spectrum is even (and therefore also the number of

sets of samples M is even). In that case, we need MN ≥ L + M .

Example 3.2: Looking back at Example 3.1, we can see that the first and fifth column of Φt span

the subspace V2, except in the degenerate case when t1 = 1. The projection of y onto these two

columns will therefore always be the same as its projection onto V2. No information about t1 can be

derived from this subspace. However, for V−1, V0 and V1, there is only one column of Φt in each

of these subspaces, and the projections onto that column or onto the space Vl only coincide for the

correct value of t1. We need at least one such subspace containing only 1 column from Φt in order to

be able to compute t1. As we do not want this to be the zero frequency, we require that 2N ≥ L+2,

or N = 4. �

This leads to the following theorem. Its proof follows from the above argument.

Theorem 3.2 (Bandlimited signals): If MN ≥ L + M − 1 for M odd, or MN ≥ L + M for M

even, a bandlimited signal with L Fourier coefficients can be uniquely reconstructed from M uniform

sets of N samples with unknown offsets.

C. Polynomials

Let us now also analyze the uniqueness for second degree polynomials, using the same setup as

in Example 2.2. In this case, we can prove the following theorem.

Theorem 3.3 (Second order polynomials): When an arbitrary second order polynomial is sampled

at four non-coinciding points {0, 0.5, t, t + 0.5}, then this polynomial ax2 + bx + c and the shift t

can be uniquely retrieved, except in the particular case at + 0.5a + b = 0, when an infinite number
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of solutions exist.

The proof for this theorem is given in appendix. Such an example of multiple solutions is given

in Figure 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

t

f(
t)

Fig. 7. Example of parasitic solutions for second order polynomials. The polynomial f(x) = 5x2 − 3.5x + 2 (—) is

sampled at times {0, 0.5} and {0.2, 0.7} (t1 = 0.2, plotted with ‘o’). From the two sets of samples, other second degree

polynomials can also be reconstructed using other offsets t1. For example, setting t1 = 0.1, and thus shifting the second

set of samples to the left (plotted with ‘+’), we would obtain the polynomial g(x) = 10x2 − 6x + 2 (– –).

A similar theorem can be shown for polynomials of third order. With increasing order, the proofs

by contradiction like the one in the appendix become very complex. However, it seems reasonable

that also for higher-order polynomials, the solution will be unique except for a lower-dimensional set

of degenerate cases.

IV. SOLUTION USING MATRIX RANK

In this section, we describe a first solution method that uses specific properties of the Fourier

transform. It is therefore only applicable to the space of bandlimited functions.

A. Method

As shown in (14), the discrete Fourier transform Ym of the m-th set of samples can be written as

Ym =
1

N
F∗

NFDtm
α, (29)

with F∗
N a square N × N DFT matrix, and F an N × L IDFT matrix. If we extend α to a length

that is a multiple of N , we can split the Fourier coefficient vector α in blocks αi of length N , and

obtain (see also (15)):

Ym = D′
tm

d(S−1)/2e
∑

i=d−(S−1)/2e

W iN
tm

αi. (30)
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The vectors αi represent the overlapping parts of the Fourier spectrum due to undersampling, and

there are S = dL/Ne such parts. This means that for any set of samples, D′−1
tm

Ym is a linear

combination of the S parts of the Fourier spectrum αi:

D′−1
tm

Ym =

d(S−1)/2e
∑

i=d−(S−1)/2e

W iN
tm

αi. (31)

In other words, each vector D′−1
tm

Ym belongs to the S-dimensional subspace span({αi}i=d−(S−1)/2e..d(S−1)/2e).

If we have more than S sets of samples (M > S), and N ≥ S, the rank of the matrix containing all

the sets of samples should therefore be S:

rank
(

YD
t

)

= S with YD
t =

(

Y0 D′−1
t1 Y1 · · · D′−1

tM−1
YM−1

)

. (32)

In general, if the estimated offsets t̂ do not have the correct values, rank(YD
t̂

) > S. For most offset

values t̂, the matrix YD
t̂

will be of full rank M (and M > S). The correct values of the offsets t

can then be found as the values for which the matrix rank becomes S. A schematic description of

the complete reconstruction algorithm built on this method is given in Figure 8.

construct YD
t̂

using
an initial guess t̂ for t

rank
(

YD
t̂

)

= S ? solve
y = Φα

yes

no
update t̂ and YD

t̂

Fig. 8. Signal reconstruction algorithm using the matrix rank method from Section IV. The estimate for the offsets t̂ and

the corresponding sample matrix YD

t̂
are updated iteratively. Once the estimate is good enough, the signal parameters α

are reconstructed.

B. Discussion

As there are S overlapping parts in the sampled Fourier spectrum, we need at least M = S + 1 =

dL/Ne+1 sets of samples to find the offsets using this method. If more sets of samples are available,

we still have rank
(

YD
t̂

)

= S, and this adds some robustness to both the offset estimation and the

signal reconstruction. However, each new set of samples also adds a new unknown offset, thereby

increasing the complexity of the estimation.

Remark that the operation performed by multiplying a sample vector Ym with a matrix D′−1
tm

does not change its norm ‖Ym‖2
2. It merely performs a rotation to align the sample vector into the

S-dimensional subspace.



ALIASING IS GOOD FOR YOU 17

The computation of the rank of a matrix has a rather ‘binary’ outcome: either it is S, or it has

an integer value larger than S. Hence, if the measurements are noisy, this test is very likely to fail

even for the correct values of t. It is therefore much better to evaluate the S + 1-th singular value of

the matrix YD
t̂

, or the determinant of the square matrix YD
t̂

∗
YD

t̂
. This can also give an indication

about the quality of the current approximation. While the determinant requires less computations, it

is also numerically less stable than a singular value decomposition. The S +1-th singular value could

be computed using the inverse power method described by Strang [20]. This is an iterative method

to approximate the smallest singular value of a matrix. It requires the solution of a linear M × M

system of equations in each iteration. The number of iterations needed will generally be very small,

because the S + 1-th singular value is typically much smaller than the first S singular values.

The objective function based on (32) can thus be written as

min
t̂

σS+1

(

YD
t̂

)

, (33)

where the operation σS+1(A) stands for computing the S + 1-th singular value of the matrix A.

Example 4.1 (Bandlimited functions): Let us consider a bandlimited function with L = 81 un-

known Fourier coefficients. It is sampled with two sets of 90 samples, with offsets t =
(

0 0.6
)

.

The objective function from (33) is shown as a function of t1 in Figure 9(a). Similarly, we sample the

same function with M = 3 sets of N = 41 samples and offsets t =
(

0 0.2 0.6
)

. The objective

function is shown in Figure 9(b) as a function of the offsets t1 and t2. �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

t
1

σ 2(Y
t ha

t

D
)

(a)

t
2

t 1

0 0.6 1

0

0.2

1

(b)

Fig. 9. Examples of the objective function in (33). Next to the global minimum, it also contains many local minima. (a)

Two aliased sets of 90 samples, with 81 unknown coefficients. The exact offset is t1 = 0.6. (b) Three aliased sets of 41

samples, with 81 unknown coefficients. The exact offsets are t1 = 0.2 and t2 = 0.6.

In the above examples, the objective function (33) is very ‘flat’, except for a small region around

the optimal offset values. At an arbitrary value away from the correct solution, it is therefore not



ALIASING IS GOOD FOR YOU 18

possible to predict what would be a better approximation. Standard minimization algorithms such as

gradient descent will generally not converge to the right solution for such functions. However, from

the example with three sets of samples, we can see that the objective function is not completely

arbitrary. Horizontal, vertical and diagonal lines appear. They correspond to relative alignments of

two out of the three sets of samples. It is therefore interesting to use this information in the search

for the minimum. Such a heuristic algorithm will be described in Section VI.

V. SOLUTION USING PROJECTIONS

In this section, we describe a method that is applicable to any kind of signals in a finite-dimensional

Hilbert space defined in Section II. It uses projections onto a subspace basis to find the relative offsets.

A. Method

From equation (6), we can see that y belongs to span(Φt). However, this is only true if the matrix

Φt is constructed using the correct values for the offset vector t (except for degenerate cases). For

another (incorrect) set of offset values t̂, (6) no longer holds and the sample vector y is not in

span(Φ
t̂
) anymore. Using Lemma 3.1, one can test the correctness of the offset vector by verifying

if the projection ŷ of the sample vector y onto span(Φ
t̂
) gives the sample vector y again. Or

mathematically:






ŷ = PΦ
t̂
y = Φ

t̂
(Φ∗

t̂
Φ

t̂
)−1Φ∗

t̂
y = y, for t̂ = t

ŷ = PΦ
t̂
y 6= y, for t̂ 6= t.

(34)

Therefore, this can be used to build an optimization problem for finding the correct offsets t. We

search for the value of t̂ such that the following function is minimized:

min
t̂

‖y − ŷ‖2. (35)

Using this method to find the offsets between the sets of samples ym, we can derive an algorithm

to reconstruct the signal f(t) from its combined sets of samples y. A block diagram of such an

algorithm is given in Figure 10.

B. Discussion

Let us study some examples of the objective function ‖y − ŷ‖2 (see (35)) as a function of the

offset values t̂.

Example 5.1 (Bandlimited functions): A bandlimited function with 81 unknown Fourier coeffi-

cients is sampled with two sets of 90 samples. The offset vector that we used is t =
(

0 0.6
)

.

The objective function ‖y − ŷ‖2 from (35) is shown as a function of the offset t1 in Figure 11(a).
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create initial
guess for t̂

project y
onto span{Φ

t̂
}

‖y − ŷ‖2

< threshold ?
solve

y = Φ
t̂
α

yes

no

update t̂

Fig. 10. Signal reconstruction algorithm using the projection method from Section V. The estimate for the offsets t̂ is

updated iteratively. Once the estimate is considered good enough, the signal parameters α are reconstructed.

It is 0 at the correct offset value (t1 = 0.6), and is larger at other values of t̂1. Next to this global

minimum, the function also has many local minima.

Similarly, we also take three sets of 41 samples from a bandlimited function with again 81

Fourier coefficients. The offset vector for this example is t =
(

0 0.2 0.6
)

. Figure 11(b) shows

the objective function as a function of the offsets t1 and t2. Smaller values are represented by

darker graylevels. Again, the minimum can clearly be seen, and is at the intersection of the dark

horizontal, vertical and diagonal lines corresponding to pairwise alignments between the sets of

samples. However, the objective function also has many local minima. �
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Fig. 11. Examples of the objective function in (35) where H is the Fourier space. Next to the global minimum, it also

contains many local minima. (a) Two aliased sets of 90 samples, with 81 unknown coefficients. The exact offset is t1 = 0.6.

(b) Three aliased sets of 41 samples, with 81 unknown coefficients. The exact offsets are t1 = 0.2 and t2 = 0.6. Small

values are represented by dark pixels.

Example 5.2 (Periodic piecewise linear and continuous functions): A similar example is repeated

for piecewise linear and continuous functions, as described in Example 2.3. The same setup as in

Example 5.1 is used, with first M = 2, N = 90 and L = 81 (Figure 12(a)), and next M = 3,
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N = 41, and L = 81 (Figure 12(b)). The results are similar to those obtained in the bandlimited

case. They also have many local minima, and are zero only for the correct offsets t̂ = t. �
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Fig. 12. Examples of the objective function in (35) on a piecewise linear and continuous function. Next to the global

minimum, it also contains many local minima. (a) Two aliased sets of 90 samples, with 81 unknown coefficients. The exact

offset is t1 = 0.6. (b) Three aliased sets of 41 samples, with 81 unknown coefficients. The exact offsets are t1 = 0.2 and

t2 = 0.6. Small values are represented by dark pixels.

From these examples, it is clearly visible that (35) is not easy to minimize (just like in Section IV).

Next to the global minimum, the objective function has many local minima. We cannot use a standard

algorithm like gradient descent for minimization. However, as can also be seen from Figure 11(b)

and Figure 12(b), the objective function shows the same structure of horizontal, vertical and diagonal

lines as in Figure 9(b).

Let us now consider specifically bandlimited functions, with the Fourier basis, to give some further

interpretation of the above results. As it was discussed in Section III, the MN -dimensional sample

space can be divided into N orthogonal subspaces of dimension M . It is therefore possible to split

the function from (35) into independent terms according to these M -dimensional subspaces:

‖y − ŷ‖2 =
N−1
∑

n=0

‖y(n) − ŷ(n)‖2. (36)

In this equation, y(n) is the projection of y onto the subspace Vn spanned by the n-th vector for

different values of t̂, and ŷ(n) is the projection of y onto the vectors φn+iN
t̂

that belong to this space.

An example of such a decomposition is given in Figure 13.

As we also described in Section III, for the frequencies n that have M overlapping spectrum

coefficients, the spaces Vn and span(φn+iN
t̂

) are the same, regardless of the value of t̂. For these

frequencies, ‖y(n) − ŷ(n)‖2 = 0, and they do not contribute to the objective function in (36). The
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Fig. 13. Example of the decomposition of the objective function into its different components belonging to orthogonal

M -dimensional subspaces.

other terms each contribute a periodic term to the global objective function. The minimum of (36)

can therefore be found by minimizing the different components individually (see Figure 13). For each

of the components, we can now minimize over an M -dimensional subspace instead of the original

MN -dimensional space.

VI. PRACTICAL ISSUES

A. Sampling kernel

In the different methods described above, no sampling kernel was considered. The signals are

sampled using Diracs. Although this is not very realistic, it is an approximation that is often made to

simplify the analysis. For the frequency domain methods described above, it is in most cases not very

difficult to take a different sampling kernel into account. In this case the sampling operation can be

considered as a convolution with a sampling kernel, followed by the actual sampling. In frequency

domain, this convolution can be seen as a multiplication with the Fourier transform of the sampling

function. Therefore, as long as the sampling kernel does not remove frequencies, the reconstructed

function can always be divided by the sampling kernel function again. This should cancel the effect of

the sampling kernel. Such an operation can be performed after the reconstruction of an aliasing-free

signal using the methods described in this paper. Of course, this supposes that the sampling kernel

is known, space/time invariant, and not too ill-conditioned.

B. Images and higher-dimensional signals

The above approaches were described for one-dimensional functions. However, all the methods

can be extended to higher-dimensional functions. Nothing in the descriptions is limited to a one-

dimensional signal, so the algorithms could be directly applied to images or higher-dimensional
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signals. Of course, the complexity increases fast with the dimensionality. While a minimum of

dL/Ne + 1 sets of samples are required for a 1D signal using the rank-based method, and d(L −

1)/(N − 1)e sets of samples for the projection-based method, we need at least dL/Ne2 + 1 2D

images for the rank-based method, and d(L2−1)/(N2−1)e images for the projection-based method.

As signals can be shifted along each of their dimensions, the number of offsets (which is also the

dimensionality of the search space) also increases rapidly. Examples of the above methods on images

are shown in Section VIII.

C. Minimization

The main difficulty with the methods described in Sections IV and V is to find the global minimum

of the objective functions. A good approximation of the offsets t is required for an approach like

gradient descent to converge to the global minimum. Such an approximation could be obtained by

evaluating the error functions from (33) or (35) on a uniform (dense) grid of possible values t̂. The

global minimum can then be found with high probability close to the smallest value obtained on this

uniform grid. However, this is a computationally very intensive method. It only makes sense if the

number of sets of samples M - and therefore also the number of offsets - is small, or when a first

estimate of the offsets is available. Although this may sound like moving the problem to obtaining

such a first estimate, it is a reasonable assumption. For example in super-resolution imaging, the

shifts between the images are generally very small. Therefore, our search could be restricted to a

small area around the origin (for example 10 × 10 pixels). Similarly, a first estimate could also be

obtained from another registration method that does not use the aliasing. Such a method is described

in the next subsection. Other approaches are heuristic methods that rely on the lines that can be seen

in Figure 9(b), 11(b) and 12(b). They will also be described in the next subsection.

During the minimization, it would be interesting to know whether the global minimum has been

found, or whether the current optimum is a local minimum. Such an indication can be obtained by

evaluating (33) or (35) for the current value of t̂. Even for noisy measurements, there is a large

difference between the average values of these functions and their value at the global minimum. This

can therefore be used to check whether the algorithm has converged, and whether the result is reliable.

D. Heuristic approaches

The high computational complexity of the algorithms from Sections IV and V is mainly due

to the coupling between the offsets, i.e. the need to search the different offsets between the signals

jointly. The joint minimum is not necessarily located at the intersection of the minima from individual

optimizations.
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Algorithm 6.1 (Hierarchical approach): If the sets of samples are images, we know that their

coefficients are not arbitrary Gaussian random variables. In general, the amplitude of the Fourier

transform of a natural image decays like 1/f [21]. We can therefore assume that a good estimate for

the offsets can be obtained from the low frequencies of the sampled sets. For these frequencies, the

aliased coefficients are much smaller than the base spectrum coefficients, and can be neglected in a

first estimate. We used the method from Vandewalle et al. [22] for this. Once we have such an initial

estimate, we can use the methods from Section IV or V using a gradient descent algorithm to obtain

a more precise estimate for the motion parameters, taking the aliasing into account. �

Algorithm 6.2 (Search for lines in the objective function): From the horizontal, vertical and diag-

onal lines that are often visible in figures like Figure 9(b), 11(b) and 12(b), it can be seen that an

independent pairwise alignment often works. Such lines correspond to pairwise registrations of the

first and second, first and third, and second and third signals, respectively. A heuristic algorithm has

therefore been developed to search for these pairwise alignments without evaluating the complete

M -dimensional grid. A horizontal line for example is searched by evaluating the objective function

on five different vertical lines, and searching the minimum of the average values. The estimated offset

can then be found at the intersection of the different lines. Even if, in a setup like the one shown in

Figure 11(b), only one line can easily be found, this still results in a considerable reduction of the

complexity. As it can also be seen from the results in Section VIII, this method performs very well

in a setup with low noise values, but degrades rapidly when more noise is added. �

Algorithm 6.3 (Keeping the P best pairwise alignments): Another heuristic approach based on this

independence, is to search a fixed number P of local minima for the pairwise registration between the

first set of samples and each of the other sets. When performing such a pairwise registration between

the first and the m-th set of samples, all the other offset values are kept constant. For each pair, a

vector of P possible offset values
(

t̂m1
t̂m2

· · · t̂mP

)

is obtained. Next, the best combination

t̂ of these pairwise local minima is searched among all possible combinations. The global minimum

can then be searched in the neighbourhood of this value of t̂. Keeping only a single minimum for each

of the pairwise alignments (P = 1) is generally not sufficient, due to the different approximations

made by pairwise registration. However, by trying all the combinations of the best P = 5 pairwise

alignments, the algorithm typically converges to the correct result. �

VII. COMPLEXITY

In this section, we discuss the computational complexity of the different methods. For each of the

methods described above, the complexity of computing the offsets t can be written as the number

of times the error function has to be evaluated multiplied with the number of operations required to



ALIASING IS GOOD FOR YOU 24

evaluate the error function. In this analysis, we will assume that the variables N and L grow at the

same rate, and M grows at a lower rate. The number of operations required for the reconstruction is

the same for all the algorithms.

Let us start by analyzing the complexity of the error function evaluation both for the matrix rank

method (Section IV) and the projection method (Section V). In the matrix rank method, the smallest

singular value of the matrix YD
t̂

has to be computed for every error evaluation. The construction

of YD
t̂

for a specific set of offsets t̂ requires O((M − 1)N) operations. To compute the smallest

singular value, we use the inverse power method on YD
t̂

∗
YD

t̂
[20]. This matrix multiplication involves

O(M2N) operations, and the inverse power method itself requires O(M 3 + aM2) operations, where

a is the number of iterations required for the method to converge. As we assume that the difference

with the second smallest singular value is large, convergence will be fast. So the total number of

operations becomes

Crank = O((M − 1)N + M2N + M3 + aM2) = O(M3 + M2N). (37)

For the projection method, we need to compute the projection of the sample vector y onto the space

spanned by the columns of Φ
t̂
. This can be done using (34). In the general case, for an arbitrary

basis, such a projection has complexity

Cproj = O(MNL2 + L3). (38)

However, if enough storage space is available, these projection matrices can be precomputed, because

they do not depend on the actual signal. In that case, the complexity is reduced to

C ′
proj = O(M2N2). (39)

For specific types of bases, the complexity can be strongly reduced.

Example 7.1 (Fourier basis): For the Fourier basis, the blocks Φt̂m
of the matrix Φ

t̂
can be divided

into an N ×L IDFT inverse Fourier transform block F, multiplied by an L×L diagonal offset matrix

Dtm
: Φt̂m

= FDtm
(see also (13)). Using this decomposition, we can simplify the projection formula

ŷ = PΦ
t̂
y = Φ

t̂
(Φ∗

t̂
Φ

t̂
)−1Φ∗

t̂
y. (40)

The multiplication Φ∗
t̂
y can be decomposed into M multiplications D∗

t̂m

F∗y, where F∗y is the Fourier

transform of y. This Fourier transform can be computed in advance, because it is independent of

the offsets t. Only the multiplications with the diagonal matrices Dt̂m
remain, which require ML

operations. The matrix Φ∗
t̂
Φ

t̂
has nonzero elements only on the main diagonal and on the iN -th

diagonals, due to the orthogonality of the Fourier vectors. Its inverse, (Φ∗
t̂
Φ

t̂
)−1, can therefore be

computed efficiently in O(L3/N2) = O(S2L) operations. Finally, the multiplication with the first
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matrix Φ
t̂

can be decomposed into M multiplications with diagonal matrices, and M inverse DFTs.

As the error can as well be computed in the Fourier domain (using Parseval’s theorem), we only need

to multiply with the diagonal matrices, which requires again ML operations. The overall complexity

can then be approximated as

Cproj,F = O(ML + S2L + ML) = O(S2L), (41)

where S is the maximum number of overlapping spectral components, which is typically of the same

order as M . �

For the standard algorithm described in Section VI-C, the error function needs to be evaluated first

on a regular grid. Assuming that no estimate of the offsets is available, this requires N (M−1) error

evaluations. Next, a standard minimization algorithm is applied near the minimum value that was

obtained from the first part. Let us call the number of error evaluations in this part E (typical values

are around E = 30). This is negligible compared to the number of evaluations on the regular grid,

and the total number of evaluations with this standard algorithm can therefore be approximated as

O(NM−1 + E) = O(NM−1). (42)

For the hierarchical method from Algorithm 6.1, we need only E evaluations. Of course, the com-

plexity for computing the initial estimate needs to be added to this.

With the heuristic line search of Algorithm 6.2, the number of function evaluations is difficult

to predict, as multiple functions are executed consecutively to find the minimum along horizontal,

vertical, or diagonal lines. When the value of the error function is below a certain threshold, the

algorithm is stopped. The maximum number of evaluations is

O(21N + (27 + 7M−1 + N)E) = O((7M−1 + N)E). (43)

Algorithm 6.3, using pairwise alignments, requires

O((M − 1)N + 5M−1 + E) = O(MN + 5M−1) (44)

error function evaluations. The complexity of the different algorithms is summarized in Table I.

For the reconstruction, the set of linear equations from (6) has to be solved. The complexity of

this operation is O(MNL2 + L3).

VIII. RESULTS

The above algorithms are tested and compared in a number of simulations. The simulations are

performed on random bandlimited signals. A Fourier basis is used, such that both methods can be

compared directly. The Fourier coefficients of the signals are generated as a white Gaussian random
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TABLE I

COMPUTATIONAL COMPLEXITY FOR THE DIFFERENT METHODS ON 1D SIGNALS. THE TOTAL COMPLEXITY IS

OBTAINED BY MULTIPLYING THE NUMBER OF FUNCTION EVALUATIONS WITH THE COMPLEXITY OF A SINGLE

FUNCTION EVALUATION. A WORST CASE SCENARIO WAS USED FOR ALG. 6.2. THE COST TO OBTAIN THE INITIAL

ESTIMATE IN ALG. 6.1 IS DENOTED AS CINIT .

matrix rank method projection method projection method (Fourier)

M3+M2N MNL2+L3 S2L

regular grid NM−1(M3+M2N) NM−1(MNL2+L3) NMS2L

NM−1 eval.

hier. method (Alg. 6.1) (M 3+M2N)E+Cinit (MNL2+L3)E+Cinit S2LE+Cinit

E eval. + Cinit

line search (Alg. 6.2) (7M−1+N)(M3+M2N)E (7M−1+N)(MNL2+L3)E (7M−1+N)S2LE

(7M−1+N)E eval.

pairw. al. (Alg. 6.3) (MN+5M−1)(M3+M2N) (MN+5M−1)(MNL2+L3) (MN+5M−1)S2L

MN+5M−1 eval.

process. Hence, the resulting (time domain) signals also form white Gaussian random processes. A

number of simulations are performed with different random offset values, and different amounts of

additive white Gaussian noise. The performance of the different algorithms on 1D signals is compared

in Figures 14 and 15. Figures 14(a) and 14(b) show the mean absolute error in the shift estimates and

the success rate as a function of the SNR, respectively. The success rate of the methods is defined

as the relative number of simulations in which the error on the registration is smaller than 10−3. All

the results were averaged over 250 simulations. Parameter values of M = 3, L = 81, and N = 41

were used in all the simulations. An offset value of 1 corresponds to a shift over the whole signal

period. We can see that the method using matrix rank from Section IV performs slightly better than

the method using projections described in Section V. The heuristic method performs clearly worse

than the two methods that sample a uniform grid first and then perform a minimization around the

minimum value. It works well for high SNR values, but breaks down for SNRs around 35 dB.

The absolute error in the shift estimates and the success rate are plotted as a function of the number

of samples per set N in Figure 15. In these simulations, parameters M = 3 and L = 81 were used,

and for N , values from 25 to 45 were taken. No noise was added for these simulations. Again, the

results were averaged over 250 simulations. The performance of the different algorithms increases

with increasing number of samples. This is what we expected, as an increasing number of samples per

set gives increasing amounts of information for the same number of unknowns. For the matrix rank
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Fig. 14. Results of the different algorithms as a function of the signal-to-noise ratio (SNR). The matrix rank algorithm

from Section IV performs slightly better than the projection algorithm from Section V. The heuristic Algorithm 6.2 only

performs good for high SNRs. Parameter values of M = 3, L = 81, and N = 41 were used. (a) Offset estimation error as

a function of the SNR of the sampled signals. An offset error of 1 corresponds to a shift over the entire signal. (b) Success

rate of the registration and reconstruction as a function of the SNR.

algorithm from Section IV, the minimum number of samples per set that are required in this setup

is N = 41, while for the projection algorithm from Section V, N = 28 samples per set are needed.

This explains the better performance of the projection algorithm for 28 ≤ N < 41. With more than

41 samples per set, both algorithms perform very well. When N < 28 samples are available per set,

all algorithms have low accuracy.

Our algorithms are also applied to some 2D signals (images). In this case, the signals were

undersampled by only two, because of the high complexity (see the discussion in Section VI). The

results can be seen in Figure 16. A double resolution image is perfectly reconstructed from a set

of low resolution images, both using the rank-based algorithm from Section IV (Figures 16(a) and

16(b)) and the projection-based algorithm from Section V (Figures 16(c) and 16(d)).

In all the simulations, we use periodic signals. This is not the case in most real applications, but

we can generally assume that the shift between the sets of samples is small. The differences between

the signals due to their aperiodicity are therefore small, and can be neglected.

IX. CONCLUSIONS

In this paper, we presented a theory of super-resolution from unregistered aliased sets of samples.

We formulated the problem mathematically, and proved that the solution is unique if enough sets of

samples are available. We described two methods to compute this unique solution. In the first method,

the rank of a modified sample matrix is checked. The second method uses projections onto subspaces
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Fig. 15. Results of the different algorithms as a function of the number of samples N . Parameter values M = 3 and

L = 81 were used in all simulations, and for N , values from 25 to 45 were used. No noise was added in this setup. The

algorithm from Section V performs better than the algorithm from Section IV if the number of samples per set N is not

sufficiently high. The heuristic Algorithm 6.2 performs worse than the other algorithms. (a) Offset estimation error as a

function of the number of samples per set N . An offset error of 1 corresponds to a shift over the entire signal. (b) Success

rate of the registration and reconstruction as a function of the number of samples per set N .

(a) (b) (c) (d)

Fig. 16. Results of the different algorithms on images. (a) One of the five 32×32 images used as input for Algorithm 6.3,

with the rank-based method from Section IV. (b) Reconstructed 63 × 63 image from the images from (a). (c) One of the

five 8 × 8 images used as input for Algorithm 6.1, with the projection-based method from Section V. (d) Reconstructed

15 × 15 image from the images from (c).

to compute the offsets between the different sets of samples. The first method is only applicable to

bandlimited signals, while the second is applicable to any type of finite Hilbert space signals. Both

methods can be used for the reconstruction of one or two-dimensional signals from multiple sets of

aliased samples. The main limitation of these methods is their computational complexity. They are

therefore mainly applicable in domains that do not require real-time reconstruction. For example in

satellite imaging, a very high resolution is desired, even if this requires some computational effort.

Future work is mainly oriented towards reducing the computational complexity of the methods.
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APPENDIX

Proof of Theorem 3.3: Let us call the two sets of samples y0 and y1. The samples satisfy





y0

y1



 =

















y0(0)

y0(1)

y1(0)

y1(1)

















=

















0 0 1

1 1 1

t2 t 1

(1 + t)2 1 + t 1



























a

b

c











. (45)

Let us assume that, next to the desired solution {a, b, c, t}, there exists another solution {a′, b′, c′, t′}

resulting in the same samples. We can therefore also write (45) for this solution, and obtain the

following set of equations:






























c = c′

0.25a + 0.5b + c = 0.25a′ + 0.5b′ + c′

t2a + tb + c = t′2a′ + t′b′ + c′

(0.5 + t)2a + (0.5 + t)b + c = (0.5 + t′)2a′ + (0.5 + t′)b′ + c′.

(46)

Eliminating c and c′ from the equations, and rearranging the terms, we get






























c′ = c

b′ = 0.5a + b − 0.5a′

t2a − t′2a′ + tb − t′b′ = 0

t2a − t′2a′ + ta − t′a′ + 0.25a − 0.25a′ + bt − b′t′ + 0.5b − 0.5b′ = 0.

(47)

From the second equation, we can compute b′ as a function of a′ and the terms of the first solution

{a, b, c, t}. Similarly, after simplification, a′ can be computed from the fourth equation:

a′ = at/t′. (48)

We assume that t′ 6= 0, which is a reasonable assumption, because this would mean that the two sets

of samples y0 and y1 coincide, and there are only two distinct samples. After filling in a′ and b′, the

third equation can be factorized as follows:

(t − t′)(at + 0.5a + b) = 0. (49)

From this equation, we can see that either at + 0.5a + b = 0, or t = t′. Because we assumed that

the two solutions {a, b, c, t} and {a′, b′, c′, t′} are different, the second solution can be discarded (it

involves immediately a′ = a, b′ = b, and c′ = c).

It is therefore only when at + 0.5a + b = 0 that other solutions exist, which are given by


















a′ = at/t′

b′ = 0.5a + b − 0.5at/t′

c′ = c,

(50)

with t′ a free parameter. In all the other cases, the solution {a, b, c, t} is unique.
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[22] P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with

application to super-resolution,” accepted to EURASIP Journal on Applied Signal Processing, Special Issue on Super-

Resolution Imaging, 2005.


