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Abstract— Max-min fairness is widely used in various . INTRODUCTION
areas of networking. In every case where it is used, there A. Max-min Fairness
is a proof of existence and one or several algorithms for ~
computing it; in most, but not all cases, they are based on ~Max-min fairness is a simple, well-recognized
the notion of bottlenecks. In spite of this wide applicabilty, ~approach to define fairness in networks [7]; it aims
there are still examples, arising in the context of wireless gt allocating as much as possible to users with
or peer-to-peer networks, where the existing theories do |4y rgtes, and, at the same time, not unnecessarily
not seem to apply directly. In this paper, we give a unifying wasting resources (see Section II-A for a formal

treatment of max-min fairness, which encompasses all L ) ;
existing results in a simplifying framework, and extend d€finition). It was used in window flow control pro-

its applicability to new examples. First, we observe that tocols [9], then became very popular in the context
the existence of max-min fairness is actually a geometric of bandwidth sharing policies for ABR service in
property of the set of feasible allocations. There exist set ATM networks [3]. It is now widely used in various

on which max-min fairnes; does not e?<ist, _and we Qescribe areas of networking [26], [28], [27], [12], [10], [8],
a large class of sets on which a max-min fair allocation does [17], [15], [9], [1]

exist. This class contains, but is not limited to the compact o f the simol in fai |
convex sets ofRY. Second, we give a general purpose ne of the simplest max-min fairness examples,

centralized algorithm, called Max-min Programming, for given in [7], is single-path rate allocation. Suppose
computing the max-min fair allocation in all cases where we have a network consisting of links with fixed
it exists (whether the set of feasible allocations is in our capacities, and a set of source destination pairs that
class or not). Its complexity is of the order of N linear  ~ommunicate over a single path each, and with fixed
programming steps in RY, in the case where the feasible routing. The problem is to allocate a rate to each
set is defined by linear constraints. We show that, if the set ) . . . .
of feasible allocations has the free-disposal property, #n sourcg-destlnatlon palr, while keeping the rate on
Max-min Programming reduces to a simpler algorithm, €ach link below capacity. Here, we call a rate allo-
called Water Filling, whose complexity is much lower. cation max-min fair if one cannot increase the rate
Free disposal corresponds to the cases where a bottleneckof a flow without decreasing the rate of an already
argument can be made, and Water Filling is the general gmaller flow. A set of feasible rate allocations for a
form of all previously known centralized algorithms for simple two source example is given in Figure 1. A
such cases. All our results apply mutatis mutandis to min- o ) ; . . .
max fairness. Our results apply to weighted, unweighted deflnlthn dual t(,) a max-mln fair qllocatlon IS min-
and util-max-min and min-max fairess. Distributed algo- Max fair allocation, and is used in the context of
rithms for the computation of max-min fair allocations are  Workload distribution, where the goal is to spread a
outside the scope of this paper. given workload evenly to all the parties (see [14])
and where rates have to be allocated to available

links as evenly as possible.

B. Microeconomic Approaches to Fairness
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There are numerous ways to define social welfare
functions. One is a maximin or Rawlsian social 5 5.3)
welfare function [21] that maximizes the utility of %
the worst-off individual. It has been widely used
in the design of communication systems (see fog,
example [16]). ’

Th.e m.am problem O.f the maX|m|_n sc_)0|a| Welfar%ig. 1. An example of a feasible rate set and water-filling. On
function is that the optimal alternative is Not NeCeste left, a network of 3 links is given. Flow z; connects S; and D
sarily Pareto optimal. In other words, starting fromand flow z» connects S» and D. The set of feasible rates (1, z2)
the maximin optimal alternative one can increase tff@iven on the right (c1 =7, c> = 3, cs = 8). The water-filling [7],

.- L. . . ..... _Isdepicted by the bold arrow. The max-min fair rate allocation is
utility of one individual without decreasing utilities s 3y
of the others, and this is clearly not a desirable

property of an efficient alternative. , all flows are increased at the same pace, until one or

A leximin social welfare ordering is a refinement, e |inks are saturated. The rates of flows passing
of the maximin social welfare function [S], [4]. Itgyer saturated links are then frozen, and the other
is based on the notion of tHeximin ordering one ,ys continue to increase rates. The algorithm is

vector is said to be leximin larger or equal than theyeated until all rates are frozen. A more precise
other if its ordered permutation is 'eX'COQraph'Ca”}ﬂescription of WF algorithm is given in Section IlI-

larger or equal to the ordered permutation of the | is proven in [7] that the output of WF, applied
other vector (a precise definition is given in Defini

X : : he leximi ol welf on a wired network, yields max-min fair allocation.
tion 41n _Sectlon II-B). The eximin social weliare - A simple example of WF in two dimensions on a
optimum is always Pareto optimal [2].

The fai R ki b ired network with single-path routing is given in
€ laimess criteria in networking are base igure 1. We see in the example that although WF,

]?r} f|nd|n_gs ;‘roml Soﬁ'al (\j/velfa:re _th_eory.d M_ax-mvlvrhs defined in [7], is related to the network topology,
airness Is closely related to leximin ordering. ax-min fair allocation itself is solely a property of
discuss this issue in depth in Section II-B. the set of feasible rates

Another important concept from microeconomics . . L
P P An extension of this scenario is introduced, for

used in this paper is thizee disposal propertyin xample, in [12] and [27]. Each flow is separately

g%or:gg'g?’a':l Ingiz:reda?nsothnei gggt %fezagcr)‘rrlmjr?l?)r Qaranteed a minimal rate. The algorithm used in
ISP rary N W 12] and [27] for computing the max-min fair rate

ties [2], or alternatively, to consume fewer resourc Mocation is a modified WF. Specifically, all rates

than r_namm_al!y aIIOV\_/ed. The formal definition 'Sare set to their minimal guaranteed values, and
given in Definition 6 in Section I11-B.

only the lowest rates are increased. A simple 2-
dimensional example with an illustration of WF is
C. Bottleneck and Water-Filling given on the left of Figure 2.

Most of the existing works on max-min fairness Max-min fairness for single-rate multicast ses-
rely on the notion of bottleneck link. Referring agaisions is defined in [10]. This is generalized to multi-
to the single-path rate allocation example given ifate multicast sessions in [8]. Rates are again upper-
Figure 1, we say that a link is a bottleneck for Bounded by links’ capacities, and here we are inter-
given flow if the flow uses the link, if the link is fully ested in max-min fair allocation of receivers rates.
utilized, and if the flow has the maximal rate among set of feasible allocations is linearly constrained,
all the flows that use the link (see [7] for the exa@nd a WF approach can be used. The geometric
definition). It is shown in [7] for the above exampleshape of the feasible set is essentially the same as
that if each flow has a bottleneck link, then the raie single-path routing.
allocation is max-min fair. This finding, which we The aforementioned scenarios have in common
call the bottleneck argument, is often used to protieat the linearity of the constraints defining the
the existence of max-min fairness. feasible set. In [28], a single-path routing scenario

The most widely used algorithm for obtainings considered, and each source is assigned a utility,
max-min fairness is thevater-filling algorithm (WF) which is an increasing and concave function of its
[7]. The principles of WF are the following: rates ofate. Instead of searching for a max-min fair rate

3, 1] SESpp——

Zy



. (25,9)

» L M »
>

49 " U,

7 Ty 9 25

Fig. 2. More examples of feasible rate sets. We consider the
topology given on the left of Figure 1. We first assume there
are minimum rates, m; = 0.5 and mo = 1, for flows z; and z-
respectively. The feasible set for this case is depicted on the left.
The water-filling [12], [27] is represented with the bold arrow. On
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Fig. 3. A simple multi-path example. Top-left: S; sends to D,
over two paths, 1-3-4 and 1-4, while Sz sends to D- over a single
path 2-3-4. All links have capacity 1. Right: the set of feasible
rates. Bottom-left: the corresponding virtual single path problem.

the right we consider utility max-min fairness as defined in [28],
[8], on the network from Figure 1. The utility function is U(z) =
z2. The set of feasible utilities (non-convex set) is depicted on

the right and the water-filling is represented with the bold arrow. biggest end-to-end flow that uses 3-4. If we Change

. . the previous definition of the bottleneck given in
allocation, the authors of [28] look for max-mi ) : ) .
S . . . . ection I-C, and instead of taking the biggest end-
fair utility allocation. This approach is generalize ) . :
) ) A . "~ ~1o-end flow, we consider the path with the highest
in [8], where a max-min fair utility allocation is . o )
. . . rate, we obtain the max-min fair path rate allocation
considered in the context of a multicast network. . ) :
. - ._that differs from the end-to-end max-min fair rate
Here, the authors only required that a utility function .
. ; : . allocation.
be a strictly increasing but not necessarily concave
function of rate, hence the feasible set is not neces-A first question that arises is how to define
sarily convex. A simple 2-dimensional example ia bottleneck, such that the water-filling algorithm
given in the right hand side of Figure 2. The WHinds the max-min fair end-to-end rate allocation, if
algorithm can be used in this case as well. it is possible at all. Also, it is not clear if for a given
definition of a bottleneck we can still claim that if
D. When Bottleneck and Water-Filling Become Le§&ch path has a bottleneck, the allocation is max-
Obvious min fair. Finally, we do not even know, using the
. . . existing state of the art, if the max-min fair end-to-
It is not always obvious how to generalize the . : . )
; . - énd rate allocation exists on an arbitrary multi-path
notion of a bottleneck link and the water-filling ap-
: . network.
proach to an arbitrary problem. To see why, consider
a point-to-point multi-path routing scenario, where, This example can be solved by observing that
to our knowledge, max-min fairness was not studigde max-min fair allocation depends only on the
before. We look at the same set-up as above, Isat of feasible rates. Consider again the example in
now allow for multiple paths to be used by a sinFigure 3, top left. Calk; = y;+y- the rate of source
gle source-destination pair. The end-to-end rate bfandz, the rate of source, wherey; is the rate of
communication between a source and a destinatswourcel on pathl —4, andy, on pathl —3—4. The
is equal to the sum of the rates over all used pattset of feasible rates is the set @f; > 0,2, > 0)
An example is given in Figure 3: when node 1 talksuch that there exist slack variablgs> 0,y, > 0
to node 4, it transmit using the direct path over linkwith y; < 1,9, + 2o < 1 and ;1 = y; + ¥o.
1-4 and in parallel it can relay through node 3. ThEhis is animplicit definition, which can be made
end-to-end rate of communication between 1 ande#plicit by eliminating the slack variables; this gives
equals to the sum of rates over paths 1-4 and 1-3tde conditionsz; < 1,27 + xzo < 2 (Figure 3,
We are interested in a max-min fair rate allocatiomght). The set is convex, with a linear boundary,
of end-to-end source-destination rates. as in Figure 1, left. We can re-interpret the original
In the example in Figure 3, if we increase all thenulti-path problem as a virtual single path problem
rates at the same pace, we will have rates of @Higure 3, bottom left), and apply the existing WF
paths equal to 1/2 when link 3-4 saturates. Noalgorithms. On the virtual single-path problem we
if we continue increasing the rate over path 1-4¢an define bottlenecks in a usual way. Note however
the rate of source-destination pair 1 will be highehat the concept of bottleneck in the virtual single
than the rate of source destination 2, and path 2{8th problem has lost its physical interpretation on

4 will loose its bottleneck since it is no longer théhe original problem.



& fair allocation of lifetimes of nodes. We characterize
the set of lifetimes that can be achieved with any
possible routing strategy, and we show that the min-
max fair lifetime allocation exists. However, as we

also show, it is not possible to obtain it by water-

o Ailling.

v

Fig. 4. When water-filling does not work - consider the network o
topology on the left (ci = 7,¢2 = 3,¢3 = 8). Suppose that F. Our Findings

node D receives parts of the same stream from both S; and . .y . .
Sa, through flows z; and z2, and suppose it needs a minimal Our first finding is on the existence of max-
total rate of 2, + 22 > 7. We want to minimize loads of servers min fairness. We give a large class of continuous
S1 and Sz, and we are interested in min-max fair allocation of  gets on which a max-min fair allocation does exist,
(z1,z2). The feasible rates set is given on the right. Min-max . . .
fair allocation exists, and it is (4, 3). and we theoretically prove the existence. This class
contains, but is not limited to the all compact,
E. When Bottleneck and Water-Filling Do Not Work°"VeX Eubsets of an arbitrgry dimension Euclidean
spaceR™. We also illustrate in a few examples that
Unfortunately, the approach with a virtual bottlethere are sets on which max-min fairness does not
neck does not always work. Consider the followingxist, thus that our result is not trivial.
workload distribution example: servers in a peer- Our second finding is on algorithms to locate the
to-peer network send data to a client; every clief{ax-min fair allocation. In Section I, we give a
receives data from multiple servers, and has a gugeneral purpose, centralized algorithm, calldax-
anteed minimal rate of reception. Each flow from gin Programming (MP) and prove that it finds
server to a client is constrained by link capacitiehe max-min fair allocation in all cases where it
Our goal is to equalize load on the servers whilgists. Its complexity is of the order a¥ linear
satisfying the capacity constraints. programming steps iRR", in general, whenever the
A natural definition of fairness in this setting iseasible set is defined by linear constraints.
min-max fairness, where we try to give the least The third finding is on the relation between the
possible work to the most loaded server. We say thgéneral MP algorithm and the existing WF algo-
a load on the servers is min-max fair if we cannefthm. We recall the definition of the free disposal
decrease a load on a server without increasing a lgadperty and show that, whenever it holds, Max-
of another server that already has a higher loadlin programming (MP) degenerates to the simpler
A 2-dimensional example is given and explaine@/ater-filling (WF) algorithm (originally defined in
in Figure 4. One can verify that is not possible tfy]), whose complexity is much lower. The free-
define a virtual bottleneck in this case. We discusi§sposal property corresponds to cases where a
this example in more detail in Section 1lI-B.2 angottleneck argument can be made, all previously
Section IV-A. known centralized algorithms for such cases rely on
A similar, but simpler, example is given in [14]the water-filling approach. We note that WF requires
which focuses on finding a leximax minimal althe feasible set to be given in explicit form, unlike
location (we show in Section Ill that the leximaxMP, and we discuss the case of an implicit feasible
minimal allocation obtained in [14] is in fact min-set with the free-disposal property.
max fair). Its complexity is of the order ofV We use a novel approach to analyze properties of
polynomial steps inR”, in the case where themax-min fairness. Instead of considering a specific
feasible set is defined by linear constraints. networking problem with an underlying network
In Section IV-B we present another exampl®pology, we focus only on the feasible rate sets.
where water-filling does not work. We consider th&herefore, our framework does not depend on a
lifetime of nodes in a sensor network, inspired bgpecific problem; it is general and it unifies the
the example introduced in [13], which studied thexisting approaches that analyze max-min fairness.
minimum lifetime. The lifetime of a node is a time In Section IV we show applications of the results
until a node exhausts its battery, and it depends for two networking examples. We give specific,
the routing policy of a network. Unlike in [13], wenumerical examples where the min-max fair allo-
study the routing strategy that achieves the min-maation exists, but the feasible sets do not have the



free-disposal property, hence a classical water-filling Definition 2: A vector Z is “min-max fair on
cannot be used. We show in these examples heet X” if and only if for all ¥ € X such that
MP does find max-min fair allocation even whethere existss € {1,..,N},ys < xs then there
the free-disposal does not hold. This way, we verigxistst € {1,..., N} such thaty, > x; > z,. In

that our framework unifies previous results, another words decreasing some componentmust
extends the applicability of max-min fairness to nele at the expense of increasing some already larger
scenarios. For additional examples, see [20]. component;.

All our results are given for max-min fairness; It is easy to verify that if¥ is a min-max fair
they apply mutatis mutandis to min-max fairnessector onX’, then—2 is max-min fair on—X and
They are valid for weighted and unweighted max4ce versa. Thus, in the remainder of the paper, we
min and min-max fairness, using the transformatiagive theoretical results only for max-min fairness,
given in Section II-A. Distributed algorithms for theand the results for min-max follow directly.
computation of max-min fair allocations [9], [1] are Uniqueness of max-min fairness is assured by the

left outside the scope of this paper. following proposition:
Proposition 1: [7] If a max-min fair vector exists
G. Organization of The Paper on a setX, then it is unique.

In Section Il we define our framework (max-min The_ proof OT the proposition s given in [7]'. .
Weighted min-max fairness is a classical variation

and min-max fairness iV continuous variables). S : :
. of max-min fairness, defined as follows. Given some
We mention a number of elementary results, such as

the uniqueness and the reduction of weighted maBgQTQ"t'Ye cpnstants)z (cal!ed the” weights”), gvector
oo . is “weighted-max-min fair” on sett, if and
min fairness to the unweighted case. We recall the,” ... .
L —_ . . only if increasing one component, must be at
definition of leximin ordering that we use in a latte

analysis. We prove our first main result about the eihe expense of decreasing some other companent

. oo : .~such thate, /w; < x,/w, [7]. This is generalized in
istence of max-min fairness. In Section lll, we giv I o )
L , _ ], which introduces the concept of “util max-min
the definitions of the two analyzed algorithms: Max:: e . . .
. . - airness”: givenV increasing functions; : R — R,
min Programming (MP) and Water-filling (WF),. o : o
. P interpreted as utility functions, a vectaris “util-
and we discuss the other two main findings. In

) i max-min fair” on setY’ if and only if increasing one
Section IV we illustrate our framework on two y 9

networking examples. We conclude in Section \;omponenm must be at the expense of decreasing

Proofs are in the appendix. An extended version é me other compor:em;' such tha@t(x.t) S.‘bS(:CS),, :
this paper can be found in [20]. is is also called “weighted max-min fairness” in

[17]). Consider the mapping defined by

II. MAX-MIN AND MIN-MAX FAIRNESS IN (z1, - an) = (1(x1), -, on(zn)) (1)

EUCLIDEAN SPACES It follows immediately that a vectof is util-max-
In this section we provide a precise definition afin fair on setX if and only if ¢(Z) is max-min
max-min and min-max fairness and give results dair on the set(X), the case of weighted max-min

their existence. fairness corresponding ,(z;) = x;/w;. Thus, we
now restrict our attention to unweighted max-min
A. Definitions and Uniqueness faimess.

Consider a seff ¢ RY. We define the max-min
and min-max fair vectors with respect to sétas B. Max-Min Fairness and Leximin Ordering
follows: In the rest of our paper we will extensively
Definition 1: [7] A vector 7' is “max-min fair on yse leximin ordering, a concept we borrow from
set X" if and only if for all ¥ € X such that economics, and which we now recall. Let us define

there existss € {1,..,N},ys > x,, there exists the “order mapping’”Z : RM — RV as the
t € {1,..,N} such thaty, < z; < z,. In other mapping that sorts in non-decreasing order, that
words, increasing some component must be at is: 7 (.-, 2,) = (2., Z(m), With 1) <

the expense of decreasing some already smallerzgzr) .-+ < 2,y and for alli, z(; is one of ther;s. Let
equal component;. us also define the lexicographic ordering of vectors



in X by # < if and only if(3i) z; > y; and (Vj <
lex
i)z; = y;. We also say that’ > ¢ if and only if

— lex — — — H H H
Z > gy or ¥ = . This latter relation is a total order
on RV,
Definition 3: [2] Vector 7 is leximin larger than
lex . . .
or equa| tOgj if T(f) > T(ﬂ) Fig. 5. Examples of 2-dimensional sets that do not have max-

. . i . . . min fair allocation. Point (1, 3) is not max-min fair in the example
Definition 4: [2] Vector Z € X' is leximin maxi- on the left since there exists point (3,1) that contradicts with

: - _, le  definition Definition 1. Both points (1,3) and (3,1) are leximin
mal on a setX if for all JRS X we haveT(a:) > maximal in this example. In the example on the right, point points

T (7). (3,1) is the single leximin maximal point. Still, it is not the max-

Note that a leximin maximum is not necessaril{in fair point. Note that there exist no real networking example
e are aware of that has these feasible rate sets — these sets

unique. See Figure 5 on the left for a Counteg're only artificial examples that illustrate properties of leximin

example. ordering.
Proposition 2:[23] Any compact subset oR”
has a leximin maximal vector. are given in Figure 5. However, these counter-

It has been observed in [28], [12], [8] that a maxexamples are hand-crafted and do not correspond
min fair allocation is also leximin maximal, for theto any networking scenario. In the reminder of
feasible sets defined in these papers. It is generalizei$ section we give a sufficient condition for the
to an arbitrary feasible set in [23], as follows.  existence of a max-min vector.

Proposition 3: [23] If a max-min fair vector ex-  Definition 5: A set X' is max-min achievable if
ists on a seft, then itis the unique leximin maximalthere exists a max-min fair vector oti.
vector onX. Theorem 1:Consider a mappingy defined as

Thus, the existence of a max-min fair vectan Equation 1. Assume thap; is increasing and
implies the uniqueness of a leximin maximum. Theontinuous for all:. If the set X' is convex and
converse is not true: see Figure 5, right, for atompact, thens(X') is max-min achievable.
example of a set with unique leximin maximal vec- The proof is in the appendix. As a special case,
tor which is not max-min achievable. [23] definesbtained by lettingp;(z) = =, we conclude that
a weaker version of max-min fairness, “maximalll convex and compact sets are max-min achiev-
fairness”; it corresponds to the notion of leximimble. Takingg;(z) = z/w;, we also conclude that
maximal vector, hence it is not unique, and exists aveighted max-min fairness exists on all compact,
a larger class of feasible sets. We leave this weakgvex sets. More generally, util-max-min fairness
version outside the scope of this paper. exists on all compact, convex sets, if the utility

It is shown in [2] that if a vector is leximin functions are continuous (and increasing).
maximal, it is also Pareto optimal. Therefore, from In [28], the utility functions ¢; are arbitrary,
Proposition 3 it follows that the max-min fair vectorcontinuous, increasing and concave functions. With
if it exists, is Pareto optimal. The converse is nehese assumptions, the setX) is also convex
necessarily true. and compact. Note that in general, though, the set
¢(X) used in Theorem 1 is not necessarily convex.
Examples with non-convex sets are provided in [17]

. and [8].
As already mentioned, a number of papers

showed the existence of max-min fair allocation in
many cases, using different methods. We give here
a generalized proof that holds on a larger class of
continuous sets that incorporates, but is not limited In the following section present the max-min pro-
to convex sets. This class of continuous sets includggamming (MP) algorithm, which finds the max-min
the feasible sets of all the networking applicatiorfair vector on any feasible set, if it exists. We also
we are aware of. Note that a max-min fair vectatefine a condition called a free-disposal property,
does not exist on all feasible sets, even sets that arel show that, under that conditions, a commonly
compact and connected. Simple counter-examplesed water-filling (WF) algorithm coincides with the

C. Existence and Max-Min Achievable Sets

[1l. MAX-MIN PROGRAMMING AND
WATER-FILLING



MP algorithm, and is guaranteed to find the max- The algorithm presented in [14] for calculating
min fair allocation. the leximax minimal allocation is a particular im-
plementation of MP. In each step, this algorithm
maximizes the minimum rate of links, which is
A. The Max-Min Programming (MP) Algorithm  exactly step 4 of the MP algorithm, tailored to the

The idea of the MP algorithm is first to fingProblem considered. The overall complexity of the

the smallest component of the max-min fair vectdd/gorithm in [14] is thus the same as the complexity

which is done by maximizing the minimal Coor_of MP. Since the feasible set considered there is

dinate. Once this is done, the minimal coordinaR®MpPact convex, it follows from Theorem 1 and
is fixed, and the dimension corresponding to tHeropPosition 3 that the leximax minimal allocation
minimal coordinate is removed. This step is repeat@§tained in [14] is in fact a min-max fair allocation.
until all coordinates are fixed, and we show that a 2) Numerical Examplestn order to illustrate the

vector obtained in such way is indeed the max-mfhaviour of MP, we consider two simple examples.

fair one. A precise definition of the algorithm is he first one is the network from Figure 1. The set

of feasible rates is

given below.
X = {(z1,22)|0< 2y 7, @)
1. letS®={1,.. N},X'=X RO =X n=0 0 <8m o <8,
5 ;0 =L NEAT =4 RE = Xon = and it is depicted on the right of Figure 1. We are
o looking for the max-min fair rate allocation.
3. m=mntl In the first step of the algorithm we hawe’ =
4. ProblemM P™. maximizeT™ subject to: ! P gor w »

X, R"=Xx,S° = {1,2}. By solving the linear pro-
gram in step 4, we obtaiit! = 3. We further have
X = {(21,3)|3 < 2y <5}, R = {(21,3)]3 <
r; < 5},5° = {1}. Again by solving the linear
program in step 4 we obtaifi*> = 5. Now we have
X? = 0,R* = {(53)},5* = 0. The algorithm
terminates and seR? contains only the max-min
fair rate allocation.

The second example we consider is the load
The algorithm maximizes in each step the minimalistribution example from Figure 4. The set of
coordinate of the feasible vector, until all coordifeasible rates is
nates are processed. Theh step of the algorithm X = {(z1,29)|0< 2, <7, 3)
is a minimization problem, called/ P", where X" 0<zy<3,7<z+1y <8},
represents the remaining search spaCerepresents gnd it is depicted on the right of Figure 4. We are
the direction of search, in terms of coordinates thﬁtjoking for the min-max fair rate allocation on set
can be further increased, amtl’ is the set that W|”, X’ which is equivalent of f|nd|ng max-min fair rate
in the end, contain a single rate allocation, the maxtiocation on set-t, as discussed in Section II-A.
min fair one. In the first step of the algorithm we have? =

1) Proof of CorrectnessThe algorithm always —x R = —x, S° = {—1, —2}. By solving the lin-
terminates ift’ is compact and max-min achievablegar program in step 4 we obtaiit = —4. We then
and X" is reduced to one single element, which isave X' = {(—4,-3)},R' = {(—4,-3)},5° =
the required max-min fair vector, as is proved in th The algorithm terminates and s®&? contains
following theorem: a single allocation which. The min-max fair rate

Theorem 2:If X is compact and max-minallocation is thug4, 3).
achievable, the above algorithm terminates and findsNote that when the max-min fair allocation does
the max-min fair vector o’ in at mostN steps. not exist, MP will not give one of the leximin

The proof is in the appendix. Note that the thenaximal points, as one might expect. To see this,
orem requires set’ to be compact but this usuallyconsider the examples from Figure 5. In both exam-
just a technical assumption since in most of thaes, in the first step of MP, we will havé! = 1
practical examples the feasible sets are compactand S' = (), and the algorithm will return(1,1)

(Vi e S™1) 2, >T"
for some # € Ax"!
5. let X" ={Ze x| (Vie S"1)a, >Tm,
(Fie S Y > T},

R'={re X" | (Vie S" 1), >T"}

and S" ={i e {1.N}|(VZ € &™) x; > T"}
6. until S™ =10
7. return the only element iR



as the optimal point. This point is neither leximin Theorem 3:Let X be a max-min achievable set
maximal, nor Pareto optimal. that satisfies the free-disposal property. Then, at
Before applying MP to a specific class of probevery stepn, the solutions to problem& F™ and
lems, it is thus important to verify, e.g. using resultd/ P are the same.
from Section II, that max-min fairness exists. This The proof is in the appendix. Thus, under the con-
has to be done only once, since the existence difions of the theorem, WF terminates and returns
max-min fairness depends on the nature of thige same result as MP, namely the max-min fair
problem. Once the existence is verified, the M¥ctor if it exists. The theorem is actually stronger,
algorithm can be further applied on any instance gfnce the two algorithms provide the same result at
the problem and will always yield the correct resulevery step. However, if the free-disposal property
does not hold, then WF may not compute the max-
B. The Water-Filling (WF) Algorithm min fair allocation. We refer to Section I11-B.2 for
such an example.

We now compare MP with the water-filling ap- o examples previously mentioned of single
proach used in the traditional setting [7]. We her:F:
4

lized . hat includ L Tth unicast routing [7], multicast util-max-min
present a genera IZe version that includes mini rmess [10], [8] and minimal rate guarantee [27],
rate guarantees, as in [27].

o _ 12] all have the free-disposal property. Thus, the
We first introduce the concept of free dispos Iater-filling algorithm can be used, as is done in

property. It is defined in economics as the righf yne mentioned references. In contrast, the load

of each user to dispose of an arbitrary amount gisinytion example [14] is not free-disposal, and
owned commodities [2], or alternatively, to CONSUMS| \ve can do is use MP. as is done in [14] in a

fewer resources than maximally allowed. We th o
modify it slightly, as follows. CalE; a unitary vectoresrbecmc example.
(€i); = i
Definition 6: We say that a set’ has the free-
disposal property if (1) there exists with x; > m;
for all ¥ € X and (2) for alli € {1,..., N} and for
all o such that? — ae; > m, we haver —a¢; € X.
Informally, free disposal applies to sets whe

each coordinate is independently lower-bounde

and requires that we can always decrease a feas %)icted in Figure 4, th_e feasible rate set, dgscribed
vector, as long as we remain above the low 4 (2), has the free-disposal property. It is easy

bounds. We now describe the Water-Filling alg&9 verify that Sets’{XZ}izl"'?”{Rz}izl“'?”{.sl}i:l"'?’
fithm. are taking exactly the same values as in the case of

A Yis f di | MP, described in Section IlI-A.2. This confirms the
0. Assumed Is free-disposa findings of Theorem 3.

The multi-path routing example also has the free-
disposal property, but the feasible set is defined
implicitly. We discuss the implications of this in the
next section.

2) Numerical Examples:To illustrate the be-
IJéaviour of WF, we consider again the same two
amples as in Section 11I-A.2. In the first example,

0 _ 0 _ 0 _ —
L let§7={l,... N}, A" =X, R*=R,n=0 The second example we consider is the load dis-
2. do I : . :
tribution example depicted in Figure 4 and described
3. n=n+l . . by (2). For this type of problem we cannot a priori
4. ProblemW F™: maximizeT™ subject to: '

set the upper limits inn, as [12], [27], as they are
not universal (they would need to depend on given
network topology and are not known in advance).
Then, it is easy to verify that the linear program in
step 4 (with minimization instead of maximization
since we are looking for min-max fairness) has no
solution. Therefore, in this case, WF cannot find the
min-max fair rate allocation.

' Note that the free-disposal property is a sufficient
1) Equivalence of WF and MPThe following put not a necessary condition for MP to degenerate
theorem demonstrates the equivalence of MP agfl WF. This becomes evident when considering
WF on free-disposal sets. again the example from Figure 4. Suppose that

(Vi € S"71) z; = max(T", m;)
for some 7€ X!
5. letxXn ={zZe x| (Vie S" 1), >Tm,
(Fie S" Y >Tm},

R'={re x| (Vie S" )z, >T"}

and S" ={i e {1.N}|(VZ € &™) x; > T"}
6. until S™ =10
7. return the only element ik™



3,co = 3,c3 = 4, and, in addition, the minimum ratepractical applications, we are likely to be interested
constraint isx; + xo > 3. The feasible rate set inin explicitly finding the values of the slack variables

this example has the same shape and orientatioragghe max-min fair vector. Finding these values is a
in Figure 4, but it is translated to the left such thdinear program. Here, it is sufficient to make the set
it touches bothzr; and z, axes. In this particular explicit only once for a given problem. We conclude
example, it is easy to verify that the set still doethat in many practical problems, it is likely to be

not have the free-disposal property. However Wister to make the set of constraints explicit and
finds the min-max allocation in a single step. use WF rather than MP.

C. Complexity Of The Algorithms In Case Of Lin- IV. EXAMPLE SCENARIOS
ear Constraints In this section we provide two examples that

Let us now assume that is an n-dimensional arise in a networking context, which were not pre-

feasible set defined by linear inequalities. EachViously studied, and to which our theory applies.
of the n steps of the MP algorithm is a linear Ioro;I'he examples are taken from problems that occur

gramming problem, hence the overall complexity {§ P2P and wireless sensor networks, respectively.
O(nLP(n,m)), where LP(n,m) is the complexity We show that in these two scenarios the feasible sets

of linear programming. The WF algorithm also hado not have the free-disposal property. We illustrate
n steps, each of complexit@)(m) (since in step ON simple but detailed numerical examples that WF
4 we have to find the maximum value @f that does not work, whereas MP gives a correct result.

satisfies the equality in each of the inequalities, FOr additional examples, see [20].
and take as the result the smallest of those). Hence
the complexity of WF isO(nm). Linear program- A. Load Distribution In P2P Systems

mlng has solutions of exponential complexity in the Let us consider a peer-to-peer network, where

worst case, however in most practical cases thejgyeral servers can supply a single user with parts

are solutions with polynomial complexity. of a single data stream (e.g. by using Tornado codes
Assume next thatt’ is defined implicitly, with [11]). There is a minimal rate a user needs to

an [-dimensional slack variable (for an examplgchieve, and there is an upper bound on each flow

scenario, see multi-path case on Figure 3). We cgiyen by a network topology and link capacities.

use MP, which works on implicit sets, resulting Let 7 be the total loads on the serverg,the

in complexity O(nLP(n,m)). If the set is free- flows from the servers to clients, the total traffic

disposal, we can also use WF, but we need to fifgceived by clientsg the capacities of links angi

an explicit characterization of the feasible set. lfhe minimum required rates of the flows. We can

most cases, finding an explicit characterization @fen represent the feasible rate set as

the feasible set can bg done in polynomial time. To X = {7:(37.7) AG<C,

see that, consider again the example from Figure 3. Bj—7.Cj= 72> m) 4)

The slack variables represent rates of different path ’ =

whereas we are interested only in the end-to-e

rates. .Flndlng a set of feasible end-to-end rat A simple example depicted in Figure 4. Clieht

is equivalent to a well known problem of flndlngre

maimum flows o 3 networ 24] (e [14] for arl=S8 = 8 0 b Seriers A % o
. . . . 1
example in the networking context). As shown 'noing from S, to D over links 1 and 3, and flow

[24], this is a problem of a polynomial complexity: going from S, to D over links 2 and 3. We have

R . AT
Note that it might be possible to construct an i at the total egress traffic of, is #, — y,, and

plicitly defined feasible set that cannot be converte0 S, is 5 — yy. The total ingress traffic oD is

to an explicit form in a polynomial time. However, " ~ 4 4. We thus have the following matrices
we are not aware of any existing example of suchh — Y1 " ¥ g

jiﬁere A, B,C > 0 are arbitrary matrices defined
¥ network topology and routing.

a set. A further analysis is out of the scope of our 10 10
paper. A=101 ,B:[O 1},0:[1 1],
Once we have an explicit characterization, the 11

remaining complexity of WF is stillO(mn). In that define the constraint set, visualized in Figure 4.
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In a peer-to-peer scenario, each server is int&ée also assume that a node can only send to or
ested in minimizing its own load, hence it is naturakceive from one node at a time.
to look for the min-max fair vector on sét, which  In addition, nodes can change their transmission
minimizes loads on highly loaded servers. power over time. We assume a slotted protocol,
Since sett’ is convey, it is min-max achievablewhere in every slot, every nodes can choose an
Since it does not have the free-disposal properybitrary transmission powe?,(t). If s chooses not
in general, WF is not applicable. This is showr transmit, it sets’,(¢) = 0. A succession of slots
in Section 1I-B.2 on a simple example. Min-maxn time is called a schedule. Link! achieves rate
fair allocation can be found by means of the MR, (¢) where the rate depends on allocated powers,
algorithm. This is illustrated on the example ims explained above. We denote witly the average
Section IlI-A.2. rate of link sd throughout a schedule. Let be
Note that this form of a feasible set is uniquéne vector of all{Z.}1<,a<n. We denote byX
in that it introduces both upper and lower bounds set of feasiblex, that is such that there exists
on a sum of components afand, as such, is morea schedule and power allocations that achieve those
general than the feasible sets in the above presenig@és. Similarly to the average rate, we can calculate

examples, such as [14]. the average power dissipated by a node during a
schedule, which we denote h¥,. We denote by
B. Maximum Lifetime Sensor Networks P(x) a set of possible average power dissipations

In this section we consider a sensor netwofR@at achieve average rate Refer to [18] for a more
example, and we want to minimize the averagtetailed explanation of the model.
transmitting powers of sensors. This example mo-From the application point of view, we assume
tivated by [13], [22]. We assume a network has $£nsors measure the same type of information. Each
certain minimal amount of data to convey to a sinkf the several sinks needs to receive a certain rate
and we consider different scheduling and routir@f the information, regardless from what sensor it
strategies that achieve this goal. Each of these stréi@mes. Let us denote witlk; the total rate of
gies yields different average power consumptiori§formation received by sinki. We then have a
and we look for min-max fair vector of averagé&onstrainti; < M,.
power consumptions of sensors. We suppose that thén order to define routing, we further introduce
network is built on the top of the ultra-wide bané concept of paths, similarly as in the previous
physical layer described in [25], or low power, lowexample. Patlp = {1--- P} is a set of links. We
processing gain CDMA physical layer, described igay A;, = 1 if link I = (s,d), for somes,d,
[6]. belongs to patlp. Otherwise,a,; = 0. We also
Consider a set ofi = {1--- N} nodes, some of say B, , = 1 andC;, = 1 if node s is the starting
which are sensors and some are sinks. We assupnghe finishing point of the path, respectively. Let
sensors feed data to sinks over the network, and ggrnbe the average rate on path
do so by sending directly, or relaying over other The goal is to minimize the average power dis-
sensors or sinks. When nodesends data to nodesipations, under the above constraints. The set of
d, it does so using some transmission powgrThe feasible average power dissipations can be formally
signal attenuates while propagating through spacescribed as®? = {p|(3x € X)p € P(x), Ay <
and is received atl with power P;hy;, Wherehy,; x, R = Cy < M} We are interested in finding the
is an arbitrary positive number, referred to as thmin-max average power allocation over $&t
attenuation betweern andd. This is a difficult optimization problem that has
Receiverd tries to decode the information sent byiot been fully solved, and we do not intend to solve
s in presence of noise and interferenceNldenotes it here in its general form. Instead, we want to
the white background noise, than the total interfeftustrate in a simple example from Figure 6, that the
ence experienced by D 5= N + 3, P;hia. The feasible set does not always have the free-disposal
maximum rate of information can achieve is thenproperty, and furthermore that WF, as such, cannot
[25], [6] be used.
ry =K Pshsa _ In our simple example from Figure 6, we consider
’ N +3 2 Pihia two sensorsS; andS,, and two sinks,D; and Ds.
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"a 0.7, and M1 = 0.6, M2 = 0.4. Setting these

(0.75,1)
b values in (6)-(9) and simplifying the constraints, we
1 . . . . .
' achieve the following set of inequalities that defines
S, (0.38,0.62)% . setX:
‘\\ : pl + pQ Z 1,
So ‘\‘: R Pl + a3 < 1,
= ” TP+ ldas+1 < 7P,
_ P+ 11005 — 3.4 > 10P,,
Fig. 6. Sensor example: On the left an example of a network _
with 2 sensors and 2 sinks is given. We let PM = N =1, and Py, Py, a3 €[0,1].
hs,p, = hs;p, = 1,hs,p;, = 10,hs,p, = 0.7, and the lower - - : :
bounds on rates are M; = 0.6, M> = 0.4. On the right, the set _The setp Is d_ePICted O_n the ”ght of Figure 6.
of feasible average power dissipations is given. It is easy to verify that this set does not have the

free-disposal property. We verify that the first step
of WF algorithm has no solution, hence water filling
We have three links(S1, D1), (S, D1), (S2, D2), does not give the min-max allocation. On the other
and three paths that coincide with each link (Wgand, a single iteration of MP gives us the min-
assume other links cannot be established due to faax allocation on the set which in this case is
example a presence of a wall). (0.38,0.62). We underline again that only due to
It is shown in [19] that in this type of networkthe simplicity of the example, WF fails at the first
any average rate allocation can be achieved by usiigip, and MP solves the problem in one step. In a
the following simple power allocation policy: whemmore complex example WF might fail on any step
a node is transmitting, it does so with maximuriyhereas MP will again solve the problem. However,

power; otherwise it is silent. It follows that anydue to the simplicity of the presentation we give
possible schedule in the network can have foHere only a 4 node example.

possible slots:

Slot 1 of duration «;: Only sensorS; sends to sink V. CONCLUSION

D, with full power P* and S, is silent. We have given a general framework that unifies
Slot 2 of duration as: SensorS; sends taD; while several results on max-min and min-max fairness
Sy sends toD,. encountered in networking examples. We have ex-
Slot 3 of duration a;3: Only S, sends toD;. tended the framework to account for new examples
Slot 4 of duration ay: Only S, sends toDs. arising in mobile and peer-to-peer scenarios. We

If we normalize the duration of the schedule wgave elucidated the role of bottleneck arguments in
havea; + as + ag + oy = 1 ' 'the water-filling algorithm, and explained the rela-

Under the above scheduling, we have the follofiOn t0 the free-disposal property; we have shown

ing average rates and average dissipated powersIha_t t_h_e bottleneck argument is not essential to the
definition of max-min fairness, contrary to popular

lehs D PJWhS D . ) .

R = a— 22 4 qp——— 21 (5) belief. However, when it holds, it allows us to
N N + PMhg,p, use simpler algorithms. We have given a general

PMhg,p, purpose algorithm (MP) for computing the max-min

L N (6) fair vector whenever it exists, and showed that it
PMhg, p, PMhg, p, degenerates to the classical water-filling algorithm,
Ry = 0‘2]\7+p—z\4hsll)2 M () when free disposal property holds. The existence of
P = (o1 +as+as)PM, @) a max-min fair vector is not always guaranteed, even

Iy on compact sets. We have found a class of compact
By = (ag+ay)Pm. (9 sets on which max-min fairmess does exist. The
The set of feasible average powers is thlis= extension of the class to other useful cases (such as
{(P,P)|Bay.4) i v = 1,R, > M, Ry, > discrete sets [23]) remains to be studied. Finally, we
Ms}. have focused on centralized algorithms for calculat-
To obtain a numeric example, we g6t= P = ing max-min and min-max fair allocations. It will be
N = 1,hs,p, = hs,p, = 1,hs,p, = 10, hs,p, = interesting to explore their distributed counterparts.
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APPENDIX and we cally,,, = max;(«o;) andz = Z(a,,) € ¢(X)

We first give an intuition on how we shall prove’s’ W& Want to haves; > x,. If z; < x, (including
. ~ , ..~ 'when: = s) we than by assumption havg > z;,

the theorem. We consider vect@rthat is leximin and we choose: such that we get. > z.. Finall
maximal on the sep(X’), and we want to prove thatif both 4 > o than wge clan ?e.lect a Y:
this is at the same time the max-min fair vector. The Yi = Ls; Ti > Ls y

proof is done by contradiction. We assume that the"flgd we will have; > z..

exists a vectoyj that violates the definition of max- We have chosen the highest®f, hence we now

) ) . . have that ifz; < z,, thanz; > z;, otherwisez; > «,.
min fairness of vectory. We will then construct . ;
- We also havez, > z,. From this, we derive the

vector Z from 7 and i such thatz is leximin-
larger than#, which will lead to contradiction. pf?egz dOf the>sorte(j1:0\:ept>c)rls thaf) = zx) for
Functiong() is strictly increasing, hence there exists 3, .= 7)) =~ L) TBF & = &

We first notice that for alli, z;; > 2.), and

and inversep~!(), which is also strictly increasing. Lo
Although setp(X') is not convex, sekt’ is convex. as7 () > 7(Z) we conclude that) = z:q) =
Therefore, we will chosen such that vectorZ, x,i). Next, assuming that for some< [ and for
constructed a®'(2) = a¢ (%) + (1 —a)¢ 1 (y), all j < i we havezy) = z;) = 2, then again
is leximin larger thant. S o lem
Proof of The%rem 1: Let 7 € ¢(X) be a vector > forallj > i, zn(j) 2 rp, ANAT(Z) > T(2)
lex we conclude that;y = z:4) = x.). Hence, by
such that for ally € ¢(X) we have7 (¥) > 7 (y). induction we have proved that for all< [ we have
Such a vector exists according to proposition 2y, = z.;) = 2. Finally, since for alli > [ we
since setX is compact. In order to prove thehavez,; > z.u), hencez; > z.q) we necessarily

theorem, we proceed by contradiction, assumirﬁ%ve that7 (2) lgc (%), which brings us to the
that there exisg/ and an index € {1, ..., N} such contradiction ’

thaty, > z, and for allt € {1,... N}, = < Therefore, we conclude that a leximin maximal

> 1. ' i . . )
we havey, > x;. We then define a permUtaF'O"{/ector on a sef’ is also a max-min fair vector, and

m {1, = N} — {1,....,N} such that for alk < 7, set X is max-min achievable.
Tre) < Ty, and eitherr, ) < xq41) Or I = N,

wherel = 7=!(s). The last part of the requirement
is important if there are several components of t
vector that are equal tos, hence there are severa _ _ _ _
permutations that maintain non-decreasing ordering.The idea of the proof is the following. We first

We then wants to be mapped byr to the largest Want to show that in every step we decrease the
such index: ifl = 7~!(s) than eitherz, < 2,41, SiZ€ of 5, that is S” c S™~!. From this we will

or [ is the last indexi(= N). conclude that the algorithm finishes in at madst
Next, let us define vector steps. We then show that what remains in the set
#a) = ¢p(ad™ () + (1 — a)¢~ (7). (10) R" once the algorithm stops (that §#&' = (), is the

Y . . .
Although we cannot make a convex combination gpax-min f{;ur allocation. .
We willl introduce several lemmas before proving

Z andy since setp(X) is not convex, we can maketh in th Recall that the definit ‘
a convex combination ob~!(Z) and¢~!(3) in the € main theorem. Reca at the detinitions o

set X which is convex. XY\L/’VR?.’ S:’Tn and]\|4P" aretr?i\{e_lr; intSetctiotrr\] li-A .
For @ € (0,1), Z(a) belongs to¢(X) due e first prove a lemma that illustrates the main

to convexity of X. From (10) we have for all idea of the algorithm, that in each steps we fix
ae(0,1),i€ {1 ' NY, min(¢(z:), 6~ () < one by one the smallest coordinates of vectors to

“L(Z(a); “Lz). 6 Y(y;)), hence corresponding’ values. _
ﬁling(‘a;; < ;a)‘mjxéix(g )y’? d(ge))to strictly Lemma 1:For all n whereT™ exists, for allz €

n . n—1 n o n
increasing properties of functioms and¢; '. Also, If ’tr?nd for a_IfI; < im \ ST é’vf hal\llexz S_mz '
for all 7 let us pick an arbitraryy; satisfying urthermore, itor afim < nand forat € \

RPN S™ we havex; = T™, for all : € S™ we have
O[Z e 9 S 19 1)

. Proof of Correctness of MP

o (@) -6, L(v)’ x; > T", and for some € S™ we havex; > T,
[0,1), otherwise thenz € X™.
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Proof: Forn = 0 we haveS® = {1,..., N} and T". We then also have; < T"!, hence by the

the result is trivial. Let us select arbitraye X™, induction assumption we havwg > z,. Finally, if
n > 0, andi € S™\ S"*L. From the definition oft™ for somet, z; = T" theny, > T™ or else we have
we have for all; € S*t, x; > T™, and from the a contradiction with the definition of. m
definition of S™ we have for alli ¢ S™, x; < T". Finally, we show that in each step we keep the
Hence we have; = T". max-min fair vector inX" in order to show that in

For the second part, we also proceed by inductidhe last step, when we have a single point remaining,
Obviously # € X°. Suppose, for somen < n, this point will indeed be the max-min fair one.
¥ € X™ ! Then it is easy to verifyr satisfies Lemma 4:If 7 is max-min fair vector on¥’ then
conditions from the definition oft™, hencez € for all n such that¥” # (), # € X™. The same holds
X'™. By induction, we verify that alsa’ € X*.m  for R".

Set X" is not compact by definition and we do  Proof: We prove lemma by induction. If ¢
not know if the maximun?™ of the problemA/P" X' thenZ is not leximin maximal, hence the contra-
exists. The following lemma is rather technical, andiction. Let us next assumée X"~ andz ¢ X",

it proves the maximum always exists. where X" # (). Then there existg/ € A" and
Lemma 2:1f set X is compact, then the maxi-s € S" such thaty, > z,. Also, by lemma 3, for all
mum 7™ of the problem) P" exists for alln. t € {1,..., N} such thatr; <T", we havey; > z;.

Proof: We start by induction. Sinc&® = x is This contradicts the assumption thatis max-min
compact, the maximum exists far = 0. Suppose fair which proves the lemma. Sinc&” C R", we

n > 0, and the claim holds for alln < n. Let have the second clairm _
us denote WithT’ = supgcyn-1 minegn-1 ;. 1’ Now we are ready to prove the main theorem.

always exists andl” > 7" '. We proceed by Proof of theorem 2: Let us callz max-min fair
contradiction. Suppose that the maximum does n¢tctor on X. From lemma 2 we know that the
exist hencel” ¢ x™. By definition of 7", for every minimum7™ in M P"™ is achieved. Therefore, there
integer k > 0 there existst* € A" ! such that €xisti* € "', #* € X' such that;. = 7", and
T' — min;egn1 z¥ < 1/k. we havei* ¢ S™, thus we proveds™ C S™~!. We
We next want to select a subsequence of sequef@aclude that sequends™| decreases and we will
{#*} such that for each member of the subsequenb@veS™ = 0 in at most.V steps.
the minimal component always has the same index We also notice that for everye {1, ..., N} there
denoted byl. More formally, sinceS™! is a finite €Xistsm such thati € S™~' andi ¢ S™. From

set, we can seleé¢te $"~! such that there is an infi-i € S™~' we have that for allr € &™, x; < T™.
nite subsequencgr*®} € X! of sequencez*} Fromi € S™ we have that for alke € A"~ we
where for allk(l) we havearg min;cgn—: O — ;. havexr; > T™ in the constraints fod/ P™. Now as
This subsequence converg;es g7 — foralln, X" C "' we have that for alh > m
limy, ) 0. We have thati’ € X due to andz € A" we havexr; = T™. Once we have
compactness oft’. By construction, we also have®" = 0 It means that all components of vectors in
foralli € "' o/ > 4 — T > o1 gy R"are fixed hencgR"| = 1. According to lemma
lemma 1 we havé tﬁat_forladlg S k(1) a(1) 4, this single vector iR" is also max-min fair on

@ = #=0 — 7 hence# € X"!, again by
lemma 1. We see that vectaf satisfies all the _
conditions of the definition oft™, hence it belongs C. Proof of Equality of MP and WF

to X" which leads to a contradictiom Proof of theorem 3: Let us callT},» the solution to
We next show another property of the coordinateéise A/ P! and 7)) the solution to theV F'. T},

of vectors inx™ is obviously achievable id/ P! so we havely,, >
Lemma 3:For all n, ;5 € X" andt € T}, . Suppose thaly,, > T} .. This implies that

{1,..., N} such thatz; < 7", we havey; > x;. forall s € {1,..., N} we have(z},,), > T4;p. Due

Proof: We prove lemma by induction over. to the free-disposal property, we can successively
If » = 1, we have for allt, z, > T* andy, > decrease each of the componentszolfarger than
T1, hence forx, = T', we havey, > z,. Next corresponding lower bound im, until arriving to
assume the above is true far— 1. Supposer; < a vectory, y; = max(Ty;p,m;). This vector is



feasible, which contradicts the optimality @f;, ;..
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