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Abstract

In replication processing of open-pore aluminium foams, the relative density can be varied by densifying the NaCl preform before
infiltration. This can be done either by cold pressing or by sintering; we compare the two processes, show that the former yields superior

foam modulus and flow stress, and explain why.
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1. Introduction

The properties of foamed and highly porous metals are
of interest both for practical applications and for the study
of the fundamental behaviour of the class of materials as a
whole. Many methods exist for the production of metallic
foams [1,2]. Amongst these the replication process offers
a simple and versatile way to produce open-cell foams, also
called metal sponges [3]. The process, the basis of which
was developed in the 1960s [4], uses a leachable preform
(NaCl particles work well for aluminium), into which a
molten material is infiltrated under argon gas pressure
and solidified, before leaching of the preform to leave an
open-celled structure.

This technique has been shown to permit the manufac-
ture of pure aluminium and alloy foams [5], and also foams
from a variety of other materials (see e.g. Refs. [6,7]), and
to offer good control over the cell size [8-10] and cell shape
[10,11]. The foam relative density can also be varied [9,12];
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one approach to this end is to vary the preform density and
so, in the inverse sense, the density of the foam. This, in
turn, can be achieved either by cold isostatic pressing
(CIP) of salt particles in flexible silicone rubber moulds
[9], or by sintering the salt particles in air prior to infiltra-
tion [12,13].

We present here a comparison of the two processing
routes. Replicated open-pore pure aluminium foams with
pores 400 or 75 um in average diameter produced from
preforms that were predensified using either of these two
processes are characterized for their structure and their
uniaxial mechanical properties. One process yields less reg-
ular, yet stiffer and stronger, foams than the other; physical
reasoning gives a simple reason for this somewhat counter-
intuitive result.

2. Experimental

NaCl preforms were made using either sintering or cold
isostatic pressing. Two NaCl particle types were used: (i)
particles of mean diameter 400 um (>99.5% pure, supplied
by Fluka Chemie GmbH, Buchs, Switzerland) and (ii)
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ground particles (CP1 grade, >98% pure, supplied by
Salines de Bex, Bex, Switzerland) sieved between 63 pm
and 90 um grade sieves (ISO 565) to obtain a mean size of
75 um. Preforms of unpressed close-packed particles were
densified either by sintering or by cold isostatic pressing.

Sintering was conducted in graphite-coated alumina
crucibles under a flowing argon atmosphere at 755 °C.
The sintering time was varied between 2 and 76 h to vary
the preform relative density.

For cold isostatic pressing, the particles were poured
into a flexible silicone rubber mould and vibrated to ensure
good filling. The mould was cold isostatically pressed at
various pressures from 5 to 60 MPa, increasing the pressure
at 0.5 MPa s~ !, holding at the maximum pressure for 60 s
and lowering the pressure at the same rate, to give preforms
with a range of densities.

After densification, both preform types were used for
the manufacture of aluminium (99.99%) foams, following
the replication method described in Ref. [3]. In all samples
of this work infiltration was carried out at 710 °C under an
argon pressure of 8 MPa (80 bar).

Cylindrical samples of diameter and height 20 mm were
machined and tested in compression using a screw-driven
testing machine with a constant cross-head speed of
0.005mm s~ '. As these foams do not display a curve with
initial purely elastic deformation, a series of load—unload
cycles were conducted near a nominal strain of 0.2%, the
Young’s modulus being found from the gradient of the
straight lines of this part of the curve.

Further samples were machined into flat dogbone tensile
test specimens of rectangular cross-section 9 mm X 4 mm
and gauge length 43 mm. These were tested on a screw-
driven testing machine with a constant cross-head speed
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of 0.005 mm s~ !, and once again load—unload cycles were
used to determine the elastic response at a nominal strain
of 0.2%. The strain to failure was also recorded, being
taken to be the strain at which the maximum load was
reached.

3. Results and discussion
3.1. Preform and foam structure

Fig. 1 shows optical micrographs of cross-sections
through preforms of NaCl made by sintering particles of
400 um and 75 pm diameter at 755 °C for different periods
of time. As seen, while there are significant differences in
the structure of the 75 um preforms as the sintering time
is extended, the 400 pm preforms do not show a large
difference, even after extended sintering times.

Previous work has shown that the sintering of NaCl par-
ticles of a diameter greater than about 150 pm is dominated
throughout the vast majority of the normal sintering
process by the evaporation of material from the particle
surface and the condensation of this material at the neck
[13]. This mechanism changes the local neck architecture
but does not alter the overall density. By contrast, the
mechanism that dominates the sintering process for parti-
cles smaller than about 150 pm is the diffusion of material
from the grain boundary formed between the two particles
to the particle neck [13]; this both alters the neck shape and
causes densification.

It is thus understandable that in the 400 pm particle size
preforms sintering has brought about only a limited
increase in density at even long sintering times (the highest
density preform obtained was 0.76 of the theoretical

76 hat 755°C

25h at 755°C

Fig. 1. Optical micrographs of polished sections through resin-infiltrated preforms of NaCl of 400 pm and 75 um diameter, made by sintering at 755 °C
for different periods of time. The dark phase is NaCl and the light phase is mounting resin.
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Fig. 2. Secondary electron SEM images of (a) the contact point between particles of 400 pm NaCl after CIP at 28 MPa, and (b) the resulting foam after
infiltration under 4 bar pressure (V= 0.2), with replicated cracks indicated by the white arrows.

maximum density po, relative to a starting density of 0.64
po). That any densification was possible is due to the fact
that the grain boundary diffusion mechanism does operate
even in larger particles during the very early stages of sin-
tering. By contrast, a large range of densities, up to
0.87pq, is possible with the 75 pm salt particles. Such limits
on the achievable preform densities evidently place limits
on the densities of foams achievable with sintering. Using
cold isostatic pressing, on the other hand, densities varying
over the range 0.64-0.9p, were easily produced using both
sizes of NaCl particles.

As well as changing the density of the NaCl particle
preform, the nature of the particle-particle contact point
(the neck) will be influenced by sintering or CIP treatment.
Fig. 2a shows a scanning electron microscopy (SEM)
micrograph of the contact point between two particles after
cold pressing. Signs of a small amount of local plastic
deformation in the neck region can be discerned, along

with some cracking. These cracks apparently survive
heat-up prior to infiltration to 710 °C (relative to a NaCl
melting temperature of 800.7 °C [14]), and are sometimes
observed to have been replicated in the final foam structure
(see Fig. 2b).

The general structure of foams made with cold-pressed
preforms may be seen in the SEM image of a foam made
with an unsintered preform in Fig. 3a. The structure retains
its angular character as the density is varied.

After preform densification by sintering there is a
change in the shape of the necks between particles, partic-
ularly at longer sintering times. This is clearly seen with the
75 um particle preforms, the structure of which becomes
gradually smoother and more regular, Fig. 1. This of
course is expected from a process that minimizes surface
energy. This difference is reproduced in the foams made
from these materials, as is shown in the SEM images in
Fig. 3. As the preform is sintered to higher densities the

Fig. 3. Secondary electron SEM images of pure aluminium foams made by the replication method using preforms of 75 um NaCl particles: (a) unsintered
(Vy=0.4), and sintered at 755 °C for (b) 2h (Vy=0.37), (c) 9h (Vy=0.32) and (d) 25 h (V;=0.25).
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contact points between particles grow by diffusion and the
particle—particle neck size is increased, resulting in a more
smoothly rounded structure than in foams produced using
cold isostatic pressing.

3.2. Foam mechanical properties

The Young’s modulus and the 0.2% flow stress in both
tension and compression for pure aluminium foams made
using preforms densified by sintering or CIP of NaCl
particles 400 um and 75 pm in diameter are shown in
Fig. 4. There is some scatter in the data; however, there
is a noticeable trend for the results of foams produced by
sintering to show slightly lower properties. This may seem
surprising when the greater regularity of the sintered foam
structure is considered (e.g. by comparing Fig. 3a with the
other images in Fig. 3), but makes sense on further consid-
eration. Indeed, sintering, which rounds the cross-section
of struts delineated by the surface of neighbouring NaCl
particles, decreases the moment of inertia of beams in the
foam at given strut cross-sectional area. In other words,
despite the more irregular structure of the foams produced
with cold-pressed NaCl preforms, material is more effi-
ciently placed in less regular foams where the preform
has been densified by CIP. Fig. 5 illustrates the point with
a sketch of three touching spherical particles drawn in
cross-section through the plane containing their centres.
Sintering, which is driven by capillary forces, will gradually
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smoothen and round the cross-section of struts running
between the particles, resulting in foam struts having a
near-circular strut cross-section. Conversely, CIP will tend
to leave or even accentuate the sharp angles between the
grains, generating struts of cusped and irregular cross-
sections (in the idealized case of Fig. 5, a cusped triangle
results). The latter struts have a higher second moment of
inertia at constant cross-sectional area, and therefore a
greater bending stiffness in all directions around the strut.
As the elastic and plastic deformation of these foams are
dominated by bending of the struts [12,15], these more
efficient, albeit less regular, cross-sectional shapes should
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Fig. 5. A schematic diagram of three particles, showing a cross-section
through the plane containing their centres, during sintering and CIP,
illustrating the difference in the foam strut shapes produced.
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Fig. 4. The Young’s modulus (graphs (a) and (c)) and 0.2% yield stress (graphs (b) and (d)) of pure aluminium foams made using preforms densified using
sintering or CIP from 400 um (graphs (a) and (b)) and 75 um (graphs (c) and (d)) diameter NaCl particles, tested in tension and compression. Estimated
error in testing and data analysis procedures is around 2% of the measured value; hence it roughly corresponds to the size of the points on the curves.
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Fig. 6. Tensile elongation of foams made using preforms densified by
sintering and CIP.

indeed increase the foam stiffness and flow stress, as
observed. Between the two idealized shapes of Fig. 5, the
difference in moment of inertia, and hence in foam modu-
lus, is a factor of 1.68 (the cusped triangle has the higher
value) [16]; this is of the same order as the difference
between properties of the two foam series. It is also inter-
esting to note that this effect, namely that smoother foam
mesostructures are inferior from the standpoint of foam
modulus and flow stress, is consistent with what was found
in another study where the foam structure was varied by
changing the infiltration pressure [17] (the lower the infil-
tration pressure is for a given preform, the less narrowly
curved and hence smoother is the foam surface).

Plotting the maximum tensile elongation for the foams,
Fig. 6, indicates on the other hand that sintered samples
are more consistently ductile. Elongation values are above
3% for all samples from sintered 75 um salt preforms and
above 5% for all samples from sintered 400 pum salt preforms.
Tensile elongations at failure for foams from cold-pressed
preforms are erratic, varying from well below 1% to values
that approach those for foams from sintered preforms.
Although more samples would be needed for the trend to
statistically solid, this tendency would be expected since
the tensile ductility of these materials is dominated by the
accumulation of internal damage [5], which should be mini-
mized in the smoother and more regular struts produced
from sintered preforms, Fig. 3. In summary, the sintered
preforms produce foams that are weaker but more ductile.

4. Concluding remarks

Both sintering at elevated temperatures (>750 °C,
0.95T,,), and cold isostatic pressing can change the density

of NaCl preforms used for replication processing of metal
foams. Foams produced from sintered preforms have a
more rounded and regular structure than foams produced
by cold-pressing. The latter, however, which are more
irregular and jagged in structure, display generally superior
stiffness and strength values. This somewhat unexpected
result highlights the importance of distributing matter
optimally in the struts making the open-pore foams; this
fact that was pointed out in an earlier analysis [16].
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