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Abstract

A variational estimate of the non-linear flow stress of two-phase materials is adapted to simplify predictions of the monotonic uniaxial
response of an isotropic particle-reinforced metal. Simplifications to the model are: (i) calculation of the composite elastic and plastic
strain is decoupled and (ii) when calculating the composite plastic strain, the reinforcement is taken to be perfectly rigid while the matrix
is assumed to deform with no volume change according to a Hollomon power law. This simplified scheme yields analytical expressions
that show good agreement with predictions of the full variational estimate, particularly if the Mori–Tanaka or the Torquato identical
hard spheres models are used to predict the composite linear elastic modulus. More specifically, error introduced by the above assump-
tions is significantly less than the difference made by the choice of the appropriate elastic modulus prediction scheme. Use of the
approach proposed here is thus justified in practical applications, given the considerable simplification they bring to the calculation.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Particulate-reinforced composites; Elastic behaviour; Plastic deformation; Mean field analysis; Secant moduli method
1. Introduction

The mechanical behaviour of composites combining a
ductile elastoplastic matrix with discrete particles or fibres
of a stiffer elastic reinforcing phase has been the subject of a
considerable body of research, summarized in several
reviews [1–7]. To predict the stress–strain relation in such
composites knowing their constituent phases, two
approaches dominate: (i) numerical, typically finite-ele-
ment, models and (ii) analytical effective-medium schemes.

Numerical methods give essentially unrestricted predic-
tions of the mechanical behaviour of more or less large unit
cells, taken to be representative of the composite. Being
precise for the periodic microstructure they assume, results
from numerical simulation of composite deformation are
often used as benchmark tests of more general theories of
composite deformation. Their disadvantage is that, to be
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representative of realistic microstructures, the required cell
size may need to be large and hence demanding in comput-
ing power. In recent work, it was shown that this limitation
is not very stringent for fully linear elastic deformation;
however, the question remains open for elastoplastic defor-
mation [8–13]. This limitation is, furthermore, significantly
worsened if the composites contain larger-scale microstruc-
tural features such as reinforcement clustering or sporadic
internal damage: in these cases, present computing power is
often insufficient if truly representative three-dimensional
structures are to be modelled.

Analytical approaches to composite deformation are
less specific and hence less precise than numerical models;
their aim is rather to provide general, theory-based and
directly usable predictions of composite deformation
knowing broad features of the composite microstructure,
such as the reinforcement shape and orientation. Given
the complexity of the problem at hand, analytical schemes
rest, of necessity, on approximations. When predicting the
monotonic flow stress of non-linear composites using
rights reserved.
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analytical mean-field methods, two main approximations
are generally invoked in the calculation.

The first is to assimilate the prediction of a non-linear
matrix composite flow stress to that of the elastic stiffness
tensor of a linear elastic composite. Examples include: (i)
assimilation of the average matrix plastic strain to a uni-
form eigenstrain in the corresponding linear elastic com-
posite (the classic ‘‘Eshelby’’ elastoplastic calculation,
summarized, for example, in Ref. [1]), (ii) assimilation of
the matrix to a linear elastic medium having the tangent
modulus of the matrix at a defined point of matrix defor-
mation (tangent modulus methods), or (iii) assimilation
of the matrix to a linear elastic medium having a modulus
defined by the ratio of stress to strain at a defined point of
matrix deformation (secant modulus approximations). This
step of the derivation has now received a rigorous basis
based on variational approaches.

The second approximation that is generally made in
analytical mean-field schemes follows from the first, in that
it is needed to predict the elastic moduli of linear compos-
ites containing more than a few volume per cent reinforce-
ment. Approximations that have most often been used to
this end for non-dilute two-phase linear elastic composites
include (i) the Mori–Tanaka model, corresponding to the
lower Hashin–Shtrikman bound for isotropic composites
with a spherical reinforcement (e.g., Refs. [3,4,12,14–16]),
(ii) the two-phase self-consistent model (e.g., Refs.
[15,17,18]), (iii) the generalized self-consistent scheme
(e.g., Refs. [3,19–21]), and (iv) the more recent third-order
approximation models of Torquato [12].

Analytical calculation schemes for non-linear composite
deformation have seen significant progress over the past 10
years. The non-linear variational estimates proposed by
Ponte Castañeda [4,22–27], shown to be equivalent to a
particular secant modulus approximation (generally desig-
nated as the ‘‘modified’’ secant modulus) [4,19,21,28],
match with impressive accuracy predictions of correspond-
ing finite-element simulations for monotonic loading of
non-linear composites [4,11,12,16,29–32] (for specific illus-
trations of this point, see Figs. 3, 4, 6, and 11 of Ref. [3],
Figs. 4 and 5 of Ref. [12], Fig. 2(b) of Ref. [16], Fig. 1 of
Ref. [31], Figs. 10 and 11 of Ref. [4], and Figs. 4 and 5
of Ref. [33]). These recent advances, however, unfortu-
nately come at a price: the models are not straightforward
in their implementation, the equations being somewhat
unwieldy and generally requiring numerical schemes for
their solution, even in relatively simple situations.

Our aim in this article is to make the variational esti-
mate, or equivalently the modified secant moduli model,
for non-linear composite deformation somewhat more
user-friendly, by directly building on the work of Ponte
Castañeda and Suquet. We base what follows on three
observations:

1. All analytical models, including the more recent varia-
tional estimates, can only aim for limited precision since
(i) they rest on an analytical estimation of the composite
elastic modulus, (ii) there is an inherent variability in the
mechanical behaviour of ‘‘real’’ composites, and (iii)
other assumptions (such as simplification of the shape
of the reinforcement) will always carry a cost in terms
of precision.

2. The expressions are much simpler if one focuses on sim-
ple constituent stress–strain relations such as power-law
hardening, as already pointed out by Suquet and Ponte
Castañeda [3,4,19,21,24,29].

3. Nearly all experimental investigations of composite
behaviour deal with monotonic uniaxial deformation;
we therefore focus on this case exclusively.

Given that many elastoplastic composites combine a
ductile matrix with equiaxed particles that are generally
assimilated to spheres (in both finite-element and analytical
mean-field approaches), we also restrict our attention to
this case only. Extension of the scheme to tackle a wider
range of microstructures poses no fundamental difficulty,
being mainly a matter of accessing the relevant composite
linear elastic deformation model. For instance, many inclu-
sion types can be modelled as ellipsoids, either aligned or
randomly oriented; for this case, relevant expressions
already exist [25,26,34–36].

In what follows, predictions from the variational
method of Ponte Castañeda and the equivalent ‘‘modified’’
secant modulus model are first briefly discussed with a
focus on the monotonic uniaxial stress–strain law of elasto-
plastic matrix composites reinforced with stiff isolated
spheres. Specific simplifications are then tested. Results
show that these assumptions only carry a small cost in
terms of precision, while simplifying the equations
considerably.

2. Variational (or ‘‘modified secant model’’) prediction

2.1. General

The variational estimate of non-linear composite flow
stress [4,22–27,29] in effect extends mean-field schemes for
composite elasticity to non-linear matrix behaviour by
approximating the matrix with a linear-elastic material hav-
ing a variationally optimized modulus for the relevant point
of matrix deformation history within the composite. This
approach has in particular been formulated for metal matrix
composites, i.e., structures containing elastic reinforcements
within a softer isotropic elastoplastic power-law hardening
matrix [4,19,25–27,35]. Given its equivalence with the secant
method using the quadratic average (second-order moment)
of the strain over each phase [21,28] (as opposed to using the
average phase strain, which generally gives overly stiff pre-
dictions and suffers important limitations [3,4,16,37]), for-
mulations of this model also exist in the form of secant
modulus estimates [14,15,18,20,28,37,38].

We consider in what follows a composite that can be
modelled as randomly distributed spheres of a stiff linear
isotropic elastic reinforcing phase (subscript r) distributed
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in an isotropic elastoplastic matrix (subscript m). Matrix
plastic flow is assumed to follow the von Mises yield crite-
rion with isotropic power-law hardening:

req ¼ c � en
eq ð1Þ

where eeq is the equivalent plastic strain, c is the strength
coefficient, n is the hardening exponent, and req is the
equivalent stress of the matrix material. Adding the elastic
and plastic strains, the matrix uniaxial (tension/compression)
stress–strain curve is then described by the Ramberg–Os-
good relation:

e ¼ r
Em

þ r
c

� �1=n
ð2Þ

where e is the tensile strain and r is the tensile stress of the
matrix material, and Em is its Young’s modulus.

Calculation of the composite uniaxial monotonic stress–
strain curve according to the scheme involves two main
steps: (i) calculation of the elastic moduli of the corre-
sponding isotropic non-dilute fully linear elastic composite
and (ii) assimilation of the same composite under non-
linear deformation to a linear (secant modulus) composite.
We examine these in turn.

2.2. The linear problem

Five among the more usual schemes for the estimation
of the elastic modulus of linear elastic composites are com-
pared here:

(i) the Mori–Tanaka (MT) model;
(ii) the two-phase self-consistent (SC) model;

(iii) the differential effective-medium (DEM) approxi-
mation;

(iv) the generalized self-consistent (GSC) scheme;
(v) the Torquato identical hard spheres (TIHS) approxi-

mation, one of the third-order approximation models
proposed by Torquato.

These models predict the bulk modulus Kc and the shear
modulus Gc of a linear elastic isotropic spherical particle-
reinforced composite as a function of the bulk and the
shear moduli of the constituents: Km and Gm for the
matrix, Kr and Gr for the reinforcement, knowing the vol-
ume fraction of the reinforcement Vr. All materials (matrix,
reinforcement, and composite) being assumed isotropic,
knowing Kx and Gx, the Young’s modulus Ex and the
Poisson ratio mx of material x are given by

Ex ¼
9Kx

1þ 3Kx
Gx

ð3Þ

mx ¼
1� 2Gx

3Kx

2þ 2Gx
3Kx

ð4Þ

where index x is c, m, or r for the composite, the matrix,
and the reinforcing particle phase, respectively. Equations
for each model are listed below.
(i) The MT model. Mori and Tanaka developed an
‘‘average stress’’ concept to extend Eshelby’s equivalent
inclusion method to composites in which the volume frac-
tion of ellipsoidal inclusions is large [39]. For an isotropic
two-phase composite containing spherical particles, com-
posite bulk and shear moduli are [40]

Kc

Km

¼ 1þ V rðKr �KmÞ
amð1� V rÞðKr �KmÞ þKm

with am ¼
3Km

3Km þ 4Gm

ð5Þ
Gc

Gm

¼ 1þ V rðGr �GmÞ
bmð1� V rÞðGr �GmÞ þGm

with bm ¼
6

5

Km þ 2Gm

3Km þ 4Gm

ð6Þ

These moduli correspond to the Hashin–Shtrikman lower
bound if the matrix is the soft phase and coincide with
the upper bound if the matrix is the hard phase [41]. As
such, they correspond to the softest isotropic random
two-phase composite one may envisage, of hard (generally
polydisperse) spheres uniformly separated by a layer of the
softer matrix.

(ii) The SC model. Initially the self-consistent model was
derived to approximate the elastic behaviour of polycrys-
tals; however, it is also used for composites [42]. It consid-
ers the reference material to be the composite itself and the
effective moduli are obtained self-consistently. If the inclu-
sions are spheres distributed such that the composite is sta-
tistically isotropic overall, the effective elastic moduli are
determined by [43]

1� V r

Kc � Kr

þ V r

Kc � Km

¼ a
Kc

with a ¼ Kc

Kc þ 4
3
Gc

ð7Þ

1� V r

Gc � Gr

þ V r

Gc � Gm

¼ b
Gc

with b ¼ 3� a
5

ð8Þ

Although it is derived starting with equations relevant to
isolated spheres distributed in a continuous matrix, this
model is generally considered to be most appropriate for
composites in which both phases are interconnected. The
reason for this is that, as the reinforcement volume fraction
increases, the self-consistent prediction rapidly exceeds the
dilute limit, tending to very high modulus values above
roughly 30 vol.% reinforcement.

(iii) The DEM approximation. In this model, the rein-
forcement is incrementally added to the composite, using
the dilute solution for each increment and integrating equa-
tions to reach a finite volume fraction of reinforcement
[44]. The following differential equations are obtained in
the case of a particle-reinforced composite [34]:

ð1� V rÞ
oKc

oV r

¼ Kc þ
4

3
Gc

� �
Kr � Kc

Kr þ 4
3
Gc

ð9Þ

ð1� V rÞ
oGc

oV r

¼ ðKc þ HÞGr � Gc

Gr þ H
with

H ¼
Gc

3
2
Kc þ 4

3
Gc

� �
Kc þ 2Gc

ð10Þ
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Given its starting assumption, this derivation is a priori
best suited for composites containing a wide range of par-
ticle radii (where larger particles can be viewed as embed-
ded in a ‘‘continuum’’ composite of matrix and smaller
particles). It yields, for stiff particles in a softer matrix, pre-
dictions that are intermediate between the MT and SC
schemes, as one would expect.

(iv) The GSC scheme. Christensen developed a model
involving three phases: a spherical reinforcement inclusion,
a spherical shell of matrix material with the appropriate
matrix/reinforcement volume fraction ratio, both sur-
rounded by an infinite outer region of equivalent homoge-
neous material of unlimited extent having the properties of
the composite. The final equations are [45–47]

Kc ¼ Km þ
V rðKr � KmÞ

1þ ð1� V rÞ Kr�Km

Kmþ4
3Gm

ð11Þ

Gc

Gm

� �2

� Aþ Gc

Gm

� Bþ D ¼ 0 ð12Þ

with

A¼ 8
Gr

Gm

� 1

� 	
ð4� 5mmÞg1 � V 10=3

r � 2 63
Gr

Gm

� 1

� �
g2

�

þ2g1g3

	
� V 7=3

r þ 252
Gr

Gm

� 1

� 	
g2 � V 5=3

r � 50
Gr

Gm

� 1

� 	
� ð7� 12mm þ 8m2

mÞg2 � V rþ 4ð7� 10mmÞg2g3
jem ¼
V rjrm

1� 10Gmjrmlrmfr

3ðKmþ2GmÞ ð1� V rÞ

lem ¼
V rlrm

1� 2Gmjrmlrmfr

3ðKmþ2GmÞ ð1� V rÞ � 5Gmð2Kmþ3GmÞl2
rmfr

6ðKmþ2GmÞ2
ð1� V rÞ � 3KmþGm

Kmþ2Gm

� �2
l2

rmgr

6
ð1� V rÞ
B¼�4
Gr

Gm

� 1

� 	
ð1� 5mmÞg1 � V 10=3

r þ 4 63
Gr

Gm

� 1

� �
g2

�

þ2g1g3

	
� V 7=3

r � 504
Gr

Gm

� 1

� 	
g2 � V 5=3

r þ 150
Gr

Gm

� 1

� 	
� ð3� mmÞmmg2 � V r þ 3ð15mm � 7Þg2g3

D¼ 4
Gr

Gm

� 1

� 	
ð5mm� 7Þg1 � V 10=3

r � 2 63
Gr

Gm

� 1

� �
g2

�

þ2g1g3

	
� V 7=3

r þ 252
Gr

Gm

� 1

� 	
g2 � V 5=3

r

þ 25
Gr

Gm

� 1

� 	
ðm2

m � 7Þg2 � V r� ð7þ 5mmÞg2g3

g1 ¼
Gr

Gm

� 1

� 	
ð49� 50mrmmÞ þ 35

Gr

Gm

ðmr� 2mmÞ þ 35ð2mr � mmÞ

g2 ¼ 5mr

Gr

Gm

� 8

� 	
þ 7

Gr

Gm

þ 4

� 	

g3 ¼
Gr

Gm

ð8� 10mmÞ þ ð7� 5mmÞ
This model is viewed as an improvement on the Mori–Ta-
naka calculation that better reproduces the distribution of
phases and stress–strain fields in a composite of particles
separated by matrix.

(v) The TIHS approximation. Torquato developed esti-
mates for the effective elastic moduli of two-phase isotro-
pic dispersions by truncating exact series expansions that
determine the effective stiffness tensor after third-order
terms [48,49]. These third-order series expressions, given
as a function of two microstructural parameters fr and
gr, provide composite modulus estimates for a wide
range of phase moduli, for various non-clustered sphere
dispersions and volume fractions. Interpenetration of
the dispersed spheres constituting the inclusion phase is
not permitted in this ‘‘hard-sphere’’ approximation;
hence, the monomodal reinforcement content cannot
exceed the volume fraction of densely random packed
spheres, namely 64%. The following equations (Eqs.
(13) and (14)) are given in [34]:
Kc ¼
Km þ 4

3
Gmjem

1� jem

ð13Þ

Gc ¼
1

1� lem

Gm þ
Gmlem

3
2
Km þ 4

3
Gm

� �
Km þ 2Gm

� 	
ð14Þ

where
with

jrm ¼
Kr � Km

Kr þ 4
3
Gm

lrm ¼
Gr � Gm

Gr þ
Gm

3
2Kmþ4

3Gmð Þ
Kmþ2Gm

The values of fr and gr come respectively from Table
22.1 and Table 22.3 in Ref. [34]. This model is obviously
best suited for the microstructure for which it was derived,
namely non-interpenetrating monodisperse spheres of one
phase distributed in a matrix of the other.
2.3. Passage from non-linear to linear deformation

Consider now the composite deformed to stress R.
Although the composite stress and strain are always the
volumetric averages of average stresses and strains in
matrix and reinforcement, respectively, the values of each
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of these quantities in each phase are unknown. So is the
average composite strain, N.

We use the ‘‘dual’’ formulation, which imposes a con-
stant stress field on the composite, as this is more conve-
nient for uniaxial deformation [19,27]. Specifically, we use
the equations in Ref. [19], beginning with the relation
between the effective matrix secant shear modulus (Gms)
and the matrix equivalent stress req:

Gms ¼
1

1
Gm
þ 3

req

req

c

� �1=n
ð15Þ

where req is estimated as the volumetric average of the
second-order moment of the stress field in the linear elastic
secant modulus composite material to which the non-linear
composite is assimilated. This second-order moment is in
turn derived from the relevant linear elasticity expression
(e.g., one of the expressions given above) giving the com-
posite linear elastic compliance tensor M as a function of
matrix and reinforcement moduli according to the
expression

r2
eq ¼

3

1� V r

R :
oM

oð1=GmÞ

� �
ðGm¼GmsÞ

: R

" #
ð16Þ

where R is the composite (effective) stress tensor
[3,12,38,50]. In uniaxial (tensile/compressive) deformation,
only one composite stress component (R) is non-zero.
Eq. (16) may then be simplified and the composite stress
is directly expressed as a function of the matrix equivalent
stress req from which Gms is estimated:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V r

3a

r
� req with a ¼ oð1=EcÞ

oð1=GmÞ

� �
ðGm¼GmsÞ

ð17Þ

The matrix secant bulk modulus Kms remains equal to
its linear elastic bulk modulus Km since plastic deformation
causes no volume change.

Operationally, the calculation is performed by solving
Eq. (15) and then Eq. (17) for a given value of req, to
deduce R. To this end, numerical methods are used since
a, defined by the elastic model adopted (see previous sec-
tion), is not generally given by simple analytical expres-
sions. The present calculations were performed using
Mathcad (Mathcad Professional 2001 software, � 1986–
2000 Mathsoft, Inc., USA).

One then deduces the total composite uniaxial strain, N:

N ¼ R
Ecs

ð18Þ

where Ecs is the secant composite Young’s modulus (a
function of Vr, Kr, Gr, Km, and Gms). N is in turn equal
to the sum of elastic strain, Nel = R/Ec, and plastic strain:

Npl ¼
R

Ecs

� R
Ec

ð19Þ

Individual stress and strain values in each phase are also
directly deduced from the elastic model knowing the
instantaneous value of the matrix secant moduli.
3. Proposed simplification of the method

3.1. Assumptions

The composite flow curve estimation scheme of Ponte
Castañeda and Suquet, presented above, is known to pro-
vide good agreement with predictions of numerical models;
however, as seen above, implementing the calculation is not
straightforward. It would therefore be of interest to explore
whether, with a few simple yet reasonable assumptions, the
method can be adapted at minimal cost in terms of preci-
sion so as to ease its implementation significantly. The
assumptions we now explore build largely on simplifica-
tions already proposed and explored in part by Suquet
and Ponte Castañeda [4,19,25–27,29,35].

First, we decouple completely the elastic and the plastic
composite strain calculations. We assume that, at given
composite stress R, the composite strain N is the sum of:

� the elastic strain Nel of the corresponding fully elastic
composite, predicted by the relevant linear elastic mod-
ulus model (see Section 2.2) and
� the plastic strain Npl that would be displayed by a similar

composite having (i) an incompressible isotropic von
Mises matrix displaying the relevant power-law (Hollo-
mon) stress–strain curve and (ii) rigid inclusions.

With these assumptions, the simplified composite from
which the composite plastic strain is estimated is itself also
a power-law incompressible von Mises plastic material hav-
ing the same exponent n as its matrix [4,19,29]:

Req ¼ C � Nn
eq ð20Þ

where Req and Neq are the composite von Mises equivalent
stress and equivalent strain, respectively. The ratio C/c of
composite strength coefficient to matrix strength coefficient
is then, for given n and Vr, a constant throughout the com-
posite (monotonic proportional) loading history.

Prediction of the composite stress–strain curve is then
far simpler, since instead of solving numerically the set of
equations given above for each value of the composite
stress R, one simply:

1. calculates the composite modulus Ec using the appropri-
ate linear elasticity model (generally one of the five given
in Section 2.2);

2. finds the ratio C/c as a function of n and Vr predicted by
the method using the same linear elastic model in the
calculation but for an incompressible matrix and a rigid
reinforcement. As we show below, this last calculation is
actually quite simple with the assumptions made above.

3.2. Calculating the plastic strength ratio C/c

When the two phases are incompressible (Km/Gms =
Kr/Gr =1) and the reinforcement is perfectly rigid
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(Gr/Gms =1), Eqs. (6), (8), (10), (12), and (14) become,
respectively, for each of the five linear elasticity composite
modulus prediction schemes

MT : Gcs ¼
Gmsð3V r þ 2Þ

2ð1� V rÞ
ð21Þ

SC : Gcs ¼
2Gms

2� 5V r

ð22Þ

DEM : Gcs ¼
Gms

ð1� V rÞ5=2
ð23Þ

GSC :
Gcs

Gms

� �2

� Aþ Gcs

Gms

� Bþ D ¼ 0 ð24Þ

with

A ¼ 228V 10=3
r � 1425V 7=3

r þ 2394V 5=3
r � 1425V r þ 228

B ¼ 114V 10=3
r þ 2850V 7=3

r � 4788V 5=3
r þ 1781V r þ 43

D ¼ �342V 10=3
r � 1425V 7=3

r þ 2394V 5=3
r � 1603V r � 271

TIHS : Gcs ¼
Gmsð3lþ 2Þ

2ð1� lÞ ð25Þ

with

l ¼ 4V r

4� 3V rð1� V rÞ
Moreover, the composite secant Young’s modulus is

now simply

Ecs ¼ 3Gcs ð26Þ
Eq. (15) is also simplified as

Gms ¼
req

3

c
req

� �1=n

ð27Þ

Analytical expressions can then be deduced [22] giving
directly the ratio between the composite flow stress and
the matrix flow stress, C/c. The calculation is illustrated
in Appendix A, taking as an example the MT scheme.
The final expressions are

MT :
C
c
¼

3
2
V r þ 1

� �ðnþ1Þ=2

ð1� V rÞn
ð28Þ

SC :
C
c
¼ 2

2� 5V r

� �ðnþ1Þ=2

� ð1� V rÞð1�nÞ=2 ð29Þ

(corresponding to Eq. (5.15) of Ref. [22])

DEM :
C
c
¼ 1

ð1� V rÞð7nþ3Þ=4
ð30Þ

(corresponding to Eq. (5.17) of Ref. [22])

GSC :
C
c
¼ aðnþ1Þ=2 � ð1� V rÞð1�nÞ=2 ð31Þ

with

a ¼ �Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AD
p

2A

(where A, B, and D are given by Eq. (24))
TIHS :
C
c
¼

3
2
lþ 1

1� l

� �ðnþ1Þ=2

� ð1� V rÞð1�nÞ=2 ð32Þ

(where l is given by Eq. (25)).

3.3. Predicting the composite flow curve from that of its

constituents according to the simplified scheme

With the assumptions presented in Section 3.1, the rela-
tion between the composite flow stress R and the composite
strain N is given by

N ¼ R
Ec

þ R
C

� �1=n

ð33Þ

where expressions for Ec and C are given above for each of
the five investigated composite linear elasticity modulus
calculation schemes (Eqs. (5)–(14) introduced in Eq. (3)
for Ec, and Eqs. (28)–(32) for C).
4. Results and discussion

We take as a ‘‘practical case study’’ that of composites
combining an aluminium-based matrix (Km = 76 GPa,
Gm = 26 GPa) with one of the following two
reinforcements:

(i) spherical alumina particles (Kr = 238 GPa, Gr = 164
GPa), a classic reinforcement in metal matrix com-
posites, and

(ii) purely elastic spherical regions having the same elas-
tic moduli as the aluminium matrix. This second case
is representative of alloys combining ductile and elas-
tic phases that have a significant fraction of the same
metal atoms in common, as is often the case in met-
allurgy (intermetallic particles in a base metal solid
solution or dual-phase steels are classic examples).

We vary the hardening exponent of the matrix, explor-
ing the values n = 0 (perfectly plastic behaviour), n = 0.1,
and n = 0.2. The matrix strength coefficient is fixed at an
arbitrary but realistic value c = 250 MPa. We first examine
predictions concerning elastic modulus values, and turn
next to elastoplastic composite deformation.

Fig. 1 compares the various predictions for the alumina/
aluminium composite Young’s modulus Ec. As should be,
the lowest among these curves is given by the Hashin–
Shtrikman lower bound, corresponding also to the MT
model. Interestingly, the TIHS and the GSC models yield
relatively similar predictions. The conclusion made in Refs.
[51,52], that the GSC model yields accurate predictions of
the Young’s modulus of alumina particle-reinforced alu-
minium composites of high volume fraction reinforcement,
thus also extends to the TIHS model. As is well known, the
SC approximation yields the stiffest result among these
five predictions. It is therefore generally considered that
this model should only be used when there is significant



Fig. 1. Scaled Young’s modulus Ec/Em versus Vr predicted by five
common effective-medium schemes for aluminium reinforced with spher-
ical alumina particles.

ig. 2. Inverse of scaled shear modulus Gc/Gm versus Vr predicted by five
ommon effective-medium schemes for an incompressible matrix rein-
orced with perfectly rigid spheres.
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percolation of the reinforcing phase (in which case, how-
ever, the Torquato identical interpenetrating spheres model
should be considered) [3,34]. The DEM model is intermedi-
ate between the TIHS and the SC models.
Fig. 3. Typical Al–Al2O3 flow curves calculated with Eq. (18) (solid lines) an
medium elasticity models: (a) Vr = 0.3, n = 0; (b) Vr = 0.6, n = 0; (c) Vr = 0.3
F
c
f

It is interesting to examine the elastic modulus predic-
tions for the case where the reinforcement is rigid and the
matrix incompressible, as assumed in the simplified calcula-
tion presented above for the prediction of non-linear
d with the simplified scheme of Eq. (33) (dashed lines) for three effective-
, n = 0.2; (d) Vr = 0.6, n = 0.2.
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composite deformation. We plot, instead of the ratio of
composite to matrix Young’s modulus, the ratio of matrix
to composite shear modulus, Gm/Gc (Fig. 2) (to find
whether this ratio reaches zero). As known, a percolation
threshold is predicted by Eq. (22) at Vr = 0.4 for the SC
model. More interesting is the behaviour of the GSC
scheme. This model, similar to the TIHS approximation
for a ‘‘real’’ material (Fig. 1), becomes very stiff when the
assumption of matrix incompressibility is made (Fig. 2).
As mentioned above, two hypotheses are made in plotting
Fig. 2: (i) the reinforcing inclusions are perfectly rigid and
(ii) the matrix is incompressible. Segurado et al. showed
that, making only the first assumption, these two models
still yield similar predictions (with mr = 0.25) [10]. Thus, it
is the latter hypothesis that causes this a priori unexpected
shift in the position of the GSC model prediction among
the five surveyed here, causing it to veer towards the very
stiff SC model. This effect of matrix incompressibility on
predictions of the GSC method was already observed and
discussed by Christensen [47].

Fig. 3 compares predicted stress–strain curves according
to the two calculations methods presented in Sections 2 and
3 (the rigorous method and its simplified version presented
here) for the Al–Al2O3 composite. We explore deliberately
Fig. 4. Typical Al–Al flow curve calculated with Eq. (18) (solid lines) and w
effective-medium elasticity models: (a) Vr = 0.3, n = 0; (b) Vr = 0.6, n = 0; (c)
high reinforcement volume fractions, as this maximizes dif-
ferences between the composite and the matrix stress–strain
curves on the one hand, and the difference between predic-
tions of the various elasticity models on the other. We
focus on three elasticity models, namely the MT, TIHS,
and GSC calculation schemes.

Fig. 3 shows that for all three models, apart from a small
strain range near the onset of yield, the simplified calcula-
tion remains quite close to the predictions of the rigorous
approach. Even for large volume fraction of stiff reinforce-
ment (Fig. 3(b) and (d)), the flow curves are mostly gov-
erned by the chosen elasticity model and differ far less
between the two calculations.

Comparing the three elasticity models it is seen that,
while the MT and the TIHS models are relatively close
and are well reproduced by the simplified model presented
here, the GSC scheme yields significantly higher flow stres-
ses, together with a somewhat greater discrepancy between
the simplified and the rigorous secant model predictions.
As mentioned above, this can be attributed to the fact that
the GSC scheme shifts significantly in its predictions when
the matrix becomes incompressible (Fig. 2). The choice of n
influences greatly the appearance of the flow curves, but
not the accuracy of the simplified calculation procedure.
ith the simplified scheme predictions of Eq. (33) (dashed lines) for three
Vr = 0.3, n = 0.2; (d) Vr = 0.6, n = 0.2.



R. Mueller, A. Mortensen / Acta Materialia 54 (2006) 2145–2155 2153
Predictions for the (elastic aluminium)/(elastoplastic
aluminium) material are compared in Fig. 4. The curves
have a similar aspect to those in Fig. 3 and the simplified
and the full calculations remain equally close for both the
MT and the TIHS models: the reinforcement stiffness is
thus not an essential parameter in the comparison. For
the GSC model, however, the simplified scheme yields
rather imprecise results: the simplified and the rigorous
model converge only at a strain value greater than 0.1.
The reason for the greater difference is the more signifi-
cant level of elastic strain in the composite: note that
the predictions of the simplified model are roughly equiv-
alent at strains near 0.1 for both types of composite (Figs.
3 and 4(d)), whereas the full calculation yields a rather
different result. The stiffer the reinforcement becomes,
the lower is the composite elastic strain and the closer
Fig. 5. Normalized composite flow stress at 2% composite uniaxial deformatio
scheme (solid lines), and by the simplified scheme (dashed lines) for different
(b) Al–Al system.

Fig. 6. Normalized composite flow stress at 2% composite uniaxial deformatio
scheme (solid lines), and by the simplified scheme (dashed lines) for different n

system; (b) Al–Al system.
the prediction of the simplified model comes to that of
the full calculation. In other words, predictions of the
present approximate scheme are increasingly accurate as
the reinforcement is stiffer in relation to the matrix, a fact
that could easily be guessed if one re-examines the initial
assumptions made.

Figs. 5 and 6 compare the predicted values of the ratio
of the two-phase material flow stress to the matrix flow
stress at a fixed strain, namely 0.02 (a realistic value for
most particle-reinforced ductile matrix composites).
Fig. 5 is for the MT scheme, Fig. 6 for the TIHS model;
each has one plot for each of the two reinforcements con-
sidered here: Al2O3 (a, left) and elastic Al (b, right). As
seen, agreement between the simplified and the full calcula-
tions remains good for all values of matrix hardening expo-
nent n and inclusion volume fraction Vr explored here
n as a function of the reinforcement volume fraction predicted by the full
n values (0–0.2) with, in both cases, the MT model: (a) Al–Al2O3 system;

n as a function of the reinforcement volume fraction predicted by the full
values (0–0.2) with, in both cases, the TIHS approximation: (a) Al–Al2O3
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(including for highly reinforced composites). With a stiff
reinforcement (Figs. 5 and 6(a)), the curves nearly overlap;
with the elastically homogeneous material, the curves
remain within 10% of one another (Figs. 5 and 6(b)). In
both cases, for given n and Vr, the difference that exists
between predictions of the simplified and the full models
remains well below the difference made by the choice of
elastic modulus prediction scheme: compare Fig. 5(a) with
Fig. 6(a), and Fig. 5(b) with Fig. 6(b), respectively.

It is, in conclusion, this last choice, namely of the appro-
priate elastic modulus calculation model, that has by far
the greatest influence on the variational (or ‘‘modified’’
secant modulus) prediction of the composite non-linear
uniaxial stress–strain curve, a fact that has already been
pointed out [3,4,29,32]. To this end, however, experiment
can be of considerable help, as can linear elastic numerical
finite-element simulation for which it is now known that
relatively small representative volume elements suffice
when dealing with linear elastic composites [8,9,12,16].
Knowing the relevant modulus expressions for the compos-
ite at hand, these can then be adapted with relative ease to
derive values for the ratio C/c, and in turn to predict the
complete monotonic tension/compression elastoplastic
composite stress–strain curve, as shown in the preceding
discussion. From the tensile curve, in turn, the three-
dimensional elastoplastic behaviour or the behaviour in
unloading situations can then be assessed provided the
degree of isotropic to kinematic hardening is estimated; ele-
gant approaches to this end were proposed recently by
Suquet and Ponte Castañeda [3,4,29]. Finally, we point
out that the variational estimates used here are not free
of limitations; the more recent (but more complex) ‘‘sec-
ond-order’’ variational estimates are better behaved in sev-
eral ways and can also capture field fluctuations within the
phases [4,53–57]. Perhaps these models could similarly be
made more ‘‘user-friendly’’.
5. Conclusion

� Ponte Castañeda’s variational estimate for the predic-
tion of composite non-linear monotonic deformation,
equivalent to a ‘‘modified’’ secant modulus method,
can be simplified considerably if one decouples elastic
from plastic deformation and then assumes, in calculat-
ing the plastic strain, that the reinforcement is rigid and
the matrix is an incompressible Hollomon power-law
von Mises material.
� Making these assumptions, expressions are derived for

composites containing spherical elastic inclusions in a
Ramberg–Osgood matrix. These give the ratio C/c of
the two-phase material to the matrix power-law stress
constants. The expressions are simple explicit analytical
functions of the matrix power-law exponent and rein-
forcement volume fraction, also when the linear elastic
model that is used is not explicit (as in the DEM and
SC schemes).
� Focusing on model composites with a ductile aluminium
matrix, varying the power-law exponent, the reinforce-
ment volume fraction, and the elastic contrast, the
impact of these simplifications on predicted stress–strain
curves is assessed. It is shown that when the MT and the
TIHS models are used, the difference between the two
schemes (simplified and rigorous models) is small,
remaining well below the difference made by the choice
of the elasticity model used.
� With the GSC, differences between the simplified and

the rigorous methods become significant. This effect is
attributed to the fact that the GSC model predicts very
stiff composites when the matrix becomes
incompressible.
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Appendix A. Calculation of C/c using the Mori–Tanaka

linear elasticity model

Substituting Eq. (27) into Eq. (21) and using Eq. (26),
one obtains

Ecs ¼
3V r þ 2

2ð1� V rÞ
� c1=n � rðn�1Þ=n

eq ðA:1Þ

Eq. (17) becomes

req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3V r þ 2

s
� R ðA:2Þ

Introducing Eq. (A.2) into Eq. (A.1), one then writes

Npl ¼
R

Ecs

¼ 1� V r

3
2
V r þ 1

� �ðnþ1Þ=2n
� R

1=n

c1=n
ðA:3Þ

Raising Eq. (A.3) to the power n and rearranging shows
that the composite flow stress follows a power-law behav-
iour with the same exponent n as the matrix (Eq. (20)), with

C
c
¼

3
2
V r þ 1

� �ðnþ1Þ=2

ð1� V rÞn
ðA:4Þ

which is the same as Eq. (28).
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[24] Ponte Castañeda P. In: Suquet P, editor. Continuum micromechan-

ics. Vienna: Springer; 1997. p. 131–95.
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[55] Idiart M, Ponte Castañeda P. C R Mecanique 2005;333:147–54.
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