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Abstract

We address the influence of individual fibre stress–strain non-linearity on the extraction of Weibull-parameters from fibre bundle tensile

tests. We extend the statistical theory of fibre bundle strength to include the non-linear elastic behaviour observed in many technically

important fibres, e.g. glass-, carbon-, and alumina-fibres. It is shown that neglecting this non-linearity may lead to significant errors in

determining the shape and scale parameters of the fibre fracture strength Weibull-distribution. A refinement of the existing extraction

technique, accounting for this effect, is presented. The error resulting from neglecting the non-linear behaviour is assessed through a

parametric study of the Weibull parameters for different levels of non-linearity. Explicit calculations are performed for two fibres of technical

importance, namely Nextel 610e a-alumina fibre and a T300 carbon fibre.
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1. Introduction

Engineering fibres often exhibit a brittle fracture

behaviour and their strength is described by a two-parameter

Weibull distribution [1]. The probability, SWeibull; that a

fibre of length L will sustain an applied stress, sf , without

breaking is then

SWeibull ¼ exp 2
L

L0

sf

s0

� �m� �
; ð1Þ

where s0 is the characteristic fibre strength (often called the

scale parameter) of a fibre with length L0: Parameter m is the

Weibull modulus, which describes the strength variability

(often referred to as the shape parameter). Eq. (1) describes

a size effect on fibre strength: experimental results indicate,

however, that the observed size effect does not always

follow this Weibull distribution [2]; consequently, some

modifications to this equation have been proposed, introdu-

cing an additional parameter to account for non-Weibull

size effects [3]. Despite these shortcomings, the Weibull

distribution, as shown in Eq. (1), has remained the basic

equation used to quantify statistical features of the tensile

strength of fibres.

The main methods used to determine the statistical

parameters, s0 and m; of engineering fibres are (i) single

fibre tensile tests and (ii) fibre bundle tensile tests [4]. At

least 50 single fibre tensile tests are needed to extract these

statistical parameters with sufficient precision. These tests

are therefore time-consuming and prone to errors caused by

a sampling problem: weak fibres are likely to fail during

handling prior to testing and are not accounted for in the

final strength statistics. This can artificially raise the mean

strength and the measured Weibull modulus. Conversely,

fibre bending (a prominent occurrence in single fibre tests)

can lower the calculated value of both the apparent strength

and the Weibull modulus.

In contrast, fibre bundle tensile tests include a greater

number of fibres (usually hundreds or thousands) evaluated

in a single test. Despite some potential problems (such as

errors resulting from misalignment of the fibres within the

bundle), such tests are therefore faster and are increasingly

used today.
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Following the work of Daniels [5] and Coleman [6] the

stress–strain relationship of a fibre bundle can be predicted

from the single fibre strength distribution parameters. These

studies formed the basis for a number of more refined

analyses, where certain initial restrictions were relaxed (e.g.

the assumption of a constant fibre length in the bundle or the

supposition that the strength distribution follows a Weibull

distribution) [7,8]. Several methods for extracting the

Weibull parameters from the experimental fibre bundle

stress–strain curves have also been developed [9–17].

Some of these are based on the classical fibre bundle theory

[9–12] while others use more refined treatments, featuring

single fibre strength distributions other than the two-

parameter Weibull distribution [13,14], non-constant fila-

ment lengths [14] or fibre–fibre interactions [17,18]. These

methods have been used to describe the behaviour

of numerous fibre materials, including glass [16,19], carbon

[9,12,14], Kevlar [17], and ceramic [15]. Despite these

improvements, an important point has—to the best knowl-

edge of the authors—never been addressed to date, namely

the often non-linear elastic behaviour of high-strength

brittle fibres, which becomes noticeable at strains lower than

their average fracture strain [20–22]. In the following, we

assess the influence of the elastic non-linearity of the fibres

on the extraction of the statistical strength parameters from

the stress–strain curve of a classical fibre bundle. We first

extend the analysis as it is known for linear elastic fibres to

non-linear fibre behaviour. The effect is then illustrated

using as practical examples a continuous alumina fibre

(Nextel 610e) and a carbon fibre (T300).

2. Background: measurement of Weibull parameters

from fibre bundle tensile tests

The stress–strain curve and the strength of classical fibre

bundles can easily be evaluated under the following

assumptions:

1. The number of fibres in the bundle is infinite.

2. All fibres within the bundle have equal cross-sectional

area and equal (unit) length, L0:

3. The load released by the breaking of a fibre is equally

distributed over the remaining intact fibres (no inter-

action between fibre breaks).

4. Each individual fibre has the same probability of failure,

which follows the two-parameter Weibull distribution

expressed in Eq. (1).

5. The fibre strength is independent of strain-rate.

Under these assumptions, the strength of the fibre

bundle is

�smax ¼ s0m2
1
m exp 2

1

m

� �
; ð2Þ

where the stress, �smax; is defined as the applied load divided

by the sum of the initial cross-sectional area of all the fibres

in the bundle. If the fibre stress–strain relationship is given

by s ¼ f ð1Þ; then the stress–strain curve of the fibre bundle

in a strain-controlled tensile test is

�s ¼ f ð1Þ exp 2
f ð1Þ

s0

� �m� �
: ð3Þ

The strain, 1max; at the fibre bundle strength, �smax; is

given by

1max ¼ f21 s0m
1
m

� �
; ð4Þ

where f21 is the reciprocal of f ð1Þ; which we assume to be

bijective. Details of this classical analysis can be found in

Refs. [9–12].

Numerical studies have shown that Eqs. (2)–(4) can still

be relatively accurate when the number of fibres in

the bundle is not infinite. McCartney [23] showed that for

m ¼ 8 a number of 100 fibres or greater is sufficient. This

number will be lower for higher Weibull moduli. Since

commercial fibre tows typically consist of several hundreds

or thousands of filaments this requirement is generally

accommodated.

Eq. (3) shows that the theoretical stress–strain curve for an

intact fibre bundle, s ¼ f ð1Þ and the curve for a fibre bundle

with an increasing number of fibre breaks are related through

the Weibull parameters only. The Weibull shape parameter,

m; and the scale parameter,s0; can therefore be conveniently

extracted by comparing the two curves at the strain 1max;

corresponding to the maximum load. From the bundle stress–

strain curve, Weibull parameters are obtained as

m ¼ ln
f ð1maxÞ

�smax

� �� �21

; ð5Þ

and

s0 ¼ f ð1maxÞm
1
m : ð6Þ

In practice, �smax and 1max are measured from the bundle

stress–strain curve, and m ands0 are computed from Eqs. (5)

and (6).

3. Influence of non-linear fibre behaviour

3.1. General formulation

If fibres are non-linear elastic, all equations in Section 2

remain valid, and the Weibull parameters can still be

calculated using Eqs. (5) and (6), provided f ð1Þ accounts for

the non-linear stress–strain behaviour of the fibres: the

value of m calculated by this method depends directly on the

fibre stress–strain relation, f ð1Þ: If a linear stress–strain

relation is assumed when extracting the Weibull parameters

from a fibre bundle test, significant error may therefore
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occur if the fibre behaves non-linearly in reality: the Weibull

shape parameter, m; will be underestimated (overestimated)

for a decreasing (increasing) fibre modulus with increasing

strain. The reverse trend is observed for the scale parameter,

s0; however, the effect of the non-linearity is somewhat less

substantial. s0 varies roughly linearly with f ð1maxÞ whereas

m has an inverse logarithmic dependence that has a steeper

slope in the range of practical interest ð3 , m , 15Þ:

3.2. Formulation for second order non-linear elasticity

Non-linear elastic deformation of stiff fibres in the

longitudinal direction can be described by adding a linear

strain-dependent term to the initial (constant) Young’s

modulus, E 0
f [24]. The apparent instantaneous fibre

Young’s modulus, Efð1Þ is then given as

Efð1Þ ¼ E0
f ð1 þ a1Þ; ð7Þ

where the parameter a; which describes the elastic non-

linearity, can range from 27 [25,26] through to 30 [24].

Integration with respect to 1 yields the stress–strain

function

f ð1Þ ¼ E 0
f 1 1 þ

a

2
1

� �
: ð8Þ

Weibull parameter extraction errors, resulting from the

assumption of linear elastic fibre deformation can now be

quantified as a function of a: Fig. 1 shows the variation of

the relative error, 1 2 mlinear=m; calculated when linear

elasticity is assumed for the evaluation of the experimental

data (i.e. taking a ¼ 0 to obtain mlinear; rather than m). It can

be seen that the relative error increases with m and that the

error is greater for positive values of the non-linearity

parameter a:

The relative error in evaluating m assuming linear

elasticity also depends on the characteristic fibre stress

s0 : it increases for greater characteristic fibre stresses. This

dependence is illustrated in Fig. 2 for a ¼ 210 (solid lines)

and a ¼ 10 (broken lines), at various values of m: This, of

course, is a direct result of the fact that elastic non-linearity

is more pronounced at high strain.

It is seen from Figs. 1 and 2 that, depending on the value

of the non-linearity parameter a the error can be substantial.

In Section 4, the effect is quantified for two industrial fibres

illustrating its importance in practical situations.

4. Application

4.1. Nextel 610e continuous alumina fibres

The alumina fibre Nextel 610e (3M, St Paul, MN, USA)

is a high strength/high stiffness fibre consisting of fine-

grained pure a-alumina. Its general properties are listed in

Table 1.

4.1.1. Non-linear elasticity

Elastic non-linearity is a well known phenomenon in

engineering ceramics and can be described by higher order

elastic constants. Compilations of higher order elasticity

Fig. 1. Relative error in the determination of the shape parameter, m; as a

function of the non-linearity parameter, a, for different values of m; with

s0 ¼ 3 GPa:

Fig. 2. Relative error in the determination of mlinear when using a linear

elastic approach for a ¼ 210 (solid lines) and a ¼ 10 (broken lines) for

varying m:

Table 1

Main properties of the Nextel 610e alumina fibre

Composition [35] . 99% a-Al2O3

0.2–0.3% SiO2

0.4–0.7% Fe2O3

Mean UTS at l ¼ 25:4 mm [36] 3.3 GPa

Weibull modulus [36] 9.7–11.2

Young’s modulus [36] 373 GPa

Density [35,36] 3.75–3.9 g cm23

Diameter [36] 11.98 mm

CTE (100–1100 8C) [37] 8 £ 1026 K21
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parameters for single crystal alumina can be found in

Simmons and Wang [25] (only pressure derivatives) and

Landolt-Börnstein [26]. Higher order elastic constants

in compression for polycrystalline alumina are reported

in Ref. [27].

In a separate study, we determined the strain dependence

of the Young’s modulus for Nextel 610e by measuring the

longitudinal modulus strain dependence of aluminium

matrix composites, reinforced unidirectionally with

60 vol.% Nextel 610e alumina fibres [28,29]. A linear

decrease of the fibre Young’s modulus with increasing

strain was observed. The value of a was found to be 26.81

for the a-alumina fibre Nextel 610e. The fibre stress–strain

curves assuming linear (grey solid line) and non-linear

(black solid line) elasticity are plotted using these

parameters in Fig. 3.

4.1.2. The influence on the Weibull parameters

When the non-linear bundle stress–strain curve (calcu-

lated according to Eqs. (3) and (8) with the fibre properties

from Table 1, taking m ¼ 11:2 and a ¼ 26:81) is evaluated

using a linear elastic approach for the theoretical bundle

stress at maximum strain, f ð1maxÞ; the result for the Weibull

modulus, mlinear; is only 8.7; the correct value of 11.2 is

significantly underestimated. It is clear that, while the fibre

Young’s modulus is overestimated by only 20 GPa at

f ð1maxÞ; the extracted shape parameter is significantly

underestimated when non-linear behaviour is neglected in

the analysis.

4.2. Carbon fibres

According to the literature, the stiffness of carbon

fibres generally increases with increasing strain [21,24,

30–32]. This phenomenon was found to be entirely

reversible and is attributed to orientation of the lamellar

crystallites. The effect is sufficiently strong to cause

stiffening of an aluminium composite, reinforced with a

high modulus carbon fibre M40, even though the matrix

plastifies and its contribution to the composite modulus

decreases [33].

Similar to the non-linearity in the alumina fibre

mentioned above, the elastic behaviour of such carbon

fibres can be described by second order elasticity, according

to Eq. (7), and a-values for several carbon fibres can be

found in Ref. [24]. Taking the carbon fibre T300 as an

example, the values of a and s0 are found to be 15 and

3.5 GPa, respectively. The initial fibre Young’s modulus is

approximately 230 GPa and the Weibull modulus is about 5

[12,34]. The corresponding stress–strain curves of the

individual fibre are illustrated in Fig. 3 (dashed lines). The

extraction of the Weibull modulus from the non-linear fibre

bundle stress–strain curve with a linear elastic approach

yields mlinear ¼ 7:9; an overestimation of the actual value by

a factor of almost 1.6.

4.3. Experimental uncertainty

In practice, there are a number of additional uncertainties

involved with the evaluation of these statistical parameters.

These include:

† Determination of strain at maximum stress. The strain

corresponding to the maximum stress is—as shown

above—an important input to the determination of m and

s0: Taking values from the Nextel 610e alumina fibre, a

relative error of 1% in 1max results in an error in m

of approximately 11%, but only a 2.5% error is observed

for s0:

† The number of filaments in the fibre bundle and their

average diameter. These parameters affect the analysis

either through the calculation of the average fibre bundle

stress or through the calculation of the theoretical fibre

bundle load (when load instead of stress values are used).

Again, for the Nextel 610e alumina fibre a relative error

of 1% in �smax results in an error of about 11% in m; but

only a 1.5% error in s0: It is important to note that if the

number of filaments in the fibre bundle is calculated from

the initial stiffness of the bundle (assuming no fibre

breaks at this stage), an error in the strain measurement

will result in the same relative error in the stress

measurement (through the cross-sectional area), with

no effect on the calculation of the Weibull shape

parameter; the two errors compensate each other.

There will, however, still be an error in the calculation

of the scale parameter, since this is a linear function of

1max; Eq. (6).

† Unequal fibre length in the bundle. Depending on the

overall length of the fibre bundle tested, a broader or

Fig. 3. Stress–strain curve of the Nextel 610e alumina fibre (solid lines)

and the T300 carbon fibre (dashed lines) drawn assuming linear (grey

line) and non-linear (black line) elasticity; relevant constants are given in

the text.
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narrower distribution of fibre lengths will be present.

This fibre slack will result in an initial stiffening of the

bundle upon loading and in an inhomogeneous stress

distribution when all the slack is taken up. As previously

mentioned, the Weibull parameters can still be calculated

[3,14], however, the measurement of the initial stiffness

(used to determine the number of filaments in the bundle)

might not be possible depending on the amount of this

slack.

5. Conclusions

The elastic behaviour of engineering fibres can be

noticeably non-linear, as evidenced by the preceding

ceramic and carbon fibre examples. Neglecting this effect

results in significant error when the fibre strength Weibull

modulus is computed using the maximum stress, and its

corresponding strain, measured in a bundle test. The

Weibull modulus is underestimated when the deviation

from linear elasticity is negative (e.g. ceramic fibres) and is

overestimated when this deviation is positive (e.g. carbon

fibres). Modified expressions for the computation of fibre

strength shape and scale parameters are given for fibres

having a non-linear elastic behaviour characterised by Eq.

(8). This, and other apparently minor sources of exper-

imental errors can have a significant influence on extracted

Weibull parameters and must therefore be carefully

evaluated when using fibre bundle testing to assess fibre

Weibull statistics.
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