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Abstract--A decoration technique is used to observe dislocations produced by thermal stresses between 
glass or alumina fibers and silver chloride, used as a model material for metal matrix composites. Fibers 
ends are found to punch prismatic loop rows, the length of which is compared with a model presented 
in Part I of this paper as well as another model based on a mismatching spheroid. The geometry of 
dislocations punched at fiber ends is discussed for the case where the fiber axis is not coaxial with the 
glide direction. Elongated loops are also observed to be punched radially by the fiber and their number 
is correlated to the thermal radial mismatch. A simple model is proposed for the nucleation of such loops, 
which are usually entangled in a plastic zone surrounding the fiber. 

Rrsum~-Une technique de drcoration est utilisre pour observer les dislocations produites par tensions 
thermiques dans un modrle de composite ~i matrice m&allique constitu6 de fibres de verre ou d'alumine 
et de chlorure d'argent. Les extrrmitrs de fibre 6mettent des rangres de boucles prismatiques dont la 
longueur est comparre ~i un modrle prrsent6 dans la premirre partie de cet article ainsi qu'd un autre 
modrle bas6 sur un spheroide incompatible. La gromrtrie des dislocations 6mises en bout de fibre est 
discutre dans le cas off l'axe de la fibre n'est pas coaxial d la direction de glissement. Des boucles allongres 
6mises radialement par la fibre sont aussi observres et leur nombre est corrrl6 d l'incompatibilit6 radiale 
thermique. Un modrle simple est prrsent6 pour la nuclration de ces boucles qui sont habituellement 
enchevetrres dans une zone plastique entourant la fibre. 

Zasammenfassung--Mit einem Dekorationsverfahren werden die Versetzungen sichtbar gemacht, die sich 
wegen thermischer Spannungen zwischen Glas-oder Aluminiumoxidfasern und Silberchlorid bilden; diese 
Kombination wird als Modell fiir Verbundmaterialien mit MetaUmatrix angesehen. Die Faserenden stoBen 
Reihen prismatischer Versetzungsschleifen aus; deren L/inge wird mit dem in Teil I dieser Untersuchung 
vorgelegten Modell, wei auch mit einem anderen, auf einem fehlpassenden Ellipsoid beruhenden Modell 
verglichen. Die Geometric der an den Fasereneden ausgestoBenen Versetzungsschleifen wird fiir den Fall 
diskutiert, dab die Faserachse nicht mit der Gleitrichtung iibereinstimmt. Zus/itzlich wird beobachtet, 
dab 1/ingliche Versetzungsschleifen yon der Faser radial ausgestoBen werden; ihre Zahl h~ingt mit der 
thermischen radialen Fehlpassung zusammen. Ein einfaches Modell wird fiir die Bildung solcher Schleifen, 
die iiblicherweise verschlungen in einer plastischen Zone um die Faser herum verteilt sind, vorgeschlagen. 

1. INTRODUCTION 

The plastic relaxation of  stresses induced by thermal 
mismatch of  the two constituents of  fiber reinforced 
metals has been studied experimentally using etch 
pits, slip lines and transmission electron microscopy 
(TEM). Limitations of  these techniques in the investi- 
gation of  dislocation structures generated in the matrix 
of  metal composites where the reinforcement size is on 
the order of  one, or several, micrometers have been 
exposed elsewhere [1-3]. It was also shown in these 
references that several of  these limitations can be 
overcome by the use of  silver chloride as a model  
material for the matrix of  fiber reinforced metals. This 
transparent salt deforms by dislocation mechanisms 
very similar to those operative in metals. Upon  ex- 
posure to actinic light, silver chloride photodissociates. 
The resulting silver preferentially nucleates and grows 
at crystal defects such as dislocations, grain- and 
subgrain boundaries, decorating them to a depth of  

up to 30 # m  and making them visible to transmission 
optical microscopy. If  the dislocation density is low 
enough, decorated dislocations can be resolved and 
observed in the state in which they were during 
decoration. This technique, developed by Hedges and 
Mitchell [4], presents great advantages for the imag- 
ing of  dislocation structures around large inclusions 
which are difficult to observe by T E M  in an undis- 
turbed state, In previous publications, we used silver 
chloride composites to study thermal mismatch dis- 
locations around glass particles [1] as well as glass 
microspheres and alumina fibers [2]. We observed 
tangles of  dislocations along the sides of  the fibers 
forming a well-defined plastic zone, as well as rows of  
prismatic dislocation loops punched at the fiber tip, as 
observed by Vogelsang et al. [5] in whisker reinforced 
aluminium using TEM. 

In an earlier paper [6] (hereafter referred to as 
Part I) we analyzed the mechanics of  prismatic loop 
punching at the ends of  a thermally mismatching fiber. 
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We made use of the shear-lag model proposed by Cox 
[7] to derive expressions for the fiber longitudinal 
tensile stress, the interfacial shear stress and the 
number of prismatic loops punched in the matrix. 
The length of the resulting row of loops was then 
determined from the equilibrium of the elastic repul- 
sive stresses between prismatic loops and the lattice 
friction stress. This model yields different results than 
a previous one, proposed by Taya and Mori [8], 
which is based on the assumptions of a misfitting 
spheroid punching delocalized dislocations. The pur- 
pose of this article is to report experimental data on 
the morphology and length of prismatic loop rows in 
silver chloride containing glass fibers. We compare 
the length of loop rows to both models cited above 
and also present and discuss different dislocation 
geometries along the sides and tips of fibers. 

2. EXPERIMENTAL 

A detailed description of the experimental proced- 
ures has been given in a previous paper [3]. In short, 
we prepared 0.1 mm thick plates of silver chloride con- 
taining chopped glass fibers (strontia-alumina-silica 
based), 0.5-4/~m in diameter, purchased from MoSci 
Corp. (Missouri, U.S.A.), or 3/~m diameter alumina 
fibers, furnished by Imperial Chemical Industries 
(U.K.). Silver chloride blocks purchased from Engel- 
hard (Ohio, U.S.A.) were purified, filtered and 
chemically sensitized with 500 ppm cuprous chloride 
(purchased from Strem Chemicals, Mass., U.S.A.). 
Flat composite samples were fabricated by squeezing 
a drop of molten chloride between two quartz plates 
onto which fibers had been previously placed. The 
samples were then directionally solidified, and 
annealed at 673 K for 2 h. They were finally quenched 
in flowing argon at a rate of about 1 K/s and exposed 
for 1-2 h to stroboscopic actinic light. The decorated 
substructure was recorded photographically using a 
Zeiss optical microscope in transmission with a 100 x 
oil immersion lens. 

3. RESULTS AND DISCUSSION 

3.1. Punching by fiber ends 

3.1.1. Fiber axis parallel to punching direction. 
In numerous instances, fibers punched a row of loops 
in the longitudinal directions in a plane parallel to the 
sample surface (Fig. 1); the row was thus in focus 
over its entire length. We believe that the fibers which 
did not exhibit any decorated loops or plastic zone at 
their tip probably emitted a row of loops at an angle 
with respect to the sample surface. If  the loops were 
emitted toward the surface, they must have been 
attracted by it and annihilated; if they were emitted 
toward a deeper region of the sample, the limited 
decoration depth attainable with silver chloride (30 #m 
maximum) would prevent them from being decorated 
and thus observed in the optical microscope. The rela- 
tively large number of  fibers which exhibited a row of 

Fig. 1. Row of decorated, prismatic loops emitted by a glass 
fiber in AgCI. A dark zone of unresolved dislocation tangles 

surrounds the fiber. 

loops at their tips is due, in part, to the fact, reported 
by Clark and Mitchell [9], that silver chloride crystals 
grown between quartz plates feature {100} planes 
(and occasionally { 111 } planes) nearly parallel to the 
quartz plates. Since both these planes are glide planes 
which contain the glide direction (110), the rows of 
loops tend to be parallel to the sample surface and in 
focus over long distances. It was also found that the 
composite casting procedure resulted in fibers which 
were parallel to the quartz plates. 

The number of individual loops could never be 
determined with certainty close to the fiber tips, either 
because the loops could not be resolved or because 
the decoration was fainter there than at some distance 
from the fiber, possibly because of a depletion of 
interstitial silver ions responsible for the decoration, 
due to the high local dislocation density. In many 
cases, punched loops extending far away from the fiber 
encountered a subgrain boundary which blocked 
them. More loops were then often nucleated on the 
other side of the boundary to continue the row. 
Another interesting feature was that a minority of the 
fibers exhibited a row of loops at both of their ends; 
when this was the case, the rows were generally of 
different length. 

This last observation suggests that fibers with a 
single row of loops were either relaxed only on the 
half length which exhibited a row, or that relaxation 
of the entire fiber length is possible by emission of a 
single row. The latter hypothesis requires that the 
loops of vacancies left at the interface be capable of 
gliding from one tip to the other in order to relax the 
fiber half length which did not emit any prismatic 
loops into the matrix. The two situations are shown 
schematically in Fig. 2 where only longitudinal strains 
are considered. The fiber is assumed to be a perfect 
cylinder, at the surface of which interstitial loops can 
glide without encountering any obstacle. In practice, 
the surface of fibers is not perfect and such loops--if 
they exist in a localized manner--would need to move 
by a combination of climb and glide to travel along 
the interface. In a previous publication [2], we re- 
ported a similar situation for misfitting glass spheres 
of diameter 1-3/~m in the same silver chloride matrix. 
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Fig. 2. Schematics of a mismatching fiber in a crystalline matrix deforming by slip. (a) Fiber under 
compression and deformed atomic plane in tension before slip (exaggerated deflections for illustrative 
purpose). (b) Emission of two rows of interstitial loops at both ends and relaxation of the interface by 
glide of vacancy loops from both ends. The vacancy loops are shown delocalized. Two atomic planes have 
been added at each ends of the fiber. (c) Emission of a single row of interstitial loops at one end of the 
fiber and glide of delocalized vacancy loops along the whole interface. The fiber is translated since atomic 

planes were added only at one end. 

Fig. 3. Glass fiber with punched row of decorated, prismatic loops emitted at an angle in AgCI. 
The fiber is also surrounded by a plastic zone of unresolved dislocations. 
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Fig. 4. Plot of the frequency of the angle between the axis of the punched row of loops and that of the 
emitting fiber in AgC1. (a) Alumina fibers, (b) glass fibers. 

These inclusions were often observed to punch loops 
along a single direction, rather than the 12 necessary 
for complete relaxation (micrographs published by 
Mitchell [10] as well as Parasnis and Mitchell [11] 
show the same phenomenon). In that case too, relax- 
ation can be achieved by motion of the interfacial 
vacancy loops left at the interface. It is noteworthy 
that submicroscopic misfitting particles in silver 
chloride were observed to punch in all crystallographic 
directions [3, 11], leading to the conclusion that the 

punched dislocation structures depend on the size of 
the misfitting inclusion. 

3.1.2. Fiber axis not parallel to punching direction. 
Figure 3 shows an example of a fiber which punched 
a row of loops which is not coaxial with the fiber. 
Since prismatic loops can only glide along (110) 
directions, any fiber with an axis making an angle 0 
with that direction will only be capable of relaxation 
by prismatic punching at that angle. The fiber displace- 
ment in the longitudinal direction for each loop of 

\ 

/ \ 2 
1 / 

Fig. 5. Schematic of fiber punching elongated dislocation loops along the six (110) glide directions. 
Cross-hatched volume correspond to the interaction volume between two adjacent glide systems. 
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Burgers vector b punched at an angle 0 is equal to the 
projection of the Burgers vector on the direction of 
the fiber axis, b.cos& The total number of loops to 
be punched for a given relaxation is thus increased by 
a factor l/cos& Since two adjacent glide directions 
make an angle of 60 ° , the maximum punching angle 
is 30 ° , if we assume that punching takes place along 
the direction closest to the fiber axis. Punching at 
an angle can thus increase the number of loops for 
a given relaxation by a factor 2/x/3 (i.e. by 15%) 
at most. Such a difference will not significantly alter 
the punching distance for the relatively large number 
of loops encountered in these rows [equation (28), 
Part I]. 

We counted the frequency of the punching angle 0 
and found very few rows punched at an angle larger 
than 30 ° The higher proportion of fibers with small 0 
(Fig. 4) is surprising at first, since the fibers are 
oriented randomly in a plane parallel to the sample 
surface and the (110) directions are random as well 
in that plane (but not in space, since the growth of 
certain AgO crystallographic planes is favored, as 
mentioned above). We can explain this by assuming 
that entanglement of punched dislocations loop rows 
reduced the proportion of rows punched at large 0 
values. 

Consider a portion L '  of the fiber length, which 
punches prismatic dislocation loops along all possible 
directions to relieve both longitudinal and radial 
strain. This is illustrated in Fig. 5 for the case where 
L '  is maximum, equal to the fiber half-length, with 
the other half-length punching identical loops on the 
other side of the fiber. This configuration has been 
observed experimentally, although L '  was generally 
less than half the fiber length, as in Fig. 6. The inter- 
section between the row relieving longitudinal strain 
and its neighboring row is the cross hatched volume 
in Fig. 5. The likelihood of entanglement of punched 
prismatic dislocations from two adjacent rows 
punched along L '  increases as the volume shared by 
their glide cylinders increases. This intersection volume 
V is approximately equal to 

v = L ' ~ F t ~ - t g ( l r / 6 - O ) ]  -I (1) 
, /2 L gt 

where r is the fiber radius and 0 is the angle between 
the fiber axis and the closest glide direction. For 
the range of possible values for 0, from 0 to ~/6, the 
intersection volume varies almost linearly between 0 
and L'2r/~/6. Entanglement will therefore be more 
likely at high values of 0. Corresponding rows should 
therefore be less frequent, as observed in Fig. 4. 
Observation of elongated loops together with the 
frequent occurrence of a dark zone of  unresolved dis- 
locations along the sides of the fibers (Fig. 6) support 
this explanation. Figure 7, which gives the frequency 
of punching a row of dislocation loops at an angle 0 
in samples of AgCl containing elongated glass particles 
studied in Ref. [1], confirms the findings of Fig. 4 with 
fibers. Only particles of aspect ratio larger than 2 

!~ . . . . . . . . . . . . . . . . . . .  

Fig. 6. Glass fiber in AgC1 with decorated dislocation 
structure consisting of two rows of elongated loops emitted 
sideways at the fiber ends and a plastic zone surrounding the 
fiber (dislocations are not resolved). The linear feature is a 

decorated subgrain boundary. 

were taken, the particle axis being that of its largest 
dimension as seen in the microscope. 

In most cases, one punching direction is more 
favorable than others to relax longitudinal stresses, 
because it makes the smallest angle with the fiber axis 
(direction 1 in Fig. 5). However, on occasions, fibers 
have such orientations with respect to the glide direc- 
tion that two glide directions form the same angle with 
the fiber axis and both can be activated simultaneously 
as in Fig. 8 where the plane of focus is just below the 
1 #m diameter fiber. The axis of the lower row (A) of 
elongated loops is parallel to the image plane while 
that of the upper row (B) forms an angle: the farthest 
loop from the tip is deepest. Since they are not seen 
edge-on as the loops in the left row, they appear as 
ellipses rather than lines. The projected angle between 
the two rows is about 75°; the actual angle in space 
is thus most probably 90 °, with the two rows punched 
along non-adjacent (110) glide directions. Such 
configurations were relatively rare, however. 

3.1.3. Punching distance. The length of rows of 
loops and that of the glass fiber from which they were 
punched were measured on micrographs. These are 

i 
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Fig. 7. Plot of the frequency of the punching angle for 
non-equiaxed glass particles in Age1. 
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Fig. 8. Two rows of decorated loops punched by the tip 
of a glass fiber in AgC1. Loops are on non-adjacent glide 

systems. 

plotted in dimensionless form in Fig. 9 for fibers which 
had punched rows at both their ends, and in Fig. 10 
for fibers with a row at only one of their ends. Data 
are from rows that encountered no visible obstacles 
(such as other dislocations, subgrain boundaries, 
fibers). No data are presented for samples with 
alumina fibers because almost all rows punched had 
encountered subgrain boundaries (the subgrain size 
was smaller for these samples than for those with 
glass fibers). Rows punched at an angle to the glass 
fibers were included, because the punching angle 0 
has only a small influence on the punching distance, 
as discussed above. 

The predictions of the model of Ref. [8] [equations 
(BI) and (B3) as reported in Part 1] are plotted in 
Fig. 9 only, since this model is only applicable to 
fibers punching loops at both tips. Predictions of the 
model presented in Part 1 [equations (22) and (28) of 
Part 1] are also plotted in that figure. The thermal and 
mechanical properties of fibers and matrix used to 
calculate the theoretical curves are listed in Table 1. 

The parameter subject to the largest imprecision is the 
matrix friction stress, z¢, the value of which strongly 
influences predicted punching distances in both models 
Figure 9 shows curves for xc = 0.5 MPa and 0.25 MPa. 
The former value is the microyield stress in shear 
measured by Sprackling [12] as well as Haasen and 
Skrotski [13] and is likely to be an upper bound for the 
true value of the friction stress for the loops. The lower 
value of 0.25 MPa is chosen somewhat arbitrarily to 
illustrate the effect of a smaller, plausible friction stress 
on the shape and location of the theoretically derived 
curves. For a value of the friction stress of 0.5 MPa, 
the model of Ref. [8] is somewhat above the range 
of experimental data [Fig. 9(b)]. For a value of the 
friction stress of 0.25 MPa, predictions from the model 
of Ref. [8] increase further above the experimental data 
[Fig. 9(a)]. A generalization of the model of Ref. [8], 
presented in Ref. [14], shows that assuming concomi- 
tant lateral relaxation and allowing for a variable 
degree of longitudinal relaxation brings theoretical 
predictions of this model within the error band of the 
data. Predictions of the model presented in Part I of 
this work remain within the range of the experimental 
data for both values of the matrix friction stress. 

Equation (22) of Part I was derived for fibers 
which had punched a row of loops at both their ends 
[Fig. 2(b)]. For  fibers punching at only one end, we 
assume that nearly the whole interface becomes 
relaxed as in Fig. 2(c). The number of loops can then 
be calculated from equation (22) of Part I if we assume 
that punching at one end of a fiber is equivalent to 
punching at both ends of a fiber of double length, 
since in both cases the fiber length being relaxed by 
a row of loops in the same. Equation (22) of  Part I 
is therefore applied with Lf equal to twice the actual 
fiber length in Fig. 10. This assumption is not entirely 
correct since, as shown schematically in Fig. 2(c), a 
backstress is exerted by the matrix on the fiber end 
having not punched, in order to equilibrate the net 
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Fig. 9. (a) Plot of the row length (divided by its diameter) vs the fiber aspect ratio. Squares represent 
experimental data for glass fibers of diameter between 0.5 and 4/~m which punched rows at both their 
ends; the longer and shorter rows for a given fiber are represented by connected filled and empty symbols 
respectively. The full lines are calculated from equations (22) and (28) (Part I) and dotted lines are 
calculated from equations (B1) and (B3), reported in Part I, according to Ref. [8], for a value of the friction 

stress of 0.25 MPa. (b) Same as (a), but for a value of the friction stress equal to 0.5 MPa. 
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force produced by the asymmetrical distribution of 
interfacial shear stress. For this assumption to be 
correct, the length of fiber over which this reactive 
elastic force is exerted must be small compared to the 
total fiber length. 

Predicted punching distances from equations (22) 
and (28) of Part I fall within the scatter in experimental 
data points, and predict trends in agreement with 
those of the band of experimental data points. Scatter 

in experimental data can have several origins. As 
mentioned above, the lower data points can be ex- 
plained by the blocking of rows of loops by obstacles 
not visible in the microscope, such as unresolved 
dislocations or submicroscopic inclusions. This effect 
should become stronger the longer the row, because 
of the higher probability of encountering an obstacle. 
Extraneous long-range stresses might also induce scat- 
ter in the data points, both elongating and shortening 
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Table 1. Thermal and mechanical properties of matrix and fibers 
AgCI AI203 Glass 

Elastic modulus (GPa) 300 a 85 a 
Shear modulus (GPa) 5.5 b 
Poisson's ratio 0.343 ¢ 0.24 d 0.22 d 
CTE (106 K t) 30 ¢ 9 a 6.5 ~ 
Volume fraction 0.01 0.01 
Burgers vector (nm) 0.384 ¢ 
Friction stress (MPa) 0.5 ¢ 
AT[K] 100 f 

a: manufacturer information; b: calculated for [110] directions from 
elastic constants reported in Ref. [21]; c: Ref. [21]; d: Ref. [22]; 
e: Ref. [12] and [13]; f: Ref. [2]. 

the measured row length. Finally, an effect which 
might systematically increase the row length is the 
electrostatic repulsion between charged loops. As 
discussed in greater detail in the Appendix, this is not 
expected to induce forces larger than the elastic 
repulsion on which the calculations are based and 
thus can probably be neglected. If, however, the first 
few loops of the train are charged to the maximum 
possible extent, this effect might produce an increase 
of row length by typically 1-10#m. Given the 
experimental errors in the measurements cited above 
as well as the uncertainties connected with some of 
the physical constants used in the model (the lattice 
friction stress, the critical interfacial shear stress 
assumed to be equal to the lattice friction stress, and 
the temperature excursion AT of 100 K which has 
an experimental error of typically 30 K [2]) and the 
simplifying assumptions made in the model presented 
in Part I (perfect dislocation nucleation, cylindrical 
inclusion with smooth surface, no radial mismatch, 
etc.), we feel that the agreement between the data and 
our model is satisfactory. 

The aspect ratio of the fibers investigated here 
are significantly below the critical aspect ratio above 
which the model of Ref. [8] predicts suppression 
of punching, in disagreement with the predictions of 
the model in Part I. While this latter model predicts 
a finite, non-zero, maximum value of the punching 
distance for fibers of infinite aspect ratios, curves calcu- 
lated with the model of Ref. [8] in Fig. 9 reach a 
maximum and drop to zero for a critical aspect ratio 
which has a value of 460 for z¢ = 0.5 MPa [Fig. 9(b)] 
and 930 for zc = 0.25 MPa [Fig. 9(a)]. Experimental 
difficulties prevented us from obtaining significant 
data with such long fibers: fibers are supplied in a 
matte from which they are difficult to extract without 
breaking them and long fibers require a large region 
of matrix free of sources of interaction such as 
subgrain boundaries. The largest aspect ratio found 
in our samples was for a glass fiber, 580 #m long, 
which had an aspect ratio of 644, and punched a 
single row of loops of length 28 #m. This row was not 
included in data plotted in Fig. 10 because its loops 
had varying diameters (as for the outward row of the 
long fiber of Fig. 11). Using the fiber diameter of 
0.9/~m in equation (22) of Part I and the average loop 
diameter of 2 .4#m in equation (28) of Part 1, we 
predict a loop row length of 20 #m for z~ = 0.5 MPa 

and 31 #m for zc = 0.25 MPa. The model of Ref. [8] 
predicts for a spheroid of aspect ratio 644 row lengths 
of 0 and 44 #m, respectively. We emphasize that this 
data point is the only one we collected, and is therefore 
not conclusive. 

3.1.4. Punching of pairs of rows. In numerous cases, 
we observed a pair of coaxial rows, located on either 
side of the tip of a fiber as illustrated by Fig. 11. 
These rows were only found at the ends of fibers and 
the far side of the elongated dislocations was always 
emanating from the fiber tip. The outward row was 
completely separated from the fiber and longer than 
the inward row, the dislocations of which were always 
connected to the fiber. While it is quite safe to assume 
that the outward row is not different from the ones 
described in Section 3.1.2, the nature of the inward 
row is less clear. It is clearly different from the plastic 
zone of tangled dislocations usually found along the 
sides of fibers (Fig. 6). Assuming that they are pris- 
matic, the dislocations in the inward row are unlikely 
to be interstitial since their number would be too high 
to be generated by radial misfit [see equation (2) in 
the following section] and since the orientation of 
their Burgers vector would be less favorable than 
other glide directions with a Burgers vector closer to 
the radial direction. Also, if the row were produced 
by radial misfit, it would occur at other places along 
the fiber rather than solely at its tip. We propose the 
hypothesis, explained in more detail in what follows, 
that the inward row is constituted of vacancy loops 
formed at the same time as the interstitial loops of the 
outward row. 

Every time a prismatic interstitial loop is created 
at the interface of a misfitting particle, a vacancy 
loop of same size is formed by conservation of matter. 
In most cases, this vacancy loop is not further 
considered because it becomes delocalized while it 
is absorbed at the interface, i.e. the volume of the 
vacancy loop is replaced by the same volume of the 
expanding inclusion [Fig. 2(b)]. When loops are 
punched at an angle from the fiber axis, the punched 
prismatic interstitial loop can be larger than the 
projection, along its glide direction, of the fiber cross- 
section. For  this reason, the volume of each vacancy 
loop accompanying interstitial loop emission cannot 
be entirely taken up by the expanding fiber. A smaller 
vacancy loop then remains after punching of a 
prismatic interstitial loop, of volume equal to the 
difference of the volume of the interstitial loop and 
that taken up by expansion of the inclusion. This 
process is schematically drawn in Fig. 12. When 
further pairs are formed on each side of the inclusion, 
loops within a row will repel each other while loops 
from different rows will attract each other. The 
resulting perturbation of the length of the row of 
interstitial loops was calculated in Ref. [15], and was 
found to be small. 

While the limited resolution available in silver 
chloride allows to draw few conclusions concerning 
the nucleation of such interstitial and vacancy loops, 
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Fig. 11. Two glass fibers in AgC1 showing the same dislocation structure: a double row of decorated, 
elongated loops emitted by the tip of the fiber. The outward row is similar in nature to that in Fig. 3; 

the inward row is attached to the fiber. 

it is noteworthy that the configuration proposed 
above would indeed relax the longitudinal--and to 
some extent the radial--mismatch between the fiber 
and the matrix. Figure 12 illustrates that point, show- 
ing the atomic planes before and after creation 
of the loop pair. While atomic spacings are widely 
exaggerated for clarity, it is clear that the vacancy 
loop induces some relaxation at the tip of the fiber, as 
does the presence of the interstitial loop on the other 
side of the fiber tip. It is also apparent by observing 

Fig. 12. Schematic drawing proposed as an explanation for 
the structure of Fig. 11. Dotted lines: atomic plane stressed 
by the mismatching fiber before relaxation. Full lines; 
atomic planes after creation of a pair of prismatic interstitial 
and vacancy loops on either side of the fiber. The interstitial 
loop glides away from the fiber while the vacancy loop stays 
attached to the fiber for maximum relaxation of the inter- 
face. Atomic plane deflections are exaggerated for clarity. 

shear strains in Fig. 12 that one end of the vacancy 
loops will tend to stay in the region of maximum 
atomic plane disregistry, i.e. close to the fiber tip, as 
observed experimentally. 

3.2. Punching by fiber sides 

Figure 13 shows a fiber A which punched loops 
at both its tips at a low angle. The shorter fiber B 
also punched loops at its tips, as well as longer 
dislocations along its sides which glided in the same 
direction as that of the row punched by fiber A. This 
observation was made in many occasions and lends 
credence to the hypothesis that the side dislocations 
of fibre B are elongated prismatic loops punched 
according to the simple model shown in Fig. 5, where 
the fiber is oriented along a ( l  1 l )  direction. The sides 
of fiber A are surrounded by a dark plastic zone 
formed of dislocations which probably became 
entangled before they could glide away from the 
interface, as in the case of fiber B. Fiber C also has 
elongated dislocations on its sides (some of which 
can be resolved) forming a dense plastic zone. It can 
be deduced from the angle of 90 ° between the glide 
directions in this particular subgrain that the image 
plane is parallel to a {100} plane. Figure 14 shows a 
similar situation in which elongated loops seem to 
have emanated from the tip of the fiber, as is to be 
expected due to the stress concentration at the sharp 
corner of the chopped fibers. 

To explain these observations, we propose to 
extend to a cylindrical inclusion the model presented 
by Ashby and Johnson [16] whereby a shear loop 
nucleates at the surface of a sphere and produces a 
prismatic loop by cross-slip of its screw components. 
Figure 15(a) shows such a shear loop nucleated at 
the edge of the fiber tip, which is a region of stress 
concentration. The fiber axis is assumed to be parallel 
to a (111) direction. While the edge component of 
the shear loop glides radially away from the fiber due 

AM 39/7--D 
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Fig. 13. Three glass fibers having emitted decorated dislo- 
cations in AgCI. Fiber A punched a row of loops at each of 
its end. Fiber B punched four rows, two of which are 
blocked by fiber A and C. Fiber C is surrounded by a plastic 

zone in which some dislocations can be resolved. 

to the stress field, the  screw components of the loop 
cross-slip along the sides of the fiber, "unzipping" in 
the process a long prismatic loop. The movement 
stops when the end of the fiber is reached or when the 
screw components are blocked by obstacles. Another 
possibility is represented in Fig. 15(b) where a long 
shear loop is nucleated (for example because of fiber 
surface roughness) so that its edge portion is parallel 
to the fiber axis. Again, screw components glide and 
annihilate to form a prismatic loop. Both Figs 14 and 
16 (as well as many others not included in this article) 
show dislocation structures which can be explained 
by such punching. In particular, these figures show 
dislocations with one end still attached to the fiber, 
while the other has glided away from it. Elongated dis- 
locations were, however, only observed along fibers 

Fig. 14. Glass fiber in AgC1 with elongated, decorated loops 
emitted by its sides. A dislocation is still attached and bowed 

due to the residual fiber stress. 

with the smallest diameters: for fiber diameters larger 
than about 1.2/~m, the dislocations were without 
exception entangled and formed a dense plastic zone 
such as that visible in Fig. 17. This is presumably 
because more dislocations are necessary to relax 
the radial stresses and the glide system intersection 
volumes increase with increasing fiber diameter, both 
leading to entanglement. We have not extended to 
cylinders the energy calculations of Ashby and 
Johnson [16], who predicted the range of misfit 
strains and radii for which spheres nucleate prismatic 
dislocations, because stress concentration at the tip 
edge and the orientation relationship between the fiber 
and the slip directions are significant complicating 
factors. 

Considering only radial stresses, the number of 
elongated prismatic dislocations punched by the sides 
of the fiber can be predicted using the simple geo- 
metric model of Fig. 5. The prismatic dislocations are 
assumed to nucleate on the fiber surface where the 
resolved shear stress is maximal, resulting in a dis- 
location height of d/x/2, where d is the fiber diameter. 
The thickness of the region of fiber that the dis- 
location relaxes thus varies between d/x/2 at the 
nucleation point and d. Assuming that the mismatch 
strain ActAT is totally relaxed by the emission of n 
loops of Burgers vector b forming an angle 0 with the 
fiber radial direction, we can write 

A~ ATd 
n (2) 

x/~b cos 0 

where A~ is the coefficient of thermal expansion 
difference between the matrix and the fiber and AT 
is the temperature excursion where slip is operative. 
The maximum number of loops nma x is reached for the 
maximum angle 0 = 30 ° (as discussed above) and by 
replacing the factor ~/2 by 1 in equation (2), i.e. 
considering the maximum mismatch of the fiber at its 
largest dimension d. Equation (2) is plotted in Fig. 18, 
using the materials values listed in Table 1 for the 
fiber and the matrix as well as the previously deter- 
mined value of AT = 100 _ 30 K [2]. In this figure, 
we have also plotted experimental values for the 
maximum number of dislocations emitted radially at 
any point along the length of each fiber. The exper- 
imental points fall on or below the upper bound 
calculated above, as expected if the simple geometric 
model presented above (Fig. 5) is correct. In gathering 
the experimental data, we counted the dislocation 
lines on both sides of the fiber. Usually, one side had 
punched significantly more dislocations than the other. 
The average number found along each fiber was 
usually smaller than this maximum by 25-50%. We 
only considered fibers with dislocations far away 
from the tip to minimize the effect of longitudinal 
stresses and stress concentrations. 

Around most fibers, dislocations were tangled in 
a plastic zone around the fiber (Fig. 17) and could 
not be reliably counted. Figure 16 shows an example 
where the side dislocations can be resolved and 
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(a l  

\ 

Fig. 15. (a) Proposed mechanism of nucleation of prismatic loops to explain structure in Figs 14 and 16. 
Three stages are shown: (i) formation of a shear loop at fiber end or irregularity, (ii) cross-slip of screw 
segments and (iii) fully formed prismatic loop. (b) Variation of (a), with formation of the shear loop on 

another glide plane. 

(b) 
Z 

counted because they glided a considerable distance 
from the fiber. A small dark zone is still visible around 
the fiber and might be due to dislocations relaxed 
along other directions. Another interesting feature, 
visible in Figs 14, 16 and 17 and reported earlier for 
alumina fibers [2], is the pinning of dislocations which 
are bowed away from the glass fiber, probably because 

of residual elastic stresses near the fiber. The radius 
of  curvature of the dislocations, which is inversely 
proportional to the stress on the dislocation, increases 
with increasing distance from the fiber, in accord with 
the above interpretation. 

4. SUMMARY 

Fig. 16. Long, decorated loops emitted by the sides of a long 
glass fiber in AgCI. Some loops are still attached to the fiber 

and all are bowed by its residual stress. 

Silver chloride containing small glass or alumina 
fibers is used as a model material to study plasticity 
in fiber reinforced metals. The dislocations resulting 
from the mismatch of thermal expansion between 
the inclusions and the matrix are made visible to 
transmission optical microscopy by bulk decoration 
through photodissociation of the matrix at ambient 
temperature. 

Rows of prismatic loops are punched by the fiber 
tip to relax the large longitudinal thermal mismatch 
of the fiber. The length of the row is found to increase 
with that of  the fiber. Reasonable agreement is found 
between the experimental data and a theoretical 
model proposed in Part 1 of this work. 

When the fiber axis is not parallel to a glide direc- 
tion, elongated prismatic dislocations are punched by 
the sides and the tips of the fiber. The probability of  
forming long rows of  loops is higher when the fiber 
axis forms a small angle with the glide direction. 
This is because the volume in which loops of adjacent 
glide directions can interact and become entangled 
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Fig. 17. Decorated dislocations forming the tangled plastic zone surrounding a long glass fiber in AgC1. 
Some of the dislocations can be resolved. 
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Fig. 18. Plot of the maximum number of loops emitted radially by the sides of glass fibers as a function 
of the fiber diameter. Circles represent experimental data and lines are calculated from equation (2) for 

different values of AT. 

decreases with decreasing angle. Certain fibers are 
found to punch a pair of  coaxial rows of prismatic 
loops on either sides of their tip. We propose that these 
rows are formed of interstitial and vacancy loops 
respectively. 

Elongated dislocation loops can be punched radially 
by the sides of the fiber and usually form a tangled 
plastic zone. When the fiber diameter is small, these 
loops form a pile-up and can be counted; their number 
is correlated with the radial mismatch estimated from 
known geometrical and thermal parameters of the 
fiber and the matrix. Based on microstructural obser- 
vations, we explain nucleation of punched loops by 
extending to cylinders the loop punching model pro- 
posed by Ashby and Johnson [16] for spheres. 
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A P P E N D I X  

Est imat ion o f  the Electrostatic Interaction 
Between Loops  

Edge dislocations in ionics carry a net charge due to an 
excess of charged jogs of one sign formed by the absorption 
by the dislocation line of point defects [17]. At equilibrium, 
the electroneutrality is preserved because a sheath of defects 
of the other sign surrounds the dislocation [18]. A fast moving 
dislocation may however display a net long range charge if 
it breaks away from the cloud of compensating point defects 
[19]. The line charge density of edge dislocations in NaCI has 
been measured by many investigators as 10-12-4 10-" C/m, 
but no such information could be found for AgC1. A rough 
estimation of the line charge can be made by assuming that 
it is proportional to the cubic root of the equilibrium defect 
concentration. The ratio of the defect concentration at 300 K 
in AgCI to that in NaC1 is 4250 [20], the cubic root of which 
is 16, leading to a dislocation line density for AgC1 in the 
range of 2.10- H-8' 10- ~0 C/m. Another significant difference 
between NaC1 and AgC1 is the nature of the predominant 
point defects: Schottky-type for NaCI and Frenkel-type for 
AgC1. Defect mobility is also much higher in AgCI. 

Assume that the charges on a loop are spread equally 
along its circumference. This is an acceptable assumption 
since the typical distance between two loops is significantly 
larger than the distance A between two jogs of charge e/2 
on a loop, given by 

A = e/2pq (A1) 

where pq is the line charge density. Using the line density 
values estimated above equation (A1) yields a value for A 
in the range of 0.1-4 nm. The lower value, corresponding to 
a line density of 8-10-10 C/m, is clearly unreasonable since 
it is less than the interatomic distance in AgC1. We will thus 
assume an upper value of 10 -1° C/m for the line density. 
In what follows, we make a rough approximation of the 
repulsive electrostatic force between punched prismatic 
loops. This force must be added to the elastic repulsive force 
existing between the loops. 

The force F¢ between the two charged loops separated by 
a distance L is found by Coulomb's law 

F 9 = k q2/L2 (A2) 

where k = 9. l0 9 Nm2/C 2 and q is the total charge carried 
by one loop of radius r: 

q = 2 ~ r pq. (A3) 

The force Fq is equivalent to an elastic shear stress zq on 
the loop 

"Cq = Fq / b 2 n r. (A4) 

Inserting equations (A2) and (A3) into (A4) and solving for 
L yields 

/2~zrk 
L = Pq --~/bzq " (A5) 

Inserting Zq = Zy yields the critical distance L¢ above which 
the electrostatic repulsive force does not induce glide between 
two isolated loops, if their elastic interaction is neglected. 
Taking a value of Zy = 0.5 MPa, r = 1/am, equation (A5) 
yields a value for L¢ equal to 1.7 #m for the upper bound 
value of 10-10 C/m estimated above. This is to be compared 
to the critical equilibrium distance of 1-2/~m between two 
uncharged loops. It thus seems that electrostatic interactions 
might have a measurable effect on the equilibrium position 
of closely spaced loops, if their line density is at equilibrium 
with the defect population in the crystal. 

The above estimation is clearly an upper bound value since 
it was assumed that each loop carries an equilibrium charge. 
In our experiments however, the loops are punched and glide 
rapidly to their equilibrium position, typically in the 100 s 
necessary to cool the samples. It is therefore possible that the 
first few punched loops sweep out the defects as they move 
on their glide cylinder, resulting in charging. Since all the 
loops of the train glide on the same cylinder, they encounter 
fewer and fewer defects as the number of their predecessors 
increases. In the time considered, the typical diffusion distance 
as estimated by (Dt) 1/2 is in the order of 60 nm. The total 
number of defects on a glide cylinder of length 20/~ m, radius 
1 #m and "wall thickness" 60 nm at 300 K is thus about 
1000. If all these defects are swept by the first loop gliding 
on the cylinder, they induce a line charge on the order of 
10 -I1 C/m, depleting completely the diffusion volume and 
thus preventing the charging of the subsequent loops. If the 
defects are equally incorporated by the 100 loops of a train 
of that length, the line charge is 100 times less and has a 
negligible effect on the equilibrium spacing of the loops 
[equation (A5)]. 

It can be concluded from the semi-quantitative argument 
presented above that a row of loops which is at thermal equi- 
librium with the lattice before it glides might be influenced 
by electrostatic forces if the loops break away from their 
atmosphere of defects of opposite sign. On the other hand, 
if the loops move immediately after they have been nucleated, 
as is the case in our experiments, the diffusion rate is not high 
enough to charge them significantly and the electrostatic 
forces will be insignificant compared to the elastic repulsion 
between the loops. At the most, the first few loops of the train 
might become charged and their spacing might be larger than 
that predicted by elastic interactions only. 


