
Co-Evolutionary Particle Swarm Optimization
Applied to the 7x7 Seega Game

Ashraf M. Abdelbar

Department of Computer Science
American University in Cairo, Egypt

abdelbar@aucegypt.edu

Sherif Ragab

Department of Computer Science
American University in Cairo, Egypt

s ragab@aucegypt.edu

Sara Mitri

Department of Computer Science
American University in Cairo, Egypt

smitri@aucegypt.edu

Abstract— Seega is an ancient Egyptian two-stage board game
that, in certain aspects, is more difficult than chess. The two-
player game is most commonly played on a 7 × 7 board, but
is also sometimes played on a 5 × 5 or 9 × 9 board. In the
first and more difficult stage of the game, players take turns
placing one disk each on the board until the board contains
only one empty cell. In the second stage players take turns
moving disks of their color; a disk that becomes surrounded
by disks of the opposite color is captured and removed from
the board. Building on previous work, on the 5 × 5 version of
Seega [1], we focus, in this paper, on the 7 × 7 board. Our
approach employs co-evolutionary particle swarm optimization
for the generation of feature evaluation scores. Two separate
swarms are used to evolve White players and Black players,
respectively; each particle represents feature weights for use in
the position evaluation. Experimental results are presented and
the performance of the full game engine are discussed.

I. INTRODUCTION

Games such as chess [9], backgammon [16], checkers [13],
Othello [2], [3], and Go [10], [11] have been of interest to the
AI research community [8]. The ancient Egyptian board game
of Seega is a challenging game that, in some ways, is more
difficult than chess, and may even be comparable to Go in
difficulty. Seega is a two-player game that is most frequently
played on a 7×7 board, but can also be played on a 5×5 or a
9×9 board, with complexity increasing with board size. For a
7× 7 board, which we use in this paper, the White and Black
players each have 24 disks, white and black respectively.

This paper is a continuation of our previous work [1] on
the 5× 5 version of Seega. The first game stage is considered
the heart of the game and the one where the bulk of the skill
is needed; the second game stage is considered easier and
requires less skill than the first stage. In the first stage the board
is filled with pieces that the players place in turn. The second
phase is where players start capturing each other’s pieces to
determine the winner of the game, unless a draw is reached.
The rules of the game are explained in detail in the following
section.

The game is difficult for a minimax-based lookahead
strategy, especially for larger board sizes, because in the first
stage, when the important decisions must be made, it is not
feasible for the lookahead to reach into the second stage where
the actual captures are made. The evaluation function therefore

has to capture much more game knowledge than a chess or
Othello evaluation function.

In this paper we use a minimax search that looks ahead a
number of ply and then applies an evaluation function. The
evaluation function uses 6 feature evaluators in the first stage
and 9 in the second stage; a weighted linear combination is
used to combine the features into a single position evaluation.
The vector of coefficients for the feature combiner is evolved
by co-evolutionary particle swarm optimization.

Two swarms of 32 particles each are used for the White
and Black colors, respectively. In each iteration a number of
tournaments are played between players of the White swarm
and players of the Black swarm. The games to be played
are distributed across a cluster of 14 Intel Zeon 2.2GHz
processors. The performance of each particle is determined
by its performance in playing against the other swarm.

In the following section we present a fuller description
of Seega and its rules. In Section 3 we review PSO and
co-evolutionary PSO. Section 4 describes the features that
are extracted by the feature evaluators. Section 5 discusses
implementation and results. A sample game is shown in
Section 6. Additional discussion and future work directions
are presented in Section 7.

II. GAME OF SEEGA

Seega is a two-player ancient Egyptian capture board game,
developed in Roman Egypt, and is still being widely played
in rural areas of Egypt.

The game is most often played on a checkered 7×7 board,
with 24 white and 24 black pieces. An easier version of the
game uses a 5 × 5 board, and a more difficult version uses a
9 × 9 board. In theory, the game can be played on an r × r

board for any odd r.
The game consists of two phases. White starts the first

phase, during which pieces are placed on the board by each
player in turn until all the squares, but the central one,
are occupied. Players may place pieces on any unoccupied
square except the central one.

Black starts the second phase, the aim of which is to capture
as many of the opponent’s pieces as possible. The game
continues until one player loses because all or all but one



of his disks have been removed or there is a draw because 40
moves have been made without any captures.

A player is allowed to move any of his pieces into a
horizontally or vertically adjacent unoccupied square on a turn.
Of course, for the first move of the second phase, there is no
choice but to move a piece into the central square. A player
that makes a capture is allowed to play again.

A player captures one of the opponent’s pieces by enclosing
it from two opposite sides (horizontal or vertical), but only
when this is the result of a move. If a player has no legal
moves available, the opponent may play again until a path is
cleared for the other player.

Seega is difficult because during the first phase, the
player needs to plan ahead to the second phase, even though
looking ahead to the second phase is not feasible except at
the very end of the first phase. The difficulty and skill of the
game therefore lies in placing the pieces during the first phase
in preparation for the second phase.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) [7], first presented in
[5], [6] by Kennedy and Eberhart, is an optimization technique
inspired by the concept of swarms in nature, such as bird
flocking, fish schooling or insect swarming. The idea is
that “individual members of the school can profit from the
discoveries and previous experience of all other members of
the school during the search for food [5].”

In the algorithm each individual in the particle swarm (here-
after referred to as a particle) is represented as a n-dimensional
vector ~w for which we seek some kind of optimum.

A neighborhood is defined on the population as some
mapping from each particle to some subset of the popula-
tion. Here, we use a hypercube-neighborhood topology; for
a population of size 2k, every particle is assigned a corner
of a k-dimensional hypercube. Two particles are said to be
neighbors if they are exactly one edge away from each other.

A velocity vector ~v, which defines a particle’s current
motion through the weight-space, and a vector ~b containing
the best solution vector seen so far, are kept track of for each
particle. Furthermore, a fitness value for ~v and ~b are stored for
each particle.

Preceding every iteration of the PSO algorithm is an
evaluation phase, during which the fitness of the current weight
vector ~c is determined. This is achieved by finding the best
particle for every neighborhood ~p, recalculating the best-seen-
so-far vector ~b and accumulating the particle’s fitness.

Then the vectors are updated according to the following
equation:

~vt = m · ~vt−1 + φ1(~p − ~ct−1) + φ2(~b − ~ct−1)
~ct = ~ct−1 + ~vt

(1)

The momentum m can be used to control how ‘light’ particles
are, i.e. how difficult it is to accelerate them. The parameters
m, φ1, and φ2 define the kinetic behavior of particles.

A. Co-evolutionary PSO

The idea of having multiple parallel populations in an
evolutionary algorithm was first introduced in [15], where it
was applied to Genetic Algorithms (GA). Potter and De Jong
suggested the use of a species to represent a sub-component
of a particular solution and to evolve each such species as a
regular GA. By amalgamating the components resulting from
each sub-population, a final solution is created for the problem.

Similar models are proposed in [4], [14] for PSO. According
to Shi and Krohling, each population is run using the standard
PSO algorithm, using the other population as its environment.

Applied to the algorithm presented above, this means that
two population weight vectors coexist, one for Black, the
other for White. During the evaluation phase, tournaments
take place between the two species among particles of the two
populations. The rest of the algorithm remains unchanged, and
is performed independently on each population.

IV. FEATURE EVALUATORS

Our approach uses minimax search with a small lookahead.
At the leaves of the minimax tree, board positions are assessed
using several feature evaluator functions which quantitatively
describe certain aspects of the board. These functions are
either atomic or configurations. As defined in [12], atomic
functions analyze one criterion.

Most atomic features are bipolar, meaning they return a real
number between -1 and 1. The larger that number, the more
characteristic its measuring is for Black and not for White and
vice versa.

Take the feature material as an example. For a 7×7 board,
each player has at most 24 pieces and at least 2 (otherwise the
game is over). Subtracting the number of white pieces from
the number of black ones gives a value between 24− 2 = 22
and 2−24 = −22. We then divide this value by 22 to produce
a value between ±1.

Other features are unipolar, returning a value between 0 and
1. These features give a color-neutral evaluation of a certain
board aspect.

• corners (f1): Corner domination.
• borders (f2): Border domination.
• clustering (f3..6): This feature is implemented four

times, for Black (f3 and f4) and White (f5 and
f6), and for each of those in the horizontal (f3 and
f5) and the vertical (f4 and f6) direction. It simply
counts the number of horizontally/vertically adjacent
white/black pieces.

• massdist (f7,8): This feature exists twice, for horizontal
(f7) mass-distance and for vertical (f8) mass-distance:
the center of mass is computed for each color, and the
magnitude of the difference is returned.

• entrapment (f9,10): This feature again exists for the
horizontal (f9) and vertical (f10) orientations. It gives
a measure of how a color dominates the outer part of the
board, i.e. to what degree one color surrounds the other.

• material (f11): Reflects the count of black vs. white pieces
on the board.



• phase two start (f12): This feature reflects how many
captures Black will make on the first move in phase two
– this feature turns out to be extremely important.

• black can start (f13): This feature returns 0 if the four
squares around the middle square are occupied by White
(i.e. Black cannot make the first move), and returns 1
otherwise.

These are combined into higher level configurations
through addition and/or multiplication to produce a final board
score.

The final score returned by the evaluation function is a linear
combination of the results of those compound features. In
vector notation this can be expressed as follows; For phase
one,

s1 = (~w1)
T~c1

and for phase two,
s2 = (~w2)

T~c2

where ~w is the weight vector, ~c is the vector of compound
features, and s is the board score. The vector ~c is computed
from the basic features as follows:

~c1 =

















f12 · f13

− 1

2
(f9 · f7 + f10 · f8)

1

2
(f7 + f8)

f3 + f4 − f5 − f6

1

2
(f1 + f2)
f1 − f2

















(2)

and

~c2 =





























f11

− 1

2
f11(f3 + f4)

− 1

2
f11(f5 + f6)

− 1

2
(f9 · f7 + f10 · f8)

(f3 − f4) · (f9 − f10)
(f5 − f6) · (f9 − f10)

1

2
f11(f7 + f8)
1

2
(f1 + f2)
f1 − f2





























(3)

These expressions were chosen to represent meaning-
ful playing strategies. Take for example the expression
− 1

2
f11(f3 + f4), which is the 2nd entry of ~c2. Here, material

(f11) which is a bipolar feature is multiplied by the sum of ver-
tical and horizontal clustering (unipolar). This means that for a
negative value of f11 (which usually means White is winning)
and a high clustering value for Black (a defense mechanism),
the entire expression will return a positive number which in
effect counts this as an advantage for Black.

The relative importance of these features is optimized by the
weight vector ~w. The values of these weights are determined
by the PSO algorithm (see section III) and are different for
each player.

The choice of feature functions is a very sensitive issue that
could determine the success or failure of the project. Our aim
was to write features that would give the players the ability
to be led in the right direction, without being confined to a
certain built-in strategy.

Often, several different board positions will have the
same score. To prevent the minimax algorithm from always
selecting the same one, a very small random bias is added to
the score before it is returned by the evaluation function. In
this way, a different game is played every time, even if the
weights are the same.

V. IMPLEMENTATION AND RESULTS

The program we developed in this paper can basically be
divided into two sub-systems. The game engine that carries
out a game, and the PSO-based evolutionary component. The
evolutionary component uses the game engine in a master-
slave relationship in order to evaluate the fitness of its particles.

The game engine implements a regular minimax search-
tree algorithm to determine a best next move for a certain
board position. It is based on an evaluation function, which
assigns a score to a board position, based on which the
minimax algorithm selects best moves from the leaf nodes
of the search tree. The best scores are propagated upward to
finally determine the best next move. The reader is directed
to [17] for a fuller description of the minimax algorithm.

To increase the efficiency of the program, the depth of the
minimax tree was modeled as a linear function of the pieces
on the board at any given point in time, ranging from 2 to
10-ply. For example, at the beginning of the first phase when
it doesn’t really make sense to look too far ahead (there is not
much to plan yet and the search space is very large) the tree
goes only 2 levels deep. The depth increases proportionally to
the number of pieces on the board. In the first phase the depth
of the search is determined using the following equation:

d = 2 + bp(b) · 0.3c

where d is the depth, and p(b) represents the total number of
pieces on a particular instance b of the board. In the second
phase the depths of the search tree range between 4 and 6,
this time according to this equation:

d = 4 + b(p(b) − 12)2 · 0.02c

This technique has increased the speed of the games tremen-
dously and avoids any unnecessary calculation. Furthermore,
it tries to exploit the game-tree search algorithm at the most
critical point of the game, namely, towards the end of the first
phase, where the search reaches a depth of 10-ply.

The evolutionary subsystem is meant to optimize the
weights given to the evaluation function, to make it return
meaningful board scores for each move. Two swarms of
25 particles are used, where each swarm is based on a 5-
dimensional hypercube topology. Therefore, each particle has
5 neighbors, and the intersection of any two neighborhoods
includes no more than one particle.

In previous work [1], 5 consecutive games were played be-
tween each particle and each of its five neighbors of its other-
swarm image. Realizing that this was a bit of a restriction on
the evolution of the particles, we changed to a new tournament
scheme, a variation of an all-vs-all tournament, where each
particle randomly selects a fixed number of particles from the



population to play against. In order to save computing time
and to add more randomization, we also reduced the number
of games between each 2 players to 1, which makes a total of
x×32 games per iteration, where x is the number of opponents
each particle selects randomly. In most of our runs we went
for a value of x = 8, making a total of 8 × 32 = 256 games
per epoch.

Each game carried out by the game engine returns a value
representing the outcome of the game to its master. This value
is calculated to incorporate not only who won or lost the game,
but also other information, such as the number of pieces left on
the board, as well as the number of moves made throughout the
game. This is necessary, for example, to reward players who
lost a well-fought game over a player who simply lost without
any resistance. Realizing that most games were resulting in
draws, we also decided to score each game even if it ended in
a draw, by taking the number of pieces that each player has
at the end of the game into account. The score s of a game is
calculated as follows:

s =
(b − w)3

(P − 1)3
·

3

2
(B2 − 1) + 500

m + 500
+ 0.5 · r

where w represents the white and b the black pieces left on
the board at the end of the game, m the number of moves
made in that game, r is the result of the game (1 if Black
won, -1 if White won or 0 if the game resulted in a draw), B

the board size and P the total number of pieces a player has
at the beginning of the game (24 in this case). The function
produces a negative score if white has more pieces and vice
versa for black. The term 3

2
(B2 − 1) represents the minimum

number of moves that can be made in order to win the game;
the constant 500 is used to dilute the effect of the number of
moves in the equation. A factor of 0.5 is added to or subtracted
from the score of a game that didn’t result in a draw to reward
the players for actually ending the game, instead of settling
for a large difference in pieces by the end of the game. To sum
up, each score depends on whether anyone won, the number
of pieces left at the end and the number of moves.

The large number of games were executed on a
14-processor cluster of Intel Zeon 2.2 GHz processors, with
512 MB of RAM on each processor. Each run of 200 iterations
took a run-time of approximately 8 days.

In previous work [1], the White population displayed a
general tendency to play towards a draw. This is one of the
reasons why we migrated to a larger board. The problem we
now face is the greater sophistication of the game. On a 7×7
board, more games overall tend to lead to a draw, for different
reasons, however.

Once there is more free space on the board, the players have
difficulty planning ahead in order to capture their opponents’
pieces. This is because of the reduction in depth that is applied
to the minimax algorithm in order to conserve efficiency
towards the end of the game when the average branching factor
is at its highest. This tendency can be observed in the sample
game in the following section. Although it is relatively easy
for a human player to finish the game, the digital players seem

to be having a hard time capturing pieces, which was straight-
forward at the beginning of the second phase. One way we
intend to solve this problem, in future work, is by explicitly
steering the end game towards a good generalized strategy that
would avoid this pitfall.

Figure 1 shows how White’s weights for phase 1 have
evolved over 200 epochs. Note that the initial values are
random. For the first 50 epochs or so the weights are still being
adjusted and fluctuate in the process, after which stagnation is
reached, remaining relatively stable for the next 150 epochs.

A complete set of evolved weights both for Black and White
players is shown in Table I. These 15 values represent the
weights for the combined features shown in vectors ~c1 and ~c2

in equations 2 and 3, respectively. The analysis of the values
shown in the table, along with a sample game is shown in
the next section, illustrating the effect of these values on the
strategies and therefore on the outcome of the game.

TABLE I
SAMPLE WEIGHT VECTORS FOR WHITE AND BLACK

Weight White Black Description Phase
1 1.358074 1.209082 beginning of phase 2
2 0.301910 0.196217 mass dist., encapsulation
3 0.668130 0.721942 mass distance 1
4 0.086753 0.171628 clustering
5 0.361836 0.127716 corners + borders
6 0.361181 0.230659 corners - borders
7 1.335093 1.985006 material
8 0.529828 0.009885 black clustering
9 0.539433 0.158170 white clustering

10 0.169001 0.114103 mass dist., encapsul.
11 0.176832 0.458611 bl. clustering, encapsul. 2
12 0.357456 0.740123 wh. clustering, encapsul.
13 0.389927 1.00919 mass distance
14 0.516087 0.103386 corners + borders
15 0.454301 0.698025 corners - borders

The source code for the present version of the
program is publicly available at the following URL:
http://www.cs.aucegypt.edu/∼abdelbar/seega.html

VI. A SAMPLE GAME

This section shows a game as carried out on the game engine
between two particles after 157 epochs, one from the White
and one from the Black swarm, each with its own weight
vector, whose values are listed in Table I. It is recommended
that the reader refer to the table in order to fully understand
the behavior of the players during the game.

Below is a list of the moves made throughout the game: a
white or a black circle signifies whose turn it is; one coordinate
is given in the first phase of the game, which represents
the position in which the disk was placed; both source and
destination coordinates are given for phase two.

The first board illustration (figure 2) shows the board
at the end of stage one of the game. The strategies the
players are following are already quite obvious. The white
player seems to be concentrating more on defense, since
it first tries to occupy the corners. Both players are less



w6

w4

w3
w2

w5

w1

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

1.2

iteration

weight

Fig. 1. A White particle’s feature weights for phase one

concerned with clustering their pieces in the first phase
(weight 4), but have a lot of weight assigned to their fate at
the beginning of the second phase (weight 1). It is noticeable,
for example, that Black has tried to ensure that it makes the
first few captures of the game and immediately captures 4
white pieces at the beginning of phase two. The distance
in center of mass also plays an important role for both players.

1: ◦ d6, 2: • d2, 3: ◦ d1, 4: • f4,
5: ◦ b4, 6: • e2, 7: ◦ g1, 8: • f3,
9: ◦ e6, 10: • e1, 11: ◦ g7, 12: • f2,
13: ◦ a1, 14: • f1, 15: ◦ b3, 16: • g2,
17: ◦ a7, 18: • c2, 19: ◦ e3, 20: • g3,
21: ◦ c1, 22: • c3, 23: ◦ d5, 24: • g4,
25: ◦ d3, 26: • c4, 27: ◦ b1, 28: • e5,
29: ◦ b2, 30: • f5, 31: ◦ d7, 32: • c5,
33: ◦ c6, 34: • f6, 35: ◦ e7, 36: • g5,
37: ◦ a2, 38: • b5, 39: ◦ f7, 40: • g6,
41: ◦ c7, 42: • a3, 43: ◦ b6, 44: • a5,
45: ◦ a4, 46: • a6, 47: ◦ e4, 48: • b7,

a b c d e f g
1

2

3

4

5

6

7

Fig. 2. End of Phase One

The next moves are displayed below. Although Black
is in the lead and is eating away at White’s pieces, it is

missing some relatively simple captures that White is taking
advantage of. An interesting result of the co-evolutionary
generation of the two players is how Black has put a really
high value on clustering and encapsulation during the second
phase (weight 11 and 12), while White has assigned it a value
close to 0. And although both players should be concerned
with material, Black has assigned a much higher value to the
material weight (weight 7). On the other hand, White is more
occupied with defense strategies, such as claiming corners
and borders (see Table I).

49: • c4-d4, 50: • c3-d3, 51: • d3-c3, 52: • c5-c4,
53: ◦ d5-c5, 54: • c3-b3, 55: • d4-d5, 56: • b3-b4,
57: ◦ c6-c5, 58: • f3-e3, 59: ◦ c7-c6, 60: • g3-f3,
61: ◦ d7-c7, 62: ◦ d6-d7, 63: • d5-d6, 64: • e5-d5,
65: • f5-e5, 66: ◦ e7-e6, 67: ◦ e6-d6, 68: • g5-f5,
69: ◦ c7-b7, 70: • e3-e4, 71: ◦ c6-c5, 72: • e5-e6,
73: ◦ f7-e7, 74: • f5-e5, 75: ◦ d6-c6, 76: • d5-d6,
77: ◦ c5-d5, 78: ◦ d5-d4, 79: • d2-d3, 80: ◦ d1-d2,
81: ◦ c6-d6, 82: • e4-e3, 83: ◦ c1-d1, 84: • e3-e4,
85: • e4-d4, 86: ◦ d6-d5, 87: • e5-e4, 88: ◦ d2-d3,
89: ◦ d5-e5, 90: ◦ e7-e6, 91: • f3-e3, 92: ◦ d3-c3,
93: • e3-d3, 94: ◦ c3-b3, 95: • c4-c3, 96: • b5-c5,
97: ◦ d7-e7, 98: • c5-c6, 99: • c6-d6, 100: • c3-c4,
101: ◦ e5-f5, 102: • f6-f7, 103: ◦ f5-g5, 104: ◦ g7-g6,
105: • f7-g7, 106: ◦ b7-b6, 107: • g7-f7, 108: ◦ g5-f5,
109: • g4-g5, 110: ◦ g6-g7, 111: ◦ g7-g6, 112: • e4-e5,
113: • d6-c6, 114: • a3-b3, 115: ◦ g6-g7, 116: • b3-a3,
117: • g5-g4, 118: ◦ b2-b3, 119: • e5-e4, 120: ◦ d1-c1,
121: • c6-b6, 122: ◦ c1-c2, 123: • c4-d4, 124: ◦ c2-b2,
125: • d3-c3, 126: • e1-d1, 127: ◦ b1-c1, 128: • c3-c2,
129: ◦ c1-b1, 130: • d1-d2, 131: ◦ e7-e6, 132: • d4-c4,
133: ◦ e6-e5, 134: • e4-d4, 135: ◦ e5-d5, 136: • d4-e4,
137: ◦ d5-d4, 138: • f1-e1, 139: ◦ d4-d3, 140: • e1-f1,
141: ◦ d3-c3, 142: • c2-c1, 143: ◦ b2-b3, 144: • e4-d4,
145: ◦ b3-b2, 146: • f4-e4, 147: ◦ g7-f7, 148: • d2-d3,
149: ◦ f7-g7, 150: • b4-b3, 151: • g4-f4, 152: ◦ g7-g6,
153: • c1-c2, 154: ◦ g6-g7, 155: • c2-c1, 156: ◦ g7-g6,
157: • c1-c2, 158: ◦ g6-g7, 159: • c2-c1, 160: ◦ g7-g6,



a b c d e f g
1

2

3

4

5

6

7

Fig. 3. Mid-game (after 120 moves)

161: • d3-d2, 162: ◦ g6-g7, 163: • d2-c2, 164: ◦ g7-g6,
165: • c2-d2, 166: ◦ g6-g7, 167: • d2-c2, 168: ◦ g7-g6,
169: • c1-d1, 170: ◦ g6-g7, 171: • d1-c1, 172: ◦ g7-g6,
173: • c2-d2, 174: ◦ g6-g7, 175: • d2-c2, 176: ◦ g7-g6,
177: • c2-d2, 178: ◦ g6-g5, 179: • c4-b4, 180: ◦ g5-g6,
181: • c1-c2, 182: ◦ g6-g7, 183: • c2-c3, 184: ◦ g7-g6,
185: • c3-c4, 186: ◦ g6-g7, 187: • b6-b5, 188: ◦ g7-g6,
189: • b5-b6, 190: ◦ g6-g7

a b c d e f g
1

2

3

4

5

6

7

Fig. 4. Game Over: Draw!

This has not had much implication on the game, since the
problems at the end of the game still remain. Towards the
end of the game, it seems to us as if Black has given up the
fight and is moving around the board aimlessly, although it is
simple for any human spectator to see how the game could be
won (see fig 4).

This game is a clear example of the problems we are
currently facing with the end-game, which we hope to tackle
in future work. Ideas for solutions are discussed in the next
section.

VII. CONCLUSIONS AND FUTURE WORK DIRECTIONS

This paper continues on our attempt at developing a PSO-
based game engine for the ancient Egyptian board game

Seega. Although the performance of the program seems to
be improving, there still remains a lot to be done, especially
with the larger board.

The game has become much more sophisticated. Not only is
more work needed on analyzing features and developing new
ones, a whole new module needs to be added to the game
engine to drive the end-game. At the moment, towards the
end of the game, when the board becomes empty, look-ahead
is not sufficient for the players to recognize their potential in
winning the game, which is a trivial problem for any human
player. We have avoided this problem in this paper by scoring
a game even if it results in a draw. Essentially, we are cutting
the game short and scoring it anyway. In the future, however,
we will need a more sophisticated end-game engine.

REFERENCES

[1] A.M. Abdelbar, S. Ragab and S. Mitri. “Applying Co-evolutionary Par-
ticle Swarm Optimization to the Egypt Board Game Seega” Proceedings
CEC-03 Workshop on Genetic Programming, pp. 9–15, 2003.

[2] A.M. Abdelbar, and G. Tagliarini, “Using neural network learning in an
Othello evaluation function,” Journal of Experimental and Theoretical
Artificial Intelligence, vol. 10, pp. 217–229, 1998.

[3] K.-F. Lee, and S. Mahajan, “The development of a world-class Othello
program,” Artificial Intelligence, vol. 43, pp. 21–36, 1990.

[4] Y. Shi, and R.A. Krohling, “Co-evolutionary particle swarm optimiza-
tion to solve min-max problems,” In Proceedings IEEE Congress on
Evolutionary Computation, 2002.

[5] J. Kennedy, and R.C. Eberhart, “Particle swarm optimization,” In Pro-
ceedings IEEE International Conference on Neural Networks, vol. IV,
pp. 1942–1948, 1995.

[6] R.C. Eberhart, and J. Kennedy, “A new optimizer using particle swarm
theory,” In Proceedings International Symposium on Micro Machine and
Human Science, pp. 39-43, 1995.

[7] J. Kennedy, and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann,
San Francisco, 2001.

[8] H. J. Van Den Herik, J. W. H. M. Uiterwijk, and J. Van Rijswijck,
“Games solved: now and in the future,” Artificial Intelligence, vol. 134,
pp. 277–311, 2002.

[9] M. Campbell, A. J. Hoane, Jr., and F. Hsu, ‘ ‘Deep Blue,” Artificial
Intelligence, vol. 134, pp. 57–83, 2002.

[10] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, pp. 145–
179, 2002.

[11] M. Burmeister, and J. Wiles, “AI techniques used in computer Go,” In
Proceedings Fourth Conference of the Australasian Cognitive Science
Society, 1997.

[12] M. Buro, “From simple features to sophisticated evaluation functions,”
In Proceedings First International Conference on Computers and Games
(CG-98), pp. 126–145, 1998.

[13] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 44, No. 1/2,
pp. 207–226, 2000.

[14] M. Løvbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm
optimiser with breeding and subpopulations,” In Proceedings Third
Genetic and Evolutionary Computation Conference (GECCO-01), vol.
1, pp. 469–476, 2001.

[15] M. A. Potter, and K. A. De Jong, “A cooperative coevolutionary
approach to function optimization,” In Proceedings Third Conference
on Parallel Problem Solving from Nature, pp 249–257, 1994.

[16] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,” Neural Computation, vol. 6, pp. 215–219,
1994.

[17] R. E. Korf, “Artificial Intelligence Search Algorithms,” In Algorithms
and Theory of Computation Handbook, CRC Press, 1999.

[18] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” 834–846,
Sept./Oct. 1983.


