Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution

One of the main drawbacks of Fourier domain optical coherence tomography (FDOCT) is the limited measurement depth range. Phase shifting techniques allow reconstructing the complex sample signal resulting in a doubled depth range. In current complex FDOCT realizations the phase shift is introduced via a reference path length modulation, which causes chromatic phase errors especially if broad bandwidth light sources are employed. With acousto-optic frequency shifters in the reference and sample arm, and the detector being locked to the resulting beating frequency, the signal is quadrature detected at high speed. The beating signal frequency is the same for all wavelengths allowing for achromatic complex reconstruction. With a Ti:Sapphire laser at 800 nm and spectral width of 130 nm, a heterodyne complex FDOCT system is realized with 20 kHz line rate and an axial resolution of 4 mu m. (c) 2006 Optical Society of America.

Published in:
Optics Express, 14, 4, 1487-1496

Note: The status of this file is: EPFL only

 Record created 2006-10-03, last modified 2018-03-17

Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
(Not yet reviewed)