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Abstract: Dispersive samples introduce a wavelength dependent phase
distortion to the probe beam. This leads to a noticeable loss of depth
resolution in high resolution OCT using broadband light sources. The
standard technique to avoid this consequence is to balance the dispersion of
the sample by arranging a dispersive material in the reference arm.
However, the impact of dispersion is depth dependent. A corresponding
depth dependent dispersion balancing technique is diffcult to implement.
Here we present a numerical dispersion compensation technique for Partial
Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT)
based on numerical correlation of the depth scan signal with a depth variant
kernel. It can be used a posteriori and provides depth dependent dispersion
compensation. Examples of dispersion compensated depth scan signals
obtained from microscope cover glasses are presented.
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1. Introduction

Partial coherence interferometry (PCI) [1] and optical coherence tomography (OCT) [2] have
found many applications for high precision non-contact ranging and imaging in technical and
medical fields. In both cases depth positions of light remitting sites in objects are measured by
the so-called depth scan using back scattered light in a partial coherence interferometer.

The recent use of broadband light sources has dramatically increased depth resolution in
PCI and OCT. Besides the space coherence problem introduced by some of these light sources
[3], increasing the bandwidth increases dispersion related loss of depth resolution [4]. Hence,
dispersion must carefully be compensated for in ultrahigh resolution OCT; usually some
additional dispersing material is physically introduced into the reference arm of the
interferometer [5]. This paper presents a numerical solution for compensation of dispersion
related loss of depth resolution in PCI and OCT [6].

2. Dispersion in PCI and OCT

Dispersion has several consequences for PCI and OCT:
(1) PCI ranging and OCT imaging rely on matching path lengths for wave groups.

Therefore, depth resolution is related to the coherence length
C

l of the light used in the depth

scan. If the light source has a Gaussian emission spectrum the coherence length is

2
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where 0λ is the center wavelength and λ∆ is the FWHM spectral width of the emitted light.

In PCI ranging and OCT imaging the optical distances are determined by the group index gn

rather than the phase index n , used in classical interferometry. Furthermore, back-reflected

light is used, hence, depth resolution is / 2
C gz l n∆ = .

The group index gn includes the phase index n and the phase index dispersion by

g
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Therefore, depth resolution improves with first-order dispersion
dk

dω
.

(2) Optically, materials are characterized by a nonvanishing second-order dispersion or
group dispersion:
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ν is the light frequency. Group dispersion increases coherence length. For example, a Fourier
transform limited Gaussian pulse the temporal 1/ e -width 0τ is extended by a factor f [7]:
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d is the distance travelled by the wave in the dispersive material. Low coherence light can be
considered as a random temporal distribution of ultrashort Fourier transform limited Gaussian
pulses [7], hence, the dispersed coherence length of low coherence light is of the order of
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, CC dispersedl l f= ⋅ (5)

i. e. depth resolution of PCI ranging and OCT imaging is degraded by a factor f .
(3) Because of energy conservation of the light pulses a reduction of the pulse intensity

occurs even in non-absorbing media. Therefore, for a random temporal distribution of
ultrashort Fourier transform limited Gaussian pulses the maximum fringe visibility as well as
the PCI and OCT signal amplitude are reduced and the signal to noise ratio is decreased by a

factor of f [7].
(4) Furthermore, dispersion gives rise to artifacts. For example, it has been shown, that a

beat effect occurs if a thin object behind a dispersive medium is to be measured by PCI or
imaged by OCT [4].

3. Dispersed Light Waves

Light waves exiting from the interferometer exhibit path dependent phase changes in their
spectrum. This can be seen from the Fourier shift theorem and the fact, that the spectral
density ( )G ω and the real coherence function ( )G τ form a Fourier transform pair [9]:

( ) ( ) ( ) ( ) i
G E t E t G e d

ωττ τ ω ω
∞

−

−∞

= ⋅ + = ∫ ; (5)

( )E t is the electric field component of the light wave. A time delay 0τ in the coherence

function, as it occurs in the depth scan, leads to a phase
0 0

ωτΦ = , linear in ω , in the spectral

density:
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Propagation in a dispersive medium adds an additional phase ( )Disp ωΦ depending on the

properties of the dispersive sample:

0
( )

0
( ) ( ) Disp

i i

Disp
G G e e d

ωττ τ ω ω
∞

− Φ +Φ −

−∞

+ = ∫ . (7)

( )Disp ωΦ can be developed into a Taylor series [10]:
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being the jth order dispersion; z is the path length in the

dispersive medium.

First order dispersion (1)
0( )k ω adds a phase term linear in ω to the intensity spectrum. It

determines the group velocity [9]:
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Second and higher order dispersion terms add a phase nonlinear in ω and, therefore, increase
the coherence length.

The impact of any sample on the probe light wave in an interferometer can be shown to be
reflected by the change of the auto-correlation signal at the interferometer exit to the cross-
correlation signal [11]. Let us represent ( )E t as a Fourier integral:

ˆ( ) ( ) i tE t E e dωω ω
∞

−

−∞

= ∫ , (10)

then the interference term at the exit of an interferometer is the auto-correlation [9]:

( )( ) ( ) ( ) *( ) i
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= = + = ∫ (11)

A dispersing sample in the interferometer will introduce phases ( )Disp ωΦ to the spectral

components of the light in the probe beam. Introducing ( )Disp ωΦ to the phases of the waves in

equation (11) yields the cross-correlation:

( )
( )( ) ( ) * ( ) Dispi i

IT Disp d G eI E t E t eωτ ωω ωτ τ
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− Φ= + = ∫ . (12)

Hence, the intensity ( )ITI τ at the interferometer exit with dispersion in the sample arm equals

the Fourier transform of the spectral intensity ( )G ω at the interferometer exit without

dispersion multiplied by the dispersion phase coefficient ( )Dispie ω− Φ .
Therefore, the impact of dispersion can be neutralized in two ways: in the standard

balancing technique a dispersive plate is introduced into the reference arm of the
interferometer which provides the same dispersion as the sample. Alternatively, dispersion can
be compensated numerically by compensating the dispersion phase coefficient in the
interferometer exit signal.

4. Numerical Dispersion Compensation

Numerical dispersion compensation can either be performed in direct space or in Fourier
space. In Fourier space the local Fourier components of the interferometer exit signal have to
be multiplied by the complex conjugate of the dispersion phase coefficient:

{ }( ) ( ) exp( ( )Comp local localI FT I iτ ω ω= Φ . (13)

A windowed Fourier transform or a wavelet transform can be used and the window width will
depend on the acceptable amount of residual dispersion. Within each window the transform of
the interferometer exit signal has to be multiplied by the complex conjugate of the local
dispersion phase coefficient exp( ( ))locali ωΦ .

In the example shown in figure 1 a correlation technique is used. Here the depth scan

signal is correlated with a depth dependent kernel ( )
local

K τ :

( ) ( ) ( )Comp local localI I Kτ τ τ= ⊗ (14)
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( )localI τ is the local interference term. ( )localK τ is the response of a light remitting site at depth

z , subject to the dispersion at position z or the corresponding time delay τ with respect to
the reference beam. The (undispersed) kernel at the surface of the dispersing object is the
auto-correlation of the light wave exiting the source. This can be obtained from the light
source data using standard textbook formulas. In most cases the spectrum can be
approximated by a Gaussian and, therefore, the undispersed kernel too can be approximated
by a Gaussian temporal distribution:

2 2
0 0/( ) t i tK t ae eτ ω−= . (15)

The depth dependent local kernel ( )localK τ is obtained from the undispersed kernel ( )K t by

adding a depth dependent phase nonlinear in ω caused by the second and higher order

dispersion terms to the Fourier components ˆ ( )E ω . This phase leads to a broadening of the
light pulses and, therefore, generates chirpening of these pulses: their instantaneous frequency
changes with time [7]. The local kernel ( )localK τ equals the cross-correlation signal of the
interferometer and, therefore, its FWHM duration increases with increasing coherence length
of the light remitted at the corresponding object depth.

Figure 1 presents an example of the correlation technique. A Michelson bulk optics
interferometer has been used; the light source was a Hg high pressure lamp. Light from this
lamp was filtered by a Schott OG590 filter. We have duplicated the depth scan signal of a
microscope cover glass (BK7, 144 mµ thick) to demonstrate the power of this technique: Two
non-dispersed front signals and two dispersed back signals were mathematically added with a
mutual shift of 2,5 mµ . In fact this is an indirect proof but based on experimental data. To
provide a reasonable picture most of the data between the two interfaces have been omitted.
The undispersed Gaussian kernel was based on a mean wavelength of 0 710 nmλ = and

14
0 0,35.10 sτ −= . Only second order dispersion has been compensated using a dispersed

kernel based on 144 mµ path length in the dispersive medium.

The dispersion coefficient used in this work has been obtained from Sellmeier's formula
and BK7 refractive index data out of Schott Catalog Optical Glass [12]:

2 2 2

1 2 32 2 2
1 2 3

( ) 1n B B B
C C C

λ λ λλ
λ λ λ

= + + +
− − −

(16)

with constants 1 2 3 11.03961212; 0.231792344; 1.01046945; 0.00600069867;B B B C= = = =

2 30.0200179144; 103.560653.C C= = Using equation (16) a significant variation of the
second order dispersion within the broad bandwidth of the light used in our experiment is

found. We used a mean value of
2

2

2
0.085

d n
m

d
µ

λ
−= corresponding to the center wavelength of

0 710 nmλ = .
Furthermore, we approximated the filtered Hg-spectrum by a Gaussian distribution.

Though the filtered spectrum does more resemble a skewed Gaussian distribution this
approximation worked quite well. Hence we feel, that the detailed structure of the spectrum is
of minor importance; it is the chirpening determined by the wavelength bandwidth and the
probe depth which provide the basis for reducing the correlation width.

Whereas the direct signal in figure 1 does not resolve the 2,5 mµ distance of two back

interfaces the numerical correlation shows a pronounced dip between the two correlation
peaks. The shift of the numerical correlation peaks to the left is the width of the correlation
kernel. It has not been removed to ease comparison. The amplitude of the dispersed depth scan
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signal (right) has been increased mathematically to ease the comparison with the non-
dispersed depth scan signal.

1,12 m�

2,5 m�

0,97 m�

1,5 m�

Cover Glasses
Light

144 m�

auto-
correlation

cross-
correlation

numerical
correlation

numerical
correlation

Fig. 1: Resolution improvement obtained by dispersion compensation using depth-variant
numerical correlation. Light of a filtered Hg high pressure lamp (

0
710 ;nmλ ≅ 210 nmλ∆ ≅ ) is

incident from left (thick arrow). The object has been synthesized using experimentally obtained
non-dispersed front and dispersed back scattered depth scan signals of a single microscope
cover slide. Shown are the (direct) auto- and cross-correlation depth scan signals (red) of the
two front and the two back interfaces and the corresponding numerically dispersion-
compensated correlation signals (black).

5. Conclusions

In this report we describe a numerical correlation technique to compensate depth resolution
loss caused by dispersion in partial coherence interferometry and optical coherence
tomography. This technique can be used a posteriori and can easily realize a dynamic
dispersion scheme. Dispersion compensation is achieved by correlating the depth scan signal
with a depth-dependent correlation kernel.

When scanning materials with unknown refraction properties, the depth scan signal from
a single back scattering interface within the object or from the back surface of the object can
be used as an empirical basis for the correlation kernel. This can also be done a posteriori.
Biological tissue contains about 70 % water and 30 % mainly proteins. Hence dispersion
properties of such tissue are mainly determined by these components. For a first
approximation water data might be used which are easily available [10]. A recent collection of
published optical properties of tissues can be found in Reference [13]. However, these data do
not suffice to derive higher order dispersion figures. So far we have not yet found higher order
dispersion data of proteins. But here too one might use the depth scan signal obtained from a
single back scattering interface within the object or from the object back surface as an
empirical basis for the correlation kernel.
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