Phase-sensitive synchrotron radiation (SR) radiography was combined with x-ray diffraction topography to study structural defects of SiC crystals. The particular bulk SiC crystals examined had a low micropipe density and a hexagonal habitus composed of prismatic, pyramidal, and basal faces well developed. X-ray diffraction topography images of the sliced (0001) wafers, which were formed due to the complex lattice distortions associated with defective boundaries, demonstrated the existence of two-dimensional defective boundaries in the radial direction, normal to the (0001) planes. In particular, those parallel to the <11 (2) over bar0> directions extended rather far from the seed. On the other hand, by phase-sensitive SR radiography the effect of micropipe collection was detected. Micropipes grouped mostly in the vicinities of the defective boundaries but rarely appeared between groups. Some general remarks about possible reasons for the development of such peculiar defect structures were made.