Optical nanospectroscopy applications in material science

The advent of scanning near-field optical microscopy (SNOM) has augmented at a microscopic level the usefulness of optical spectroscopy in the region between 300 nm and 10 mum. Two-dimensional imaging of chemical constituents makes this a very attractive and powerful new approach. In this paper we show SNOM results obtained in several geometrical configurations on boron clusters in silicon, Li clusters embedded in a LiF sample and BN growth on silicon. We also show some results on the wavelength dependence of the reflectivity (R) in the near infrared (IR) of biological cells in liquid environment with the observation of the local fluorescence. The SNOM images revealed features that were not present in the corresponding shear-force (SF) images and which were due to localized changes in the bulk properties of the sample. The size of the smallest detected features clearly demonstrated that near-field conditions were reached both in the visible and infrared region. (C) 2004 Elsevier B.V. All rights reserved.

Published in:
Applied Surface Science, 234, 1-4, 374-386
Ist Stutturia Mat, I-00133 Rome, Italy. Ecole Polytech Fed Lausanne, Fac Sci Base, CH-1015 Lausanne, Switzerland. USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN USA. Univ Rome, Dipartimento Fis, Rome, Italy. Vanderbilt Univ, Dept Physiol & Mol Biophys, Nashville, TN 37232 USA. Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy. CR Frascati, UTS Tecnol Fis Avanzate, ENEA, I-00044 Frascati, Italy. VNIIFTRI, MISDC, Moscow 141570, Russia. Cricenti, A, Ist Stutturia Mat, Via Fosso Cavaliere 100, I-00133 Rome, Italy. antonio.cricenti@ism.cnr.it
ISI Document Delivery No.: 848XG
Other identifiers:

 Record created 2006-10-03, last modified 2018-03-18

Rate this document:

Rate this document:
(Not yet reviewed)