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Abstract—The space-time geometric structure of Maxwell’s equations
is examined and a subset of them is found to define a pair of
exact discrete time-stepping relations. The desirability of adopting
an approach to the discretization of electromagnetic problems which
exploits this fact is advocated, and the name topological time-stepping
for numerical schemes complying with it is suggested. The analysis of
the equations leading to this kind of time-stepping reveals that these
equations are naturally written in terms of integrated field quantities
associated with space-time domains. It is therefore suggested that
these quantities be adopted as state variables within numerical
methods. A list of supplementary prescriptions for a discretization
of electromagnetic problems suiting this philosophy is given, with
particular emphasis on the necessity to adopt a space-time approach
in each discretization step. It is shown that some existing methods
already comply with these tenets, but that this fact is not explicitly
recognized and exploited. The role of the constitutive equations in
this discretization philosophy is briefly analyzed. The extension of this
approach to more general kinds of space-time meshes, to other sets
of basic time-stepping equations and to other field theories is finally
considered.
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1. INTRODUCTION

Time-domain methods for the full-wave analysis of three-dimensional
electromagnetic problems, which include methods such as the Finite-
Difference Time-Domain method (FDTD) and the Finite Integration
Theory (FIT) method, are enjoying great popularity within the
Computational Electromagnetics community. This is witnessed not
only by the amount of literature devoted to these methods but also
by the appearance of several professional simulation packages whose
calculation engines are based on them, in addition to the more
established ones based on methods such as the Finite Element method
and the Method of Moments. A variety of reasons contribute to
the diffusion of time-domain methods, for example the possibility to
obtain broadband data from a single simulation run, the favorable rate
of growth of the required computational resources with the problem
size and complexity (provided a minimal critical mass of resources is
available), and the existence of convincing implementations for many
kinds of material models and boundary conditions. These favorable
properties seem able to balance the fact that the struggle to overcome
the limitations of the geometrical modeling capabilities traditionally
associated with these methods does not appear to have fully succeeded
yet.

The present paper focuses on one aspect of time-domain methods,
namely, time-stepping formulas, and shows that, with respect to
the traditional time-domain approaches, a fundamental improvement
derived for time-domain methods from the adoption of a new time-
stepping philosophy, which appears to be intrinsically built into
the physical laws of electromagnetism. This is made apparent
by examining the geometrical backcloth on which these laws are
founded, an analysis which reveals the fundamental role played in this
improvement by the adoption of a space-time approach (as opposed to
one which discretizes separately the space and time variables).

A note of warning is in order about the approach and the
terminology adopted within the present work. The concepts that are
going to be presented can be given an elegant formulation using the
language of algebraic topology. However, since the adoption of this
language tends to obscure the simplicity and direct physical meaning
of the concepts, that option is not pursued here. The interested reader
can find in [5] a reformulation of most of the concepts treated in this



The geometry of time-stepping 125

paper in the more abstract and precise language of algebraic topology.

2. THE FOUNDING EQUATIONS

Faraday’s law of induction says that for any surface S bounded by the
curve ∂S the following relation holds∫

∂S
E +

d
dt

∫
S
B = 0 (1)

where E is the electric field intensity and B is the magnetic flux density.
Integrating Equation (1) for a time interval [t1, t2], we obtain∫ t2

t1

∫
∂S

E +
∫
S
B

∣∣∣∣
t2

−
∫
S
B

∣∣∣∣
t1

= 0 (2)

Rearranging the terms appearing in Equation (2) we can write it as
follows ∫

S
B

∣∣∣∣
t2

=
∫
S
B

∣∣∣∣
t1

−
∫ t2

t1

∫
∂S

E (3)

Equation (3) enjoys a number of interesting properties from the
point of view of a time-domain numerical method. First, it applies to
surfaces and time intervals which are not required to be infinitesimal in
extension. This means that within a numerical method the surface S
can be one of the faces of the cells which form the mesh and the interval
[t1, t2] can be a discrete time-step. Moreover, Equation (3) expresses
the quantity on the left side, which is defined at the time instant t2,
in terms of quantities defined (except for the negligible contribution
of the line ∂S considered at the time instant t2) at time instants
which precede t2. Consequently, Faraday’s induction law written in
the space-time integral form of Equation (3) defines an explicit time-
stepping relation which applies exactly (i.e., without approximations)
to discrete space-time domains.

A relevant feature of Equation (3) that will be discussed in more
detail later is the fact that it is an algebraic relation between integrals
of field quantities evaluated on space-time domains. A bit of reflection
reveals that the physical quantities that correspond to these integrals
enjoy a logical (and historical) primacy over the corresponding field
quantities E and B. The latter are actually physical-mathematical
abstractions derived by means of a limit process performed on the
integral quantities by letting the integration domain shrink to zero,
whereas the integral quantities can be thought of as representing
the results of actual measurements. To simplify the formulas and
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to emphasize their priority over field quantities, let us associate a
symbol to the integral quantities appearing in Equation (3). A simple
check reveals that all these quantities have the physical dimension of
a magnetic flux. Moreover, all are obtained from an integral evaluated
on a two-dimensional space-time domain. This entitles us to consider
both kinds of integral quantities as manifestations of the same physical
quantity: magnetic flux [5]. We shall therefore write

φbS×t
def=

∫
S
B

∣∣∣∣
t

(4)

φeγ×[t1,t2]
def=

∫ t2

t1

∫
γ
E (5)

where the symbol × denotes the cartesian product. Note that for
the sake of generality we have substituted in Equation (5) the generic
regular curve γ to the closed curve ∂S appearing in Faraday’s law. Let
us call φb the magnetic part of the magnetic flux and φe the electric part
of it. Thanks to these definitions we can rewrite Faraday’s induction
law as follows

φbS×t2 = φbS×t1 − φ
e
∂S×[t1,t2] (6)

and give it the following simple geometrical illustration [1, 6]. The
curve ∂S considered during the time interval [t1, t2] forms a two-
dimensional space-time cylinder ∂S× [t1, t2]. The surface S considered
at the time instant t1 (i.e., the cartesian product S × t1) forms the
bottom of that cylinder, whereas the surface S × t2 constitutes its top
(Figure 1).

Faraday’s law then asserts that the algebraic sum of the electric
and magnetic parts of the magnetic flux associated with a surface of
this kind is always zero. Correspondingly, Equation (6) shows that we
can exploit this property to determine the value of the magnetic flux φb
associated with the cylinder’s top, provided we know the values of φe
and φb associated with the cylinder’s surface and bottom, respectively
(Figure 2).

Remark: The terms appearing in Equation (6) are endowed with signs
that are a consequence of the orientation of the surfaces with
which these terms appear to be associated. The orientation of
geometric objects plays a fundamental role in the establishment
of a coherent set of equations for a physical theory. This appears
clearly provided the concept of orientation is unfolded in all its
complexity, taking into account in particular the existence of
two kinds of orientation. There is no room here for a complete
treatment of this fascinating subject. The reader is referred to [5]
for an analysis which includes the issue of orientation.
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Figure 1. Exploded view of the space-time geometrical objects that
enter the formulation of Faraday’s induction law in integral form. The
boundary ∂S of the surface S determines a two-dimensional space-time
cylinder ∂S × [t1, t2], which has the surface S considered at the time
instant t1 (i.e., S × t1) at its bottom, and the same surface considered
at the time instant t2 (i.e., S × t2) at its top.

The same geometric approach can be applied to the interpretation of
Maxwell-Ampère’s law. This law says that for any surface S bounded
by the curve ∂S the following relation holds∫

∂S
H− d

dt

∫
S
D =

∫
S
J (7)

where H is the magnetic field intensity and D is the electric flux
density. Integrating Equation (7) for a time interval [t1, t2] we obtain∫ t2

t1

∫
∂S

H−
∫
S
D

∣∣∣∣
t2

+
∫
S
D

∣∣∣∣
t1

=
∫ t2

t1

∫
S
J (8)

All the terms appearing in Equation (8) have the physical dimension
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Figure 2. The physical quantities which appear in the space-time
integral formulation of Faraday’s induction law are the electric part
of the magnetic flux φe and its magnetic part φb. The flux φe is
associated with the two-dimensional space-time cylinder ∂S × [t1, t2],
whereas φb is associated with the top and bottom surfaces S × t2 and
S × t1, respectively. Faraday’s law asserts that the algebraic sum of
these quantities (with signs reflecting the orientation of the surfaces)
is always zero. Consequently the value of φb at the final time instant
t2 can be calculated exactly from quantities defined at previous times.

of electric charge. However, the terms appearing on the left side of
the equation are integrals evaluated on two-dimensional space-time
domains and can therefore be considered as fluxes, whereas the integral
on the right side is evaluated on a three-dimensional space-time domain
and hence the corresponding quantity cannot be a flux. In fact this
quantity is the charge content of the three-dimensional space-time
cylinder due to the current flown through the surface S during the
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time interval [t1, t2]. We shall therefore write

ψdS×t
def=

∫
S
D

∣∣∣∣
t

(9)

ψhγ×[t1,t2]
def=

∫ t2

t1

∫
γ
H (10)

and
QjS×[t1,t2]

def=
∫ t2

t1

∫
S
J

where ψd is the electric part of the electric flux, ψh is the magnetic
part of it and Qj is the charge content described above. Thanks to
these definitions, we can rewrite Maxwell-Ampère’s law as follows

ψdS×t2 = ψdS×t1 + ψh∂S×[t1,t2] −Q
j
S×[t1,t2] (11)

Note that, as we did for Faraday’s law, we have rearranged the terms in
order to express the quantity corresponding to the final time instant t2
as a function of quantities defined (except for negligible contributions)
at former times. The geometric interpretation proceeds along lines
similar to those given to Faraday’s law, except for the presence of a
contribution associated with the three-dimensional space-time cylinder
S × [t1, t2].

Hence, Equation (11) says that we can determine the value of the
electric flux ψd associated with the cylinder’s top surface, provided we
know the values of ψh, ψd and Qj associated with the two-dimensional
cylinder’s space-time surface, with its bottom surface and with the
three-dimensional space-time volume, respectively (Figure 3).

3. THE FDTD TIME-STEPPING RECONSIDERED

Let us examine now what the geometrical analysis of Faraday’s and
Maxwell-Ampère’s law carried out in the previous section reveals about
the inner workings of the time-stepping formulas of an actual numerical
method, namely, FDTD.

The FDTD method applies to the solution of initial-boundary
value electromagnetic problems. The domain of a typical FDTD
problem is therefore constituted by the cartesian product of the
spatial domain of the problem and of the time interval for which the
solution is sought. In its basic form the FDTD method discretizes the
spatial domain by means of two uniform orthogonal cartesian grids
reciprocally staggered in each direction by a half step. These grids
determine therefore two sets of rectangular cells. To simplify the
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Figure 3. The physical quantities which appear in the space-time
integral formulation of Maxwell-Ampère’s law are the electric part
ψd, the magnetic part ψh of the electric flux, and the electric charge
content Qj . The flux ψh is associated with the two-dimensional space-
time cylinder ∂S × [t1, t2], whereas ψd is associated with the top and
bottom surfaces S × t2 and S × t1, respectively. The charge Qj is
associated with the three-dimensional space-time cylinder S × [t1, t2].
Maxwell-Ampère’s law asserts that the algebraic sum of the electric
flux associated with the surface of the cylinder equals the amount of
charge contained within it. This permits the determination of ψd at the
final time instant t2 of the interval from quantities defined at previous
times.

notation it is expedient to align the coordinate axes with the edges
of the cells, to make the origin correspond to a node of one of the two
grids and call ∆x, ∆y, ∆z the corresponding step widths.

The fields are represented on this discretized domain by
associating the field quantities with the edges of the cells. In particular,
with each edge of one of the grids is associated the average value of the
component of E along that edge, and with each edge of the other grid
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is associated the average value of the component of H along that edge.
The grid housing on its edges the E field is usually called the primary
grid whereas that housing H is called the secondary grid. Each field
value is usually assumed to be attached to the midpoint of the edge it
refers so that the following index notation can be adopted

Ex(i+ 1
2
,j,k)

def= Ex((i+ 1
2)∆x, j∆y, k∆z)

Hx(i,j+ 1
2
,k+ 1

2
)

def= Hx(i∆x, (j + 1
2)∆y, (k + 1

2)∆z)
(12)

with the obvious extension to the remaining field components. All
this can be represented graphically by means of the so-called Yee cell
(Figure 4).

We must now consider how the FDTD method deals with the time
variable. The time interval which constitutes the time domain of the
problem is discretized by FDTD using two dual uniform grids, one for
each spatial grid, defined on the time axis and mutually staggered by
half the time step ∆t. Corresponding to the primary and secondary
grids in space we have therefore a primary and a secondary grid in time.
By considering the product of each space grid by the corresponding
time grid one obtains two space-time grids staggered in both space
and time. The FDTD state variables are assumed to be the time
average of the field components during a time step. For example
the components of E are thought of as time averages evaluated for
primary time intervals and are traditionally assumed to be attached
to the midpoint of those time intervals. According to this additional
association and with the adoption of an index for the time variable,
the notation for the field quantities becomes

Ex(i+ 1
2
,j,k,n+ 1

2
)

def= Ex((i+ 1
2)∆x, j∆y, k∆z, (n+ 1

2)∆t)

Hx(i,j+ 1
2
,k+ 1

2
,n)

def= Hx(i∆x, (j + 1
2)∆y, (k + 1

2)∆z, n∆t)
(13)

with the the obvious extension to the remaining field components.
Let us now consider simultaneously the space and time variables

as discretized by the FDTD method. We have seen that the field
quantities which constitute the state variables of this method are
staggered not only in space but also in time. From this point of view
the limitations of the traditional representation of Figure 4 become
apparent. Albeit correct from the point of view of the disposition of
the state variables in space, that representation tends to convey the
misleading idea that field quantities which are actually specified by
the FDTD method as existing at different time instants, be instead
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Figure 4. The primary and secondary Yee cells that are at the basis
of the FDTD method. Primary cells have the average value of the
components of E along their edges attached to the midpoint of the
corresponding edge. The components of H, which are attached to the
edges of secondary cells, appear therefore at the center of the faces
of primary cells. We will see later that thanks to the constitutive
equations, the components of H can be interpreted as components of
the magnetic flux density field B attached to the faces of primary cells.
Correspondingly, the components of E are located at the center of the
faces of secondary cells and can be interpreted as components of the
electric flux density D.

simultaneously defined at a common time instant. To circumvent this
problem let us consider instead of the Yee cell, a Yee hypercell, i.e.
the space-time object which is determined by the evolution of a Yee
cell during a time step. For example, if we consider the evolution of a
primary cell of the spatial grid for the duration of a primary time step,
we obtain a primary hypercell (Figure 5).

The hypercell representation shows that during a primary time
step, each edge of the primary spatial cell spans a space-time surface
(which appears as a oblique surface in Figure 5. We saw that the
FDTD state variables are assumed as associated with the midpoints
of the edges of the cells and of the time-step intervals; hence, in the
space-time perspective they appear to be attached to the center of the
corresponding space-time surfaces. Therefore each of the quantities
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Figure 5. The primary Yee hypercell determined by the evolution of a
primary Yee cell during the primary time step ∆t going from the time
instant n∆t to (n+1)∆t. The components of E appear attached to the
centers of the space-time surfaces formed by the primary edges during
their evolution in time. The components of H appear instead attached
to the centers of spatial surfaces considered at the initial and final time
instants. Hence all components appear associated with surfaces, either
in space or in space-time.

appearing in Figure 5 — which from a purely spatial point of view we
considered as associated with edges - is actually attached to the center
of a surface, either in space or in space-time, and is thought of as the
average value of the field component for that surface.

The hypercell representation of Figure 5 shows also that for each
face of the traditional Yee cell there is a space-time parallelepiped
analogous to the space-time cylinder we used to interpret geometrically
Faraday’s law (these space-time parallelepipeds appear in Figure 5 as
truncated pyramids) . The edges which form the boundary of the face
of the Yee cell are the analogous of the boundary ∂S shown in Figure
1 and span a two-dimensional space-time “cylinder” which has the
spatial face considered at the beginning of the time step as its bottom,
and the same face considered at the end of the time step as its top.
The only difference between the space-time parallelepipeds of Figure
5 and the space-time cylinder of Figure 2 is therefore the presence
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of the components of the fields E and H in place of integrated field
quantities φe and φb. However, since each field quantity is considered as
the average value of the field component for the surface it corresponds
to, the product of each component by the extension of its face gives
the value of the integrated field quantity for that face. In other words,
we can write

∆y∆z µ(i,j+ 1
2
,k+ 1

2
)Hx(i,j+ 1

2
,k+ 1

2
,n) = φbx

(i,j+ 1
2
,k+ 1

2
,n)

(14)

∆y∆t Ey(i,j+ 1
2
,k,n+ 1

2
) = φ

ey
(i,j+ 1

2
,k,n+ 1

2
)

(15)

∆z∆t Ez(i,j,k+ 1
2
,n+ 1

2
) = φez

(i,j,k+ 1
2
,n+ 1

2
)

(16)

where we have exploited the constitutive relation

Bx(i,j+ 1
2
,k+ 1

2
,n) = µ(i,j+ 1

2
,k+ 1

2
)Hx(i,j+ 1

2
,k+ 1

2
,n) (17)

(the meaning of which will be considered in detail later). Equa-
tions (14) to (16) transform the Yee hypercell into a hypercell which
has associated with its faces integrated field quantities instead of field
components (Figure 6).

We will show now that, thanks to this reinterpretation of the
FDTD state variables, the FDTD time-stepping formula for each
component of H appearing in Figure 5 is analogous to Faraday’s
time-stepping formula given in Equation (6). One such time-stepping
formula is, for example [8]

∆y∆z µ(i,j+ 1
2
,k+ 1

2
)Hx(i,j+ 1

2
,k+ 1

2
,n+1) =

∆y∆z µ(i,j+ 1
2
,k+ 1

2
)Hx(i,j+ 1

2
,k+ 1

2
,n)+ (18)

∆y∆t
(
Ey(i,j+ 1

2
,k+1,n+ 1

2
) − Ey(i,j+ 1

2
,k,n+ 1

2
)

)
−

∆z∆t
(
Ez(i,j+1,k+ 1

2
,n+ 1

2
) − Ez(i,j,k+ 1

2
,n+ 1

2
)

)
(19)

and involves the components appearing in the truncated pyramids
(which are actually space-time parallelepipeds) shown in Figure 5,
one of which is isolated for ease of reference in Figure 7. Exploit-
ing Equations (14), (15) and (16) the FDTD time-stepping formula of
Equation (19) can be rewritten in terms of integrated field quantities,
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Figure 6. In a Yee hypercell each cell face considered during a time
step spans a space-time cell. The field components of E and H of
primary hypercell appear attached to the center of these space-time
cells and, being average values, can be interpreted as integrated field
quantities φe and φb associated with them. Note that the transition
from the components of H to the magnetic fluxes φb implies the
constitutive equation which links the field quantities H and B. On
this basis the FDTD time-stepping formulas for the field components
of H can be interpreted as the time advancement of φb dictated by
Faraday’s induction law.

as follows

φbx
(i,j+ 1

2
,k+ 1

2
,n+1)

= φbx
(i,j+ 1

2
,k+ 1

2
,n)

+

φ
ey
(i,j+ 1

2
,k+1,n+ 1

2
)
− φey

(i,j+ 1
2
,k,n+ 1

2
)
−

φez
(i,j+1,k+ 1

2
,n+ 1

2
)
+ φez

(i,j,k+ 1
2
,n+ 1

2
)

(20)

A simple comparison reveals that Equation (20) is a particular case
of the time-stepping relation (Equation (6)) which we deduced from
Faraday’s induction law. The same process can be obviously applied
to the FDTD time-stepping formulas for the other components of the
H field.

Secondary Yee hypercells, i.e., hypercells obtained by considering
the evolution of a secondary Yee cell during a secondary time step, can
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Figure 7. Each FDTD time-stepping formula for the components of H
involves the components of field quantities located on primary space-
time parallelepipeds. On the faces of these parallelepipeds the field
components appearing in the FDTD formula correspond to integrated
field quantities φe and φb, and the formula itself corresponds to the
time advancement of these integrated field quantities dictated by
Faraday’s induction law written in space-time integral form. The same
can be shown to apply for the FDTD time-stepping formulas for the
components of E, which turn out to implement Maxwell-Ampère’s law
on the integrated field quantities ψh and ψd defined on the secondary
space-time grid.

be obviously subjected to an analogous process leading to hypercells
housing fluxes ψh and ψd and chargesQj . Repeating the considerations
above for a secondary Yee hypercell, the FDTD time stepping formula
for the components of the E field can be shown to be actually a case
of the time-stepping relation of the kind represented by Equation (11)
deduced from Maxwell-Ampère’s law (Figure 8). For example, starting
from the FDTD time-stepping formula for Ex [8]

∆y∆z ε(i+ 1
2
,j,k)Ex(i+ 1

2
,j,k,n+ 1

2
) =

∆y∆z ε(i+ 1
2
,j,k)Ex(i+ 1

2
,j,k,n− 1

2
)+

−∆y∆t
(
Hy(i+ 1

2
,j,k+ 1

2
,n) −Hy(i,j+ 1

2
,k− 1

2
,n)

)
+

∆z∆t
(
Hz(i+ 1

2
,j+ 1

2
,k,n) −Hz(i+ 1

2
,j− 1

2
,k,n)

)
∆y∆z∆t σ(i+ 1

2
,j,k)

(
E
x(i+1

2 ,j,k,n+1
2 )

+E
x(i+1

2 ,j,k,n−
1
2 )

2

)
(21)

and considering the field components as representatives of integrated
field quantities, according to

∆y∆z ε(i+ 1
2
,j,k)Ex(i+ 1

2
,j,k,n+ 1

2
) = ψdx

(i+ 1
2
,j,k,n+ 1

2
)

(22)
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∆y∆tHy(i+ 1
2
,j,k+ 1

2
,n) = ψ

hy
(i+ 1

2
,j,k+ 1

2
,n)

(23)

∆z∆tHz(i+ 1
2
,j+ 1

2
,k,n) = ψhz

(i+ 1
2
,j+ 1

2
,k,n)

(24)

∆y∆z∆t σ(i+ 1
2
,j,k) ·(

Ex(i+ 1
2
,j,k,n+ 1

2
) + Ex(i+ 1

2
,j,k,n− 1

2
)

2

)
= Qjx

(i+ 1
2
,j,k,n)

(25)

(where we have used the constitutive relations linking E to D and to
J) we obtain the time-stepping formula

ψdx
(i+ 1

2
,j,k,n+ 1

2
)
= ψdx

(i+ 1
2
,j,k,n− 1

2
)
−

ψ
hy
(i+ 1

2
,j,k+ 1

2
,n)

+ ψ
hy
(i+ 1

2
,j,k− 1

2
,n)

+

ψhz
(i+ 1

2
,j+ 1

2
,k,n)
− ψhz

(i+ 1
2
,j− 1

2
,k,n)

+

Qjx
(i+ 1

2
,j,k,n)

(26)

which corresponds to the time-stepping relation (Equation (11))
derived from Maxwell-Ampère’s law.

4. TOPOLOGICAL TIME-STEPPING

Let us summarize the main points revealed by the analysis carried out
in the previous sections.

a. Time-stepping based on intrinsical discrete statements: We have
seen that within the equations of electromagnetism there is a set
of relations which link discrete quantities defined at different time
instants. These relations are intrinsically discrete in the sense that
they apply not only as differential relations within infinitesimal
domains, but hold exactly for macroscopical domains as well.
They are consequently natural candidates for the setup of time-
stepping procedures within numerical methods. The first step
in the discretization of a field problem should therefore be the
individuation within the equations of the problem of this special
set of statements
Remark I: Observing more closely the nature of this set of
equations, one discovers that they are actually conservation or
balance statements. In other words, they relate a physical quantity
associated with a given domain, with another physical quantity
associated with the boundary of that domain. This is apparent in
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Figure 8. The secondary Yee hypercell (left) determined by the
evolution of a secondary Yee cell during a secondary time step. The
components of H appear attached to the centers of the space-time
faces, whereas the components of E appear attached to the centers
of spatial surfaces considered at the initial and final time instants.
These field components can be considered as representatives of the
integrated field quantities ψh, ψd and Qj (this last quantity is not
represented in the figure), with the constitutive relations linking E to
D and J being invoked to obtain ψd and Qj . On each space-time
three-dimensional cell of the hypercell, the integrated field quantities
thus assigned, determine an exact time-stepping relation.

Maxwell-Ampère’s law as expressed by Equation (8), which asserts
the equivalence between the electric charge content of a three-
dimensional space-time cylinder and the electric flux associated
with the surface of that cylinder. The same can be said to hold in
the case of Faraday’s law expressed by Equation (2), with the only
difference that the quantity associated with the three-dimensional
space-time cylinder (a magnetic charge) is always zero. When this
happen the balance equation is said to be a conservation statement
(in the case of Faraday’s law, the conservation of magnetic flux)1
Remark II: Given their intrinsic discrete nature, balance and
conservation statements are naturally expressed as algebraic
relations between integrated field quantities from which the
corresponding differential statements can be derived. We see
therefore that to the distinction between algebraic and differential
statements corresponds a distinction between discrete and non-
discrete representations of physical quantities. One can find
in the literature various name pairs used to label this latter
distinction. A nonexhaustive list includes the mathematically
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oriented distinction of discrete and continuous quantities, the
more physically related distinction between integrated fields and
fields, that between global and local quantities, that between
macroscopic and microscopic quantities, and the more engineering
oriented distinction between circuit and field quantities. Another
good suggestion to convey the spirit of this distinction was put
forth in the context of integration theory by Henri Lebesgue [3].
Lebesgue observed that the fundamental difference is that
between physical quantities thought of as associated with points
and quantities thought of as associated with domains of non-
infinitesimal extension. He suggested therefore to call the former
point functions (“fonctions de point”) and the latter domain
functions (“fonctions de domaine”). Adopting the spirit of that
observation we will call from now on domain quantities those
that we have formerly called integrated fields, and point quantities
those that are derived from domain quantities by means of a limit
process.

b. Adoption of domain quantities as state variables: Balance
and conservation statements are naturally written in terms of
domain quantities, which are directly associated with the cells
of the discretization meshes, hence it is desirable to use domain
quantities instead of point quantities (and, in particular, of field
components) as state variables within a numerical method.

c. Adoption of a space-time approach: The balance and conservation
laws which determine the intrinsically discrete time-stepping
equations are space-time statements written in terms of quantities
associated with space-time domains, not merely with spatial
domains. Therefore it is fundamental to adopt a truly space-time
approach both in establishing the association of physical quantities
with domains (which are therefore space-time domain quantities),
in writing the corresponding discrete statements and in setting up
the meshes which discretize the problem’s domain.

d. Availability of suitable cells in the discretization meshes :
For each domain quantity appearing in the equations of the
problem to be numerically solved, there must be available in
the discretization meshes the kind of cell required to house that
domain quantity. For example, to house the quantities (fluxes and
charge contents) appearing in Faraday’s and in Maxwell-Ampère’s
law we need space-time surfaces and space-time volumes, which
must therefore appear in the discretization meshes of a discretized
electromagnetic problem. Conversely, the mere collection of
nodes of the classical Finite Difference methods does not appear
sufficient for this task.
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e. Adoption of multiple meshes: Faraday’s law and Maxwell-
Ampère’s law determine two distinct balance laws, each with its
own set of domain quantities. We need therefore two logically dis-
tinct ensembles of space-time cells to perform the time-stepping
related to these two laws. This calls for the adoption of two dis-
cretization grids or meshes, as exemplified by the pair of dual
primary and secondary grids of the FDTD and FIT method2 .
Note, however, that the two meshes might well be geometrically
coincident and only logically distinct.

Keeping in mind the points enumerated above while setting up
a numerical method, opens the way to the possibility to build into
the method the intrinsically discrete balance laws which institute an
exact link between quantities defined at different time instants. Since
the validity of these balance laws do not depend on the size and the
shape of the domain to which they refer, nor on the material the
domain is filled with, they are endowed with a kind of “topological
significance” [6], which suggests for them the name of topological
equations. Correspondingly, for a time-stepping relation based on
the exploitation of the intrinsic space-time discreteness of topological
equations we suggest the name of topological time-stepping.

Note that, given a field problem, once the space-time domain
quantities involved in it are correctly recognized and the space-time
domain has been suitably discretized, the form of the topological time-
stepping relations is uniquely determined. This is to be contrasted
with the traditional approaches, which discretize first separately the
domain in space and determine thus from the original set of partial
differential equations a set of ordinary differential equations in the
time variable, which are then discretized using one of the many
of techniques developed for the numerical integration of ordinary
differential equations.

The awareness of the existence of the topological time-stepping
approach reveals the pitfalls hidden in this classical approach, namely,
the possibility to obtain — by combining an arbitrary discretization
1 Conservation statements have a deeper meaning with respect to generic balance
statements. The latter can be made usually to descend from the former under mild
hypotheses on the topology of the domain in which they hold. For example, in the case of
electromagnetism, Maxwell-Ampère’s law is a consequence, in a topologically trivial space,
of the law of conservation of electric charge, and can be considered merely the relation
which defines the physical quantity electric flux.
2 The question of the orientation of the domains with which physical quantities are
associated, the analysis of which is not dealt with in the present work, is another strong
argument for the distinction of the grid on which the time stepping of electric flux and that
of the magnetic flux are performed. See [5] for details.
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scheme in space with an equally arbitrary one in time — a non-
topological time-stepping scheme, i.e. one which does not adhere to
the time advancement scheme for physical quantities dictated by the
physics of the problem. Of course it is still possible that such a
combination yields a topological time-stepping scheme, as testified
by the FDTD equations, which - although constructed taking as a
starting point Maxwell’s equations written in differential form [8] -
turn out to be actually interpretable as a topological time-stepping
scheme. However, without the guide constituted by the topological
time-stepping principle the attainment of a topological time-stepping
scheme appears problematic, considering for example that in the case
of FDTD that result might have been missed, had the discretization of
the differential operators been performed differently, for example using
some higher order approximation scheme.

As a final aside, which does not follow directly form the necessarily
cursory analysis of the electromagnetic equations presented above but
can be easily proved adopting a suitable formal approach, there is
a further point which deserves to be included in the list of those
leading to a correct approach to numerical discretization, namely the
importance of a

f. Suitable global structure of the meshes: To complement Faraday’s
and Maxwell-Ampère’s law, which express a conservation and
a balance statement for arbitrary space-time cylinders (i.e.,
particular space-time volumes of the kind S × [t1, t2] enclosed
by space-time closed surfaces), there are Gauss’ magnetic and
Gauss’ electric law that express the same statements for the case
of arbitrary volumes in space bounded by closed surfaces in space.
In terms of domain quantities these laws can be written as follows

φbV×t = 0 (27)

ψd∂V×t = QρV×t (28)

where QρV×t is the electric charge content of the volume V at
the time instant t. In setting up a numerical technique for an
initial-value field problem we must assure that these relations,
if satisfied by the domain quantities as initially assigned to the
cells of the mesh, continue to be so during the time stepping.
It can be proved [5, 7] that when the guidelines enumerated
above are followed (and, therefore, a topological time-stepping
is used), a sufficient condition for this to happen is the adoption
of discretization meshes which have a suitable global structure.
It is required in particular that the cells are properly joined, in
such a way that the amount of change of the domain quantity
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associated with each cell of the mesh following the execution
of a time step be due only to the effects of a source appearing
explicitly in the time-stepping formula or to a redistribution of
that quantity among adjacent cells. The fact that the compliance
with Gauss’ laws follows only from a topological constraint on the
structure of the mesh might seem trivial at first but its relevance
can be appreciated considering that it assures that no additional
constraints need to be imposed on the state variables to comply
with these laws. This topological constraint makes of the mesh a
so-called cell-complex [5]; as might be expected, both the FDTD
and the FIT grids comply with it.

5. THE MISSING LINK

Generalizing Equation (20) we can write the generic form of the
topological time-stepping formula for the domain quantity φb as follows

Φb
n+1 = Φb

n − Ic Φe
n+ 1

2
(29)

where Φb and Φe are vectors which collect all the instances of φb and φe
appearing in the primary space-time mesh, and Ic is a matrix whose
nonzero entries are only 1 and −1 and which represents in discrete
form the action of the curl operator on the primary mesh. For the
topological time-stepping of ψd, generalizing Equation (26), we have
correspondingly

Ψd
n+ 1

2
= Ψd

n− 1
2

+ Ĩc Ψh
n −Qj

n (30)

where Ψd, Ψh and Qj are vectors which collect all the instances of ψd,
ψh and Qj appearing in the secondary mesh, and Ĩc is a matrix whose
nonzero entries are only 1 and −1 and which represents in discrete form
the action of the curl operator on the secondary mesh. We emphasize
once again that Equation (29) and Equation (30) are exact discrete
statements which derive directly form the balance and conservation
laws of electromagnetism written for a space-time mesh. In other
words, only the space-time domain was discretized to obtain these
equations, not some set of partial differential equations.

The topological time-stepping formulas of Equation (29) and
Equation (30), however, do not determine alone a complete time-
advancement strategy and consequently neither a numerical method.
This can be understood by considering the number of state variables
appearing in these two equations. Even supposing that the values
of Φb and of Ψd at the initial time instant be assigned as problem
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data, there remains the problem to determine the values of Φe, Ψd

and Qj to be inserted in the time-stepping equations to advance in
time Φb and of Ψd. Geometrically, with reference to Figure 2 and
Figure 3, this situation corresponds to the impossibility to obtain
from this equations alone the value of the quantities associated with
the two-dimensional and three-dimensional space-time cylinders, the
knowledge of which is however necessary to perform the transition from
the quantity associated with the bottom surface to that associated with
the top surface.

On the other hand, we know that Maxwell’s equations (which
are only balance and conservation laws, i.e. topological equations,
and a subset of which Equation (29) and Equation (30) are the
discretized form of) by themselves do not determine the evolution
of the electromagnetic field. To obtain a set of equation able to do
this, we must add to Maxwell’s equations a set of equations which
represent a mathematical model of the material behavior (plus, of
course, suitable initial and boundary conditions). These mathematical
models of materials are the so-called constitutive or material equations.
A simple example of such a set for the case of electromagnetism is
constituted by the following three equations

D = εE (31)
B = µH (32)
J = σE (33)

Note that these equations are given as relations between point
quantities, and there appears to be no obvious way to transform them
into exact relations between the corresponding domain quantities.
Once the possibility of a topological time-stepping approach is
recognized, the determination of a discrete representation for the
constitutive equations becomes in fact the central point in the setup of
a time-domain numerical method, since the discrete rendering of the
topological equations follows automatically from the discretization of
the space-time domain of the problem.

The general problem of the determination of a discrete form for
constitutive equations will not be treated in detail here. For this
important topic the reader is referred to [5]. We will only note
that this process can be carried out in general only at the cost of
some approximation, and that this is indeed the phase where the
approximation enters the discretization of a physical field problem. We
will present only the final result of this discretization process, namely,
the relations

Φe = Cε−1

(
Ψd

)
(34)
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Ψh = Cµ−1

(
Φb

)
(35)

Qj = Cσ (Φe) (36)

where Cε−1 , Cµ−1 and Cσ are mathematical relations between the
vectors which collect the domain quantities defined on the primary and
secondary mesh, and which discretize the constitutive links between
the corresponding point quantities. Usually these discrete relations
are linear links represented by matrices. For example in the case of
the FDTD method, combining Equations (14) to (26) it can be shown
that they correspond to

φbx
(i,j+ 1

2
,k+ 1

2
,n)

= µ(i,j+ 1
2
,k+ 1

2
)

∆y∆z
∆x∆t

ψhx
(i,j+ 1

2
,k+ 1

2
,n)

(37)

ψdx
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2
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2
)

= ε(i+ 1
2
,j,k)

∆y∆z
∆x∆t

φex
(i+ 1

2
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2
)

(38)

Qjx
(i+ 1

2
,j,k,n)

= σ(i+ 1
2
,j,k)

∆y∆z
∆x

·φex
(i+ 1

2
,j,k,n+ 1

2
)
+ φex

(i+ 1
2
,j,k,n− 1

2
)

2

 (39)

where , using Equation (38), Equation (39) can be rewritten as a direct
link between Qj and Ψd, as follows

Qjx
(i+ 1

2
,j,k,n)

= ∆t
σ(i+ 1

2
,j,k)

ε(i+ 1
2
,j,k)

ψdx
(i+ 1

2
,j,k,n+ 1

2
)+
ψdx

(i+ 1
2
,j,k,n− 1

2
)

2

 (40)

Analogous relations can be written for the remaining state variables.
Note that contrary to the other discrete constitutive links, the right
side of Equation (39) involves two instances of the independent domain
quantity φe considered at two different time instants. This anomaly is
due to the fact that the corresponding dependent quantity Qj(·,·,·,n) is
defined on a space-time domain which spans a time step going from
the time instant (n− 1

2)∆t to (n+ 1
2)∆t, which would be only partially

covered by the information carried separately by the domain quantities
φex

(·,·,·,n− 1
2
)

and φex
(·,·,·,n+ 1

2
)
.

The FIT method [7] adopts a set of discrete constitutive operators
similar to those of the FDTD method, whereas some generalization
of the FDTD method, such as the the Discrete Surface Integral
method (DSI) [4], adopt a more complex discrete representation of
constitutive equations, while maintaining the topological time-stepping
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of FDTD. This follows from the fact that, contrary to the case of
topological equations, many possible approaches to the discretization
of constitutive equations are possible. This fact opens the way to the
construction of a multiplicity of methods based on the combination
of the unique topological time-stepping formula (for a given choice of
the mesh) with the many possible approximate discrete constitutive
equations. We can write a formula which represents the generic result
of this combination for the case of electromagnetism. Combining
Equation (34), Equation (35) and Equation (36) we obtain

Φb
n+1 = Φb

n − Ir Cε−1

(
Ψd

)
(41)

Ψd
n+ 1

2
= Ψd

n− 1
2

+ IdCµ−1

(
Φb

)
− Cσ,ε−1

(
Ψd

)
(42)

where we have written the operator Cσ,ε−1 in place of the composition
of Cε−1 and Cσ to allow for a more general approach to the
discretization of the link between D and Q, and where the vectors
Ψd and Φb operated upon by the constitutive operators lack the time
index to allow for the whole space-time vector to enter the relation.
The resulting variety of time-domain methods complying with the
philosophy of topological time-stepping appears therefore quite large.
One can indeed have the impression, when exposed for the first time
to the assertion of the uniqueness of the topological time-stepping
formula, that the variety of methods which comply with the topological
time-stepping approach be very limited. By considering however the
presence of the constitutive equations, one realizes instead that many
methods belong to that ensemble, including high order methods in
both space and time, and methods with implicit time-stepping.

Note, finally, that the present approach reveals the otherwise
mysterious effectiveness of the leapfrog scheme in the discretization
of the time variable of semidiscretized problems. By staggering by
a half step in time the state variables attached to the primary and
secondary grid, the leapfrog method places them exactly where an
elementary discretization strategy of the constitutive equations can
transform those defined on the primary grid in the domain quantities
required by the topological time-stepping relations on the secondary
grid (and vice versa), i.e, at the center of the space-time “cylinders”
which determine the time-stepping itself.

6. GENERALIZATIONS

The case of FDTD as a method complying with the philosophy of
topological time-stepping is only an example. As hinted above, other
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time-domain methods for electromagnetic problems, such as the FIT
and DSI methods, can be reconducted to that philosophy. All these
methods consider only meshes or grids obtained as cartesian products
of separate discretizations of the domain in space and in time. This
is a consequence of the fact that in their classical (i.e. non four-
dimensional) version, Maxwell’s equations have built into them the
distinction between the space and time variables. However, Faraday’s
law and Gauss’ electric law are only particular cases of a more general
law of conservation of the magnetic flux, which says that the magnetic
flux associated with the boundary of any space-time three-dimensional
volume is always zero. This statement can be written as follows

φ∂V = 0 (43)

where we use the symbol V to mean a generic three-dimensional space-
time volume. When V is of the form V × t, Equation (45) corresponds
to Gauss’ electric law, whereas when V is of the form S × [t1, t2] it
corresponds to Faraday’s induction law. Correspondingly, Maxwell-
Ampère’s law and Gauss’ magnetic law are particular cases of a more
general space-time balance statement, namely

ψ∂V = QV (44)

which reduces to them when V is of the form S × [t1, t2] and V × t,
respectively.

The existence of these two more general space-time topological
statements implies that the topological time-stepping approach is
applicable for the development of numerical methods which can use
generic space-time meshes, not necessarily obtained as products of
separate space and time discretizations (Figure 9). This kind of mesh
is required, for example, when one or both the space meshes move
in time with respect to the reference frame of the problem . The
choice of a generic space-time grid might indeed seem at first very
strange and in fact this route does not seem to have been actually
pursued in numerical electromagnetism. However, in the field of
Computational Fluid Dynamics (where it is often desirable to limit the
relative displacement of the mesh with respect to the flow), the Space-
Time Conservation Element and Solution Element method (CE/SE)
developed by Chang and colleagues [2] proceeds exactly along this
lines, advocating a true space-time approach and using cells that are
not cartesian products of space and time components in the selected
reference frame.

Another fact that must be considered when applying the approach
advocated in the present work, is the relation that links the
conservation and balance laws. Maxwell’s equations are based on two
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Figure 9. The topological equations which serve as the basis of the
topological time-stepping statements apply in general to space-time
domains which are not necessarily obtained as cartesian products of a
domain in space and of a domain in time. Correspondingly there is
the possibility to develop numerical methods based on the topological
time-stepping principle and which make use of meshes that are not
obtained as products of separate discretization of the domain in space
and in time.

conservation laws: that of electric charge and that of magnetic flux [6].
The law of electric charge conservation corresponds to the statement

Q∂H = 0 (45)

where H is any space-time hypervolume. From this statements there
follows, in a topologically trivial space, Maxwell-Ampère’s law and
Gauss’ magnetic law. The law of conservation of magnetic flux is
expressed by Equation (45) and encompasses Faraday’s induction law
and Gauss’ electric law. From it there follows, in a topologically
trivial space, a space-time balance statement which defines the
electromagnetic potentials. Hence we see that we have at our disposal
on each mesh a pair of time-dependent topological statements (of
which, one is a balance and one a conservation law) within which we
can select the pair to employ for the topological time-stepping. It is
the range of available constitutive equations that usually determines
the subset of those statements that will be actually used to set up the
actual algorithm.



148 Mattiussi

Finally, it is worth noting that the example of the CE/SE method
mentioned above reveals that what said here about electromagnetism
applies also to other field theories. In fact it is clear that this approach
applies to all field theories which have within their equations a set
of space-time topological statements, i.e. of space-time balance or
conservation laws. Since this is true for almost all non-static physical
field theories, the scope of the topological time-stepping philosophy
appears indeed very broad.

7. CONCLUSIONS

We have shown that electromagnetism has built into its equations
a set of intrinsically discrete time-dependent statements which can
serve as a natural basis of a numerical time-stepping strategy. When
the space-time domain of a problem has been discretized, these
statements translate directly into a set of time-stepping relations,
provided the proper space-time meshes have been defined and the
corresponding integrated field quantities have been selected as state
variables. Moreover, the role of constitutive equations in the
discretization process stands out very clearly once the intrinsically
discrete statements have been singled out. This approach calls for
the adoption of a space-time point of view in all phases of the
discretization process. An analysis of some successful time-domain
methods reveals however that until now the intrinsic space-time
discreteness the electromagnetic equations has not been explicitly
acknowledged and exploited by numerical methods (although in some
cases, for example the FIT method, the intrinsic discreteness in space
has been recognized). The correction of this state of affairs can bring
advantages both from the point of view of the comprehension and fine
tuning of existing methods and of the development of new ones. This
applies not only to electromagnetism but also to generic physical field
theories, and it appears desirable that in all these cases the approach
presented here be built into numerical methods from the start and the
favorable properties which ensue, at last fully enjoyed.
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