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Abstract

Iterative Learning Control (ILC) is a technique used to io the tracking
performance of systems carrying out repetitive tasks, whre affected by deter-
ministic disturbances. The achievable performance istigrdagraded, however,
when non-repeating, stochastic disturbances are preBeistpaper aims to com-
pare a number of different ILC algorithms, proposed to beamobust to the pres-
ence of these disturbances, firstly by a statistical armbysd then by simulation
results and their application to a linear motor. New expoessfor the expected
value and variance of the controlled error are develope@dch algorithm. The
different algorithms are then tested in simulation and fnapplied to the linear
motor system to test their performance in practice. A fillelleC algorithm is
proposed when the noise and desired output spectra aretsahaOtherwise an
algorithm with a decreasing gain gives good robustness igeremd achievable
precision but at a slower convergence rate.

1 INTRODUCTION

Iterative Learning Control (ILC) is a technique used to ioy® the tracking perfor-

mance of systems that carry out repetitive tasks. Basedeoprtitess of human learn-
ing, information ‘learnt’ from the previous repetitionsused to improve the perfor-
mance of the system during the next repetition/iteratientieduce the tracking error.
Since the first publications on ILC e.g. [1] the subject hasrbiatensely researched
producing a number of surveys [2, 3] and books [4, 5], as vealilanerous papers. The
technique has been demonstrated to be capable of condidienpboving the tracking

performance of systems that are predominately affectectrichinistic disturbances.
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Because these are repeated from one repetition to the h€xislcapable of learn-
ing them and, in turn, compensating for them. However, whensiystem is affected
by stochastic, non-repeating disturbances, such as nezasnt noise, the achievable
performance is greatly degraded. It is, therefore, necgssainderstand exactly how
stochastic disturbances affect the learning process adeMelop ILC algorithms that
are robust to their presence.

Some research has already been done into the influencewtxdiates on ILC [6],
although it has not been as widely investigated as the détistin aspects. In [7] a dis-
turbance analysis is done and both recursive and explipitessions for the measured
error in terms of desired output and disturbances are follhdy are used to discuss
generally how the presence of disturbances affects theurezhsrror evolution. In [8]
a similar analysis is done and simulation and experimeagallts are used to illustrate
the general effect of iteration-dependent disturbances.

Recognising the degrading effect of stochastic iteratlependent disturbances,
certain researchers have proposed algorithms which areéesitive to their presence.

1. The use of a forgetting factor in ILC was first proposed hf(® a D-type ILC
law. It was then proposed in [10] for P-type ILC. The undertyidea is that as
the iterations progress, information from the oldest tieres will be ‘forgotten’
and thus the stochastic disturbances from these will hageelifect on the current
input.

2. In [11] another ILC algorithm is proposed using a learrjagn that decreases
each iteration and has the form of a Stochastic Approximadigorithm. An
iteration decreasing learning gain is also used in [12] épetitive disturbance
rejection in the presence of measurement noise. Iteratoying filters were
also used in a stochastic ILC law in [13] and an adaptive IMZila[14].

3. The filtering of the ILC command has been proposed in aegapers, as well,
as a way of reducing the influence of noise on the error [6].

The aim of this paper is to compare these different ILC athars firstly by a sta-
tistical analysis, then in simulation and finally by theimpéipation to a linear motor
system. A recursive formulation for the controlled erroli e used to develop a new
transfer function relationship in the iteration domain.isTthen allows novel expres-
sions for both the expected value and variance of the erroedoh algorithm to be
developed.

Recently in [15] analytical expressions for the covariamegrix of the controlled
error were developed for high order ILC algorithms with lcatd measurement dis-
turbances separately. These expressions together atardionihe complete variance
expression derived in this paper, though here transferatgerare used instead of ma-
trix operators allowing certain insightful frequency damexpressions to be derived.
The contributions differ, also, as here a more completeyaigis made including ex-
pressions for the expected value of the controlled erromauadtical and experimental
comparisons of specific algorithms are given.

This paper is organised as follows. In Section 2 the ILC probis formulated and
an insight is given into how iteration-varying disturbasedfect the error convergence.
Additionally, certain notations are defined and the assionpused during the analysis
are given. Then in Section 3 expressions for the expectece\ahd variance of the
error are developed. In Section 4 the expressions are usethtgse the different ILC
algorithms. Section 5 tests the algorithms, first in simatgtthen experimentally on
the linear motor system. Finally in Section 6 some conchseare made.
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Figure 1: System with a repetitive desired output

2 PRELIMINARIES AND NOTATIONS

We consider the SISO, linear, discrete-time syste(q), shown in Fig. 1, whose
controlled outputz(t), at repetitiork is given by:

Z(t) = G(q)uk(t) + d(t) 1)

whereu(t) is the input to the systendi(t) the iteration-varying load disturbance and
g the forward-shift, time domain operator. Additionally theeasured output is given
by:
Yi(t) = Z(t) + nk(t) )
whereng(t) is the iteration-varying measurement disturbance.
A general form of an ILC command is given by:

Ukt 1(t) = Q(a) (Uk(t) + L(a)ex(t)) ®)

whereQ(q) andL(q) are linear, discrete and possibly non-causal filters ananibe-
sured error signal is given by:

e(t) = ya(t) — yk(t) (4)

whereyy(t) is the desired system output, defined over the repetitioatur fort =
0,...,N—1. To analyse the tracking ability of an ILC algorithm it isrobre interest
to analyse an error signal based on the controlled outphertan the measured one,
so the controlled error signal is defined as:

&(t) = ya(t) — z(t). (5)

From hereorg(t) will simply be referred to as the error rather than the cdhedo
error. By combining equations (1) - (5) a recursive expas$or the controlled error
evolution equation is found to be:

&1(t) =Q(a)[1 — G(a)L(a)]&x(t
+[1-Q(a)]ya(t) + Q(a)dk(t) — dky1(t)
+G(a)Q(a)L(a)nk(t). (6)

Itis clear that even iE.(q) is chosen so that(q) = G1(q) the presence of iteration-
varying disturbances, and the use of a fil#q) # 1, mean that a steady error value
equal to zero is not achievable.

In the absence of disturbances it can be seen that the quakegergence of the
error can be achieved by taking

~—

L(a) =G Ya), @)



however finding even a good approximation@f(q) is a laborious task, an@—(q)
exactly impossible. A frequently encountered, sufficiedition for monotonic con-
vergence of the error between iterations in the 2-norm, velitbier bothQ(q) andL(q)
are causal oN = oo, is the following, e.g. [16]:

max ‘Q(ej‘*’h) (1— G(ej‘*’h)L(ej‘*’h)) ‘ <1 @)

whereawy is the Nyquist frequency artdthe sampling period. Therefore, ofte(q) is
chosen so as to satisfy this condition and can be expressedally as:

L(g) =G Xa)
= (1+4(0))G Y(a),

whereé(q) is a model of the system amd{q) represents the multiplicative uncertainty
due to the unmodelled dynamicsi.e.

9)

G(q) = [1+A(q)|G(q). (10)
It should be noted that the direct use of the model inverselis ane choice foi.(q)
from a number of approaches proposed in the literature. Uised here, however,
because many of these other choices can be seen as appiorstat the inverse
model, each with their own associat&(y).

In [17] a forward shift operatowy, is defined, which works in the iteration domain.
It has the property:
Vi 1(t) = Wi(t) (11)

wherev(t) is an arbitrary variable. Using this operator it is posstbleswrite equation
(6) as:

&(t)

_ [1-Q(a)lya(t) +[Q(q) — widk(t) + G(a) Q(a)L(q)nk(t) (12)
w—Q(q)[1-G(a)L(q)] '

This expression will be used later to analyse the effectstiidbances.

2.1 Assumptions

In order to make a detailed analysis of the effect of the digtnces on ILC algorithms,
it is necessary to first make some assumptions about thearadttire disturbances. Itis
possible that the load and measurement disturbances céhéeteration repetitive or
iteration-varying. Repetitive disturbances will be lgagradually, in a similar way to
the reference signal, and thus will not be considered hédre.fdllowing assumptions
are thus made:

(A1) The load disturbancei(t) and measurement disturbanggt) are iteration-
varying.

(A2) dk(t) andn(t) are taken as being zero mean, weakly stationary sequeriuies, w
are white in the iteration-domain with variances equatgmndaﬁ respectively
i.e. E{d(t)} = 0andE{nk(t)} =0,

2 _
E{dk(t)dkim(t)} = {gd r(;r]trTegwise (13)



and

2 _
E{n()nem(t)} = {g” r(‘)ntr?e?wise (14)

whereE{-} denotes the mathematical expectation aritie lag in the iteration-
domain.

(A3) di(t) andng(t) are assumed to be uncorrelated with the system ingtit and
with each other i.e.

E{u(t)dk(t+m)} =0 vm, (15)
E{uc(t)n(t+m)} =0 vm, (16)
E{dk(t)nk(t+m)} =0 vm. a7)

3 EXPECTED VALUE AND VARIANCE EXPRESSIONS

It is desired to calculate the statistical properties ofla@ &algorithm in order to see
how the presence of noise affects the error achieved. The masiilts are given below
in the form of theorems.

Theorem 1 For the system described by equations (1)-(2), using thedlgorithm
(3), and respecting the assumptions (Al)-(A3), the comeeaxpected value of the
error signal is:

lim E{&(t)} = 7— )]yd(t)- (18)

Proof 1 Using equation (12) we find:

E{a(t)}
_E { [1— Q(a)]ya(t) +[Q(q) —W]dk(t) + G(q)Q(a)L(a)nk(t) }
w—Q(a)[1 - G(a)L(q)]

1

+[Q() — WE{dk(t)} + G(q)Q(a)L(a)E{n«(t)})

_ [1-Q(q)]
“w- Q- 6oL (19)

The z-transform of equation (19) in the iteration domain bartaken:

z—-Q(q)[1-G(g)L(a)] z-1
where y(t), being constant from one iteration to the next, acts as aistet at itera-

tion k= 0. In order to find the value of the error signal as the iteratimmmber tends
to infinity it is possible to use the standard Final Value Tieeo for discrete systems,

Z{E{a(t)}} =




under the assumption that condition (8) is satisfied and thessystem poles in the
iteration domain are within the unit circle. This gives:

lim E{&(1)}

o @-D1-Q@]  yalb)z
M Q@A GloL@] z-1
)

- T Qe

Theorem 2 For the system described by equations (1)-(2), using thealgGrithm (3),
and respecting the assumptions (A1)-(A3), the varianckeétror signal at iteration
k+1is:

E{&,1(t)} =E{[B(a)&(1)]*} + E{[Q(a)dk(t)]*} + E{dF, (1)}
+ E{[G(a)Q(a)L(q)nk(t)]*} — 2E{B(q)dk(t)Q(a)dk(t)},  (21)
where Bq) = Q(q)[1 - G(q)L(q)].

Proof 2 The variance of the error at iteration k is defined as:

E{& ()} = E{[a(t) — E{a(t)}]?}. (22)
Using equations (12) and (19) we find:
B (1) = Q@) = W]dk(t\zvt (;((Z%Q(q)L(q)nk(t) (23)
Expanding equation (23) into its recursive form in the itesa domain gives:
Ecr1(t) = BE(t) + Qdk(t) — dita(t) + GQLN (1), (24)

where g has been omitted for simplicity. Taking the squasxjagtion (24) gives:

BZ, 1 (1) =[BE&(1)]* + [Qdk(t)]* + dZ, 1 (1) + [GQLN(1)]?
+ 2[BE(1)Quk(t) — di1(t)BEk(t)
+ B&k (1) GQLN(t) — iy 1(t) Qak(t)
+ Quh(t) GQLN(t) — die1 (1) GQLN(t)], (25)

which on applying the expectation operator leads to:

E{&,1(t)} =E{[B&(1)]*} + E{[Qck(t)]*} + E{d§,1(t)}
+E{[GQLN(1)]*} + 2E{B&()Qd(1)}, (26)
where many cross terms are lost as they are uncorrelated.r@aining cross term,
the last term in equation (26), can be found by filtering etprat24), evaluated at
iteration k, by Bq) and then multiplying by @)dk(t) and taking the expected value,
this gives:
E{B&(t)Qck(t)} = E{B& 1(t)Qck(t)}

+E{BQd1(t)Qck(t)} — E{Bd(t)Qdk(t)}

+E{BGQLn1(t)Qck(t)}

= —E{Bdk(t)Qd(t))}, (27)



which on substitution into equation (26) gives:
E{82,1(t)} =E{[B&()]2} + E{[Qak(t)]2} + E{dZ, (1)}
+E{[GQLN(1)]?} — 2E{Bdk(t)Qck(t)}, (28)
which leads to the expression in Theorem 2.

Remarks:

1. ltis clear from Theorem 1, as remarked earlier, that tleeads filterQ(q) # 1
does not allow a zero error value to be reached.

2. Using Theorems 1 and 2 a value for the 2-norm of the condeeg®r can be
found. Using the fact that the variance can be expressed as:

E{&(1)} =E{sf(t)} —E{a®)}?, (29)

we get that:
E{et(t)} = E{& ()} +E{a(t)}?. (30)

The 2-norm of the converged error is then defined as:

gN-1 1/2
l&ll2= (N Z} E{sz(t)}>
=

1 N-1

1/2
- (N > [E{é&(t)HE{ek(t)}Z]) . (D)

This illustrates that a small 2-norm value is only achiegakhen both the vari-
ance and the expected value of the error are small, thus atiotivthe need for
an analysis of these quantities.

4 ANALYSIS OF ALGORITHMS

In this section various previously proposed algorithmdldieanalysed using the ex-
pressions developed in the previous section.

4.1 Non disturbance-robust algorithm

In the standard case where the ILC law is designed withowtidenation for stochas-
tic disturbances, we hav@(q) = 1 andL(q) = [1+A(9)]G(q). With these values
Theorem 1 gives

lim E{g(t)} =0 (32)

and Theorem 2 gives:

E{82.1(t)} = E{[A(Q)&(1))?} + E{d2(t)} + E{dZ,1()}
+E{[(1+A(a))n(t)]?} + 2E{d(t)A(q)di() }. (33)



Thus the expected value of the error can be seen to eventealerge to 0, as desired.
However, in the case of perfect knowledge of the systendi.g) = 0, which is wanted
for rapid deterministic convergence, the variance of theresignal is:

E{&1 (0} =E{dO)} +E{de1() } +E{n{(t)} = 205 + oF, (34)

whered? is the variance of botidy(t) anddy1(t) due to the stationarity assumption
made ort(t). Thus the variance of the error is the sum of twice the vagarithe load
disturbance and the variance of the measurement distwbdrite fact that the load
disturbance’s variance is doubled corresponds to a resuiftdf in [11], though there
only a single perturbation source is considered, and detrades how the presence of
non-repetitive disturbances can be particularly detritaen the tracking performance
achievable using ILC as they are fed back from the previauation.

Remark: If, instead of takind.(q) as above, it is taken agq) = B[1+A(q)]G *(q),
with Q(q) = 1 still, the expected value of the error still converges twze the limit,
provided the convergence condition (8) is fulfilled, but #aeiance of the error is now:

E{ES 1(t)} =E{[(1— B[L+A@)&(1)]} +E{di(t)}
+E{dZ 1(t)} + E{[BIL+A@)In(1)]*}
— 2E{dk(t)(1— B[1+A(q)])d(t)}, (35)
which in the case of perfect system knowledge leads to:
E{&.1()} =(1-B)’E{& (1)} — (1-2B)E{d{(t)}
+E{d 1 (1)} +BPE{n{(t)). (36)

Since 0< B < 1, (1-B)* < 1 and so lim_. E{&, ,(t)} = E{&(t)} = E{&2(t)},
whereE{€2(t)} is given by:

=2 2 2 B 2
E{&5(1)} (2—[5)0" + (Z—B)G”' (37)
So the limit variance of the error can be reduced comparetbtothich occurs in the
standard case, wh¢h= 1. This reduction in the error variance entails, nonettslas
reduction in the rate of convergence of the deterministioraand thus a compromise
must be made. The expression for the component of the emianea due to the load
disturbances is in agreement with an expression found itiddeg.2 of [15].

4.2 The use of a forgetting factor

An ILC law with a forgetting factor is given by:

U1 (t) = (1— a)ui(t) + L' (@)e(t), (38)

where 0< o < 1 is the forgetting factor. The objective of introducing floegetting
factor is to increase the learning algorithm’s robustnesiitialisation errors, fluc-
tuations of the dynamics and random disturbances. Theitigrikehind this is that
when considering the input at ttk&h iteration the previous inputs will be multiplied
by (1— a)k. Thus whena is chosen such that-1a < 1 their influence on the current
input should be diminished, and so will that of the distudeEsfrom previous itera-
tions that are fed back in the inputs. The law (38) will now beeistigated using the
framework presented above.



By comparing the ILC laws (3) and (38), it is possible to se#@(q) = 1— a and
L(q) = %. If L'(q) = [1+A(q)]G(q) is taken, Theorem 1 gives:

lim E{e(t)} Yalt). (39)

B a
o+ [1+A(g)]

So whena # 0 the expected value of the error cannot converge to zerankwag the
variance, Theorem 2 gives:

E{&2,1(t)} =E{[(a +A(0))&(1)*} + (1— o) ?E{dZ(t)}
+E{dg,2(t)} + E{[(1+A(@)nk(t)]?}
+2(1— a)E{d(t)[a +A(q)]dk(t)}- (40)

If we have perfect knowledge of the systeffg) = 0, then, in the limik — o, equation
(40) reduces to:

E{E3(1)} =a”E{EX(1)} + (1— a)’E{df (1)}
+E{d{,1 (O} +E{nZ(t)}
+2a(1-a)E{d2(t)}
~ 1
= E{&5(t)} =05 + m(ag‘i‘ a3). (41)
Thus the forgetting factor that minimises the limit variaraf the error can be seen to
be a = 0i.e. no forgetting factor should be used, giving the stath@ddgorithm. This
result is similar to a result found in [18], which uses a diffiet analysis framework
but concludes that the best forgetting matrix is zero whentttace of the input error
covariance matrix is minimised.
It is interesting to note that if’(q) is chosen according to equation (®}(q) =

L(g) = [1+A(9))G (q), andQ(q) is as before i.e. the forgetting factor affects the
entire algorithm, a different conclusion is reached. |s tase Theorem 1 gives:

a

Ilm E{e(t)} = T+ (1—a)ag

Ya(t). (42)

So again we see that in order to minimiseding, E{&(t)} the optimala is a = 0. But
Theorem 2 gives:
E{&2.1(1)} =(1— a)’E{[A@&MD)]*} + (1 - a)’E{di(t)}
+E{dg, 2 (0} + (21— a)’E{[(1+A(@)n(t)]?)
+2(1— a)*E{dk()A(a) (1)} (43)

which on assuming perfect system knowledge gives:

E{8.1()} =E{dia()} + (1-a)*(E{dk(t)} +E{ni(®)})
=03+ (1—a)? (g% +a?). (44)

Thus this time the optimal value of to minimise the variance of the errordas= 1 and
leads toE{&Z, ,(t)} = oZ. This value makes sense as it means that the previous input
is not fed back at all so only the load disturbances duringtheent iteration affect the
error. A compromise therefore needs to be made between isingrthe variance of

the error and keeping its converged, expected value small.



4.3 The use of an iteration decreasing learning gain

An ILC command with an iteration decreasing learning gais the form:

L'(q)
k+1

Ui (t) = uk(t) + &(t). (45)

With this lawQ(q) = 1 andL(q) = % thus Theorem 1 gives:
Ilim E{&(t)} =0, (46)
and Theorem 2, with the assumption of perfect system knayaed

E(E.4(0)) —E{ (1) (t>]z} FE(GW)

2
+Ea0)+E{ s |

~2e{ao (1- 17 )

1 \?_ . 1
:(1_m) E{ef(t)}+(k+1) E{ng(t)}
2
el o). 50

It can be seen that whén— e E{&2,, (t)} = E{&2(t)} = E{3(t)} so we have:

E{82(t)) = <1— éﬁ (lel)z) E{&2(1)}
+ e ) + o ElR )

+ER0) g EEO +ERO B, @)

which gives in the limit:
lim E{E2(1)} = E{dZ(1)} = of. (49)

This shows that using a decreasing learning gain asymptigtihe expected value of
the error converges to zero and the variance of the errombes@qual to just that of
the load disturbance. This is the best that can be achievied.diBadvantage of this
algorithm is that the error contraction rate reduces witsaition number and eventually
the learning practically stops so it cannot react to changt® desired output or the
repetitive disturbances affecting the system.

4.4 The use of afilter

A filtered ILC law is that given by the general form (3) i.ex.1(t) = Q(q)[uk(t) +
L(g)e(t)], whereQ(q) is the filter referred to. Wheb(q) = [1+A(q)]G1(q) is used,
Theorem 1 gives:
[1-Q(w)]
“m E{e(t)} = m)’d(t)- (50)

10



ILC is, by nature, defined over a finite time duratidh, This means that the infinite-
time Fourier transform cannot be calculated in order to wiettke frequency domain.
However, whemN is large compared to the settling time®(q) the finite-time Fourier

transform can be used to make a reasonably accurate fregdemain analysis. The
magnitude response of the Fourier transform of equatiohi§50

2_ |1_Q(ejwh)|2 Y. (w)|2_

’y{de{fk(t)}} ~ 1+ Q(eiwh)a(eiwhyj2!

Itis clear thatin order to converge to a zero expected erismniecessary to use a filter
whose magnitude is equal to 1, and has zero phase shift,cateineies wher¥y(w)
has non-zero components.

Now considering the error variance, Theorem 2 gives:

E{&2,1(t)} =E{[Q(a)A(a)&(1)]*} + E{[Q(a)dk(t)]*}
+E{dZ,1(t)} + E{[Qa)[1+A(@)In(t)]*}
+ 2E{Q(q)A(q)dk(t)Q(a)dk(t) } (51)

Again examining this for the specific case of perfect systemkedge the above ex-
pression becomes:

E{&2.1(1)} = 0§ + E{[Q(a)dk(t)]*} + E {[Q(a)n«(t)]?} . (52)

Sincedy(t) andng(t) are stationary so is.1(t), therefore (52) can also be expressed
as. h rm/h .
E(Ea0) = 0F+ 5 [ |QEMP®g(w) + P(@)de (53
TJ—m/n

where®y(w) and®,(w) are the power spectra df(t) andng(t), respectively. It is
thus possible to see that the variance of the error can beeddelow that obtained
using the standard algorithm by choosi@g) to have a magnitude of less than one at
frequencies at which the disturbance power spectra are.larg

A compromise, therefore, needs to be made again, betweennfjtin order to
reduce the error variance, but not filtering at frequenaigsoirtant toyy(t) so to al-
low a reasonable converged error to be achieved. Fortynatelnormal to use low-
frequency signals foyy(t), whilst ®4(w) and®,(w) tend to be large at high frequen-
cies. This means that the minimisation of the converged exnd the error variance
are usually not conflicting aims, arf@(q) is taken as a low-pass filter with a sensibly
chosen cut-off frequency.

5 SIMULATION AND EXPERIMENTAL RESULTS

5.1 Simulation Results

A simulation was carried out to demonstra}e the theoretgzllts. The real, continuous-
time system(5(s), and its identified mode((s), were taken as:

20 . 1
e G(s) = . (54)

G(s) =

11



G(s) andG(s) were then discretized usirtg= 0.1s and a zero-order hold to give the
discrete-time systent3(q) andG(q) respectivelyyy(t) is defined by:

1—cog0.1mt 0<t<20s
ya(t) = { 0 s ) 201<t<30s (55)
Using thisyy(t) and the specified sampling period g&Ve- 301. The load disturbance,
dk(t), was taken as a normally distributed, random sequenceRith(t)} = 0 and
03 =0.0025. The measurement disturbanggt), was taken as a zero-mean, normally
distributed, random sequence with variance equal to 0.6G26d with a 5th order
Butterworth high-pass filter with a cut-off frequency of 2z simulate high frequency
measurement noise. It had a measured variance of 0.0015difféient algorithms
analysed in the previous section were tested. 10 iterati@me carried out for each
algorithm and in order to obtain an estimate of the expectdaievand variance of the
error at a specific time each simulation was repeated 20Gtifrtee expected value and
variance at = 15s, and the 2-norm value were then calculated for the etior=al0
for the 200 simulations. The expectation operator was implged as a mean over the
simulations i.e.

Ne .
W0} = g 3 W) (56)
e (=

whereNg is the total number of simulations anﬂ(t) represents an arbitrary signal
at timet, iterationk and simulationj. The iteration number was chosen to allow the
algorithm to have converged to a point where the errors duleetalisturbances were
dominant over the deterministic errors. The titne 15s was chosen arbitrarily. Al-
though the disturbances affecting the system were difféoethe 200 simulations, the
same disturbance signals were used for each of the diffatgatithms. This meant a
direct comparison could be made of how each algorithm pexéarin the presence of
the same disturbances.

Table 1 shows the simulation results for the different athars. Certain clarifica-
tions are perhaps necessary. The algorithm with the fongefeictor was tested using
different values for the forgetting factor. Additionaltize different ways of implement-
ing the forgetting factor were tested, firstly when the fadnly affects the previous
inputi.e.L = % and secondly when it affects the entire algorithm Le= L’. The
filtered version of the algorithm used a 5th order Buttertvéiv-pass filter with a cut-
off frequency of 0.3Hz foQ(q). The filter was implemented in a non-causal fashion
S0 as to give zero phase change. The cut-off frequency wanho be above that of
the highest frequency componentgft), which is at 0.05Hz.

From the table the compromise between minimising the vaeaithe error whilst
keeping its expected value small is clearly seen. The stdradgorithm has the second
smallest expected error value but the second largest eartance. The algorithms
using the forgetting factor show the tendencies anticgbftam the theoretical results.
In the case of the decreasing gain, we see that the variameadk smaller than the
standard case, however, the expected value of the errot $®rsmall. This is because,
as previously mentioned, the learning rate reduces with gaiation so the algorithm
has not converged as quickly as the standard algorithm. Ttaeefi algorithm has the
lowest expected error and joint lowest variance, it alsothasmallest 2-norm value.
This good performance is because &) is limited to low frequencies so allows a
low-pass filter to effectively filter out the disturbancesther frequencies.
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Table 1: Expected value and varianceegf(15) and||£10(t)||» found over 200 simula-
tions

Algorithm E{e0(15)}] E{&:(15)} w2
Standard 0.0065 0.0050 0.0682
Forgetting Factor(a = 0.1)

L= 1E'a 0.0987 0.0048 0.1124
L=L' 0.1081 0.0044 0.1183
Forgetting Factor(a = 0.5)

L= % 0.3474 0.0048 0.3395
L=L 0.5177 0.0032 0.5018
Forgetting Factor(a = 0.9)

L= 0.8184 0.0071  0.6461
L=L' 0.9317 0.0027 0.8996
Decreasing Gain 0.0266 0.0030 0.0556
Low-pass Filter 0.0045 0.0027 0.0513

Figure 2: Linear motor (courtesy of ETEL)

5.2 Experimental Results

The different ILC algorithms were applied to the trackingiol of a linear, permanent
magnet, synchronous motor (LPMSM), see Fig. 2. LPMSMs angstéf and have no
mechanical transmission components. They, thereforeptisuifer from backlash and
so allow very high positioning accuracy to be achieved. Tdstfpn of the motor used
in the experiment is controlled by a two-degree-of-freedmmtroller operating at a
sampling frequency of 2kHz and tuned to provide robust Btabihe motor position
is measured by an analog position encoder with a periogiof,2vhich is interpolated
to obtain a resolution of.@4nm.

The input,uk(t), computed by the ILC algorithms, is used as the referencebaj
the closed-loop system. This means the transfer fun€di@) represents the closed-
loop motor system. The desired output positigs(t), was a series of three low-pass
filtered steps, each of amplitude 25mm in the positive dioecfollowed by a similar
series of filtered steps in the negative direction, as careba # Figure 3 and has
N =8192.

An approximate Box-Jenkins model of the closed-loop maogstesn was identified
using standard identification techniques and a PRBS as ahsigmal. The PRBS was
created using a shift register of 10 bits and the resultiggadiwas repeated eight times
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Figure 4. Monotonic convergence condition (8) wigiiq) = 1 andé*l(q) =0.85¢°

giving a total length of 8184 points. The identified model is:

~0.002008%+ 0.000918%” + 0.01972;— 0.009375
T g*—3.10493+3.73992— 2.0587 + 0.4364

G(q) (57)

It was used to calculate a phase lead compensator as an apatiox to é*l(q).
This gaveé*l(q) = 0.85¢°, which satisfied condition (8) up to a frequency of 424Hz,
with Q(g) = 1, see Fig. 4. To assure monotonic convergence it was thiessey
to takeQ(q) as a low-pass filter with a cut-off frequency below 424Hz, 49@vas
chosen. The filter was implemented in a non-causal way sogigg¢aero-phase shift.
A fifth order Butterworth filter was used. Despite the phasalleompensator not
being an accurate inverse of the system model it allows reddp rapid convergence
to be attained without going through the laborious procésery accurate modelling.
Because a low-pass filter was necessary for deterministigecgence the standard
algorithm was not implementable experimentally. The oéthgorithms, however, were
implemented, all being filtered. For each experiment 10@itens were carried out
and each experiment was repeated four times. It is, obyipoist possible to measure
&(t) in real experiments so the measured eggk) has to be used for comparisons.
For all experimentsip(t) = yq(t) was taken.

For the forgetting factor algorithms a forgetting factomof= 106 was used. This
value was chosen in order to allow a reasonable value of ther@r of the converged
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Table 2:||e100/|2 found over 4 experiments

Algorithm l|€100]|2

Low-pass Filter 7.4257x 10°°
Forgetting Factor (a = 107%) 3.8603x 10
Decreasing Gain 1.0673x 104

75.002

75.001

osition (mm)
~
o

0.95 1 1.05
Time (s)

Figure 5: Mean experimental resultslat= 100 for the forgetting factor algorithm
(dashed), before ILC is applied (solid) apglt) (dot-dash)

measured error/es||2, to be obtained. Expressions (31), (39) and (42) were used
in the noiseless, ideal case i.e(t) = &(t) andA(q) = 1 to find upper bounds on
|lew||2. The desired value dfe.||2 was taken as that achieved with the low-pass filtered
algorithm. The forgetting factor was of such a small value th ~ % therefore the

two variations became, essentially, the same.

Table 2 shows the value §&;00||2 obtained with the different algorithms. Itis seen
that the decreasing gain algorithm is about 1.4 times grélaée that achieved with
the filtered version and the forgetting factor algorithmegia value approximately five
times larger.

Fig. 5 shows the mean tracking performancé at 100 for the forgetting factor
algorithm for a small section of the trajectory. It is clehat even with the smallr
used a constant error still occurs with the forgetting faeigorithm, explaining the
much larger value ofieiggl|2. Fig. 6 shows a zoom for the other two algorithms.
The decreasing gain algorithm has slightly more osciltatio the overshoot region,
due to its slower learning of the deterministic errors, tkiprobably the cause of
its larger 2-norm value. However, it does give a less ogoitlaperformance in the
steady-state region. This, perhaps, is because noise exiftequencies below the
filter cut-off frequency so the decreasing gain algorithipseeduce its detrimental
effect. Reducing the filter cut-off frequency would helpuwed sensitivity to noise but
prevents as small an expected error from being achievetiify(t).

These observations are confirmed in Table 3, where the eegheatue and vari-
ance of the error for a certain time in this region are smddtlethe decreasing gain
algorithm.
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Table 3: Expected value and varianceegfp(1) over 4 experiments

Algorithm [E{eioo(1)}/(mm)  E{&no(1)}(mnP)
Low-pass Filter 1.3672x 10°° 9.1445%x 1010
Forgetting Factor (0 =10 %)  8.6169x 10 * 2.7705x 10°°
Decreasing Gain 1.4038x 107 6.1343x 10712

6 CONCLUSIONS

New expressions for the expected value and variance of tioe iarthe presence of
stochastic disturbances are developed in general, and fioirder of specific ILC

algorithms. 1t is found that a trade off between minimisihg expected value and
variance of the error commonly occurs. When the spectra®ithiise and desired
output are situated in different frequency regions it isnfduhat a filtered algorithm
can give good tracking performance. If the spectra overapniuch, however, an
algorithm with a decreasing learning gain is shown to givedgmbustness to noise
and small tracking errors, although it has a slower erroveagence rate.
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