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Abstract

Iterative Learning Control (ILC) is a technique used to improve the tracking
performance of systems carrying out repetitive tasks, which are affected by deter-
ministic disturbances. The achievable performance is greatly degraded, however,
when non-repeating, stochastic disturbances are present.This paper aims to com-
pare a number of different ILC algorithms, proposed to be more robust to the pres-
ence of these disturbances, firstly by a statistical analysis and then by simulation
results and their application to a linear motor. New expressions for the expected
value and variance of the controlled error are developed foreach algorithm. The
different algorithms are then tested in simulation and finally applied to the linear
motor system to test their performance in practice. A filtered ILC algorithm is
proposed when the noise and desired output spectra are separated. Otherwise an
algorithm with a decreasing gain gives good robustness to noise and achievable
precision but at a slower convergence rate.

1 INTRODUCTION

Iterative Learning Control (ILC) is a technique used to improve the tracking perfor-
mance of systems that carry out repetitive tasks. Based on the process of human learn-
ing, information ‘learnt’ from the previous repetitions isused to improve the perfor-
mance of the system during the next repetition/iteration i.e. reduce the tracking error.
Since the first publications on ILC e.g. [1] the subject has been intensely researched
producing a number of surveys [2, 3] and books [4, 5], as well as numerous papers. The
technique has been demonstrated to be capable of considerably improving the tracking
performance of systems that are predominately affected by deterministic disturbances.
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Because these are repeated from one repetition to the next, ILC is capable of learn-
ing them and, in turn, compensating for them. However, when the system is affected
by stochastic, non-repeating disturbances, such as measurement noise, the achievable
performance is greatly degraded. It is, therefore, necessary to understand exactly how
stochastic disturbances affect the learning process and todevelop ILC algorithms that
are robust to their presence.

Some research has already been done into the influence of disturbances on ILC [6],
although it has not been as widely investigated as the deterministic aspects. In [7] a dis-
turbance analysis is done and both recursive and explicit expressions for the measured
error in terms of desired output and disturbances are found.They are used to discuss
generally how the presence of disturbances affects the measured error evolution. In [8]
a similar analysis is done and simulation and experimental results are used to illustrate
the general effect of iteration-dependent disturbances.

Recognising the degrading effect of stochastic iteration-dependent disturbances,
certain researchers have proposed algorithms which are less sensitive to their presence.

1. The use of a forgetting factor in ILC was first proposed in [9] for a D-type ILC
law. It was then proposed in [10] for P-type ILC. The underlying idea is that as
the iterations progress, information from the oldest iterations will be ‘forgotten’
and thus the stochastic disturbances from these will have less effect on the current
input.

2. In [11] another ILC algorithm is proposed using a learninggain that decreases
each iteration and has the form of a Stochastic Approximation algorithm. An
iteration decreasing learning gain is also used in [12] for repetitive disturbance
rejection in the presence of measurement noise. Iteration varying filters were
also used in a stochastic ILC law in [13] and an adaptive ILC law in [14].

3. The filtering of the ILC command has been proposed in certain papers, as well,
as a way of reducing the influence of noise on the error [6].

The aim of this paper is to compare these different ILC algorithms firstly by a sta-
tistical analysis, then in simulation and finally by their application to a linear motor
system. A recursive formulation for the controlled error will be used to develop a new
transfer function relationship in the iteration domain. This then allows novel expres-
sions for both the expected value and variance of the error for each algorithm to be
developed.

Recently in [15] analytical expressions for the covariancematrix of the controlled
error were developed for high order ILC algorithms with loadand measurement dis-
turbances separately. These expressions together are similar to the complete variance
expression derived in this paper, though here transfer operators are used instead of ma-
trix operators allowing certain insightful frequency domain expressions to be derived.
The contributions differ, also, as here a more complete analysis is made including ex-
pressions for the expected value of the controlled error andanalytical and experimental
comparisons of specific algorithms are given.

This paper is organised as follows. In Section 2 the ILC problem is formulated and
an insight is given into how iteration-varying disturbances affect the error convergence.
Additionally, certain notations are defined and the assumptions used during the analysis
are given. Then in Section 3 expressions for the expected value and variance of the
error are developed. In Section 4 the expressions are used toanalyse the different ILC
algorithms. Section 5 tests the algorithms, first in simulation, then experimentally on
the linear motor system. Finally in Section 6 some conclusions are made.
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Figure 1: System with a repetitive desired output

2 PRELIMINARIES AND NOTATIONS

We consider the SISO, linear, discrete-time systemG(q), shown in Fig. 1, whose
controlled output,zk(t), at repetitionk is given by:

zk(t) = G(q)uk(t)+dk(t) (1)

whereuk(t) is the input to the system,dk(t) the iteration-varying load disturbance and
q the forward-shift, time domain operator. Additionally themeasured output is given
by:

yk(t) = zk(t)+nk(t) (2)

wherenk(t) is the iteration-varying measurement disturbance.
A general form of an ILC command is given by:

uk+1(t) = Q(q)(uk(t)+L(q)ek(t)) (3)

whereQ(q) andL(q) are linear, discrete and possibly non-causal filters and themea-
sured error signal is given by:

ek(t) = yd(t)−yk(t) (4)

whereyd(t) is the desired system output, defined over the repetition duration for t =
0, . . . ,N−1. To analyse the tracking ability of an ILC algorithm it is ofmore interest
to analyse an error signal based on the controlled output, rather than the measured one,
so the controlled error signal is defined as:

εk(t) = yd(t)−zk(t). (5)

From hereonεk(t) will simply be referred to as the error rather than the controlled
error. By combining equations (1) - (5) a recursive expression for the controlled error
evolution equation is found to be:

εk+1(t) =Q(q)[1−G(q)L(q)]εk(t)

+ [1−Q(q)]yd(t)+Q(q)dk(t)−dk+1(t)

+G(q)Q(q)L(q)nk(t). (6)

It is clear that even ifL(q) is chosen so thatL(q)= G−1(q) the presence of iteration-
varying disturbances, and the use of a filterQ(q) 6= 1, mean that a steady error value
equal to zero is not achievable.

In the absence of disturbances it can be seen that the quickest convergence of the
error can be achieved by taking

L(q) = G−1(q), (7)
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however finding even a good approximation ofG−1(q) is a laborious task, andG−1(q)
exactly impossible. A frequently encountered, sufficient condition for monotonic con-
vergence of the error between iterations in the 2-norm, wheneither bothQ(q) andL(q)
are causal orN = ∞, is the following, e.g. [16]:

max
ω∈[0,ωN]

∣

∣

∣
Q(ejωh)

(

1−G(ejωh)L(ejωh)
)∣

∣

∣
< 1 (8)

whereωN is the Nyquist frequency andh the sampling period. Therefore, oftenL(q) is
chosen so as to satisfy this condition and can be expressed generally as:

L(q) = Ĝ−1(q)

= (1+ ∆(q))G−1(q),
(9)

whereĜ(q) is a model of the system and∆(q) represents the multiplicative uncertainty
due to the unmodelled dynamics i.e.

G(q) = [1+ ∆(q)]Ĝ(q). (10)

It should be noted that the direct use of the model inverse is only one choice forL(q)
from a number of approaches proposed in the literature. It isused here, however,
because many of these other choices can be seen as approximations to the inverse
model, each with their own associated∆(q).

In [17] a forward shift operator,w, is defined, which works in the iteration domain.
It has the property:

vk+1(t) = wvk(t) (11)

wherev(t) is an arbitrary variable. Using this operator it is possibleto rewrite equation
(6) as:

εk(t)

=
[1−Q(q)]yd(t)+ [Q(q)−w]dk(t)+G(q)Q(q)L(q)nk(t)

w−Q(q)[1−G(q)L(q)]
. (12)

This expression will be used later to analyse the effect of disturbances.

2.1 Assumptions

In order to make a detailed analysis of the effect of the disturbances on ILC algorithms,
it is necessary to first make some assumptions about the nature of the disturbances. It is
possible that the load and measurement disturbances can be either iteration repetitive or
iteration-varying. Repetitive disturbances will be learnt gradually, in a similar way to
the reference signal, and thus will not be considered here. The following assumptions
are thus made:

(A1) The load disturbancedk(t) and measurement disturbancenk(t) are iteration-
varying.

(A2) dk(t) andnk(t) are taken as being zero mean, weakly stationary sequences, which
are white in the iteration-domain with variances equal toσ2

d andσ2
n respectively

i.e. E{dk(t)} = 0 andE{nk(t)} = 0,

E{dk(t)dk+m(t)} =

{

σ2
d m= 0

0 otherwise
(13)
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and

E{nk(t)nk+m(t)} =

{

σ2
n m= 0

0 otherwise
(14)

whereE{·} denotes the mathematical expectation andm the lag in the iteration-
domain.

(A3) dk(t) andnk(t) are assumed to be uncorrelated with the system inputuk(t) and
with each other i.e.

E{uk(t)dk(t +m)} = 0 ∀m, (15)

E{uk(t)nk(t +m)} = 0 ∀m, (16)

E{dk(t)nk(t +m)} = 0 ∀m. (17)

3 EXPECTED VALUE AND VARIANCE EXPRESSIONS

It is desired to calculate the statistical properties of an ILC algorithm in order to see
how the presence of noise affects the error achieved. The main results are given below
in the form of theorems.

Theorem 1 For the system described by equations (1)-(2), using the ILCalgorithm
(3), and respecting the assumptions (A1)-(A3), the converged expected value of the
error signal is:

lim
k→∞

E{εk(t)} =
[1−Q(q)]

1−Q(q)[1−G(q)L(q)]
yd(t). (18)

Proof 1 Using equation (12) we find:

E{εk(t)}

=E

{

[1−Q(q)]yd(t)+ [Q(q)−w]dk(t)+G(q)Q(q)L(q)nk(t)
w−Q(q)[1−G(q)L(q)]

}

=
1

w−Q(q)[1−G(q)L(q)]
([1−Q(q)]E{yd(t)}

+[Q(q)−w]E{dk(t)}+G(q)Q(q)L(q)E{nk(t)})

=
[1−Q(q)]

w−Q(q)[1−G(q)L(q)]
yd(t). (19)

The z-transform of equation (19) in the iteration domain canbe taken:

Z {E{εk(t)}} =
[1−Q(q)]

z−Q(q)[1−G(q)L(q)]
·
yd(t)z
z−1

(20)

where yd(t), being constant from one iteration to the next, acts as a stepinput at itera-
tion k= 0. In order to find the value of the error signal as the iterationnumber tends
to infinity it is possible to use the standard Final Value Theorem for discrete systems,
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under the assumption that condition (8) is satisfied and thusthe system poles in the
iteration domain are within the unit circle. This gives:

lim
k→∞

E{εk(t)}

= lim
z→1

(z−1)[1−Q(q)]

z−Q(q)[1−G(q)L(q)]
·
yd(t)z
z−1

=
[1−Q(q)]

1−Q(q)[1−G(q)L(q)]
yd(t).

Theorem 2 For the system described by equations (1)-(2), using the ILCalgorithm (3),
and respecting the assumptions (A1)-(A3), the variance of the error signal at iteration
k+1 is:

E{ε̃2
k+1(t)} =E{[B(q)ε̃k(t)]

2}+E{[Q(q)dk(t)]
2}+E{d2

k+1(t)}

+E{[G(q)Q(q)L(q)nk(t)]
2}−2E{B(q)dk(t)Q(q)dk(t)}, (21)

where B(q) = Q(q)[1−G(q)L(q)].

Proof 2 The variance of the error at iteration k is defined as:

E{ε̃2
k (t)} = E{[εk(t)−E{εk(t)}]

2}. (22)

Using equations (12) and (19) we find:

ε̃k(t) =
[Q(q)−w]dk(t)+G(q)Q(q)L(q)nk(t)

w−B(q)
(23)

Expanding equation (23) into its recursive form in the iteration domain gives:

ε̃k+1(t) = Bε̃k(t)+Qdk(t)−dk+1(t)+GQLnk(t), (24)

where q has been omitted for simplicity. Taking the square ofequation (24) gives:

ε̃2
k+1(t) =[Bε̃k(t)]

2 +[Qdk(t)]
2 +d2

k+1(t)+ [GQLnk(t)]
2

+2[Bε̃k(t)Qdk(t)−dk+1(t)Bε̃k(t)

+Bε̃k(t)GQLnk(t)−dk+1(t)Qdk(t)

+Qdk(t)GQLnk(t)−dk+1(t)GQLnk(t)], (25)

which on applying the expectation operator leads to:

E{ε̃2
k+1(t)} =E{[Bε̃k(t)]

2}+E{[Qdk(t)]
2}+E{d2

k+1(t)}

+E{[GQLnk(t)]
2}+2E{Bε̃k(t)Qdk(t)}, (26)

where many cross terms are lost as they are uncorrelated. Theremaining cross term,
the last term in equation (26), can be found by filtering equation (24), evaluated at
iteration k, by B(q) and then multiplying by Q(q)dk(t) and taking the expected value,
this gives:

E{Bε̃k(t)Qdk(t)} = E{B2ε̃k−1(t)Qdk(t)}

+E{BQdk−1(t)Qdk(t)}−E{Bdk(t)Qdk(t)}

+E{BGQLnk−1(t)Qdk(t)}

= −E{Bdk(t)Qdk(t))}, (27)
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which on substitution into equation (26) gives:

E{ε̃2
k+1(t)} =E{[Bε̃k(t)]

2}+E{[Qdk(t)]
2}+E{d2

k+1(t)}

+E{[GQLnk(t)]
2}−2E{Bdk(t)Qdk(t)}, (28)

which leads to the expression in Theorem 2.

Remarks:

1. It is clear from Theorem 1, as remarked earlier, that the use of a filterQ(q) 6= 1
does not allow a zero error value to be reached.

2. Using Theorems 1 and 2 a value for the 2-norm of the converged error can be
found. Using the fact that the variance can be expressed as:

E{ε̃2
k (t)} = E{ε2

k (t)}−E{εk(t)}
2, (29)

we get that:
E{ε2

k (t)} = E{ε̃2
k (t)}+E{εk(t)}

2. (30)

The 2-norm of the converged error is then defined as:

‖εk‖2 =

(

1
N

N−1

∑
t=0

E{ε2
k (t)}

)1/2

=

(

1
N

N−1

∑
t=0

[

E{ε̃2
k (t)}+E{εk(t)}

2]
)1/2

. (31)

This illustrates that a small 2-norm value is only achievable when both the vari-
ance and the expected value of the error are small, thus motivating the need for
an analysis of these quantities.

4 ANALYSIS OF ALGORITHMS

In this section various previously proposed algorithms shall be analysed using the ex-
pressions developed in the previous section.

4.1 Non disturbance-robust algorithm

In the standard case where the ILC law is designed without consideration for stochas-
tic disturbances, we haveQ(q) = 1 andL(q) = [1+ ∆(q)]G−1(q). With these values
Theorem 1 gives

lim
k→∞

E{εk(t)} = 0 (32)

and Theorem 2 gives:

E{ε̃2
k+1(t)} = E{[∆(q)ε̃k(t)]

2}+E{d2
k(t)}+E{d2

k+1(t)}

+E{[(1+ ∆(q))nk(t)]
2}+2E{dk(t)∆(q)dk(t)}. (33)
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Thus the expected value of the error can be seen to eventuallyconverge to 0, as desired.
However, in the case of perfect knowledge of the system i.e.∆(q) = 0, which is wanted
for rapid deterministic convergence, the variance of the error signal is:

E{ε̃2
k+1(t)} = E

{

d2
k(t)
}

+E
{

d2
k+1(t)

}

+E{n2
k(t)} = 2σ2

d + σ2
n , (34)

whereσ2
d is the variance of bothdk(t) anddk+1(t) due to the stationarity assumption

made ondk(t). Thus the variance of the error is the sum of twice the variance of the load
disturbance and the variance of the measurement disturbance. The fact that the load
disturbance’s variance is doubled corresponds to a result found in [11], though there
only a single perturbation source is considered, and demonstrates how the presence of
non-repetitive disturbances can be particularly detrimental to the tracking performance
achievable using ILC as they are fed back from the previous iteration.

Remark: If, instead of takingL(q) as above, it is taken asL(q)= β [1+∆(q)]G−1(q),
with Q(q) = 1 still, the expected value of the error still converges to zero in the limit,
provided the convergence condition (8) is fulfilled, but thevariance of the error is now:

E{ε̃2
k+1(t)} =E{[(1−β [1+ ∆(q)])ε̃k(t)]

2}+E{d2
k(t)}

+E{d2
k+1(t)}+E{[β [1+ ∆(q)]nk(t)]

2}

−2E{dk(t)(1−β [1+ ∆(q)])dk(t)}, (35)

which in the case of perfect system knowledge leads to:

E{ε̃2
k+1(t)} =(1−β )2E{ε̃2

k (t)}− (1−2β )E{d2
k(t)}

+E{d2
k+1(t)}+ β 2E{n2

k(t)}. (36)

Since 0< β < 1, (1− β )2 < 1 and so limk→∞ E{ε̃2
k+1(t)} = E{ε̃2

k (t)} = E{ε̃2
∞(t)},

whereE{ε̃2
∞(t)} is given by:

E{ε̃2
∞(t)} =

2
(2−β )

σ2
d +

β
(2−β )

σ2
n . (37)

So the limit variance of the error can be reduced compared to that which occurs in the
standard case, whenβ = 1. This reduction in the error variance entails, nonetheless, a
reduction in the rate of convergence of the deterministic error and thus a compromise
must be made. The expression for the component of the error variance due to the load
disturbances is in agreement with an expression found in Section 6.2 of [15].

4.2 The use of a forgetting factor

An ILC law with a forgetting factor is given by:

uk+1(t) = (1−α)uk(t)+L′(q)ek(t), (38)

where 0≤ α < 1 is the forgetting factor. The objective of introducing theforgetting
factor is to increase the learning algorithm’s robustness to initialisation errors, fluc-
tuations of the dynamics and random disturbances. The thinking behind this is that
when considering the input at thek’th iteration the previous inputs will be multiplied
by (1−α)k. Thus whenα is chosen such that 1−α < 1 their influence on the current
input should be diminished, and so will that of the disturbances from previous itera-
tions that are fed back in the inputs. The law (38) will now be investigated using the
framework presented above.
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By comparing the ILC laws (3) and (38), it is possible to see thatQ(q) = 1−α and

L(q) = L′(q)
1−α . If L′(q) = [1+ ∆(q)]G−1(q) is taken, Theorem 1 gives:

lim
k→∞

E{εk(t)} =
α

α +[1+ ∆(q)]
yd(t). (39)

So whenα 6= 0 the expected value of the error cannot converge to zero. Examining the
variance, Theorem 2 gives:

E{ε̃2
k+1(t)} =E{[(α + ∆(q))ε̃k(t)]

2}+(1−α)2E{d2
k(t)}

+E{d2
k+1(t)}+E{[(1+ ∆(q))nk(t)]

2}

+2(1−α)E{dk(t)[α + ∆(q)]dk(t)}. (40)

If we have perfect knowledge of the system,∆(q)= 0, then, in the limitk→∞, equation
(40) reduces to:

E{ε̃2
∞(t)} =α2E{ε̃2

∞(t)}+(1−α)2E{d2
k(t)}

+E{d2
k+1(t)}+E{n2

k(t)}

+2α(1−α)E{d2
k(t)}

⇒ E{ε̃2
∞(t)} =σ2

d +
1

1−α2 (σ2
d + σ2

n). (41)

Thus the forgetting factor that minimises the limit variance of the error can be seen to
beα = 0 i.e. no forgetting factor should be used, giving the standard algorithm. This
result is similar to a result found in [18], which uses a different analysis framework
but concludes that the best forgetting matrix is zero when the trace of the input error
covariance matrix is minimised.

It is interesting to note that ifL′(q) is chosen according to equation (9),L′(q) =
L(q) = [1+ ∆(q)]G−1(q), andQ(q) is as before i.e. the forgetting factor affects the
entire algorithm, a different conclusion is reached. In this case Theorem 1 gives:

lim
k→∞

E{εk(t)} =
α

1+(1−α)∆(q)
yd(t). (42)

So again we see that in order to minimise limk→∞ E{εk(t)} the optimalα is α = 0. But
Theorem 2 gives:

E{ε̃2
k+1(t)} =(1−α)2E{[∆(q)ε̃k(t)]

2}+(1−α)2E{d2
k(t)}

+E{d2
k+1(t)}+(1−α)2E{[(1+ ∆(q))nk(t)]

2}

+2(1−α)2E{dk(t)∆(q)dk(t)}, (43)

which on assuming perfect system knowledge gives:

E{ε̃2
k+1(t)} = E

{

d2
k+1(t)

}

+(1−α)2(E
{

d2
k(t)
}

+E
{

n2
k(t)
})

= σ2
d +(1−α)2(σ2

d + σ2
n

)

. (44)

Thus this time the optimal value ofα to minimise the variance of the error isα = 1 and
leads toE{ε̃2

k+1(t)} = σ2
d . This value makes sense as it means that the previous input

is not fed back at all so only the load disturbances during thecurrent iteration affect the
error. A compromise therefore needs to be made between minimising the variance of
the error and keeping its converged, expected value small.
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4.3 The use of an iteration decreasing learning gain

An ILC command with an iteration decreasing learning gain has the form:

uk+1(t) = uk(t)+
L′(q)

k+1
ek(t). (45)

With this lawQ(q) = 1 andL(q) = L′(q)
k+1 thus Theorem 1 gives:

lim
k→∞

E{εk(t)} = 0, (46)

and Theorem 2, with the assumption of perfect system knowledge:

E{ε̃2
k+1(t)} =E

{

[(

1−
1

k+1

)

ε̃k(t)

]2
}

+E{d2
k(t)}

+E{d2
k+1(t)}+E

{

n2
k(t)

(k+1)2

}

−2E

{

dk(t)

(

1−
1

k+1

)

dk(t)

}

=

(

1−
1

k+1

)2

E{ε̃2
k (t)}+

1
(k+1)2E{n2

k(t)}

+
2

k+1
E{d2

k(t)}. (47)

It can be seen that whenk→ ∞ E{ε̃2
k+1(t)} = E{ε̃2

k (t)} = E{ε̃2
∞(t)} so we have:

E{ε̃2
∞(t)} =

(

1−
2

k+1
+

1
(k+1)2

)

E{ε̃2
∞(t)}

+
1

(k+1)2E{n2
k(t)}+

2
k+1

E{d2
k(t)}

⇒ E{ε̃2
∞(t)} =

1
2(k+1)

[E{ε̃2
∞(t)}+E{n2

k(t)}]+E{d2
k(t)}, (48)

which gives in the limit:

lim
k→∞

E{ε̃2
∞(t)} = E

{

d2
k(t)
}

= σ2
d . (49)

This shows that using a decreasing learning gain asymptotically the expected value of
the error converges to zero and the variance of the error becomes equal to just that of
the load disturbance. This is the best that can be achieved. The disadvantage of this
algorithm is that the error contraction rate reduces with iteration number and eventually
the learning practically stops so it cannot react to changesin the desired output or the
repetitive disturbances affecting the system.

4.4 The use of a filter

A filtered ILC law is that given by the general form (3) i.e.uk+1(t) = Q(q)[uk(t)+
L(q)ek(t)], whereQ(q) is the filter referred to. WhenL(q) = [1+∆(q)]G−1(q) is used,
Theorem 1 gives:

lim
k→∞

E{εk(t)} =
[1−Q(q)]

1+Q(q)∆(q)
yd(t). (50)
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ILC is, by nature, defined over a finite time duration,N. This means that the infinite-
time Fourier transform cannot be calculated in order to workin the frequency domain.
However, whenN is large compared to the settling time ofG(q) the finite-time Fourier
transform can be used to make a reasonably accurate frequency domain analysis. The
magnitude response of the Fourier transform of equation (50) is:

∣

∣

∣

∣

F

{

lim
k→∞

E{εk(t)}

}∣

∣

∣

∣

2

=
|1−Q(ejωh)|2

|1+Q(ejωh)∆(ejωh)|2
|Yd(ω)|2.

It is clear that in order to converge to a zero expected error it is necessary to use a filter
whose magnitude is equal to 1, and has zero phase shift, at frequencies whereYd(ω)
has non-zero components.

Now considering the error variance, Theorem 2 gives:

E{ε̃2
k+1(t)} =E{[Q(q)∆(q)ε̃k(t)]

2}+E{[Q(q)dk(t)]
2}

+E{d2
k+1(t)}+E{[Q(q)[1+ ∆(q)]nk(t)]

2}

+2E{Q(q)∆(q)dk(t)Q(q)dk(t)} (51)

Again examining this for the specific case of perfect system knowledge the above ex-
pression becomes:

E{ε̃2
k+1(t)} = σ2

d +E
{

[Q(q)dk(t)]
2}+E

{

[Q(q)nk(t)]
2} . (52)

Sincedk(t) andnk(t) are stationary so isεk+1(t), therefore (52) can also be expressed
as:

E{ε̃2
k+1(t)} = σ2

d +
h

2π

∫ π/h

−π/h
|Q(ejωh)|2[Φd(ω)+ Φn(ω)]dω (53)

whereΦd(ω) andΦn(ω) are the power spectra ofdk(t) andnk(t), respectively. It is
thus possible to see that the variance of the error can be reduced below that obtained
using the standard algorithm by choosingQ(q) to have a magnitude of less than one at
frequencies at which the disturbance power spectra are large.

A compromise, therefore, needs to be made again, between filtering in order to
reduce the error variance, but not filtering at frequencies important toyd(t) so to al-
low a reasonable converged error to be achieved. Fortunately it is normal to use low-
frequency signals foryd(t), whilst Φd(ω) andΦn(ω) tend to be large at high frequen-
cies. This means that the minimisation of the converged error and the error variance
are usually not conflicting aims, andQ(q) is taken as a low-pass filter with a sensibly
chosen cut-off frequency.

5 SIMULATION AND EXPERIMENTAL RESULTS

5.1 Simulation Results

A simulation was carried out to demonstrate the theoreticalresults. The real, continuous-
time system,G(s), and its identified model,̂G(s), were taken as:

G(s) =
20

(s+1)(s+20)
Ĝ(s) =

1
(s+1)

. (54)
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G(s) andĜ(s) were then discretized usingh = 0.1s and a zero-order hold to give the
discrete-time systemsG(q) andĜ(q) respectively.yd(t) is defined by:

yd(t) =

{

1−cos(0.1πt) 0≤ t ≤ 20s
0 20.1≤ t ≤ 30s

(55)

Using thisyd(t) and the specified sampling period gaveN = 301. The load disturbance,
dk(t), was taken as a normally distributed, random sequence withE{dk(t)} = 0 and
σ2

d = 0.0025. The measurement disturbance,nk(t), was taken as a zero-mean, normally
distributed, random sequence with variance equal to 0.0025filtered with a 5th order
Butterworth high-pass filter with a cut-off frequency of 2Hz, to simulate high frequency
measurement noise. It had a measured variance of 0.0015. Thedifferent algorithms
analysed in the previous section were tested. 10 iterationswere carried out for each
algorithm and in order to obtain an estimate of the expected value and variance of the
error at a specific time each simulation was repeated 200 times. The expected value and
variance att = 15s, and the 2-norm value were then calculated for the error at k = 10
for the 200 simulations. The expectation operator was implemented as a mean over the
simulations i.e.

E{vk(t)} =
1
Ne

Ne

∑
j=1

v j
k(t) (56)

whereNe is the total number of simulations andv j
k(t) represents an arbitrary signal

at timet, iterationk and simulationj. The iteration number was chosen to allow the
algorithm to have converged to a point where the errors due tothe disturbances were
dominant over the deterministic errors. The timet = 15s was chosen arbitrarily. Al-
though the disturbances affecting the system were different for the 200 simulations, the
same disturbance signals were used for each of the differentalgorithms. This meant a
direct comparison could be made of how each algorithm performed in the presence of
the same disturbances.

Table 1 shows the simulation results for the different algorithms. Certain clarifica-
tions are perhaps necessary. The algorithm with the forgetting factor was tested using
different values for the forgetting factor. Additionally,the different ways of implement-
ing the forgetting factor were tested, firstly when the factor only affects the previous
input i.e. L = L′

1−α , and secondly when it affects the entire algorithm i.e.L = L′. The
filtered version of the algorithm used a 5th order Butterworth low-pass filter with a cut-
off frequency of 0.3Hz forQ(q). The filter was implemented in a non-causal fashion
so as to give zero phase change. The cut-off frequency was chosen to be above that of
the highest frequency component ofyd(t), which is at 0.05Hz.

From the table the compromise between minimising the variance of the error whilst
keeping its expected value small is clearly seen. The standard algorithm has the second
smallest expected error value but the second largest error variance. The algorithms
using the forgetting factor show the tendencies anticipated from the theoretical results.
In the case of the decreasing gain, we see that the variance ismuch smaller than the
standard case, however, the expected value of the error is not so small. This is because,
as previously mentioned, the learning rate reduces with each iteration so the algorithm
has not converged as quickly as the standard algorithm. The filtered algorithm has the
lowest expected error and joint lowest variance, it also hasthe smallest 2-norm value.
This good performance is because theyd(t) is limited to low frequencies so allows a
low-pass filter to effectively filter out the disturbances athigher frequencies.
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Table 1: Expected value and variance ofε10(15) and‖ε10(t)‖2 found over 200 simula-
tions

Algorithm |E{ε10(15)}| E{ε̃2
10(15)} ‖ε10‖2

Standard 0.0065 0.0050 0.0682
Forgetting Factor(α = 0.1)

L = L′
1−α 0.0987 0.0048 0.1124

L = L′ 0.1081 0.0044 0.1183
Forgetting Factor(α = 0.5)

L = L′
1−α 0.3474 0.0048 0.3395

L = L′ 0.5177 0.0032 0.5018
Forgetting Factor(α = 0.9)

L = L′
1−α 0.8184 0.0071 0.6461

L = L′ 0.9317 0.0027 0.8996
Decreasing Gain 0.0266 0.0030 0.0556
Low-pass Filter 0.0045 0.0027 0.0513

Figure 2: Linear motor (courtesy of ETEL)

5.2 Experimental Results

The different ILC algorithms were applied to the tracking control of a linear, permanent
magnet, synchronous motor (LPMSM), see Fig. 2. LPMSMs are very stiff and have no
mechanical transmission components. They, therefore, do not suffer from backlash and
so allow very high positioning accuracy to be achieved. The position of the motor used
in the experiment is controlled by a two-degree-of-freedomcontroller operating at a
sampling frequency of 2kHz and tuned to provide robust stability. The motor position
is measured by an analog position encoder with a period of 2µm, which is interpolated
to obtain a resolution of 0.24nm.

The input,uk(t), computed by the ILC algorithms, is used as the reference signal of
the closed-loop system. This means the transfer functionG(q) represents the closed-
loop motor system. The desired output position,yd(t), was a series of three low-pass
filtered steps, each of amplitude 25mm in the positive direction, followed by a similar
series of filtered steps in the negative direction, as can be seen in Figure 3 and has
N = 8192.

An approximate Box-Jenkins model of the closed-loop motor system was identified
using standard identification techniques and a PRBS as an input signal. The PRBS was
created using a shift register of 10 bits and the resulting signal was repeated eight times

13
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Figure 3: Desired output position,yd
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Figure 4: Monotonic convergence condition (8) withQ(q) = 1 andĜ−1(q) = 0.85q6

giving a total length of 8184 points. The identified model is:

G(q) =
0.002008q3+0.0009185q2+0.01972q−0.009375

q4−3.104q3+3.739q2−2.058q+0.4364
. (57)

It was used to calculate a phase lead compensator as an approximation to Ĝ−1(q).
This gaveĜ−1(q) = 0.85q6, which satisfied condition (8) up to a frequency of 424Hz,
with Q(q) = 1, see Fig. 4. To assure monotonic convergence it was thus necessary
to takeQ(q) as a low-pass filter with a cut-off frequency below 424Hz, 400Hz was
chosen. The filter was implemented in a non-causal way so as togive zero-phase shift.
A fifth order Butterworth filter was used. Despite the phase lead compensator not
being an accurate inverse of the system model it allows reasonably rapid convergence
to be attained without going through the laborious process of very accurate modelling.
Because a low-pass filter was necessary for deterministic convergence the standard
algorithm was not implementable experimentally. The otheralgorithms, however, were
implemented, all being filtered. For each experiment 100 iterations were carried out
and each experiment was repeated four times. It is, obviously, not possible to measure
εk(t) in real experiments so the measured errorek(k) has to be used for comparisons.
For all experimentsu0(t) = yd(t) was taken.

For the forgetting factor algorithms a forgetting factor ofα = 10−6 was used. This
value was chosen in order to allow a reasonable value of the 2-norm of the converged
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Table 2:‖e100‖2 found over 4 experiments
Algorithm ‖e100‖2

Low-pass Filter 7.4257×10−5

Forgetting Factor (α = 10−6) 3.8603×10−4

Decreasing Gain 1.0673×10−4
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Figure 5: Mean experimental results atk = 100 for the forgetting factor algorithm
(dashed), before ILC is applied (solid) andyd(t) (dot-dash)

measured error,‖e∞‖2, to be obtained. Expressions (31), (39) and (42) were used
in the noiseless, ideal case i.e.ek(t) = εk(t) and∆(q) = 1 to find upper bounds on
‖e∞‖2. The desired value of‖e∞‖2 was taken as that achieved with the low-pass filtered
algorithm. The forgetting factor was of such a small value thatL′ ≈ L′

1−α , therefore the
two variations became, essentially, the same.

Table 2 shows the value of‖e100‖2 obtained with the different algorithms. It is seen
that the decreasing gain algorithm is about 1.4 times greater than that achieved with
the filtered version and the forgetting factor algorithm gives a value approximately five
times larger.

Fig. 5 shows the mean tracking performance atk = 100 for the forgetting factor
algorithm for a small section of the trajectory. It is clear that even with the smallα
used a constant error still occurs with the forgetting factor algorithm, explaining the
much larger value of‖e100‖2. Fig. 6 shows a zoom for the other two algorithms.
The decreasing gain algorithm has slightly more oscillation in the overshoot region,
due to its slower learning of the deterministic errors, thisis probably the cause of
its larger 2-norm value. However, it does give a less oscillatory performance in the
steady-state region. This, perhaps, is because noise exists at frequencies below the
filter cut-off frequency so the decreasing gain algorithm helps reduce its detrimental
effect. Reducing the filter cut-off frequency would help reduce sensitivity to noise but
prevents as small an expected error from being achieved for thisyd(t).

These observations are confirmed in Table 3, where the expected value and vari-
ance of the error for a certain time in this region are smallerfor the decreasing gain
algorithm.
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Figure 6: Mean experimental results atk = 100 for the algorithms: decreasing gain
(dashed) and low-pass filtered (solid), alsoyd(t) (dot-dash)

Table 3: Expected value and variance ofe100(1) over 4 experiments
Algorithm |E{e100(1)}|(mm) E{ẽ2

100(1)}(mm2)
Low-pass Filter 1.3672×10−5 9.1445×10−10

Forgetting Factor (α = 10−6) 8.6169×10−4 2.7705×10−9

Decreasing Gain 1.4038×10−7 6.1343×10−12

6 CONCLUSIONS

New expressions for the expected value and variance of the error in the presence of
stochastic disturbances are developed in general, and for anumber of specific ILC
algorithms. It is found that a trade off between minimising the expected value and
variance of the error commonly occurs. When the spectra of the noise and desired
output are situated in different frequency regions it is found that a filtered algorithm
can give good tracking performance. If the spectra overlap too much, however, an
algorithm with a decreasing learning gain is shown to give good robustness to noise
and small tracking errors, although it has a slower error convergence rate.
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