
Community-Aware Event Dissemination ?

Sébastien Baehni a Patrick Th. Eugster c

Rachid Guerraoui bOana Jurca a

aSchool of Computer and Communication Systems, EPFL
bSchool of Computer and Communication Systems, EPFL, Tel: +41 21 693 5272, Fax:

+41 21 693 7570
cDepartment of Computer Sciences, Purdue University

Abstract

This paper presents a distributed algorithm to disseminate events in a publish/subscribe sys-
tem, where processes publish events of certain topics, organized in a hierarchy, and expect
events of topics they subscribed to. Every topic defines a dynamic notion of “community”,
gathering the processes which publish on that topic or subscribe to it. Our algorithm is com-
pletely decentralized (no brokers), yet does not require from any process to ever receive,
store or forward, events from a community it is not part of.

We order the communities according to the topic inclusion relationships to efficiently
manage the flow of information within, and between the communities, as well as limit the
memory consumption of each process. Processes can control, for each of their communities,
the trade-off between the message complexity and the reliability of event dissemination. We
convey this trade-off through analysis, simulations and measurements obtained with a full
implementation of our algorithm.

Key words: Multicast, peer-to-peer, reliability, topic-based publish/subscribe

? This paper is a revised and extended version of a paper that appeared in the proceedings
of 5th IEEE International Conference on Dependable Systems and Networks (DSN’ 04),
under the title Data-Aware Multicast.

Email address: Rachid.Guerraoui@epfl.ch (Rachid Guerraoui).

Preprint submitted to Elsevier 25 September 2006

1 Introduction

1.1 Context

The publish/subscribe interaction scheme is very attractive for building large scale
distributed applications, especially in situations where a user has better things to
do than poll a specific site to find out what is new. In its topic-based form (the
most popular variant of publish/subscribe), events are published to “topics”, which
can be viewed as named logical channels. Subscribers expect to receive all events
published to the topics to which they subscribe. With the topic being the focus, pub-
lishers and subscribers can continue to operate normally regardless of each other.
This is in contrast to the traditional tightly-coupled client-server paradigm, where
the client cannot post messages to a disconnected server, nor can the server receive
messages unless the client is running.

Clearly, the publish/subscribe interaction pattern provides the opportunity for better
scalability than the traditional client-server one. This goes however through design-
ing a scalable underlying publish/subscribe infrastructure. The main functionality
of such infrastructure is the delivery of published events from producers (publish-
ers) to interested consumers (subscribers). Publishers publish information events
through the infrastructure and subscribers express their interest in specific events
through the infrastructure. Building a centralized publish/subscribe infrastructure
is convenient but does not scale. Many systems rely on brokers to improve the reli-
ability. Tibco [1], iBus [2] and Vitria [3] were early innovators, but others followed
the path: IBM’s MQSeries [4], Microsoft’s MSMQ [5], and the Java Message Ser-
vice [6] (as implemented by IBM, Sonic, Sun and BEA).

Broker-based solutions (e.g., NNTP [7]) have limited scalability: brokers represent
bottlenecks and may impose unacceptable regulations on the rest of the processes. It
is thus intriguing to figure out how to implement a publish/subscribe infrastructure
in a completely decentralized (also called peer-to-peer) manner. In a sense, we can
see in each topic a community of processes that collaborate to exchange/forward
events of interest 1 . As topics are usually organized according to a hierarchy, this
would lead to a hierarchization of communities.

1.2 Challenge

Ideally, we expect from a topic-based publish/subscribe infrastructure to be highly
reliable: every process, when subscribing to a given topic, should receive all events

1 In a publish/subscribe infrastructure, a process is interested in a topic if it either publishes
events of that topic or if it subscribes to this topic.

2

published on that topic as well as on any of its subtopics. In addition, even if it
seems natural that processes collaborate to disseminate events within their com-
munity, it might not seem fair for processes to help disseminate events related to
communities they are not part of; events from such communities might rather be
viewed as parasite events. To illustrate this, assume an event-based system used
to exchange events about the soccer world cup. French fans would hardly accept
to store, or forward events related to the Italian team. As we will discuss below,
this natural constraint raises some problems when considering large scale event
dissemination.

In general, it is appealing to consider gossip-based (also called epidemic or un-
structured) algorithms ([8–12]) to support large scale information dissemination in
decentralized systems. According to these algorithms, once a process has joined the
system, the process requires only local neighborhood knowledge [11] to dissemi-
nate, with a high reliability, events to a large set of processes: this is not surprising
as the dissemination scheme is patterned after the spread of a contagious disease
among a population. However, implementing the topic-based publish/subscribe ab-
straction with a gossip-based scheme, while eliminating parasite events, is not a
trivial task. In gossip-based algorithms [13], processes are typically merged to-
gether into one big community, irrespective of their interests. Consequently, events
are gossiped among the entire set of processes, relying on processes storing and
forwarding all events, including parasite ones.

The very same problem occurs if, for building a publish/subscribe infrastructure,
the dissemination is based on distributed hashtables (called DHTs) as for Scribe [14]
using Pastry [15] or HiCan [16] using CAN [17]. With such a scheme, typically
considered as structured in contrast to gossip-based ones, which are considered
unstructured, the processes are uniformly distributed according to their identifiers
along a virtual ring (representing the DHT). A process only needs to know a small
subset of the entire set of processes to route events to every process in the system.
However, due to the uniform disposition of the processes in the ring, the creation
and use, for instance, of a spanning tree to route events of a specific topic t to all
the processes interested in t, is likely to involve processes which are not interested
in t, hence generating parasite events. Furthermore, spanning trees are sensitive to
failures of processes located at the nodes of those trees and even if fault-tolerance
mechanisms can be used, these are resource-consuming and the nodes must have
more bandwidth and processing power than regular processes.

Breaking the global community into smaller ones, corresponding each to a topic,
is an appealing approach to prevent parasite events. One can indeed disseminate
events inside smaller groups without hampering the reliability of the dissemina-
tion. However, as we discuss below, this approach significantly increases memory
complexity, because inclusion relationships between topics engender an unpleasant
phenomenon that we call hereditary peers. This phenomenon is related to the need
of maintaining enough overlap between multiple communities of processes in or-

3

der to enable reliable propagation. In short, a straightforward mapping of topics to
communities either leads to gather exactly (1) the publishers of a topic, or (2) the
subscribers to a topic. With (1), a subscriber to a topic t not only has to become
member of the community corresponding to t, but also of any community corre-
sponding to a subtopic of t. This increases the subscriber’s memory consumption to
a large extent through redundant information, and involves further communication;
the subscriber also has to be informed of the creation of any new subtopics of t,
and has to join these communities eventually. With (2), a publisher of a topic t has
to publish its events within the community corresponding to the topic t and all the
super-topics of t. This increases the load on the publishers, making of these bottle-
necks in the dissemination of events. The hereditary peer phenomenon is exempli-
fied by [18] that exploits overlappings between the communities to limit redundant
gossiping of events (hence parasite events). This approach is useful when processes
are interested in many distinct topics, yet does not take into account inclusion rela-
tionships between topics, hence its sensibility to the number of subtopics of a given
topic.

Content-based publish/subscribe systems might at first glance appear to fulfill our
requirements but however are all prone to either hereditary peers or parasite events.
For instance, SIENA [19] and Gryphon [20] rely on a network of dedicated application-
level routers (“brokers”) to achieve efficient content-based filtering and forwarding.
In [20], process subscriptions are matched to IP multicast groups. Therefore, the
maintenance and the creation of the matching between interests and IP multicast
groups involves all processes and is maintained by a central server (a single point
of failure). In [19], the published events are routed from the more general filter to
the most specific one: brokers responsible for a general filter are heavily loaded. In
Hermes [21], the propagation of events is also done with the help of brokers and
follows a top-down approach: a parent topic must keep a reference to all its descen-
dants (i.e., hereditary peers phenomenon). In PMcast [22], as in Astrolabe [23], the
processes are arranged into a hierarchy to (1) reduce the memory complexity of
each process and (2) perform efficient filtering without the help of brokers. How-
ever, the processes elected to accomplish the actual filtering receive parasite events
and, especially if higher up in the hierarchy, must be capable of handling a large
number of events.

To summarize, it is challenging to devise a decentralized topic-based publish/subscribe
dissemination algorithm, be it gossip-based or DHT-based, while preventing pro-
cesses from dealing with parasite events, without leading to a large and unbalanced
load on processes.

4

1.3 Contributions

This paper presents a simple decentralized algorithm, denoted CAMCAST (for community-
aware multicast), that reliably disseminates events in a large-scale system made up
of dynamic communities of processes related by topics of interest. Our algorithm
ensures that processes only help disseminating events in their communities and
prevents both parasite events and hereditary peers.

CAMCAST organizes the set of communities following the hierarchical disposition
of the topics they represent. Published events are propagated within every com-
munity in a gossip-based manner, and disseminated in a balanced manner between
communities related by topic inclusionships, following the bottom-up approach of
the topic-hierarchy. This organization of communities (or “community-awareness”)
is key to prevent both hereditary peers and parasite events. Basically, each commu-
nity representing a topic t must only forward the events, related to the topic t, to
their “parent” communities (i.e., the communities representing the parent topics of
t). The parent communities in turn forward the events to their parent communities
and so on until the events reach the root ancestors of the topic-hierarchy. The pro-
cesses within a community that actually forward the events are chosen in such a
way that the overall load is evenly balanced among them.

CAMCAST induces a memory complexity of any process within a community of a
topic t is in the order of lnNt + ct + zt: Nt denotes the number of processes in the
community of a topic t whereas ct, zt denote constant values for each t explained
in more details later. On the other hand, The message complexity involved in the
publication of an event of topic t grows in the order of O(Nmax(t) · lnNmax(t)),
where max(t) denotes the (super) topic of t with most subscribers. Interestingly,
the processes can trade, for every topic pertaining to the considered hierarchy, the
message complexity of the dissemination with the reliability of this dissemination.
This trade-off is useful for adjusting the reliability of the dissemination between
communities in the same hierarchy according to the reliability of inter-process com-
munication.

CAMCAST is modular in that the dynamic management of peers within each com-
munity is achieved by a separate decentralized membership algorithm: we can use
here a gossip-based or a DHT-based membership subprotocol. We exploit the in-
formation provided by the underlying membership protocol to gossip events in-
side a community as well as between topic-related communities. Assuming for
instance that CAMCAST makes use of an underlying membership subprotocol M
(e.g., [9,11,12]) then, in the extreme case where no topic relationship information
is available (or if there is only one topic in the system), CAMCAST does not de-
grade in terms of reliability, or increase in memory, message, or latency of the bare
membership subprotocol M .

5

1.4 Evaluation

We convey the performance of CAMCAST with analytical results, simulations as
well as with performance measurements obtained with a fully decentralized Java
1.5 implementation of our algorithm (over Sun Ultra workstations using Solaris 8
and connected through a 100MB LAN).

Our analytical results compare CAMCAST, in terms of message complexity, mem-
ory complexity, latency complexity and reliability, with three gossip-based alter-
natives: (a) gossip-based broadcast, (b) gossip-based multicast and (c) hierarchical
gossip-based broadcast. We also compare, in terms of reliability and efficiency,
three different versions of a Java implementation of CAMCAST, each using a dif-
ferent underlying membership algorithm: (1) an unstructured (i.e., gossip-based)
membership algorithm ([24]), (2) a semi-structured membership (i.e., both DHT-
based and gossip-based) algorithm ([25]), and (3) a completely structured (i.e.,
DHT-based) membership algorithm ([25]).

In short, our simulation performed on a hierarchy of three communities made of
1000, 100 and 10 processes respectively demonstrate that, with CAMCAST, the re-
ception probability of an event is degraded by only 5% despite the crash of 30% of
the processes with respect to a gossip-based approach (that does not preclude par-
asite events). Furthermore, the measurements conducted over our implementation
show that, in a hierarchy of three communities made of 80, 30 and 7 computers
respectively, it is possible to achieve 100% reliability while only involving 7% of
the processes in the propagation of the events between the communities.

1.5 Roadmap

The rest of the paper is structured as follows: Section 2 introduces the model we
consider. Section 3 describes CAMCAST. Section 4 analyses it and compares it with
alternative approaches. Section 6 presents simulation and implementation results.
Finally, Section 7 summarizes the paper.

2 Distributed System Model

2.1 Terminology and Notations

A community corresponding to a topic t, denoted by Πt, is a set of processes that
either publish events of topic t, or have subscribed to topic t (in both cases, the
processes are said to be interested in t). A process pi is said to participate in a

6

community Πt (e.g., .soccer.italy) if pi is interested in t. For presentation simplicity,
we assume that a process participates in one community Πt in the topic hierarchy
S of t only (and as a consequence to all subtopics of t) and a topic t has only
one super-topic (single inheritance). We come back to the issue of subscribing to
multiple topics as well as to the multiple inheritance problem in Section 3.6. The
topic that does not have any super-topic is called a root topic (thus, in the single
inheritance case, there is only one root topic in a topic hierarchy S). For instance,
in .soccer.italy, the first . sign represents the root topic. The single super-topic of
a topic t is denoted super(t). The root community is the community of processes
interested in the root topic. The level of a topic t in a topic hierarchy S is the
length of the path from the root topic of S to t. The depth of a topic hierarchy S is
equal to the highest level of the topic of the hierarchy and is abbreviated by dpt(S).
By extension, a super-community Πsuper(t) of a community Πt is a community of
processes interested in super(t). We talk about inclusions of topics when a topic u is
a super-topic of t (in this case we say that u includes t). The same goes for inclusion
of communities. For instance, in .soccer.italy, soccer includes italy. Finally, we say
that pk (∈ Πu) is a super-process of a process pi (∈ Πt) if pk is participating in a
super-community Πu of Πt.

We denote by Ψu
m, a subset of the set of processes interested in topic u and known

by process pm. A process pi communicates with another process pj via unreliable,
i.e., best effort, channels and processes might crash and recover (a process that is
not crashed is said to be “alive”). The number of processes in a community Πt is
denoted by Nt which represents the cardinality of Πt.

A published event of a specific topic t is denoted by Et
j . The topic table for a

specific topic t of a process pi, denoted by Tablet
i, contains information about pro-

cesses interested in t. The super-topic table for a specific topic t of a process pi,
denoted sTablet

i, contains information about processes interested in super(t). In the
case where no process is interested in super(t), i.e., no direct super-process(es) ex-
ist(s), sTablet

i contains information about processes interested in the next immediate
super-topic of t (e.g., super(super(t))), according to the topic hierarchy level that
includes t.

2.2 Membership Protocols

The basic concepts underlying CAMCAST can be combined with various underly-
ing membership techniques (e.g., DHT-based, gossip-based, see Section 5) to sup-
port the dissemination of events. In this paper, to make our presentation concrete,
we assume the membership technique of [24] as an underlying building block. Ba-
sically, with this technique, each process gossips an event to lnNt + ct target pro-
cesses and the probability that every process receives the event goes to e−e−ct as Nt

7

goes to infinity. 2

3 The CAMCAST Algorithm

In this section, we describe our CAMCAST algorithm. We first the basic idea, then
we go through the algorithm in more details.

3.1 Basic Idea

Consider an event of topic d published by a process p2, and another process p5

subscribing to topic a, where a is the super-topic of d. There are two basic ways
according to which events of topic d can be transmitted to p5:

(1) A community is created for the publishers of a topic (this is done for each
topic and corresponds to the dashed arrows in Figure 1); a subscriber (p5)
of topic a becomes a member of the community Πa and member of all the
communities of the subtopics of a (in this case d). When an event of topic d is
published, this event is only disseminated within Πd.

(2) A community is created for the subscribers of a topic (this is also done for
each topic and corresponds to the plain arrows scenario of Figure 1); the sub-
scriber p5 for topic a becomes only a member of the community Πa. When an
event of topic d is published, this event is disseminated in the community Πd

and to all the communities of all the super-topics of d.

p
2
 publish()

p
5
 subscribe(a)

d

a

E1
d

E1
d

E1
d

E1
d

E1
d

Fig. 1. Publication/Subscription alternatives. The 1st alternative is represented by the
dashed arrows. The 2nd alternative is represented by the plain arrows and our approach
is represented by the dotted arrows

The first approach overloads the subscribers, which must store redundant member-
ship information, whereas the second overloads the publishers, which must publish

2 Note that this probability assumes a random membership algorithm [24]. In practice, this
can at best be approximated [26].

8

in several communities. CAMCAST follows the second approach but limits the load,
for both the publishers and the subscribers (dotted arrows of Figure 1).

We exploit the topic hierarchy to limit the membership information maintained by
every process. The processes are split into communities corresponding to the topics
they are participating in. These communities are created and maintained dynami-
cally when the processes join or leave the system. To join a community, a process
goes through an initialization phase to initialize the topic and the super-topic ta-
bles (that compose the membership table) for that process. Once the process joins
a community, the underlying membership algorithm takes care of maintaining the
topic tables.

The dissemination of an event is depicted in Figure 2. Namely, a process p1 sends
its events to at least one process, p2, from its super-topic table, and then gossips
the event to selected processes (p3, p4) in its community. When a process (p2, p3

or p4) receives the event for the first time, it gossips the event within its commu-
nity and, with a certain probability, disseminates the event to some process in its
super-topic table through upward messages (inter-community messages employed
to disseminate events from a community to its super-community). As long as there
is a super-community with participating processes, the event shifts up to the next
super-community. When the event reaches the root community, the processes re-
ceiving the event only gossip it in their community. Note that it is not mandatory
for a publisher p1 to ensure the propagation of the events into its super-community.
If p1 fails to do so, another process (here p4) from the community does the job for
p1. Hence, once a publisher (p1) has transmitted its event to at least another process
in its community, the publisher can leave this community. This “infect and die”
scheme imposes very little on the availability of the processes.

3.2 Membership

In CAMCAST, every process participating in a community Πt maintains infor-
mation about other processes participating in Πt and the direct super-community
Πsuper(t).

3.2.1 Membership Tables

The identifiers (IDs) of selected processes participating in Πt are stored in a topic
table (Tablet

i, see Figure 3) and maintained by the underlying membership algo-
rithm (which sets the size of the topic table). The second table (super-topic table,
sTablet

i) contains IDs of several processes participating in the super-community of
the community corresponding the topic of interest. This table has a constant size zt.

Note that the super-topic table might not contain IDs of processes participating in

9

p
1

p
3

p
4

∏
g

p
2

∏
d

∏
a

Topic hierarchy

g

d

a

Processes
Community

Fig. 2. Dissemination in CAMCAST

the direct super-topic of the topic of interest. We will come back later to this issue.

p
2
 ∈ ∏

super(t)
p

6
 ∈ ∏

super(t)

Super Topic Table
Topic Table

p
9
 ∈ ∏

super(t)

p
1
 ∈ ∏

t

p
3
 ∈ ∏

t

p
4
 ∈ ∏

t

p
7
 ∈ ∏

t

p
8
 ∈ ∏

t

Fig. 3. Super-topic and topic table for a process interested in topic t

3.2.2 Linking Communities

If a process pi in a community Πt receives an event, pi is responsible for dissemi-
nating this event to other processes of that community. The events are also dissem-
inated to the processes participating in Πsuper(t).

An important question here is how to establish the link between communities Πt

and Πsuper(t); roughly, two communities, Πt and Πsuper(t), are said to be linked if there
is at least one process in Πt that can send a message to a member of community
Πsuper(t). This problem can be separated into two sub-problems: (1) creating links
between the different communities when initializing the super-topic tables (i.e., the
bootstrapping, see below) and (2) maintaining the information of the super-topic

10

tables consistent (i.e., keeping the communities in touch, see below).

Because any process pi has to maintain membership information of only its direct
super-topic, the new subtopics can be added dynamically into the system in a com-
pletely transparent manner for pi (pi does not have to maintain any membership
information about processes interested in subtopics to receive events from them).
Moreover, the processes have to take care of only two membership tables for each
topic t of interest, irrespective of the total number of the subtopics of t. This allows
dynamic changes of the topic hierarchy. As we pointed out in the introduction, if
the topic hierarchy contains only one topic, CAMCAST does not use (1) the ini-
tialization and (2) the maintenance algorithms and hence simply falls back into the
underlying membership algorithm with no degradation.

3.3 Bootstrapping

If a process that wants to join the system (see Figure 5 for the pseudo-code) is pro-
vided with contacts belonging to the community Πsuper(t), then the link is directly
established (lines 5–8, Figure 5). This bootstrap mechanism is however not always
feasible in dynamic systems. The second possibility is for the process to ask other
processes (i.e., neighborhood(pi)), 3 via an initialization message specifying the
topic of interest, about processes that are participating in Πsuper(t), and so on recur-
sively until a (or a set of) process(es) participating in Πsuper(t) is (are) found. 4 This
is done via a task (FIND SUPER CONTACT, lines 14–28, Figure 5). As soon as a
process is found, the super-topic table is initialized and the FIND SUPER CONTACT

task can be stopped (lines 31–32, Figure 5).

If no such process exists 5 , a new initialization message is sent specifying two top-
ics of interests: super(t) and super(super(t)). Recursively, if no process participat-
ing in either Πsuper(t) or Πsuper(super(t)) is found, after a timeout period associated with
the message, the scope of the search is enlarged further by adding, to the initializa-
tion message, the super-topic of the previous topic of interest, and so on until the
root topic is contained in the initialization message (lines 19–27, Figure 5). Note
that the reason why we do not include, in the initialization message, all the topics
of interest, up to the root topic, is to prevent processes interested in the root topic
to reply to all initialization messages. This would basically corresponds to unde-
sirable situation where a community is created for the publishers of a topic (see

3 For instance, neighborhood(pi) can contain processes that are in the same local area-
network than process pi (i.e., that can be reached by pi via IP multicast messages).
4 Note that the initialization message can contain a time to live indication (TTL) to not
flood the network.
5 The fact that no process is participating in Πsuper(t) does not imply that no process is
participating in Πsuper(super(t)) or any of its super-communities (in some sense, there is a
lack of participating processes at a specific topic in the topic hierarchy)

11

Section 3.1).

As soon as a process pi interested in one of the topics specified in the initialization
message send by a process pj is found, the super-topic table of pj is initialized with
pi. A joining process pj keeps on sending initialization messages until it finds such a
process pi . However, it may happen that the process pi found is not participating in
Πsuper(t) but instead in a super-community of Πsuper(t). In this case, pj participating
in Πt keeps searching for processes participating in Πsuper(t) (line 34, Figure 5).
Figure 4 depicts the bootstrapping protocol.

p
1
 ∈ ∏

g

p
1

1.
d

timeout

p
1

2.
d,a

p
5

p
1

3.
d

a

p
5
 ∈ ∏

a

Fig. 4. Bootstrapping

As soon as pj has an initialized super-topic table, pj disseminates its super-topic
table using the updates of the underlying membership algorithm, to the other pro-
cesses of the community. When a process pk receives a message containing a super-
topic table, pk merges that information with its own super-topic table (lines 6–9,
Figure 6, the MERGE function consists in replacing the failed processes with the
fresh ones obtained from the membership service). This bootstrapping technique
relies here only on a weakly consistent global membership. A strongly consistent
overlay network (e.g., [15,17]) would also make it easier to find processes partici-
pating in a specific topic (see Section 5.2).

3.4 Keeping Communities in Touch

We discuss now how to maintain the super-topic table of a process pi (see Figure 6
for the pseudo-code), especially when processes, whose IDs are stored in the super-
topic table of pi, crash or leave the community. In this case the super-topic table of
pi is outdated and it is not anymore possible for pi to propagate events to its super-
community. For that purpose, each process, with a probability psel

t (sel in psel
t stands

for selected, see below for a precise definition of this probability), tries to find out
if the processes in its super-topic table are alive (lines 16–23, Figure 6, the CHECK

function consists in returning the total number of processes that are alive in the
super-topic table). The detection of alive processes relies on timeouts. If the number
of super-processes that are alive is smaller than a certain threshold τ (0 ≤ τ ≤ zt),
then the process asks all alive processes in its super-topic table to provide it with
information (identifiers) about zt − τ “new” processes participating in the super-
community (lines 19–21, Figure 6). This information is then disseminated using the
underlying membership algorithm. A pro-active protocol is used to avoid restarting
the bootstrapping protocol if we detect that no super-process is available when an

12

Executed by all pi ∈ Πt

1: initMsg = []
2: {Done only the first time the message is received}
3: {u super-topic of t}
4: upon RECEIVE(REQCONTACT,pi,initMsg) by pm ∈ Πu from pi do
5: if Ψu

m 6= ∅ then
6: SEND(ANSCONTACT,Ψu

m) to pi;
7: RETURN;
8: end if
9: {We try to find a contact up to a certain timeout}

10: if initMsg has not expired then
11: SEND(REQCONTACT,pi,initMsg) to neighborhood(pm);
12: end if
13: end upon

14: {Executed each time a timeout occurs, if started}
15: task FIND SUPER CONTACT

16: {A contact is known}
17: if contact known then
18: add the contact to sTablet

i ;
19: else
20: {done at the first time}
21: if initMsg = [] then
22: initMsg[0] = t;
23: else
24: add super(initMsg[initMsg.length]) to initMsg;
25: end if
26: SEND(REQCONTACT,pi,initMsg) to neighborhood(pi);
27: end if
28: end

29: {u super-topic of t}
30: upon RECEIVE(ANSCONTACT,Ψu

m) by pi from pm ∈ Πu do
31: if u == t then
32: stop FIND SUPER CONTACT;
33: else
34: remove all v in initMsg that include u;
35: end if
36: sTablet

i = MERGE(sTablet
i ,Ψu

m);
37: end upon

Fig. 5. Initialization algorithm used to find processes interested in the super-topics of a
topic.

event is published. The use of a reactive protocol would have implied a bigger
dependency between the propagation of an event and the availability of the process
responsible for that propagation (as the bootstrapping protocol can take some time).
For the sake of reliability and load-balancing, it is also possible to replace super-
processes in the super-topic table even if those are available.

3.5 Dissemination

Once the bootstrap achieved, a process pi willing to disseminate an event of topic
t proceeds as follows: the event is disseminated (1) to the processes of pi’s super-
topic table and (2) to selected processes of its topic table. The super-process dis-

13

Executed by all pi ∈ Πt

1: {u super-topic of t}
2: upon RECEIVE(NEWPROCESS,pi) by pm ∈ Πu from pi do
3: {The super-process sends a set of available super-processes to pi}
4: SEND(NEWPROCESS,Ψu

m) to pi;
5: end upon

6: upon RECEIVE(NEWPROCESS,Ψu
m) by pi from pm ∈ Πu do

7: {The super-topic table is updated}
8: sTablet

i = MERGE(sTablet
i ,Ψu

m);
9: end upon

10: {Executed periodically}
11: task KEEP TABLE UPDATED

12: if sTablet
i == ∅ then

13: start FIND SUPER CONTACT;
14: else
15: {Test for some processes if their super-processes are up}
16: if RAND() ≥ psel

t then

17: {If the total number of processes up is below a certain
threshold, we send a message to the super-processes that are
up to receive new fresh membership information}

18: if CHECK(sTablet
i) ≤ τ then

19: for all py that are up ∈ sTablet
i do

20: SEND(NEWPROCESS,pi) to py ;
21: end for
22: end if
23: end if
24: end if
25: end

Fig. 6. Algorithm used to maintain the link between a community Πt and a community Πu,
where u is a super-topic of t

semination (1) can be summarized as follows: with a probability psel
t = gt

Nt

6 , a
process takes part in the dissemination of the event to its super-community (line 3,
Figure 8). If a process decides to act as link for a given event, the process sends the
event to each of the processes of its super-topic table with probability pa

t = at

zt

7 .
The parameter at is set according to the average probability of successful trans-
mission. The dissemination of events within a community (2) goes as follows: the
process sends the event to ln (Nt)+ct processes, randomly selected in its topic table
(lines 9–14, Figure 8). When receiving a new event for the first time, every process
(of either the super-community or the community in which the event was initially
published) forwards once the event using the dissemination algorithm (lines 5–10,
Figure 7).

6 1 ≤ gt ≤ Nt, where gt represents the number of processes that try to contact processes
that are in the super-topic table of pi.
7 1 ≤ at ≤ zt, where at determines the number of processes in the super-topic table that
receive the event, lines 4–6, Figure 8

14

Executed by all pi ∈ Πt

1: function SUBSCRIBE(t) by pi

2: Start membership algorithm for t if not already done;
3: Start maintain links algorithm for super(t) if not already done;
4: end

Executed by all pi

5: function RECEIVE(Et
j) by pi

6: if Et
j not received then

7: DISSEMINATE(Et
j);

8: DELIVER(Et
j);

9: end if
10: end

Fig. 7. Subscription/Reception algorithm

Executed by all pi ∈ Πt

1: function DISSEMINATE(Et
j) by pi

2: SUBSCRIBE(t);
3: if RAND()≥ psel

t then
4: for all py ∈ sTablet

i do
5: with probability pa

t SEND(Et
j) to py ;

6: end for
7: end if
8: Ω = ∅;
9: for (j=0;j≤ln(Nt)+ct;j++) do

10: {Send the message randomly to processes in our group}
11: select randomly a process py ∈ Tablet

i−Ω;
12: SEND(Et

j) to py ;

13: add py to Ω;
14: end for
15: end

Fig. 8. Dissemination algorithm

3.6 Subscribing to Unrelated Topics and Dealing with Multiple Inheritance

In the case where a process pi wants to subscribe to multiple topics that do not
include each other or must deal with a multiple inheritance topic hierarchy, pi has
obviously to take care of multiple topic and super-topic tables and one topic and
multiple super-topic tables respectivelly. This is also the case with the alternatives
presented in Section 3.1 and this is not a drawback induced by our CAMCAST
algorithm. However, as we will see in Section 4, pi needs to take care of only two
membership tables per topic t pi is interested in, no matter the number of subtopics
of t.

15

4 Analysis and Comparisons

We discuss here the scalability of our CAMCAST algorithm with respect to message
and memory complexity as well as reliability and latency. We furthermore compare
each of these characteristics with three alternative approaches used to disseminate
events in unstructured systems: (a) a gossip-based broadcast, (b) a gossip-based
multicast and (c) a hierarchical gossip-based broadcast. For the sake of fairness, all
approaches use the same membership technique (i.e., that of [24]).

In short, CAMCAST is better in terms of memory complexity than approaches (b)
and (c) and sometimes also than approach (a) without hampering the message and
latency complexities and without receiving any parasite events (this is not the case
with approach (a)). We also show that it is possible for CAMCAST to achieve the
same reliability than the alternative approaches in tuning its internal parameters
(psel

t , pa
t and zt).

4.1 Assumptions

For clarity of presentation, we denote in this section a topic by ti instead of simply
t (here, i ∈ [0, x − 1], where x ∈ N∗). The topic ti has a super-topic super(ti)
which is denoted by ti−1. This super-topic has itself a super-topic super(super(ti))
which is denoted by ti−2, and so on recursively until the root topic t0. The depth
of the topic hierarchy dpt(S) is denoted by x. We assume in the analysis that each
community corresponding to a topic contains at least one process. This is required
for measuring message complexity, as well as reliability and latency. Finally, we
consider the case where the topics induce each other.

4.2 Alternative Approaches

In the gossip-based broadcast approach (a), each time an event is sent, it is broad-
cast in the entire system. This uses membership tables of size lnn+ c, as explained
in [27]. In the gossip-based multicast approach (b), the process has one member-
ship table for every topic of interest (this is the approach where a community is
created for the publishers of a topic, see Section 3.1). This approach is used in
several algorithms (e.g., [12,9,10]), which do not exploit the topic inclusion rela-
tionships. Finally, the hierarchical gossip-based broadcast approach (c), presented
in [24], creates subcommunities (that do not depend on the interests of the pro-
cesses in each community) and connects these subcommunities to reduce the over-
all memory complexity. The system is split into two levels. The first level contains
communities of processes that exchange events between them (intra-communities

16

events). The second level is responsible for propagating the events between the
communities.

4.3 Message Complexity

4.3.1 Analysis

In the ideal case (according to [27], cf. also [24]), all processes in a community Πti

receive every event that is published in Πti . The overall number of events sent in
the community Πti is upper bound by: Nti · (lnNti + cti), as each process sends
lnNti + cti events. Furthermore, several processes in Πti additionally disseminate
the events to the processes in Πti−1

. This number of upward messages is equal to:
nbUpwardMsgti

= Nti · psel
ti
· pa

ti
· zti · psucc

ti
.

This corresponds to the average sum of events sent by the processes of Πti (Nti),
which have decided to act as links (psel

ti
), to the processes chosen (pa

ti
) within those

from the super-community (zti) and effectively received (psucc
ti

). This probability
depends on the availability of the processes as well as on the reliability of the links.
For the sake of generality, we make this probability depend on the topic to simulate
weakly interconnected communities.

Hence, the total number of events sent from the community Πti , all the way up to
the root community, is:

0∑
i=x−1

(Nti · (lnNti + cti)) +
0∑

i=x−2

(Nti · psel
ti
· pa

ti
· psucc

ti
· zti) (1)

The two sums follow from the fact that the processes participating in the root com-
munity do not need to disseminate events to any higher level. In the worst case (in
terms of message complexity), Equation 1 is upper bound by (∀ti):
zmax = max(zti), Nmax

ti
= max(Nti), cmax = max(cti) (where max() out-

puts the maximum of the values given in parameter) and by psel
ti

= pa
ti

= psucc
ti

= 1.
Furthermore, as (Nmax

ti
) > 1, Equation 1 is upper bound by lnNmax

ti
:

maxNbMsgSent ≤ x ·Nmax
ti

· (lnNmax
ti

+ cmax) + x ·Nmax
ti

· lnNmax
ti

· zmax (2)

(2) ≤ x ·Nmax
ti

· lnNmax
ti

· (1 + cmax + zmax) (3)

Finally, if x can be upper bound by a constant, we have: maxNbMsgSent ∈ O(Nmax
ti

·
lnNmax

ti
).

17

Of course, this holds iff x is constant (otherwise maxNbMsgSent ∈ O(x · Nmax
ti

·
lnNmax

ti
)), a common hypothesis which is not limiting when considering real-world

applications according to [28]. 8

4.3.2 Comparisons

As described above, the message complexity of CAMCAST is O(Nmax
ti

· lnNmax
ti

).
The other approaches perform as follows:

(a) Gossip-based broadcast. The total membership information of each process
is: totalMbInfo = (c + lnn). This means that the total number of events sent
is: nbMsgSent = n · (c + lnn). As n > 1 and as c is a constant, we have:
maxNbMsgSent ∈ O(n · lnn).

(b) Gossip-based multicast. For a process participating in the root community, the
total membership information is: totalMbInfo =

∑0
i=x−1(cti + lnNti). If a process

wants to publish an event, the total number of disseminated events is:

nbMsgSent =
0∑

i=x−1

Nti(cti + lnNti) (4)

If we upper bound equation (4) by Nmax
ti

and cmax, we have: (4) ≤ x · Nmax
ti

·
(cmax + lnNmax

ti
). As Nmax

ti
> 1, cmax is a constant and x can be upper bound by

a constant, we have: maxNbMsgSent ∈ O(Nmax
ti

· lnNmax
ti

).

(c) Hierarchical gossip-based broadcast (c) The total membership information of
each process is given by (where C represents the total number of communities and
m the number of processes inside a community): totalMbInfo = c1 + c2 + lnC +
lnm. The total number of events sent in the system is:

nbMsgSent = C ·m(c1 + c2 + lnC + lnm) (5)

If we upper bound equation (5) by Nmax
ti

, we have: nbMsgSent ≤ C · Nmax
ti

(c1 +
c2 + lnC + lnNmax

ti
). As c1, c2 are constants, then if we upper bound C by a

constant (same assumptions as the one for x), we have: maxNbMsgSent ∈ O(Nmax
ti

·
lnNmax

ti
). Thus, in short, applying CAMCAST on a membership algorithm does not

hamper its overall message complexity performance.

8 Note that we consider here the message complexity and not the actual value of the total
number of messages sent (this last value depends on x).

18

4.4 Memory Complexity

4.4.1 Analysis

In the model we consider, topics include one another and each process participating
in a community maintains two tables: (1) a topic table and (2) a super-topic table.
The only exception is for the processes participating in the root community: these
only maintain the topic table.

The size of the topic table depends logarithmically on the number of processes par-
ticipating in the community. The super-topic table is of size zti , which is constant.
Hence, the memory complexity of every process is: lnNti + cti ≤ totalMbInfo ≤
lnNti + cti + zti .

Note that this complexity depends neither on the number of super-topics of a topic
of interest, nor on the number of its subtopics.

4.4.2 Comparisons

As described above, the maximal number of membership tables in CAMCAST is
2 (1 if the process is participating in the root community). This number does not
depend on the number of communities a process is participating in, when these
include one another.

(a) Gossip-based broadcast. An event is disseminated to all the processes in the
system. Thus every process has one membership table only and its memory com-
plexity is: lnn + c, where n = (

∑0
i=x−1 Nmax

ti
) � Nmax

ti
.

(b) Gossip-based multicast. Every process maintains a membership table for each
community it is participating in (of size: lnNti + cti). With a maximum of x levels
in a topic hierarchy, and assuming that each subtopic has exactly one super-topic
(except the root), a process deals with at most x tables. The total memory complex-
ity of each process is:

∑j
i=x−1(lnNti + cti).

(c) Hierarchical gossip-based broadcast. Each process maintains two membership
tables. The first table is used when disseminating events to the processes that are
randomly selected to “represent” their community, and a second membership table
to disseminate events in the community itself. The first table has a size of lnC + c2

and the second table has a size of lnm+c1, where C represents the total number of
communities and m the number of processes inside a community. So each process
has a memory complexity of: lnm + lnC + c1 + c2.

The number of tables in CAMCAST is just majored by one, with respect to (a), and
this can be neglected given the huge gain obtained with CAMCAST by avoiding

19

any parasite events (see Section 6). As discussed in Section 3.6, when a process
subscribes to k unrelated topics, it has to deal with 2k topic and super-topic tables
(this is also the case with the traditional gossip-based multicast approach but not
with the broadcast ones). There is a trade-off between the number of topic tables
to store and the number of parasite events: the more topics a process is interested
in, the less parasite events it receives. This trade-off is determined by the topic
hierarchy as well as the interests of the processes. Nevertheless, as discussed in
Section 3.6, it is likely that the drawback of subscribing to multiple topics can be
overcome by subscribing to one common super-topic of those topics.

Finally, the memory complexity for a process in community Πti is lnNti+cti+zti in
CAMCAST. This means that the memory complexity of a process is always smaller
in our algorithm than in approaches (b) and (c) and sometimes even in approach
(a).

4.5 Reliability

4.5.1 Analysis

By reliability, we mean here the probability that every process interested in topic ti
receives a given event published for ti. The results of [24] imply that, if all processes
interested in the same topic ti disseminate an event to lnNti + cti processes, then
the probability that every process interested in ti receives the event is e−e

−cti . The
worst case is when the events are disseminated in all levels of the topic hierarchy
(i.e., in the x levels). This occurs when an event is of the bottom-most topic and
has to be disseminated up to the processes interested in the root topic. This is the
worst case because it sums the passing between topics and super-topics over the
established links.

The number of processes susceptible to send an event from one community Πti to
its super-community is defined by: nbSuscProcti = Nti · psel

ti
· πti .

Where πti is the proportion of processes that actually receive the event through
the underlying membership algorithm for a community Πti (cf. [13]) and hence
are able to propagate the event to Πti−1

. The probability that no event is received
by a member of Πti−1

is consequently defined by: pbNoUpwardMsgti
= (1 −

psucc
ti

)nbSuscProcti ·p
a
ti
·zti .

Where psucc
t is the probability that an event sent from one community of processes is

received in the super-community (for the definition of the other values, we refer to
Section 3). The probability of the propagation of the message to a super-community
is then defined as:

20

pitti = 1− pbNoUpwardMsgti
(6)

With Equation 6, the probability that all processes belonging to a community Πtj

receive the event is: reliability =
∏j

i=x−1(e
−e
−cti · pitti).

The first term of the reliability equation (i.e., e−e
−cti) comes from the gossiping

technique we use (i.e., [24]) and determines the reliability of the dissemination of
an event of topic ti in the community Πti . We can tune cti to trade the reliability of
the dissemination in the community Πti and the total number of messages sent in
this community. The second term of the reliability equation (i.e., pitti) comes from
the specificity of CAMCAST (i.e., “community-awareness”). We can also tune this
parameter (via psel

ti
, pa

ti
and zti) dynamically to trade the number of messages sent

between a community Πti and its super-community. This tuning might turn out to
be important in dynamic systems where the number of processes are constantly
changing. 9 If the number of processes in a community becomes very small, we
make all processes to propagate the events to their super-community.

4.5.2 Comparisons

As described above, the reliability of CAMCAST is:
∏j

i=x−1(e
−e
−cti · pitti).

With this respect, the other approaches perform as follows:

(a) Gossip-based broadcast. With the memory complexity presented in Section 4.4.2,
the reliability is: e−e−c

(b) Gossip-based multicast. With the memory complexity presented in Section 4.4.2,
the reliability is:

∏j
i=x−1 e−e

−cti .

(c) Hierarchical gossip-based broadcast. As explained in Section 4.4.2, the relia-
bility is (see [24] for a complete analysis): e−Ce−c1−e−c2 .

The probability that every processes receive an event is thus smaller with CAMCAST
than with other algorithms in the general case, especially for the processes inter-
ested in the root topic. 10 This is because, in CAMCAST, the reliability depends on
the event propagation between communities. However, it is possible to tune this
and achieve, in specific cases, the same reliability as other algorithms. For the sake

9 For example, if the number of processes is growing in a community, we can reduce pitti
to reduce the total number of inter-community messages sent but without hampering the
reliability (as there are a lot of processes).
10 If we have considered the average number of processes that receive an event, the re-
sult would be much more in our favor (because we would have made an average over the
reliability of each community, instead of a multiplication).

21

of simplicity, we consider in the following of this analysis the average case, where,
for every ti, zti is z, Nti is Nt and pitti is pit:

(a) Gossip-based broadcast. CAMCAST achieves the same reliability as (a) when
0 ≤ c ≤ −ln (−x·lnpit). Here c denotes the constant used to determine the number
of processes to disseminate events to in the gossip-based broadcast algorithm (e.g.,
lnn + c). In this case, the memory complexity of CAMCAST is smaller iff: z ≤
lnn + ln (1 + x · ec · lnpit)− lnNt − lnx.

Proof. For CAMCAST to achieve the same reliability as gossip-based broadcast,
we must have:

j∏
i=x−1

(e−e
−c1ti · pitti) = e−e−c

(7)

In the worst case, j = 0, because CAMCAST has the worst performance when a
process is interested in the top most topic. From (7) it follows that:

e
∑0

i=x−1
−e
−c1xi

0∏
i=x−1

pitti = e−e−c ⇔
0∑

i=x−1

e−c1ti − ln
0∏

i=x−1

pitti = e−c (8)

If we assume (for simplification purpose) that all c1ti
are equal to c1, and all pitti

are equals to pit, we have then (8)⇔

e−c1 − lnpit = e−c

x

(1©)⇔ lne−c1 = ln e−c+xln pit
x

(2©)⇔

c1 = ln 1
e−c+xln (pit)

+ lnx⇔ c1 = c− ln (1 + xeclnpit) + lnx

With the following conditions:

• 1©⇔ e−c+xln pit
x

> 0 and as x ≥ 1, thus, e−c+xlnpit > 0 ⇔ c < −ln (−xlnpit).
• 2© We want c1 ≥ 0, this means that ln e−c+xln pit

x
≤ 0 ⇔ e−c + xlnpit ≤

x
(3©)⇔ c ≥ −ln (x(1 − lnpit)). As 1 − lnpit > 0 and as x ≥ 1 (see 3©),

condition 2© implies−ln (x(1−lnpit)) ≤ 0. This means that c ≥ 0 encompasses
c ≥ −ln (x(1− lnpit)).

• 3© This equation holds only if t(1 − lnpit) > 0 which is always the case, as
x ≥ 1 and as 0 ≤ pit ≤ 1.

22

From 1©, 2© and 3© we can setup c1 with respect to c if and only if 0 ≤ c ≤
−ln (−xlnpit). If c < 0 or if c > −ln (−xlnpit), we cannot set c1 in CAMCAST
to have the same reliability as the gossip-based broadcast. This means that if c does
not satisfy the previous property (i.e., c < 0 or c > −ln (−xlnpit)), no matter
what is the size of the super-topic table in CAMCAST, it is not possible to achieve
the same reliability. However, if c satisfies the property, we can replace c1 with its
value depending in c in the lnNti + c1 + zti equation (remember that all c1ti

are
equal to c1) and this leads to satisfying the following inequality (to simplify, we
assume that all Nti = Nt, that all zti = z, which corresponds to the average case):

lnNt + c− ln (1 + xeclnpit) + lnx + z
?
≤ lnn + c

The total membership information of CAMCAST is smaller then the total member-
ship information of the gossip-based broadcast algorithm iff:

z ≤ lnn + ln (1 + xeclnpit)− lnNt − lnx

In short, this means that ln (1 + xeclnpit) must tend to its maximum (which is 0)
and lnn > lnNt + lnx.

2

(b) Gossip-based multicast. CAMCAST achieves the same reliability as (b) when
0 ≤ c ≤ −ln (−lnpit). Here, c denotes the constant used to determine the number
of processes to disseminate events to in the gossip-based multicast algorithm (e.g.,
lnNti + cti , where all cti are the same and equal to c). In this case, the memory
complexity of CAMCAST is smaller iff: z ≤ (x−1) ·(lnNt +c)+ ln (1+ec · lnpit).

Proof.

For CAMCAST to achieve the same reliability as (b), we must have:

j∏
i=x−1

(e−e
−c1xi · pitti) =

j∏
i=x−1

e−e
−c2ti (9)

And in the worst case j = 0, because CAMCAST has the worst performance when
a process is interested in the top most topic. This means that (9)⇔

e
∑0

i=x−1
−e
−c1xi ∏0

i=x−1 pitti = e
∑0

i=x−1
−e
−c2ti

⇔

23

0∑
i=x−1

e−c1ti − ln
0∏

i=x−1

pitti =
0∑

i=x−1

e−c2ti (10)

If we assume (for simplification) that all the c1ti
are equal to c1, all c2ti

are equal to
c, and all pitti are equal to pit, we have then (10)⇔

e−c1 − lnpit = e−c (1© 2©)⇔ lne−c1 = ln (e−c + lnpit) (11)

⇔

c1 = c− ln (1 + eclnpit)

With the following conditions:

• 1© ⇔ e−c + lnpit > 0, otherwise the equivalence in (11) does not hold. This
means that e−c > −lnpit ⇔ c < −ln (−lnpit). We can have the equivalence
here between the two terms because lnpit is always less then 0 as pit is always
less or equal to 1 (remember that pit is a probability; in 3©we show what happens
when pit is equal to 1).

• 2© c1 must be greater or equal to 0, this means that ln (e−c + lnpit) ≤ 0 ⇔
e−c ≤ 1 − lnpit ⇔ c ≥ −ln (1 − lnpit) (we can have the equivalence if
1− lnpit > 0 which is always the case, because e > pit). But 1− lnpit ≥ 1 as
0 ≤ pit ≤ 1, which means that −ln (1− lnpit) ≤ 0. In other terms, this means
that the condition c ≥ 0 encompasses the condition c ≥ −ln (1− lnpit).

• 3© In the case of pit = 1 this means, according to (9) that c1 == c.

From 1©, 2© and 3©, it is clear that c1 can be set with respect to c iff 0 ≤ c ≤
−ln (−lnpit). If c < 0 or if c > −ln (−lnpit), we cannot set c1 in CAMCAST
to have the same reliability as in the gossip-based multicast algorithm. This means
that if c does not satisfy the previous property, no matter the size of the super-
topic table of CAMCAST, then it is not possible to achieve the same reliability.
However, if c satisfies the property, we can replace c1 in the lnNti +c1+zti equation
(remember that all c1ti

are equal to c1) and this leads to (to simplify we assume that
all Nti = Nt, that all zti = z, which corresponds to the average case):

lnNt + c− ln (1 + eclnpit) + z
?
≤ ∑0

i=x−1(lnNt + c)

⇔

lnNt + c− ln (1 + eclnpit) + z
?
≤ x(lnNt + c)

24

This means that the total membership information of CAMCAST is smaller than the
total membership information of the gossip-based multicast algorithm iff:

z ≤ (x− 1)(lnNt + c) + ln (1 + eclnpit)

Remember that the upper equation holds only for values of z that are greater than
0 (if z is less or equal to 0, no dissemination can be made to the upper levels and
hence there is no point in trying to compare the different algorithms).

2

(c) Hierarchical gossip-based broadcast. CAMCAST achieves the same reliability
as (c) when −ln x·(1−ln pit)

C+1
≤ c ≤ −ln −x·ln pit

C+1
. Here c denotes the number of

processes that disseminate events in the hierarchical algorithm, see [24]. In this
case, the memory complexity of CAMCAST is smaller iff: z ≤ c + lnC + ln (C +
1 + x · ec · lnpit)− lnx.

Proof.

For CAMCAST to have the same reliability than in hierarchical gossip-based broad-
cast algorithm, we must have:

∏j
i=x−1(e

−e
−c1ti · pitti) = e−Ce−c1−e−c2

In the worst case, j = 0, because CAMCAST has the worst performance when
a process is interested in the top most topic. Moreover if we assume (again for
simplicity) that all c1ti

are the same (equal to ct), all pitti are the same and equal to
pit, and that c1 = c2 = c we have:

e
∑0

i=x−1
−e−ct

pitx = e−(C+1)e−c ⇔ xe−ct − xlnpit = (C + 1)e−c

⇔

e−ct = (C+1)e−c+xln pit
x

(1©)⇔ ct = −ln (C+1)e−c+xln pit
x

(2©)⇔

ct = lnx + c− ln (xeclnpit + C + 1)

With the following conditions:

25

• 1©⇔ (C+1)e−c+xln pit
x

> 0 and as x ≥ 1, this implies that (C +1)e−c +xlnpit >

0 ⇔ c < −ln −xln pit
C+1

.

• 2© We want ct to be greater or equal to 0, this means that ln (C+1)e−c+xln pit
x

≤
0 ⇔ (C + 1)e−c + xlnpit ≤ x ⇔ e−c ≤ x(1−ln pit)

C+1
⇔ c ≥ −ln x(1−ln pit)

C+1
(as x

and C are greater then 0 and as 0 ≤ pit ≤ 1).

From 1© and 2©, we can setup ct with respect to c iff −ln x(1−ln pit)
C+1

≤ c ≤
−ln −xln pit

C+1
. If c < −ln x(1−ln pit)

C+1
or if c > −ln −xln pit

C+1
, we cannot set ct in CAMCAST

to have the same reliability than in the hierarchical gossip-based broadcast algo-
rithm. However, if ct satisfies the property, we can replace ct with its value depend-
ing in c in the lnNti + ct + zti equation (remember that all c1ti

are equal to ct) and
this leads to the following inequality (to simplify we assume that all Nti = Nt, that
all zti = z, which corresponds to the average case):

−ln (C + 1 + xeclnpit) + lnx + z
?
≤ lnC + c

In this case, the total membership information of CAMCAST is smaller than the
total membership information of the hierarchical gossip-based broadcast algorithm
iff:

z ≤ c + lnC + ln (C + 1 + xeclnpit)− lnx

2

4.6 Latency

4.6.1 Analysis

By latency, we mean here the number of rounds needed by our algorithm to prop-
agate an event into the entire system. A round corresponds to the propagation of
an event from one set of processes to another without transiting by any other pro-
cesses. To measure the latency of a specific community, we assume that the event is
propagated from one community to its super-community with probability 1 (pitti).
Of course a message may never reach it’s destination, incurring a latency of ∞.
This eventuality is however taken into account by our notion of reliability.

According to [29], the number of rounds needed to propagate an event in a com-
munity Πti of Nti processes is:

26

RNti
=

lnNti

ln ln (Nti)
+ O(1) (12)

Applying Equation 12 to our algorithm, we compute three cases:

Best case: In this case, the event is directly propagated from one community to its
super-community. Hence, to propagate an event from community Πtj to community
Πti (i ≤ j): latencymin = (j−i)+RNti

≤ x−1+RNmax
ti

. This implies, latencymin ∈
O(x + RNmax

ti
). And if x is a constant, latencymin ∈ O(RNmax

ti
).

Worst case: In this case, the event is propagated entirely to one community before
being sent to its super-community. This means: latencymax =

∑i
k=j RNtk

+(j−i) ≤
x·RNmax

ti
+(x−1) ≤ x·(RNmax

ti
+1). This implies, latencymax ∈ O(x·(RNmax

ti
+1)).

And if x is a constant, latencymax ∈ O(RNmax
ti

).

Average case: In this case, we compute the average latency in which we assume
that, after

RNti

2
rounds, the event is propagated to the super-community. This means

that: latencyavg =
∑i

k=j

RNtk

2
+(j−i) ≤ x ·(

RNmax
ti

2
+1). This implies, latencyavg ∈

O(x · (
RNmax

ti

2
+ 1)). And if x is constant, latencyavg ∈ O(RNmax

ti
).

4.6.2 Comparisons

The latency is O(RNmax
ti

) for all algorithms except for the gossip-based broadcast
which has a latency of O(Rn). This means that CAMCAST is equivalent, in terms
of latency, to all the other algorithms.

5 Implementation

We report here on a full implementation of a Java 1.5 CAMCAST framework.
In this framework, we have implemented three variants of CAMCAST, each re-
lying on a specific membership service: unstructured, semi-structured and struc-
tured. The code of the unstructured version of our implementation is available at:
http://lpd.epfl.ch/baehni/camult.tgz.

5.1 Application Programming Interfaces

To subscribe to a community or to publish a message in a community, we must first
go through an initialization phase.

27

CommunityManager manager = CommunityManager.getDefaultManager();

The CommunityManager class is responsible for retrieving the different com-
munities that are in the system (either with the help of statically defined gateways
in the unstructured version or with the help of an overlay network).

Once the CommunityManager has been initialized, it is possible to request the
community a process wants to join with the following line of code:

ICommunity community = manager.getCommunity(Class.forName("g"));

Each community is mapped with a Java interface representing the topic of interest,
such that the hierarchy of communities (or topics) corresponds to a hierarchy of
Java interfaces. It is then possible, with the ICommunity object, to subscribe to
the community represented by the previously given Java interface.

MySubscriber subscriber = new MySubscriber();
community.subscribe(subscriber);

The subscribe() method contacts a gateway in order for the process to join
the community. The list of available gateways is provided through a configuration
file in the unstructured case or with the overlay network in the semi-structured
and structured cases. A current limitation of our implementation relies in the fact
that at least one gateway must be available to join a specific community. Hence,
the case where a community is empty is not allowed in our implementation. The
MySubscriber class implements the ICommunitySubscriber callback in-
terface in order to receive the published events asynchronously through the onMessage()
method.

The publication of an event is done through the publish() method:

community.publish(new Message("Hello World"));

The first call to the publish()method does not return immediately as the process
must first join the community it wants to publish an event to. Once the community
has been joined, the event is published following the CAMCAST pattern.

Finally, to cleanly quit the application, a subscriber has to unsubscribe and a pub-
lisher has to leave the community. This is illustrated with the following lines of
code:

// Unsubscribing
community.unsubscribe(subscriber);

//Stop publishing
community.stopPublishing();

28

5.2 Architecture

Our CAMCAST framework uses three different membership services: (1) an un-
structured membership protocol, (2) a semi-structured membership protocol and
(3) a structured membership protocol.

The bootstrapping used in the different implementations is the one where contact
nodes are directly available when a subscriber wants to join a community (i.e., this
corresponds to the lines 16–18 of Figure 4). As presented below, the unstructured
approach is directly provided with contact nodes (or gateways) whereas the semi-
structured and the structured approaches use an overlay network to retrieve those
contacts.

5.2.1 The Unstructured Approach

In this approach, CAMCAST uses a gateway mechanism for bootstrapping (see Fig-
ure 9). Each community has its own gateways; these are highly available processes,
known by all other processes participating in the same community. They provide
bootstrapping contacts to new processes that want to join the system.

Gateways

Topic
table

Unstructured
Membership

pub/sub

CAMCAST

getContact

contact

publish

receive

Fig. 9. Unstructured approach

The underlying membership service is the one of [24] and uses the acquired con-
tacts to construct the topic table for each process participating in a community.
This table is updated when processes join or leave by the membership algorithm.
However, as opposed to our simulations, where the topic table has the ideal size of
lnNt + ct, this table has, in our implementations, different sizes averaging lnNt

entries (depending on the membership service we use). As we will see in Section 6,
this major difference plays an important role in the results we obtain when dis-
seminating an event. The links between a community and its super-community are
also maintained in an unstructured way, by exchanging super-process information
between the processes of a given community.

29

5.2.2 The Semi-Structured Approach

The semi-structured approach uses the membership algorithm mentioned in [24],
but uses an underlying structured overlay network [25] that offers strong search
capabilities for the bootstrapping mechanism (see Figure 10).

Overlay
Network

Topic
table

Unstructured
Membership

pub/sub

CAMCAST

getContact

contact

publish

receive

Fig. 10. Semi-structured approach

Overlay
Network

Topic
table

Structured
Membership

pub/sub

CAMCAST

searchProcesses

processes

publish

receive

Fig. 11. Structured approach

In this scheme, we use the structured overlay network to retrieve contacts for the
super-community (via the getContact() method provided by the underlying
overlay network). However we do not use the structured overlay to populate the
topic table. The membership algorithm used is still the one of [24].

To take advantage of the structured overlay, a process first has to join it, with the
help of overlay-specific gateways. But these gateways are not related to any com-
munity (as opposed to the gateways required in the unstructured approach) and do
not take part in the CAMCAST algorithm.

5.2.3 The Structured Approach

In the third approach, we take advantage as much as possible of the underlying
overlay network in making both the bootstrapping phase and the membership ser-
vice rely on it (thanks to the searchPeers()method of the underlying overlay).
This basically means that the structured overlay gives us directly the both the topic
and super-topic tables (i.e., we do not make use anymore of the membership algo-
rithm of [24]).

Joins and leaves are reflected in subsequent calls to the membership service, which
provides dynamic and uniform random membership tables. As the overlay network
gives us the tables, those have all the same size of lnNt+ct. We update the member-
ship tables at a time interval that is correlated to the subscription change frequency.
The overlay network also takes care of the inter-community links via search re-
quests for a super-community.

30

5.3 Design Overview

The implementation of our framework is decomposed in several packages: (1) p2p,
(2) pubsub and (3) camcast. The different dependencies between the packages
is depicted in Figure 12. To be the most generic as possible, almost each class of the
different packages implements an interface. This let the possibility to have another
implementation without changing the applications.

p2p pubsub

camcast

Fig. 12. Dependencies between the packages

5.3.1 P2P Package

This package encapsulates both the membership and communication primitives
used between the processes of the system. This package contains different classes
we present hereafter.

5.3.1.1 LocalPeer and RemotePeer. A LocalPeer is a singleton class and
represents a local process. During its initialization, a MembershipManager and
a
PipeManager are created (see below). These are used by the membership algo-
rithm as well as by our CAMCAST implementation. A LocalPeer is essentially
defined through its IP address.

A RemotePeer represents a remote process. It is mainly a container for an IP
address and a port to which a process can send messages.

5.3.1.2 RemotePeerWrapper, SuperPeerWrapper and JoinPeerWrapper. These
classes are wrappers for RemotePeer instances. These wrappers are used in the
class
Message to send or receive information about RemotePeer as well as to dis-
tinguish the kind of RemotePeers we are dealing with: (1) a remote peer of the
community, (2) a remote peer of the super-community and (3) a remote peer used
to join a community (e.g., a gateway).

31

5.3.1.3 Message. This class represents a low-level message that is sent between
the different processes of the system. A Message can be used to transport events
(i.e., pubsub.Event) as well as different kind of system messages: (1) to join
or leave a community, (2) to request processes in a community, (3) to request pro-
cesses in a super-community and (4) to request gateways (if needed). Each
Message has (1) an header which defines the message, (2) a community vari-
able defining in which community the message was sent and (3) data containing
the data of the message.

5.3.1.4 InputPipe, OutputPipe and PipeManager. The communication be-
tween different processes of the system is done through an InputPipe and OutputPipe
instances. An InputPipe simply receives instances of Message and forwards
them to a
MessageDispatcher. A process can have one InputPipe only.

An OutputPipe is used to send messages between two processes. Thus, a pro-
cess can have multiple instances of OutputPipe if it wants to send messages to
different processes. The creation of an OutputPipe is done via a
RemotePeer instance and the sending of a Message is achieved through the
sendMessage() method.

The creation of both the InputPipe and OutputPipe is done via a
PipeManager. This class contains a method getInputPipe() for retrieving
the InputPipe as well as for creating different instances of OutputPipe (i.e.,
createOutputPipe()).

5.3.1.5 MessageDispatcher and IPipeListener. An instance of a MessageDispatcher
is used to dispatch the Messages received from the InputPipe to the classes
that have implemented the IPipeListener interface. This interface has an onMessage()
method that is called by the MessageDispatcher when a new Message is re-
ceived.

The set of classes that are interested to be notified when a new Message is received
by the dispatcher is given as a parameter of the constructor.

5.3.1.6 MembershipManager. The MembershipManager class makes the
interface between the implementation of our CAMCAST algorithm and the low-
level membership algorithm used to join or leave a community. Joining and leaving
a community is done through the joinCommunity() and leaveCommunity()
methods. The implementation of these methods depends on the underlying algo-
rithm used (structured, unstructured and semi-structured).

32

In the unstructured version, the MembershipManager is responsible for provid-
ing the gateways for joining a specific community. This is done with the getGateway()
method. This method is replaced in the structured version by the searchPeers()
method which returns a set of RemotePeers needed for constructing the different
membership tables.

5.3.2 Pubsub Package

The pubsub package contains the primitives of the topic-based publish/subscribe
abstraction. This package makes the link between the p2p and camcast packages
and defines the callback interface needed by the subscribers to receive events.

5.3.2.1 Event. The class Event represents an event. An event contains data,
an unique identifier, a reference to the RemotePeer that created the event as well
as a round number. For convenient purpose, it is also possible to set the probability
of upward propagation of a event via the setUpwardProb() method.

As our CAMCAST algorithm ensures that no process ever receives an event it is
not interested in, an event does not contain information about the type of the data.
When a process receives an Event it can directly makes use of the data without
having to perform a subtyping test.

5.3.2.2 Community and ICommunitySubscriber. A Community instance rep-
resents the community abstraction of our CAMCAST algorithm. As we will see, a
Community is retrieved with the help of a CommunityManager. A Community
makes the link between our CAMCAST implementation and the high-level applica-
tions using it. A Community is hence responsible for dispatching the different
method calls it receives to the correct methods of the CAMCAST implementation.

A Community defines several methods for subscribing to a community (i.e.,
subscribe()), for leaving a community (i.e., unsubscribe() or
stopPublishing()) and for publishing an event (i.e., publish()). The
subscribe()method takes an instance of a ICommunitySubscriber in pa-
rameter. This interface represents a callback and its onEvent() method is called
whenever a new event is received through the wire.

5.3.2.3 CommunityManager. The CommunityManager is responsible to re-
trieve a specific Community from the topic it represents. The communities in our
implementation all relates to interfaces and thus, to retrieve a community, an in-
stance of java.lang.Class needs to be provided to the getCommunity()

33

method of the CommunityManager. It exists only one instance of a CommunityManager
per process (this is a singleton class).

Together with the retrieval of a community and a super-community (via the
getCommunity() and getSuperCommunity() methods respectively), the
CommunityManager implements the IPipeListener callback interface (see
upper). This allows the CommunityManager to receive instances of Message
and to dispatch them to the corresponding Community which in turn forwards
them to the instance of our CAMCAST implementation.

5.3.3 Camcast Package

This package contains all the classes that implement our CAMCAST algorithm.

5.3.3.1 IAlgFactory and SuperAlgFactory. IAlgFactory represents an in-
terface used for retrieving the algorithm which updates the instances of TypeTable.
The retrieval of the algorithm is done via a call to the getUpdateAlg() method.
This method returns an instance of a IUpdateAlg.

The SuperAlgFactory represents an implementation of the IAlgFactory
interface and its getUpdateAlg() returns simply an instance of a
SuperUpdateAlg (which is a subtype of IUpdateAlg).

5.3.3.2 SuperUpdateAlg. This class implements the algorithm for updating the
super-topic table, see Section 3. It basically contacts the different processes in the
super-topic table to check if they are still alive and if this is not the case replace the
faulty processes with new ones.

5.3.3.3 TypeTable. This class represents a membership table of our algorithm;
this can be either a topic table or a super-topic table. 11 An instance of a TypeTable
stores an instance of a IAlgFactory which provides the algorithm responsible
for updating the table. Furthermore a TypeTable is linked to a specific Community
and contains a list of instances of RemotePeer that are interested in the same
topic.

In the unstructured and semi-structured implementation, the membership algorithm
associated with a TypeTable is SCAMP [24]. The implementation of SCAMP is
done in the main Camcast class. In the structured version of the implementation,
the membership algorithm is done via P-Grid [25].

11 We named this class TypeTable instead of TopicTable to stress the fact that, in our
implementation, a topic is represented by an abstract type (i.e., a Java interface)

34

Super-topic tables are instances of TypeTable with a specific
IAlgFactory (i.e., a SuperAlgFactory). Super-topic tables contain refer-
ences to processes interested in the super-topic of the community given as a param-
eter of the constructor.

5.3.3.4 Camcast. This class represents the implementation of our CAMCAST
algorithm. It provides the different methods for disseminating an event in a hierar-
chy of communities. A Camcast instance is initialized for a specific Community
and contains two instances of TypeTable: one topic table to store references to
processes in the same community and one super-topic table that stores references
to processes interested in the super-community.

The dissemination of an event is done through the disseminate() method,
which implements the dissemination algorithm presented in Section 3. Moreover,
in the unstructured version available on the web site, Camcast implements the
SCAMP algorithm through the join() and forward() methods which in turn
calls the peers() and superPeers() methods to retrieve processes in a com-
munity or a super-community respectively.

6 Performance

We present in this section performance measurements of both a simulated version
of our CAMCAST algorithm together with a full Java 1.5 implementation presented
in Section 5.

In short the results we obtain convey our claims of high reliability and low latency
complexity, as well as confirm the analytical evaluation of Section 4.

6.1 Simulation Results

Before detailing the results we obtained for the simulated version of our algorithm,
we first describe the setting and environment we used.

6.1.1 Configuration Parameters

The number of levels x in the topic hierarchy is set to 3 (a, d, g and super(g) = d,
super(d) = a, a being the root topic). The number of subscribers, Nt, is 1000 for
Πg, 100 for Πd and 10 for Πa. The number of processes any event is disseminated
to, ct, is equal to 5 for all communities and gt (which determines psel

t) is set to 5 for

35

all communities. The number at (which determines pa
t) is 1 for all communities.

The size of the super-topic table, zt, is 3 for all communities. The probability for
an event to be received is set to an arbitrary value of 0.85, to simulate unreliable,
e.g. best effort, channels. The probability for a process to crash varies. In the sim-
ulation, the membership tables (topic table and super-topic table) of a process are
determined statically. These tables are initialized at the beginning of the simulation
and do not change, during the entire simulation. Pessimistically, we assume that the
membership algorithm does not “replace” crashed processes, and that these crash
at the very beginning. Indeed, according to Section 4, such an omission provides
the worst performance for CAMCAST, and this is exactly what we want to measure
in this section.

Note that the events disseminated in the simulation belong to topic g. Our simu-
lator (written in C#) simulates synchronous gossip rounds among processes in a
Windows task. We use a Pentium 4, 2.6GHz, 512MB of RAM on Windows 2000
SP3. All results are averaged over 100 experiments.

6.1.2 Results

Figure 13 depicts the maximal number of events sent within a community, accord-
ing to the number of processes having failed (here the state of a process – active or
failed – is set at the beginning of the simulation and does not change throughout
the simulation). The message complexity is of an order of Nt · lnNt as expected.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b
e

r
o

f
e
v
e

n
ts

 s
e
n

t

Percentage of alive processes

!a

!d

!g

Fig. 13. Number of events sent in each com-
munity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b
e

r
o

f
u

p
w

a
rd

 m
e

s
s
a
g

e
s
 s

e
n
t

Percentage of alive processes

!d

!g

Fig. 14. Number of upward messages sent be-
tween communities to their respective super–
community

Figure 14 depicts the number of events sent from community Πg to Πd, and from Πd

to Πa respectively (i.e., number of upward messages). We can conclude that even
if almost half of the processes fail, at least one event is sent to the community of
processes participating in the super-community. This is enough for disseminating
the event to the upper communities.

Figure 15 depicts the probability for a non-crashed process to receive an event
according to the percentage of processes having crashed. Not surprisingly, the re-

36

ception probability depends on the average probability that a process crashes. Of
course, the reception probability is smaller for processes interested in a as the re-
ception of an event of topic g, by the community Πa, depends on the success of
the dissemination of this event in the community Πg and Πd. Moreover, the gap
between the results obtained for Πg and Πd can be explained by the fact that, as the
super-topic tables are not updated, it might happen that all super-topic tables of the
processes in Πg that are responsible for propagating the events from Πg to Πd have
crashed. Hence the event is not received in Πd.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
e
p

ti
o
n
 p

ro
b
a
b

ili
ty

Percentage of alive processes

!a

!d

!g

Fig. 15. Reception probability (only stillborn
processes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
lia

b
ili

ty

Percentage of alive processes

!a

!d

!g

Fig. 16. Reliability (only stillborn processes)

Figure 16 depicts the probability that every non-crashed process receives an event
according to the percentage of processes that have crashed (i.e., the reliability met-
ric). As expected, we can notice that the reliability depends on the community in
which the event is disseminated to. As described previously, the reliability is very
sensible to invalid super-topic tables. As soon as the percentage of alive processes
increases in Πd and Πa, the reliability increases rapidly. Furthermore, to achieve
better reliability, we can easily adjust zt, pa

t and gt.

Figure 17 and Figure 18 present the same results as, respectively, Figure 15 and
Figure 16, except that now a process can appear to be crashed for a process while
appearing alive for another one (to simulate a weakly consistent membership algo-
rithm). We achieve a much better reliability for a weakly connected system than in
the preceding scenarios.

We consider in Table 1 the average number of rounds needed to disseminate an
event from community Πtj to community Πt0 (with super(ti) equals ti−1, t0 being
the root topic). Three different topologies are considered: (a) Nt2 = 1000, Nt1 =
100 and Nt0 = 10, (b) Ntj ..Nt0 = 100, j = 1..2 and (c) Ntj ..Nt0 = 100, j = 1..4.
We compare (1) our approach with (2) a general gossip-based protocol [27] and
with (3) PMcast [22] (for (2) and (3), the values have been calculated using the
analytical equations and are not taken from simulations). The results confirm the
analytical results given in Section 4.6 and convey the impact of the number of levels
in a hierarchy on the latency complexity.

37

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
e
p

ti
o
n
 p

ro
b
a
b

ili
ty

Percentage of alive processes

!a

!d

!g

Fig. 17. Reception probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
lia

b
ili

ty

Percentage of alive processes

!a

!d

!g

Fig. 18. Reliability

Ntj ,Ntj−1 ,...,Nt0

1000, 100, 10 100 (j = 2) 100 (j = 4)

(1) 8.91 8.83 13.08

(2) 4.63 4.39 4.31

(3) 6.61 5.44 5.89

Table 1
Average number of rounds to disseminate an event in all communities

In Table 2, we consider the average number of parasite events sent in the system.
To calculate the maximal number of parasite events, we assume that a publisher
publishes an event of the root topic t0. For PMcast, the results obtained come from
analytical results. Table 2 depicts the gain of CAMCAST with respect to alternative
approaches.

Ntj ,Ntj−1 ,...,Nt0

1000, 100, 10 100 (j = 2) 100 (j = 4)

(1) 0 0 0

(2) 11216 1699 3739

(3) 453 369 615

Table 2
Total number of parasite events

6.2 Implementation Results

We present now the different performance measurements of the Java implementa-
tion (see Section 5) or our CAMCAST algorithm. We measured the latency com-
plexity, efficiency, reception probability, reliability of CAMCAST, as well as the
number of upward messages sent between communities.

In short, our results convey the results we had in both Section 4 and Section 6.1,
for all the three different membership algorithms. We can however notice that the
more structured the membership algorithm, the better the overall performance of
CAMCAST.

38

6.2.1 Configuration Parameters

The environment used to test our prototype consisted of 71 computers, each run-
ning two processes participating in CAMCAST (the total number of processes vary
depending on the membership service used). The computers were SUN Ultra work-
stations, running Solaris 8, with UltraSPARC-IIi processors running at 440MHz or
360MHz and 256MB of RAM, connected in a 100 MB LAN.

The same hierarchy as the one described in Section 6 was used to test our imple-
mentation (i.e., 3 topics, a, d, g, where super(g) = d, super(d) = a, a being the root
topic). The parameter psel

t (inter-community dissemination probability) varies from
0.1 to 1 for all communities. The parameter at (which determines pa

t) is 2 for all
communities. The size of the super-topic table, zt, is 4 for all communities. With
the unstructured membership algorithm, the number of subscribers Ng is equal to
84, Nd is equal to 27 and Na is equal to 7. With the semi-structured membership
algorithm, the number of subscribers, Ng is equal to 79, Nd is equal to 28 and Na is
equal to 7. With the structured membership algorithm, the number of subscribers,
Ng is equal to 79, Nd is equal to 28 and Na is equal to 7. The parameter ct (in
lnNt+ct) is set to 0 for all communities. This parameter is set to this value because
we were unable to perform our experiments on very large networks (see upper). In
such small networks, and as we populate the topic tables randomly but following
the entry of the processes in the system (and not randomly when all the processes
are present in the system), the bigger the topic tables, the higher the probability
to create partitions among this system with the processes entering the system at
the end of the bootstrapping phase. Our implementations use TCP channels (with
disrespect to the channels used in our simulations) and no process crash during the
runs (unlike the simulations). All the results shown are for one event of topic g that
is disseminated from Πg to Πa via Πd. We do not show the results for community
Πg, as these are not dependent on the inter-community dissemination probability.
Finally, note that we use the logarithmic scale for the X abscissa.

6.2.2 Results

During the tests, we measured the framework performance, for each of its member-
ship service, through its event reception probability, reliability, latency complexity,
number of upward messages and efficiency by varying psel

t . The efficiency measures
how many of the forwarded messages are actually useful, that is, have not already
been received by the process. We calculate the efficiency as the percentage of useful
messages from the total amount of messages received:

Efficiencyt = useful messagest

duplicate messagest + useful messagest

The three membership services used in CAMCAST are shown together in each of all
the figures presented, each of which represents the results for a specific community.
The performance for V1 (unstructured), V2 (semi-structured) and V3 (structured)

39

are shown using plain, interrupted and dotted lines, respectively. All the results are
averages over 10 experiments for V1 and 5 experiments for V2 and V3.

We can notice that all three approaches converge to a reception probability of 100%,
both for community Πd (see Figure 19) and for community Πa (see Figure 20).
The structured approach ensures very good results even for a low inter-community
dissemination probability.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
e
c
e
p

ti
o
n
 p

ro
b
a
b

ili
ty

Probability of inter-community dissemination

V1

V2

V3

Fig. 19. Reception probability for Πd, while
varying the probability of inter-community
dissemination from Πg to Πd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
e
c
e

p
ti
o
n
 p

ro
b
a
b

ili
ty

Probability of inter-community dissemination

V1

V2

V3

Fig. 20. Reception probability for Πa, while
varying the probability of inter-community
dissemination from Πd to Πa

The structured approach converges the fastest thanks to the uniformity and ran-
domness of the membership tables. The inter-community dissemination probabil-
ity (psel

t) influences reception probability because the more upward messages there
are, the more disconnected processes from the super-community are reached. As
we can see in Figure 19 and Figure 20, for the test where psel

t < 0.5, the unstruc-
tured (V1) and semi-structured (V2) approaches perform differently (this is due to
the choice of contacts provided by the bootstrapping mechanism).

As we can see in Figure 21 and Figure 22, the reliability of all approaches is very
high, even with low inter-community dissemination probability (0.1). This is due
to the fact that we consider failure free runs during our simulation. Hence, when
an event managed to be propagated from one community to another, it is highly
susceptible to be propagated to all the processes in the community as well.

The efficiency metric test results, depicted in Figure 23 and Figure 24 confirms
that a higher inter-community dissemination probability increases the number of
duplicate messages in the system, both directly (the number of upward messages
increases proportionally) and indirectly (as the reliability increases, the number of
intra-community messages also increases). Please note that in Figure 24, the value
for V2 corresponding to an inter-community dissemination probability of 0.01 is
equal to 0 (i.e., no event is propagated from Πd to Πa). Our results relate to the
theory presented in Section 4.3, which presents the upper bound for the total num-
ber of messages. The structured approach behaves better than the semi-structured
approach, which is better than the unstructured approach. This can again be ex-

40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
e
lia

b
ili

ty

Probability of inter-community dissemination

V1

V2

V3

Fig. 21. Reliability for Πd, while varying the
probability of inter-community dissemination
from Πg to Πd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

R
e
lia

b
ili

ty

Probability of inter-community dissemination

V1

V2

V3

Fig. 22. Reliability for Πa, while varying the
probability of inter-community dissemination
from Πd to Πa

plained by the uniformity of the membership tables. As the structured approach as
the greatest reliability, it has the greatest numerator in the efficiency equation.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.01 0.1 1

E
ff
ic

ie
n

c
y

Probability of inter-community dissemination

V1

V2

V3

Fig. 23. Efficiency for Πd, while varying the
probability of inter-community dissemination
from Πg to Πd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01 0.1 1

E
ff
ic

ie
n

c
y

Probability of inter-community dissemination

V1

V2

V3

Fig. 24. Efficiency for Πa, while varying the
probability of inter-community dissemination
from Πd to Πa

Figure 25 and Figure 26 depict the latency complexity results (some results equal
0 when it happened that an event was not propagated up to that community). As
presented in Section 4.6, the size of a community and whether the event is directly
propagated to the super-community, greatly influence this metric. The topology
created by the membership tables also influences the latency complexity, by how
much it deviates from a random graph (which requires the minimal hops to prop-
agate an event into the whole community). Clearly, in Figure 25, Figure 26, we
are in the case in which the event is directly propagated to the super-community.
We can see that the latency complexity decreases while the inter-community dis-
semination probability increases. This is because, as depicted in Section 4.6, the
sooner the event is propagated to the super-community, the less rounds are needed
to propagate the event into the whole community.

Finally, the number of upward messages (Figure 27 and Figure 28) describes the
inter-community communication and is directly influenced by the
inter-community dissemination probability, as expected from the analysis (see Sec-

41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.01 0.1 1

L
a
te

n
c
y

Probability of inter-community dissemination

V1

V2

V3

Fig. 25. Latency complexity for Πd, while
varying the probability of inter-community
dissemination from Πg to Πd

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.01 0.1 1

L
a
te

n
c
y

Probability of inter-community dissemination

V1

V2

V3

Fig. 26. Latency complexity for Πa, while
varying the probability of inter-community
dissemination from Πd to Πa

tion 4.3). The minor differences between the three approaches come from the dif-
ferent number of reached super-processes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0.01 0.1 1

N
u
m

b
e
r

o
f

u
p

w
a
rd

 m
e
s
s
a

g
e

s

Probability of inter-community dissemination

V1

V2

V3

Fig. 27. Upward messages received by Πd

from Πg

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.01 0.1 1

N
u
m

b
e
r

o
f

u
p

w
a
rd

 m
e
s
s
a

g
e

s

Probability of inter-community dissemination

V1

V2

V3

Fig. 28. Upward messages received by Πa

from Πd

7 Concluding Remarks

We presented CAMCAST, a simple algorithm for disseminating events in a hier-
archical decentralized topic-based publish/subscribe system. Each topic defines a
dynamic notion of community. CAMCAST is decentralized and prevents processes
from receiving and forwarding events from communities they do not belong to.
This is achieved while ensuring that the membership information each process must
maintain depends on the size of its communities.

We demonstrated the viability of CAMCAST through analytical results, simulations
and performance measurements. Our experiments and simulations convey a fairly
high dissemination probability by tuning the different parameters of CAMCAST,
without increasing the memory complexity. For instance, we showed that it is pos-
sible to achieve 100% reliability among a hierarchy of three communities of 80,

42

30 and 7 processes, respectively, while only involving 7% of the processes in the
propagation of the events in between the communities.

For presentation simplicity, we tackled the case where a topic has only one parent.
Multiple parents could be easily supported by adding a super-topic table for each
parent. This would not hamper the overall performance of the algorithm, under the
assumption that there is an upper bound on the number of parents for each topic.

References

[1] TIBCO, TIB/Rendezvous White Paper, http://www.rv.tibco.com/ (1999).

[2] M. Altherr, M. Erzberger, S. Maffeis, iBus - A Software Bus Middleware for the
Java Platform, in: Proceedings of the International Workshop on Reliable Middleware
Systems of the 13th IEEE Symposium On Reliable Distributed Systems, 1999, pp.
43–53.

[3] D. Skeen, Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview,
http://www.vitria.com (1998).

[4] IBM, MQSeries: Using Java, IBM, 2000.

[5] Microsoft, Microsoft Message Queuing,
http://www.microsoft.com/windows2000/technologies/
communications/msmq (2005).

[6] S. M. Inc., Java Message Service - Specification, version 1.1,
http://java.sun.com/products/jms/docs.html (2005).

[7] B. Kantor, P. Lapsley, Network News Transfer Protocol, Request for Comments
(1986).

[8] R. M. Karp, C. Schindelhauer, S. Shenker, B. Vocking, Randomized Rumor Spreading,
in: Proceedings of the 41st IEEE Symposium on Foundations of Computer Science,
2000, pp. 565–574.
URL citeseer.nj.nec.com/article/karp00randomized.html

[9] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, Y. Minsky, Bimodal
Multicast, ACM Transactions on Computer Systems 17 (2) (1999) 41–88.

[10] M.-J. Lin, K. Marzullo, Directional Gossip: Gossip in a Wide Area Network, in:
Proceedings of the 3rd European Dependable Computing Conference, 1999, pp. 364–
379.

[11] P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, P. Kouznetsov,
Lightweight Probabilistic Broadcast, ACM Transactions on Computer Systems 21 (4)
(2003) 341–374.

43

[12] A. J. Ganesh, A.-M. Kermarrec, L. Massoulié, SCAMP: Peer-to-Peer Lighweight
Membership Service for Large-scale Group Communication, in: Proceedings of the
3rd International Workshop on Networked Group Communication, 2001.

[13] P. Eugster, R. Guerraoui, A.-M. Kermarrec, L. Massoulié, A. J. Ganesh, From
Epidemics to Distributed Computing, in: IEEE Computer, Vol. 37, 2004, pp. 60–67.

[14] A. Rowstron, A.-M. Kermarrec, M. Castro, P. Druschel, SCRIBE: The Design of a
Large-Scale Event Notification Infrastructure, in: Proceedings of the 3rd International
Workshop on Networked Group Communication, 2001.

[15] A. Rowstron, P. Druschel, Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems, in: Proceedings of the 4th IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed
Processing, 2001, pp. 329–350.

[16] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Application-Level Multicast Using
Content-Addressable Networks, Lecture Notes in Computer Science 2233 (2001) 14–
29.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A Scalable Content
Addressable Network, in: Proceedings of the 7th ACM Conference on Special Interest
Group on Data Communications, 2001.

[18] K. Jenkins, K. Hopkinson, K. Birman, A Gossip Protocol for Subgroup Multicast,
in: Proceedings of the 1st International Workshop on Applied Reliable Group
Communication, 2001.

[19] A. Carzaniga, D. Rosenblum, A. Wolf, Achieving Scalability and Expressiveness
in an Internet-Scale Event Notification Service, in: Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing, 2000, pp. 219–227.

[20] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, D. Sturman, Exploiting
IP Multicast in Content-Based Publish-Subscribe Systems, in: Proceedings of the
3rd IFIP/ACM International Conference on Distributed Systems Platforms and Open
Distributed Processing, 2000, pp. 185–207.

[21] P. R. Pietzuch, J. M. Bacon, Hermes: A distributed event-based middleware
architecture, in: Proceedings of the 1st International Workshop on Distributed Event-
Based Systems, 2002.

[22] P. Eugster, R. Guerraoui, Probabilistic Multicast, in: Proceedings of the 3rd IEEE
International Conference on Dependable Systems and Networks, 2002, pp. 313–322.

[23] R. van Renesse, K. P. Birman, W. Vogels, Astrolabe: A Robust and Scalable
Technology For Distributed Systems Monitoring, Management, and Data Mining,
ACM Transactions on Computer Systems 21 (3).

[24] A.-M. Kermarrec, L. Massoulié, A. J. Ganesh, Probabilistic Reliable Dissemination
in Large-Scale Systems, in: IEEE Transactions on Parallel and Distributed Systems,
Vol. 14, 2003, pp. 248–258.

44

[25] K. Aberer, P-Grid: A Self-Organizing Access Structure for P2P Information Systems,
in: Proceedings of the 6th International Conference on Cooperative Information
Systems, 2001.

[26] M. Jelasity, R. Guerraoui, A. Kermarrec, M. van Steen, The Peer Sampling
Service: Experimental Evaluation of Unstructured Gossip-based Implementations, in:
Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware,
Vol. 78, 2004, pp. 79–98.

[27] P. Erdös, A. Renyi, On the Evolution of Random Graphs, in: Mat Kutato Int. Közl,
Vol. 5, 1960, pp. 17–60.

[28] Y. Zibin, J. Gil, Efficient Subtyping Tests with PQ-Encoding, in: Proceedings of the
16th ACM Conference on Object-Oriented Programming Systems, Languages and
Applications, 2001.

[29] B. Bollobás, Random Graphs, Cambridge University Press, 2001.

45

