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New trends of numerical models of human joints require more and more computation of both large
amplitude joint motions and fine bone stress distribution. Together, these problems are difficult to solve
and very CPU time consuming. The goal of this study is to develop a new method to diminish the
calculation time for this kind of problems which include calculation of large amplitude motions and
infinitesimal strains. Based on the Principle of Virtual Power, the present method decouples the problem
into two parts. First, rigid body motion is calculated. The bone micro-deformations are then calculated
in a second part by using the results of rigid body motions as boundary conditions. A finite element
model of the shoulder was used to test this decoupling technique. The model was desi gned to determine
the influence of humeral head shape on stress distribution in the scapula for different physiological
motions of the joint. Two versions of the model were developed: a first version completely deformable
and a second version based on the developed decoupling method. It was shown that biomechanical
variables, as mean pressure and von Mises stress, calculated with the two versions were sensibly the
same. On the other hand, CPU time needed for calculating with the new decoupled technique was more
than 6 times less than with the completely deformable model.
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INTRODUCTION

The long-term behavior of orthopedic prostheses depends
on the bone stress distribution around the implants. The
numerical approach is a sound method to determine bone
stresses. Numerous numerical models have been proposed
in the past for analyzing human joints as hip [1-5], knee
[6,7], shoulder [8—16] or spine [17]. Most of these
numerical models focus on the anchorage of the prosthesis
into the bone and the boundary applied forces are
predetermined by extra calculus or by experimental
investigations adapted to the case in study. They do not
consider the feed-back reaction of the shape of the implant
to the applied joint forces. This approximation is suitable
for the human joints in which the relative motion is mostly
restricted by the bone structures. This is the case for joints
like the hip, but this is no more the case for the shoulder
glenohumeral joint, which is designed for mobility.
The glenohumeral joint is composed of two bones:
the humerus and the scapula. The contact surface on

the humerus is spherical, while the contact surface on the
scapula, which occurs in the glenoid fossa, is shallow. This
particular geometry leads to a small contact area and to a
large mobility. The stability of the joint is not ensured by
bone structure or by ligaments but by the muscles for the
major part.

In the shoulder, the stress distribution in the scapula
around the glenoid component depends on the shape of the
humeral component. If the shape of the humeral
component changes, the glenoid bone stress distribution
also changes. In order to model this effect, a new
generation of numerical model should be developed.
Accordingly, the models should be able to calculate both
the motion of the joint and the bone stress distribution.
These models should include the principal contact
between the two parts of the joint and the muscles that
ensure the joint stability.

To develop this model, the finite element method
(FEM) remains the best approach, being the only one
that can simultaneously calculate the rigid body motion
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and the bone stress distribution. The FE method clearly
allows to calculate the bone stress distribution taking
the complex bone geometry into account. To evaluate
the rigid body motion, other techniques have been used.
For the shoulder, van der Helm [15,16] has developed a
model based on inverse dynamic analysis. This model
consists of rigid bones and of the line of action of every
muscles of the shoulder. A kinematic analysis
performed on healthy subjects was then used to
calculate the force in the muscles. This method is
very powerful to determine the forces in the muscle and
has been used to study the influence of simple
modifications of the design of the humeral prosthesis
on the function of the muscles [9]. But such a model
fails to determine the influence of the humeral head
design on the glenohumeral motion and contact regions.
First, because the kinematics is pre-determined and then
because the glenohumeral contact is modeled as a
perfect ball and socket joint.

Solving the problem of deformable solids undergoing
large amplitude motions combined with infinitesimal
strains remains difficult and CPU time consuming,
essentially due to the geometrical non-linearity provoked
by joint large rotations. The method is assessed by
shoulder joint simulations.

To solve the problem, the idea presented here is to
decouple the problem into two parts: first to calculate
the rigid body motion and then the micro-deformations
of the bones with the results of the first simulation as
boundary conditions. The goal of the present study is to
show that results obtained with a complete model and
with a decoupled model are the same. And then to
show that the computational resources needed to
perform the simulation with the second method are
smaller than for the complete model. The comparison
was done with the simulation of an internal rotation of
an intact shoulder.

BASIC THEORY: WEAK FORMULATION OF THE
MOMENTUM BALANCE

For this purpose, we start with the Virtual Power Principle,
from which equations of finite element codes are usually
derived:

J PndA-w + J plb —a)dQw=0 Vw )
aQ 0

where, p,, b and a are the applied contact forces on the
boundary 9(), the body force and the absolute acceleration
fields. w is an admissible virtual velocity field. The
velocity v is decomposed into a rigid body velocity and
into a “straining velocity” @, which may be interpreted as a
superimposed motion on the rigid body motion. This later
field captures the relative velocity with respect to the
configuration following a rigid motion of B. Calculus of
time derivative of the velocity » provides the various

contributions in the absolute acceleration a:
v=ov5+QAGM+?

a=ac+QOAGM+QAQAGM)+5+20A%  (2)

where vg and ag are the velocity and the acceleration of
the center of mass G, respectively. () is the instantaneous
rigid angular velocity. Notice that G is the position of
center of mass after a rigid body motion. The quantity %
may be interpreted as the relative acceleration of the
deformable solid with respect to the rotated rigid
configuration body B, we call it straining acceleration.
According to Eq. (2), we can also assume a decomposition
of the virtual velocity into a rigid velocity and into a
straining velocity w :

w=wg+Q, AGM+W 3)

where wg is a virtual velocity of G, and (), a virtual
angular velocity of the solid. In the following, we show
that the present method includes the rigid body dynamics
description and the classical continuum mechanics
description.

Rigid Body Dynamics (o =0 And w = 0)

Consider a rigid body velocity, acceleration and virtual
velocity as follows:

v=09+QAGM w=ws+Q, AGM
a=ag+QAGM+Q A AGM) 4)

By introducing Eq. (4) in Virtual Power Principle
[Eq. (1)], we obtain the following relation for Ywg, Y},

J PndAwe + J pb — ag)dQ-wg
a0 [}
+ J p(—Q A GM — Q A (Q A GM)AQ-wg
Q
J (GM A pp)dA-Q,, + J p(GM A b — ag))dQ-Q,,
a0 QO
- J PIQ A GM + Q A (Q A GM)1AQ-(Q,, A GM)
Q

-—J ot Viwg + O A GM)AQ = 0 5)
QO

Relation equation (5) may be simplified by introducing
the inertial tensor of the solid I calculated at the center of
mass G, which is the position of the body mass center after
rigid motion:

J p(QAGM)-(Q, AGMYAQ = IcD)-Q,  (6)
Q0
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J PO A (A GMYIAQ-(Q, A GM) = (Q A I60)-Q, (7)
0

with  the inertial tensor Ig~f9p[||GM|| -
(GM®GM)]d(). By defining the virtual spin tensor {},,
as (0, A OM = (,,(OM), we find:

J o:Viwg+Q, AGM)dQ = J a: V[, A(OM - 0G)1dQ
Q Q

J So=07):0,d0=0 (8)
(93

due to the symmetry of stress tensor o. Then, the
following holds Vwg for and V(),,:

ay Q

+H GMAp,,dA+J pGM ABAQ|-Q,,
gy Q

=mivgwe+[IcQ+QAI01-Q, )

By choosing specific virtual velocity fields, we deduce
the system of equations governing the rigid body
dynamics respectively for linear momentum Vwg # 0,
Q,, = 0 and for angular momentum wg = 0, VQ,, # 0 :

Jsqp PndA + [ pb dQ = mig
Jysqr GM A BndA + [, pGM A bdQ

=10+ Q AIQ (10)

Dynamics of Deformable Solids

By analogy, the introduction of the real velocity and
acceleration fields and the virtual velocity field Egs. (2)
and (3) in Eq. (1) allows to obtain the complete weak form
of the Principle of Virtual Power:

J o PndA-wg + J p(b — ag)dQ-wg — J pUp dQ-wg
]

+20 A J podQwe + J GM A p,dA-Q,,
QO aQP

+J [GM A pb — GM A pg — 2GM A p(Q A )]-(,, dQ)
Q

~ IsQ+ QA I0)Q, + J P dA-W

oy

+J p[b—aG—QAGM—QA(QAGM)—%B
0

—ZQAﬁ]dQ-W—J o:VwdQ =0
Q

This equation includes three coupled equations.

1. Por virtual translation velocity wg # 0,
w =0, it reads:

w =0, and

J DndA-wg +J pbdQ-wg — J pTp dQwg
ay 0 0

+29/\j prdQ'WG=m7')59WG (11)
0

where the two last terms of the left-hand-side may be
interpreted as the coupling effects of the inertial forces
and Coriolis forces due to straining motion.

2. For virtual rotations wg = 0, Q,, # 0, and w = 0, we
have:

J GM A p,dA-Q), +J [GM A (pb — pTp
aqy Q

- 200 A D)0, dQ=[IQ+ QAU D0, (12)

3. Finally, for straining virtual velocity, wg =0, (), =0,
and W # 0, the deformation of the solid is described by:

J ﬁndA-W+J plb—ac—QAGM
aQ)? 9}
— O AQAGM)AQ-W

—J p(E'B-l-ZQA@)dﬂ-w:J o:VwdQ  (13)
Q Q

In these three equations, the unknown variables are vg, {)
and 9. The system of governing coupled equations writes
in weak form:

( famﬁn dA-wg+ fQ pbdQwg — fQ pTgdQ-wg
+2Q A [ p2dQ-we = mig-we
fop GM A prdA-O, + [o[GM A (pb — pTp
! —2pQA9)]Q,dQA= 160+ Q AU,
Joqp PndAW+ [ plb— ag — QAGM
—QAQAGMIAQ® — [, p(Tp +2Q A D)AQ-W
| = Joo: VwdQ

(14)

For decoupling the straining velocity (@) from rigid body
motions (vg and ) we propose the following:

1. Step I: Calculate an approximate value 2 of vg and
approximate rotation velocity Q) of Q with rigid body
dynamics equations (10). This means to neglect the
influence of ¥ in Egs. (11) and (12).

2. Step 2: Calculate the new configuration of the body
due to this rigid displacement OG and GM.
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3. Step 3: Introduce the pre-defined values vg, {1, OG
and GM in Eq. (13) and then solve to obtain @ to
have the deformed configuration of the deformable
solid where 7z may be estimated with the
Jaumann derivative (e.g. Rakotomanana, 1998) 7p =
a—QOAD.

The following overall algorithm holds:
jm,,ﬁ,, dA + fQ pbdQ) = mig
Jo GM A pbdQ)
+ [,r GM A P, dA
=150+ QA IcQ)

= (9g,{) = (0G, GM)

Jycp BudA W + fo plb — a6 — A A GM
—O A QA GO
— [0 p@5+20 A D) = [ 0: Vi dD

EXPERIMENTAL

A finite element model of an intact human shoulder was
reconstructed. Two numerical algorithms were developed.
Both of the two algorithms were applied to solve one
problem with the same boundary conditions based on the
same geometric reconstruction of the shoulder. The first
algorithm considers simultaneously the rigid body motion
and the bone stress with deformable bones. The second
algorithm is a two-steps simulation. In the first step bones
are assumed to be rigid and only the rigid body motion of
the joint is calculated. The bone stress is calculated in the
second step of the simulation. Simulations of the same
load case, which corresponds to an internal rotation of the
shoulder from 0 to 60° were performed with the two
different approaches.

Description of the 1 Step Method (Method #1)

The model development includes the following steps: (1)
the data acquisition, (2) the reconstruction of the model
and (3) the simulation of various biomechanical and
clinical situations. A normal (without any evidence of
pathology) fresh frozen cadaveric shoulders was used.

Data Acquisition

Bone: A CT scan of the shoulder was performed
(helicoidal CT, General Electric). Slices (1 mm thick)
were obtained from the acromion to the middle portion of
the humerus. CT provided data about bone geometry, and
bone density distribution.

Soft tissues: The three major rotator cuff muscles and
tendons were included in the model: subscapularis, supra
and infraspinatus. A careful dissection of both shoulders
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was performed for this purpose. The insertions of the three
muscles on the humerus and the scapula were accurately
located. Using a Polhemus 3 space Fastrak Stylus and the
3-axis coordinate system application [18], we digitized the
exact insertion and origin of the three muscles. Four points
at the corner of each muscle (8 points per muscle) were
recorded to represent the insertions.

Landmarks: For the model reconstruction, it is
mandatory to have all data (soft tissues, bone and
cartilage) in the same coordinate system. To this end, 12
zirconium beads, 0.5 mm of diameter, were implemented
percutaneously, before the CT scan, in the bone cortex of
each shoulder (6 in the humerus and 6 in the scapula).
Their positions were then accurately located during
dissection and digitized using the Polhemus. As the
zirconium beads were also visible on CT, it was possible
to use of all data in the same coordinate system.

Model Reconstruction

3D-bone geometry: The external contour of bone was
accurately defined on each CT slice with a digitization
error lower than 0.7 mm (2 pixels). The obtained curves
were then transferred in the PATRAN software (MacNeal-
Schwendler, GmBH) and the three-dimensional geometry
of the scapula and of the proximal humerus of the shoulder
was reconstructed. The three-dimensional finite element
meshes of the bones (scapula and humerus) were thus
generated using hexahedral elements from the recon-
structed geometry (Fig. 1). To mesh the bones, 16541
elements were used. Both spongious and cortical bone
were considered. Their mechanical properties were
directly related to the bone density calculated at each
node of the model from the CT-scan images. A custom-
made software was designed to read the density from CT
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FIGURE 1

Finite element mesh of bones and muscles.
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TABLE I Description of the constitutive laws used in the model

Element Type of the law

Mathematical expression

Constants References
Bone  Linear elastic non-homogenous E=E(L), v=mn Ey = 15,000 [MPal, ) = 0.3, [24-26]
. . =1.8 3 , . b .
Muscles  Exponential hyperelastlc‘mcompressible W= aexp[fd, - 3)] - 2L, - 3) Z‘L 0,]2[[31\{1(1:;:] ,] sz 1(,)(;1 ¢ density [21-23]
Cartilage Neo-Hookean hyperelastic incompressible W = CioI; — 3) where Cyg = T(TEW) Cio = 1.79(E = 10[MPa], v = 0.4) 271

I, and I are the first and second invariants of the Cauchy-Green tensor.

slices and to incorporate automatically the non-homo-
geneous distribution of bone density into the meshes. This
software first read all the CT images, compute a relative
density for each node of the mesh and then save the
resulting list in an output file [5]. The mechanical
properties of bone depend on the square of the apparent
density (Table I). According to this quadratic dependency,
a non-homogeneous bone constitutive law was developed
[19,20] and implemented in the ABAQUS software
(Hibbitt, Karlsson and Sorensen, Inc.).

Soft tissues: The geometry of the subscapularis, supra
and infraspinatus muscles was 3D reconstructed. We
considered the muscular origins and insertions on the
bone surface as defined by the four digitized landmarks
on the scapula and humerus, respectively. The muscular
belly was assumed to be the isoparametric solid between
the two insertion surfaces, accounting for the previously
reconstructed bone geometry. Three-dimensional
muscles were then meshed with about 800 hexahedral
elements (Fig. 1). Muscles were assumed to be
incompressible and hyperelastic allowing large strains.
In the present study, only the passive behavior of the
muscles was accounted for. Muscles passive stress—
strain law (Table I) was based on the strain energy
function of Veronda [21] and has been recently applied
for other joint soft tissue as ligaments and tendons
[22,23].

Cartilage: The articular cartilage of the shoulder was
also reconstructed. The reconstruction was based on the
hypothesis that the space observed on the CT images
between the humerus and scapula is filled with cartilage.
The minimum gap was measured and the cartilage was 3D
reconstructed with a constant thickness equal to the half of
this distance. The finite element mesh was made of 2868
hexahedral elements. A Neo-Hookean incompressible
constitutive law was used for cartilage (Table I).

Interfaces: We used a discontinuous unilateral large
sliding interface between the scapula and the humerus.
This contact law allowed calculating the normal stress and
shear stress at the glenohumeral interface. A discontinu-
ous unilateral small sliding interface was assumed
between the three reconstructed muscles and the bones.
Muscles are allowed to slide on the bone surfaces except at
the muscular insertion zones.

Boundary conditions: The scapula was not rigidly
fixed but was maintained by 20 flexible elements replacing
the stabilizing muscles of the scapula: the trapezius,
the rhomboideus major and the rhomboideus minor.

The gliding of the scapula on the thorax was also
reconstructed by introducing a flexible element in the
antero-posterior direction. The distal section of the
humerus was fixed by four vertical flexible elements,
precluding any significant movement in abduction.

Simulations

The neutral position of the glenohumeral joint was defined
as the position when the center of the humeral articular
surface faces the center of the glenoid fossa. From this
neutral position an internal rotation up to 60° was
simulated. The rotation was achieved by imposing
displacement of the scapular insertion of the subscapularis
muscle whereas the supraspinatus and infraspinatus
muscles were inserted at both ends of the bones. This
induced a gradual and controlled rotation of the humerus.
ABAQUS/Standard 5.8 is used for the simulations. The
computer on which the calculations were performed is a
Dec/alpha.

Description of the 2 Steps Method (Method #2)

The second method is based on the same reconstruction
than the first method. This methods consists in two
simulations: first a simulation to calculate the rigid body
motion and then the second to determine the bone stress
distribution.

Part 1—Rigid Body Motion

In this part, the bones are considered as rigid. The only
difference with the first model is the bone mesh. Since the
bones are rigid, the hexahedral mesh of the bone volume is
replaced by a mesh of the external surface of the bones
with 2795 quadrilateral first order elements (humerus:
929, scapula and spinatus: 1866).

The boundary conditions on the humerus and scapula
are the same as before. The only difference is that the
contacts between the bones and muscles are rigid/deform-
able instead of deformable/deformable contacts. The
glenohumeral contact is not changed, it still occurs
between the humeral and scapular cartilage. But this time,
the cartilage is not fixed on the underling bones but on the
corresponding rigid surface. The simulation is the same as
with the first method. It also corresponds to an internal
rotation of 60°. The rotation is obtained by the same
displacement of the subscapularis muscle.
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The results obtained with this simulation are the relative
glenohumeral motion, the contact pressure on the glenoid
fossa and the muscular forces. Some of these results are
needed for the second part of the simulation. The forces on
each node of the glenoid fossa and the displacements of
nodes located in the middle part of the muscles. The force
on each node of the glenoid is obtained with the ABAQUS
output variable NFORC. This variable gives for each node
of an element the forces due to the stresses in the element.
The sum of all these contributions for a node in contact,
gives the force due to the contact acting at that node. A
C++ software was created to automatically read the
ABAQUS output files, compute the force on each node of
the glenohumeral contact and write a file containing the
loads for the second part of the simulation. Similarly, a
second C++ software was developed to write a file
containing the displacement of the nodes selected in the
middle part of the muscles.

Part 2—Bone Stress Determination

In this part, the mesh of the scapula is the same as with the
first method, but this time the humerus is no more included
in the model. The humerus is replaced by its effect: the
forces on the glenohumeral contact replace the contact
itself and the displacements of the muscles replace the
displacements of the humerus.

The boundary conditions on the scapula are defined by
the first part of the simulation. The contact forces and
nodal displacements calculated in the first part are
imposed on the scapula. Furthermore, the scapula is still
maintained by flexible elements. This calculation gives the
bone micro-deformations and thus the bone stress
distribution.

RESULTS

Contact Pressure

The contact pressure on the glenoid fossa during internal
rotation from 0 to 60° is represented in Fig. 2. The contact

Internal Rotation of:
10° 20° 30°

region on the glenoid was the same with the two methods.
The value of the maximum contact pressure is lower with
the second method at 30 and 40° rotation but higher at 50
and 60° rotation. The maximum error on the contact
pressure calculated with the two methods is less than 5%
at 40° internal rotation.

Forces in the Muscles

Figure 3 represents the force in two muscles of the rotator
cuff. The forces were calculated during the rotation. The
force calculated with the rigid approximation is always
smaller than the force calculated with the deformable
method. The error increases during the rotation. The
maximum error is for the infraspinatus muscle at 60°
rotation and is less than 1%.

VYon Mises Stress—distribution in a slice

The von Mises stress in the scapula was calculated with
the two methods. The stress distribution obtained with
both methods is represented in Fig. 4 in a horizontal cut of
the scapula. The level of the cut was chosen at the same
level than the glenohumeral contact. At this level, the
distribution of von Mises stress is the same with the two
methods. Only the maximal values differ. At this level the
maximal stress calculated with the first method is about
5% higher.

Von Mises Stress—in the Whole Scapula

The von Mises stress was calculated in the whole scapula.
The results were then extrapolated to the nodes. Figure 5a
a represents the von Mises stress obtained with the two
methods. Each point of the graphic represents one node.
The x-value is the stress obtained with the first method and
the y-value is the stress with the second method. In the
case of two exactly equivalent methods, all the points
should lie on a straight line with the equation y = x. In
the present case there is a linear correlation between the
two methods with a correlation coefficient of 0.999.

40° 50° 60°

Contact

Pressure

(b)

max.= 0.25 0.55 0.72

0.59 0.80 1.67

(a) Methed #1 - 1 step simulation, (b) Method #2 - 2 steps simulation

FIGURE 2 Comparison of the calculated contact pressure on the glenoid fossa during a progressive internal rotation from 0 to 60°.
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Method#1 - SB
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Method#2 - SB
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FIGURE 3 Force in the InfraSpinatus (IS) and SubScapularis (SB) muscle during the rotation calculated with the two methods.

But the equation of the line obtained with the least mean
square methods is: y = 0.98x. This indicates that the
stresses calculated with the first method are smaller than
the stress calculated with the second method. The figure
shows also that this bias is more important for the higher
values of the stress.

The distribution of the error between the methods is
reported in Fig. 5b. The distribution has the majority of the
points around 0. We can conclude that the two methods
give the same results. Again, a small bias can be observed:
the mean of the distribution is at 0.012 indicating that the
values obtained with the first method are higher than with
the second method. Furthermore, the figure clearly
indicates that the distribution is unbalanced on the right,

Method #1 - 1 step simulation

max. = 3.90

Method #2 - 2 steps simulation

max. = 3.72

indicating that there are more points for which the stress
calculated with the first method is higher.

Computer Resources Needed for the Simulations

The resources needed to run the different simulations are
reported in Table II. The most important parameter is the
time needed for the simulation. With the second method
the CPU time is more than 6 times less than with the first
method (22h30 vs. 3h40). Other parameters are also
important to determine the size of the simulations: like the
memory needed (70% decrease with the second method)
or the total disk space needed for the simulation (43%
decrease with the second method).

von Mises
[MPa]

FIGURE4 Von Mises stresses distribution at 60° internal rotation in an horizontal cut of the scapula with the two methods. The cut is performed at the

level of the glenohumeral contact.
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FIGURE 5 The von Mises stresses calculated for each node of the
scapula with the two methods are plotted in graph (a). The correlation
coefficient is 0.999 showing a clear linear correlation between the two
methods. The gray curve indicates the ideal position for the points
(i.e. ¥ = x). Graph (b) shows the percentage of node with a given error.

DISCUSSION

The main interest of the developed method is the computer
time saving. The method consists in solving first a discrete
variational problem with six degrees of freedom (Egs. (10)
and (13)) and therefore to use this approximate solution as
predictor for the deformable problem, prior to the first
iteration on displacement. The more this predictor is close

to the solution of the deformable problem, the more the
method is efficient and the convergence enhanced. This is
expectably the case whenever the terms in 9 and its time
derivatives in Egs. (11) and (12) are sufficiently small with
respect to the other variables. The application of this
theory in shoulder biomechanics is validated. An internal
rotation of an intact joint was simulated with the two
methods: first without decoupling and then with the
decoupling methods. Qualitatively, the results obtained
with the two methods were the same. But the time needed
for the simulation using the decoupling theory was about
six times lower.

Quantitatively, there are some slight differences
between the two methods. The forces in the infraspinatus
and subscapularis muscles are the same during the entire
rotation. The error between the methods is less than 1%.
For the glenohumeral contact, although the contact region
is exactly the same with the two methods, there is a
difference in the value of the maximal contact pressure.
With the new method there is an error of less than 5% on
the maximum contact pressure. But the higher value is not
always computed with the same methods. This indicates
that there are small differences in the glenohumeral
motion, even for the same angle of rotation. These
differences may be due to the fact that the deformable
humerus could undergo some bending deformations which
is not the case for the rigid one.

The stress distribution in the scapula calculated with the
two methods is the same. The comparison of the von
Mises stress for each node of the scapula indicates a strong
linear correlation between the methods. However a small
bias between the methods can be observed: the stress
calculated with the new method is smaller than with the
first method. Two observations lead to this conclusion.
First, the slope of the least mean square equation is 0.98
and not 1. Second, the distribution of the difference of
stress is not symmetric. There are more points for which
the stress calculated with the first method is higher than
with the second method. The very strong linear correlation
between the methods could be used to correct the results
obtained with the new method.

However, in biomechanics like in many other cases,
only the general behavior of the problem is of interest. We
are not often interested in the exact value of the stress or
contact pressure, but rather on their parametric behavior.
In this way, many other approximations in the model are
more important than the few percents observed between
the two methods presented here. And one of the first
approximation is the FE method itself with its spatial
approximation.

TABLE Il Comparison of the computer resources needed for the simulations with the two methods

CPU time [s] Memory [MB] Temporary disk space [MB] Disk space [MB] (results)
Method #1 81,263 295 1536 1112
Method #2—part 1 (rigid body) 11,836 86 667 190
Method #2—part 2 (bone stress) {509 ~ Total 13,346 61 290 88
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The great advantage of the new method is the decrease
in the computer resources needed and especially the
decrease of the CPU time. In the example presented here,
the time needed to achieve the simulation with the second
method is more than six times lower than with the first
method. The need in other computer resources is also
decreased. The need in memory is more than 70% lower
and the disk space used for the new method is 43% the
space of old method. With this new method, the same
simulation runs faster on the same computer.

Since the goal of this study is to decrease the CPU
time, the effect of the constitutive laws chosen in the
model on the calculation time has to be examined.
Assuming a homogenous constitutive law for bone does
not significantly decrease the CPU time. This justifies
the use of the bone non-homogeneous constitutive law.
On the other side, non-homogeneity of spongious bone
cannot be neglected if the model is applied to analyze
the anchorage of orthopedic prostheses. The soft tissue
constitutive laws have been chosen as simple as
possible in this work. Hyper-elasticity is necessary for
modeling large deformation of the soft tissue. We have
observed that CPU time does not sensibly depend on
the shape of the chosen hyper-elastic law. Exponential
shape of the muscular law corresponds to the usual
behavior of the soft tissue and the neo-hookean
constitutive law used for the cartilage is the simplest
one that holds for the large compression strain
supported by this constituent.

The method presented here is interesting for the
evaluation of the model sensitivity to the mechanical
properties of soft tissues. The determination of constants
used in the constitutive laws is difficult. This is mainly due
to the limited number of data existing in the literature
about mechanical properties of soft tissues, especially of
the muscles. In this way, parametric studies on constants
introduced in soft tissue constitutive laws will be
conducted in the future to evaluate the sensitivity of the
model to these mechanical properties. The decoupling
method presented here will help to carry out this
sensitivity analysis with a significant decrease of the
CPU time.

In the particular case of the model of the shoulder
presented here, the new method is even more interesting
when we wanted to deal with prostheses. Two reasons for
that: first the model became more complex due to the
presence of the prosthesis, the cement around the
prosthesis and the fine bone mesh around the cement.
The number of elements and thus the number of degree
of freedom become huge. For example, a model with a
Neer hemiarthoplasty has been developed and has about
106,000 degrees of freedom. This number has to be
compared to the 84,000 degrees of freedom of the
deformable model of the intact shoulder (22h30 of
simulation). The second reason is that prostheses are very
rigid. Most prostheses are made in metal, often in
titanium, Ti—Al-V alloy or Co-Cr alloy. So it is
possible to consider the prosthetic humeral head as rigid.

(oY)
N
A

This approximation decreases again the size of the
problem, because the deformable/deformable large

sliding contact is replaced by a deformable/rigid large
sliding contact.

When we have to deal with big problems of deformable
solids undergoing large motions, the decoupling approach
presented here constitutes a promising solution since it
dramatically diminish the CPU time and all the other
computer resources needed for the simulation without
significant modifications of the results. This is especially
useful in joint biomechanics when both the joint motion
and the bone stress distribution have to be calculated. One
of the most important benefit of this approach is to give
the opportunity to make parametric studies. But this also
gives the possibility to add more complexity on the model.

For example to include more muscles in the shoulder
model.
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