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Abstract. This paper presents a replication protocol that ensures even-
tual consistency in large-scale distributed systems subject to network
partitions and asynchrony. A simulation study shows that the resulting
protocol is scalable and achieves high throughput under load.

Our protocol does not rely on any form of consensus, which would lead
to block the replicas in case of partitions and asynchrony. Our protocol
instead ensures that (1) updates are continuously applied to the replicas
and (2) no two updates are ever performed in a different order. Gaps
might occur during periods of unreliable communication. They are filled
whenever connectivity is provided, and consistency is then eventually en-
sured, but without any conscious commitment. That is, there is no point
in the computation when replicas know that consistency is achieved. This
unconsciousness is the key to tolerating perpetual asynchrony with no
consensus support.

1 Introduction

A new class of so-called interactive distributed applications is emerging: dis-
tributed virtual environments, interactively steered scientific applications, col-
laborative design systems, etc [3]. These applications may need to run in a wide
area asynchronous environment with widely distributed users and resources and
no central authority. In such settings it is important for each user to have ac-
cess to a local copy (replica) of every object of interest. This is key to allowing
local progress without constantly relying on the network. The main technical
challenge is then to maintain some form of consistency among all replicas of the
same object [17].

Traditionally, many systems running on local area networks provide so-called
single copy semantics that gives the user the illusion of accessing a single, highly
available object. Typical solutions require users to access a quorum of replicas,
to acquire exclusive locks on data they wish to update or to agree on a total
order of updates to be applied at each replica. Maintaining single-copy semantics
in a worldwide deployed system is practically very expensive and theoretically
impossible [10]. It is thus necessary to use (weaker) consistency criteria. This is
precisely what eventual consistency [19] provides. It guarantees that whatever
the current state of the replica, if no new updates are issued and replicas can



communicate freely for a long enough period, the contents of all replicas even-
tually become identical. From an implementation point of view, the issues to
solve in order to guarantee eventual consistency are [17]: (1) update dissemina-
tion: each update must eventually reach all replicas, and (2) update ordering: all
updates must be eventually applied in the same order at each replica.

Some solutions (Bayou [19], OceanStore [15]) disseminate updates using epi-
demic (gossip) protocols. Update ordering [15, 19, 14, 20, 18] is achieved by having
replicas deliver updates locally in any order (tentative order) and using rollbacks
to eventually reach a total order. Total ordering is typically computed a poste-
riori using some form of consensus. This requires a “synchrony island” where
agreement can be achieved to ensure that all replicas eventually agree on the
exact update order. When that happens, each replica is conscious of the fact
that total order has been reached.

This paper presents a replication protocol that achieves eventual consistency
in large-scale distributed environments subject to network partitions and asyn-
chrony. Update dissemination is performed using a classical gossip-based strat-
egy [8]. Our replication protocol differs from others by the fact that it does not
use any form of consensus, even only eventual. It defines an a prior: total order
that is never explicitly agreed upon among replicas. Updates are disseminated
using gossips and subsequently delivered. In the case that some old update ar-
rives after already having delivered subsequent messages, the replica has to roll
back to the old state, apply the old update and re-deliver all subsequent mes-
sages. This means that, in theory, each replica should keep all delivered updates
forever. However, in practice, it is possible to reach consistency with high prob-
ability without keeping all delivered updates.

A fundamental aspect of our protocol is that replicas are unconscious of
when total order is reached, i.e. when they are in a consistent state. This un-
consciousness is the key to reaching eventual consistency even if the network is
permanently asynchronous. Our protocol has the following characteristics:

— Non-blocking : the protocol enables update delivery even during periods when
the network is asynchronous or partitioned.

— Self-stabilizing : the protocol exploits periods of (even partial synchrony)
and merging of partitions to reduce the number of rollbacks. (Note that the
periods of synchrony are not relied on in order to reach consistency).

— Scalable : the protocol encompasses a self-sizing mechanism that guarantees
high throughput when the number of broadcasters and/or the rate at which
they broadcast updates increase.

Our simulations convey the fact that our protocol achieves reasonable latency
during synchronous periods (due to a small number of rollbacks) and achieves
high throughput under high load.

This paper is organized as follows. Section 2 presents the ramifications un-
derlying unconscious eventual consistency. Section 3 describes our protocol. A
performance evaluation is presented in Section 4. Finally, related work is pre-
sented in Section 5, before concluding the paper in Section 6.



2 Ensuring Unconscious Eventual Consistency

Roughly speaking, eventual consistency stipulates that all replicas eventually
converge to the same state, i.e. deliver the same set of updates in the same
total order. Eventual consistency can be achieved by having replicas (called
processes in the rest of the paper) deliver updates in their order of arrival and
then eventually re-order already delivered updates using a rollback mechanism.
This section starts by discussing few points that must be taken into account while
implementing eventual consistency. We then describe a naive implementation.
Finally, we discuss the drawbacks of this naive implementation to introduce the
improvements that are brought by the protocol presented in this paper.

2.1 Few Comments on Eventual Consistency Implementations

Update Ordering. As explained before, achieving eventual consistency requires
every process to eventually deliver updates in the same order. Since updates
can continuously be applied (i.e. processes can re-deliver updates until the total
order is reached), it is only needed that each two updates be univocally associ-
ated to unique sequence numbers. On the other hand, it is not necessary that
assigned sequence numbers be consecutive (i.e. gaps in the sequence are allowed).
Nevertheless, for avoiding rollbacks, it is better that they be consecutive as this
allows processes to know whether it is worth waiting for updates.

Update Dissemination. Eventual consistency requires that all updates eventually
reach all processes. Reliable communication is therefore necessary. However, in a
large scale environment, ensuring strong reliable communication can be very ex-
pensive. Consequently, most solutions [15,19] rely on epidemic dissemination [13,
4,7], even if they do not provide strong reliability. Therefore, just like [15,19],
our protocol only provides eventual consistency with high probability.

Unconscious Consistency. The total order used to achieve eventual consistency
can be defined a priori (by associating to each update a pair composed of ID of
the process that issued the update and a local sequence number). This allows
achieving eventual consistency without relying on consensus. On the other hand,
not relying on consensus implies that processes never know when a consistent
state has been reached. As a consequence, we say that eventual consistency is
implemented in an unconscious manner.

2.2 A Naive Protocol

Eventual consistency can be naively implemented as follows. Consider a finite
and ordered set of processes {p1,...,pn}. Each process acts as a sequencer; it
keeps a local sequence number that is increased before broadcasting a new mes-
sage (update). Along with the sequence number, each process tags the message
m with its id. The resulting message (m, id, seq) is then disseminated to all pro-
cesses. A total order is defined on these messages using the sequence number



and id. More precisely: for any pair of messages m and m’, m precedes m’ iff (i)
seq < seq’ or (ii) seq = seq’ and id < id'.

Upon reception of a message, a process cannot possibly know if it will ever
receive another message preceding it in the total order. Indeed, there may exist
gaps in the sequence of broadcast messages. It therefore doesn’t make sense for
a process to wait for other messages. Consequently, processes deliver messages
upon reception. If a message m; is received after a message mq preceding it in
the total order, a rollback is performed on msy. Subsequently, m; and mqy are
delivered in the correct (total) order.

2.3 Towards a Better Protocol

The drawback of the naive implementation is that there is no mechanism to
reduce the number of rollbacks. In particular, with a large number of sequencers,
the number of rollbacks in the system drastically increases. Consider that there
are IN sequencers in the system identified by s; < ... < sy. Each sequencer
sequences k messages. Moreover, consider that messages are broadcast using a
reliable FIFO broadcast primitive. If N = 1, all messages are received in the
correct order by all processes. Thus, no rollbacks are necessary. However, with a
larger number of sequencers, the number of possible rollbacks increases. Consider
the case N = 2 with s; and ss starting to broadcast at the same time and same
rate. Moreover, consider that messages sent by s, are systematically received
before messages sent by s1. Messages arrive at each process in the following order:
(ma, s2,1), (m1,s1,1), (M4, s2,2), (ms,s1,2), etc. Consequently, each process
needs to rollback k messages (those sent by s3). Extending the previous example
to a system with N = m sequencers, it is trivial to demonstrate that each process
performs (m — 1) x k rollbacks.

The protocol described in the next section exploits periods of synchrony
to reduce the possible number of sequencers (and hence reduce the number of
rollbacks) and to assure that each sequencer (actually implemented by a set of
processes) gives consecutive sequence numbers.

3 Protocol

This section starts by an overview of the protocol. We then describe its basic
behaviour. Follow the presentation of a self-stabilization mechanism and the
description of a self-sizing mechanism that improves the protocol’s scalability.

3.1 Overview

For scalability and fault-tolerance reasons, the protocol we propose implements
each sequencer as a pool of processes organized in a coalition. Each process
wishing to disseminate an update has access to a primitive called ecBroadcast.
This primitive first requests a sequence number from the coalition the process
relies on and then uses gossiping to disseminate the update together with its
sequence number.



Creating coalitions. If a process p; that does not rely on a coalition wants to
ecBroadcast a message, it first tries to discover an already existing coalition. If
it does not find one, it creates a new coalition including itself and some other
processes (to get the desired size of the coalition) in a new coalition.

Sequencing using coalitions. A coalition ¢ is a set of processes (called mem-
bers) acting as a common sequencer. Within a coalition, processes are sorted
using their identifiers. We note cx[z] the z'* process in cx (x is called rank of
process c[z]) and we note card(cy) the cardinality of coalition c¢j. Processes be-
longing to a coalition issue sequence numbers as follows: let ¢ be a coalition and
let p; be a process belonging to ¢, p; = cglx]. Process p; assigns monotonically
increasing sequence numbers belonging to the sequence SN¢[#! = (87n )nen with
sn, = n X card(cg) + x. Along with this sequence number, messages are tagged
with the id of the process that issued the sequence number.

Note that the above-described mechanism ensures that a coalition issues dis-
tinct, totally-ordered sequence numbers. Moreover, the protocol is such that each
process requests sequence numbers to coalition members in a round-robin way.
This allows (1) balancing the load over all coalition members and (2) increasing
the probability that successively issued sequence numbers be consecutive.

Dissemination. We rely on a gossip-based protocol for message dissemina-
tion [8]. It has been shown that these protocols are able to ensure high delivery
ratios. Moreover, for improving reliability during periods when the network is
highly asynchronous or partitioned, the protocol uses a pull mechanism similar
to the one presented in [19].

Delivering messages. Processes try to deliver messages in sequence. This is
done by waiting until the preceding messages have been delivered before de-
livering the current one. However, a process cannot possibly know about all
preceding messages for three reasons: (1) there might be other coalitions issuing
sequence numbers, (2) the sequence numbers issued by the coalition the process
relies on are not necessarily consecutive, and (3) the gossiping mechanism used
for dissemination is not reliable. Therefore, a process only waits for a given pe-
riod of time before delivering received messages. Consequently, a message can
be received after consecutive messages have already been delivered. In this case
a rollback mechanism is used to undeliver messages and re-deliver them in the
correct order. Our experiments show that in the case when only one coalition is
present in the system, the number of rollbacks is close to zero.

Self-stabilization. As explained above, it is desirable to have a single coalition
in the entire system. The protocol encompasses a self-stabilization mechanism
that aims at leading to a system with only one coalition. Members of different
coalitions get to know each other when they receive messages sequenced by a
different coalition. If a member p; of a coalition A receives a message coming



from another coalition B, then it builds a new coalition C' including all members
of A and B. As explained below, the size of the resulting coalition is readjusted
after the merger. Note that this sizing mechanism tries to select the most stable
processes, i.e. the processes that have been in the system for the longest time.

Each time a coalition member switches to another coalition, it starts issuing
new sequence numbers as explained above. Therefore a process could reissue the
same sequence number twice. This problem is solved by adding an epoch number
to each sequenced message. When a process joins a coalition, it associates an
epoch number to this new coalition. This epoch number must be greater than the
epoch number of the last coalition the process was a member of. Epoch numbers
do not change the way processes deliver messages. We just need to change the
way the total order on messages is defined such that the epoch number takes
precedence over the sequence number and finally the process id.

Self-sizing coalitions. Scalability of the sequencing service is obtained by dy-
namically adjusting coalition size according to the load on coalition members.
This load depends on the number of broadcasters and the rate at which they
broadcast. These two parameters are often impossible to determine a priori in the
target environments. The self-sizing mechanism described in Section 3.4 dynam-
ically modifies the size of coalitions, based on the average number of sequence
number requests that coalition members receive during a period of time.

3.2 Main Protocol

Data structures. Each process p executing the algorithm contains the following
set of data structures. coalition represents the coalition process p relies on. It is
a list of processes. optimalSize is the size that the coalition must have. epoch
represents the epoch process p is in. nextSN is the next sequence number from
the coalition that p relies on and expects to deliver next. pending is the list
of messages that process p received but did not yet deliver. Each entry in the
pending list contains [m, sn, ts], where m is the message to be delivered, sn is
its sequence number (integrating the process id, epoch number and sequence
number attributed by the sequencing service), and ts the time at which message
m was received. The deliveryTimeout parameter indicates the time process p
should wait before delivering the first message in pending. All messages that
have been delivered so far are stored in the delivered list. Finally, nbO f Retries
refers to the number of attempts to retrieve a coalition process p must do before
creating its own coalition.

Note that for the sake of clarity, some functions (resp. messages) that are
described below take a parameter, named in fo, that is a data structure carrying
various data on the process that called the function (resp. sent the message). For
instance in fo.coalition contains the coalition the process relies on; in fo.epoch
carries its epoch; etc.

The isNext() function. To ease the reading of the algorithm, we have isolated
the isNext() function (Figure 1), whose role is to indicate if a message must



be delivered (returns true) or if it must stay in the pending list. This function
enforces the following policy: the protocol can only wait for messages that are
sequenced by the coalition the process relies on and at the same epoch as the
one the process is currently in. All other messages are delivered as soon as they
are received.

function isNext(sn, ts)
if (sn.pid € coalition) A (sn.epoch = epoch) then
if (sn.number = nextSN) V (ts + deliveryTimeout < getTime()) then
nextSN := sn.number + 1
return true
else
return false
return true

PIDPT R W

Fig. 1. The isNext() function.

Algorithm executed by any process. Figure 2 depicts the algorithm exe-
cuted by any process p;. The coalitionUpdate() function aims at updating the
knowledge p; has about existing coalitions. It is called each time a new message
is received. It simply changes p;’s coalition if p;’s epoch is lower than the epoch
of the coalition given in parameter.

For each process p; For each process p;
1: procedure ecBroadcast(m) 18: upon pending. first = [m, sn, ts]
2:  (sn) := getSN() with isNext(sn, ts) do
3:  gossip (m, sn,info) 19:  rolledback = 0
4:  pending.add([m, sn, getTime()]) 20:  while m < delivered.last do
21: rollback(delivered.last)
5: function getSN() 22: rolledback.add(delivered.removelast())
6: repeat nbO fRetries times 23:  ecDeliver (m)
7: (info) := getCoalition() 24:  delivered.add(m)
8: if info # 0 then 25:  while rolledback # 0 do
9: coalitionUpdate(in fo) 26: ecDeliver (rolledback.removeFirst())
10: return snRequest() 27:  pending.remove([m, sn, ts])
11:  info.coalition = {p;}
12:  info.epoch = epoch + 1 28: procedure coalitionUpdate(in fo)
13:  coalitionUpdate(in fo) 29: if info.epoch > epoch then
14:  return snRequest() 30: coalition := in fo.coalition
31: epoch := in fo.epoch
15: upon gossip(m, sn, info) from p; do 32: nextSN := 0

16:  coalitionUpdate(in fo)
17:  pending.add([m, sn, getTime()])

Fig. 2. Algorithm executed by any process p;.

Process p; can use the ecBroadcast() function to initiate the broadcast of
a message m. This function first gets a sequence number using the getSN()
function; it then gossips the message together with its sequence number and



information about p; (coalition and epoch); finally, it adds message m to the
pending list. The getSN() function first tries to retrieve a coalition using the
getCoalition()! function. Then, it uses the snRequest()?. function to get a se-
quence number from the coalition returned by the getCoalition() function. Note
that each time the snRequest function is invoked, it sends the request to a dif-
ferent member in order to balance the load over all coalition members and to
increase the probability to successively issue consecutive sequence numbers. Af-
ter nbO f Retries unsuccessful tries, the getSN() function creates a coalition.
When process p; receives a gossip message m, it first updates its coalition if
necessary; it then adds m to the pending list. Messages stored in the pending list
are delivered as soon as they are first in the list and that the isNext() function
returns true. Note that the delivery of a message may require rolling back and
re-delivering previously delivered messages (Lines 19-22 and 25-26).

3.3 Self-stabilization

The mechanism described in this section aims at leading to a system with only
one coalition. We start by describing a protocol executed by coalition members to
merge coalitions. Then, we present an age-based mechanism that allows selecting
stable processes, i.e. processes that remained in the system for the longest time.
Finally, we show how faults impacting coalition members are handled.

Merging coalitions Each coalition member p; executes an algorithm in charge
of merging coalitions. This algorithm differs from the one executed by standard
processes by the coalitionUpdate() function (Figure 3). Its behavior is the fol-
lowing: when the coalition given in parameter is the same as p;’s coalition, the
function simply updates p;’s epoch if it is lower than the one passed as a param-
eter. When coalitions differ, the function merges the two coalitions and uses the
size() function to try to reach the coalition’s optimal size. This function either
truncates the coalition using the truncate() function, or adds processes returned
by the getProcess() function. Next paragraph explains how processes are selected
by these two functions.

Aging mechanism. To improve the stability convergence time, the protocol en-
compasses an aging mechanism? that aims at selecting the most stable members.
The aging mechanism shares similarities with the mechanism used to improve
the reliability of epidemic broadcast algorithms [8]. The basic idea underlying
this mechanism is that each process has an age that reflects the number of mes-
sages the process delivered (the age is incremented every N deliveries). Each

! For space reasons, the getCoalition() function is not described. This function either
returns the coalition p; relies on (if such a coalition exists), or broadcasts a “coalition
request” message to discover a coalition.

2 For space reasons, the sn Request() function is not described. This function simply
requests a sequence number from one member of the coalition p; relies on.

3 For space reasons, we do not provide the pseudo-code of this mechanism.



For each coalition member p; For each coalition member p;

1: procedure coalitionUpdate(in fo) 11: procedure merge(cl, c2)

2 if info.coalition = coalition then 12: cl:=clUc2

3 if info.epoch > epoch then

4 epoch := in fo.epoch 13: procedure size(c)

5: nextSN := 0 14:  if card(c) > optimalSize then

6: else 15: truncate(c)

7 merge(coalition, in fo.coalition) 16:  else

8: size(coalition) 17: while (card(c) < optimalSize) A
9: epoch := max(epoch, info.epoch) + 1 hasMoreProcesses()

10: nextSN := 0 18: ¢ := c U getProcess()

Fig. 3. Algorithm executed by any coalition member p;.

process stores the age of coalition members and propagates them with each mes-
sage (in the coalition list). Then, the truncate() function selects the members
with highest age. Eventually, stable processes will have a higher age than all
other processes, which guarantees that all coalition members will be stable.

Note that there is no guarantee that two executions of the truncate() function
by two different coalition members will produce the same result. Indeed, this
depends on the knowledge that these two members have about the ages of all
coalition members. Nevertheless, this is not an issue because the probability of
having different knowledge can be decreased by increasing N.

Moreover, to further increase the speed at which stability is reached, the
getProcess() function returns “old” processes. This is achieved by having each
coalition member maintain a (short) list of the oldest processes it knows.

Handling faults in coalitions. As described, the protocol does not handle
faulty coalition members. This does not affect the correctness of the protocol,
but it alters its stability convergence time. Faulty members are handled using a
heartbeat protocol among coalition members (Figure 4). Each member periodi-
cally (0) sends a PING message to other members in the coalition. Members
maintain two data structures: alive is the list of processes from which a PING
message has been received. This list is reset periodically. suspected is the list of
processes that the member suspects. This list is built by adding members of the
coalition that are not in alive after (2 d) ms (Line 7), and by adding members
suspected by other members (Line 12). Processes that are in the suspected list
of a process p; will no longer be added by p; in a coalition (Line 17).

The above-described behavior requires some additional comments: the heart-
beat protocol does not prevent false suspicions. On the contrary, once a member is
suspected by some process p;, it will eventually be suspected by all other coali-
tion members. Nevertheless, if suspected lists were not propagated, coalitions
would oscillate as long as one process falsely suspects another member. More-
over, propagating suspected lists is not a real issue since (1) timeouts can be set
sufficiently large to prevent most cases of false suspicions and (2) it is possible



to remove processes from the suspected lists after some (long enough) period of
time, in order to allow falsely suspected processes to re-integrate coalitions.

For each coalition member p; For each coalition member p;
1: suspected := 0 9: task coalitionMaintenance every (2 * ¢) ms
2: alive := 0 10: info.epoch = epoch + 1
11:  if alive # coalition then
3: task heartBeat every ¢ ms 12: suspected.add(coalition\alive)
4:  send(PING,info) to all p; € coalition 13: info.coalition = alive
14: coalitionUpdate(in fo)
5: upon receive(PING,info) from p; do 15:  alive := 0
6 alive := alive U {p; }
7:  suspected.add(in fo.suspected) 16: procedure merge(cl, c2)
8 coalitionUpdate(in fo) 17: ¢l := (el U c2)\suspected

Fig. 4. Extension for handling faults within a coalition.

3.4 Self-sizing coalitions

This section describes a mechanism in charge of improving the protocol’s scal-
ability. In our context, ensuring scalability consists in being able to handle a
large number of nodes and to guarantee high throughput in message deliveries
under high load. The protocol described so far already deals with scalability
issues by (1) using a gossip protocol to disseminate messages, (2) distributing
the sequencer role among several processes (coalition), and (3) balancing the
load among coalition members by requesting sequence numbers in a round-robin
fashion. Nevertheless, one limitation of the protocol is that it assumes a priori
knowledge of the optimal coalition size.

We have extended the protocol with a self-sizing mechanism?* that aims at dy-
namically computing the optimal coalition size. This mechanism is based on the
fact that during a long enough period of time, all coalition members experience
the same load (due to the round-robin load balancing mechanism). Therefore,
computing the optimal size can be done by a specific member (i.e. the member
that has rank 0, which we will call the “smallest member”), by simply looking
at the load it experienced during the last sizing period. If the node is overloaded,
it adds processes to the coalition; otherwise, it removes processes. This is the
responsibility of the application deployer to decide the maximal load (in terms
of request/seconds) a node in the system can support.

When two coalitions merge, the optimal size is set to the sum of the opti-
mal sizes of both coalitions. This is the only case when the optimal size can be
changed by a member other than the smallest one. Note that it is necessary to
determine if the optimal size is the one set by the smallest member or by the
process that executed the merger. This decision can easily be done by propagat-

4 For space reasons, the pseudo-code of this extension is not shown.



ing a sizing number together with the optimal size sent in each message. This
sizing number allows knowing if a sizing decision precedes or not another one.

4 Performance

In this section, we present the performance results obtained by simulating our
algorithm. We start by describing the simulation settings and then give the
actual performance measurements. The goal of the simulations is to show that
the protocol is (1) self-stabilizing, (2) non-blocking, and (3) scalable.

4.1 Simulation Environment

We simulated our algorithm using the Peersim simulator [1]. Peersim allows
cycle-based simulations of distributed algorithms in large-scale environments.
Processes are connected using a random graph topology: every process knows
a fixed number of random processes. Moreover, processes disseminate messages
using an LPBCast-like broadcast protocol [8]. Note that we extended the simula-
tor in order to be able to simulate asynchrony: we can vary the time (i.e. number
of cycles) it takes for a message to be transferred from one process to another.
In our experiments, this time is bounded by maxLatency, and every message
transfer takes a random number of cycles ranging from 1 to maxLatency.

Finally, we model churn (i.e. continuous joining and leaving of processes) by
periodically replacing a percentage of processes. All experiments are run with
1000 processes, with a PING period (J) of 20 cycles and a sizing period of 40
cycles. All the experiments start with a warm-up phase (first 100 cycles) in which
processes progressively join.

4.2 Self-stabilization

The first experiment illustrates the fact that the protocol is able to select sta-
ble processes. It consists in simulating 1000 processes that randomly broadcast
messages. The self-sizing mechanism was disabled and the optimal coalition size
was set to 8. The goal of the experiment is to show how the average number of
stable members in each coalition evolve. For the sake of clarity, the average was
only computed on coalitions that stayed in the system for longer than 20 cycles.

Figure 5 depicts the average number of stable processes in each coalition as
a function of time (i.e. cycle number). We varied both the latency (through the
max Latency parameter) and the churn rate. The maxz Lantecy parameter ranges
from 1 to 15; the churn rate ranges from 4% to 8% every 15 cycles. We observe
that without any aging mechanism, the protocol does not reach stability (last
plot). On the contrary, the aging mechanism ensures that stability is reached
(first four plots), i.e. that eventually there will be 8 stable processes in the
coalition. Nevertheless, the speed at which stability is reached depends on the
level of asynchrony and churn.
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Fig. 5. Stable processes selection.

— The stability time increases with asynchrony for two reasons: (1) more time
is necessary for coalitions to meet, and (2) asynchrony alters the knowledge
that processes have about the age of other processes. Therefore, the protocol
has a higher probability of selecting processes that are not stable.

— Increasing churn decreases the time it takes to reach stability. This result
might seem surprising, but it can easily be explained by the fact that: (1)
unstable members in the coalition have higher probability to fail (and thus
to be replaced), and (2) stable processes are proportionally older (and thus
have higher probability to be selected).

4.3 Non-Blocking Behavior

The second experiment illustrates the fact that our protocol is non-blocking.
In particular, we show that it still provides service during periods when the
network is partitioned. The experiment consists in simulating 1000 processes
that randomly broadcast messages. The maxLatency parameter is set to 10.
Moreover, there is no churn. In order to simulate 3 network partitions, we group
processes into 3 groups. The interconnection graph is built in such a way that
each process has an equal number of (randomly chosen) neighbors in each group.
A network partition is simulated by disconnecting the groups.

Figure 6 plots the average latency of a message broadcast as a function
of the time at which the broadcast was initiated. The experiment starts with
three network partitions that merge at cycle 300. As explained in Section 3.1,
messages that are not delivered by the gossip primitive are retrieved using a
pull mechanism. In the depicted experiment, this is the case of most messages
sent between cycles 0 and 300. Indeed, our protocol keeps providing service, but
the gossip primitive only delivers messages to processes belonging to the same
partition as the one the message’s broadcaster is in. Other processes wait until
the partitions have merged to retrieve these messages using the pull mechanism.
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Messages broadcast after cycle 300 have an average latency ranging from 5 to
40 cycles. This is reasonable considering that the maximum latency of a point-
to-point communication is equal to 10 cycles.
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Fig. 7. Average number of rolled-back messages.
Figure 7 plots the average number of rollbacks that were done before deliv-

ering a message as a function of the time at which the broadcast was initiated.
The experiment is the same as the previously described one. We observe that



messages broadcast between cycles 0 and 300 require rollbacks before being de-
livered. This can be explained by the fact that these messages were previously
delivered in the partition of their respective broadcasters. After the network
merger, these messages are retrieved using the pull mechanism. Their delivery
requires rolling-back part of messages that were delivered during the network
partition. We also observe that messages sent after cycle 300 do (almost) not re-
quire any rollback before being delivered. This shows that our protocol behaves
like a traditional total ordering protocol when the network is not partitioned.
As a consequence, it is possible in such periods to truncate the memory, while
still ensuring eventual consistency with a very high probability.

4.4 Scalability

The last experiment we present demonstrates that the protocol is scalable. In
particular, we show that the protocol ensures (almost) constant throughput even
during periods when the number of initiated broadcasts drastically increases.

The experiment consists in simulating 1000 processes that have a probability
to broadcast messages that varies over time. In this experiment, the maxLatency
parameter is set to 10 and there is no churn. Moreover, the warm-up phase is
not represented for the sake of clarity. Figure 8 plots both the average number of
sequence number (SN) requests received by each coalition member at the start
of each round (first Y axis) and the average number of broadcasts initiated at
the start of each round (second Y axis). Each “coalition X” plot depicts the
life cycle of a coalition (i.e. the cycle at which it is created/destroyed) and the
average number of SN requests received by each member.
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Fig. 8. Self-sizing mechanism.

The self-sizing mechanism was parameterized to maintain the average num-
ber of SN requests by member between 30 and 40. From cycle 0 to cycle 300,



processes have a low probability to initiate a new broadcast. During this period,
messages are sequenced by coalition 1, which contains 3 members that handle
(on average) 32,5 SN requests per cycle. Then, the broadcast rate significantly
increases between cycles 300 and 600. Coalition 1 is first replaced by coalition
2 (6 members and 64,7 SN requests per cycle). Thus coalition 2 does not yet
have enough members to handle the load. Consequently, coalition 2 is replaced
by coalition 3 (12 members and 38,5 SN requests per cycle) after a short period
of time. At time 600, the broadcast rate suddenly decreases. Coalition 3 is first
replaced by coalition 4 (7 members and 15 SN requests per cycle), and then by
coalition 5 (4 members and 31,3 SN requests per cycle). This experiment shows
that the self-sizing ensures that coalitions can sustain a constant throughput,
regardless of the broadcast rate.

5 Related Work

Update ordering for eventual consistency can be ensured by using total order
protocols like the ones described in [6]. However, only optimistic total order
protocols can efficiently support eventual consistency in a large scale setting
[20,18]. Other approaches to total ordering are too strong and would decrease
responsiveness.

A interesting work is the one presented in [9] that presents a formalization
of a related problem (eventual serializability) and an algorithm that solves it.
Nevertheless, targeted environments are much smaller scale than the one we
target and it is assumed that each replica is able to know if an update is stable
(i.e. has been applied to every replica). Thus, the algorithm would not work
correctly in highly asynchronous systems. Another work related to our work is
the one done by Golding who proposes protocols for weak consistency group
communications [11]. Proposed protocols assume a knowledge of the number of
replicas in the system. Thus, they are not usable in the environments we target.

Moreover, several optimistic total order protocols have been proposed. They
distinguish between tentative delivery and committed delivery of messages. This
approach has been proposed by Kemme et al. in [14] to improve the responsive-
ness of the system in a LAN. The optimistic approach in this case is based on
the spontaneous total ordering in LANs. The protocol proposed by Vincente and
Rodrigues in [20, 18] guarantees that the tentative order is equal to the commit-
ted one during synchrony periods of the network. During periods of asynchrony
rollbacks might occur. Finally, the protocol proposed by Sousa et al. in [18]
does its best to guarantee that the tentative order is equal to the committed
by artificially delaying messages received at a process before delivery through a
mechanism called delay compensation. This delay based approach aims at cre-
ating the right conditions for spontaneous total ordering in WANs. All these
protocols deterministically guarantee eventual consistency by relying on strong
reliable update dissemination. As a consequence, they do not scale and cannot
be employed in weakly connected environments. This is contrary to our protocol
that uses epidemic dissemination.



There exist other examples of protocols relying on epidemic dissemina-
tion [19,15,16,2]. For instance, Bayou [19] is a storage system designed for a
weakly connected computing environment. In Bayou, one server, designated as
the primary, takes responsibility for totally ordering updates and thus for decid-
ing the committed order. Each secondary replica executes updates in a tentative
order while the committed order is being decided. Update propagation follows an
anti-entropy [7] mechanism: pairs of replicas periodically exchange information
to update their states. This pair-wise communication copes with arbitrary net-
work connectivity and after an arbitrary number of communication exchanges,
replicas converge to an identical state.

Oceanstore [15] targets extremely wide distributed environments with huge
numbers of users. Consistency is reached using a two-tier architecture: a specific
small set of untrusted servers, called the inner ring of the object, store the
primary object replicas (primary tier). Other replicas, called secondaries, are
deployed on a large number of nodes, mostly for caching reasons (secondary
tier). The inner-ring totally orders updates coming from any node hosting a
replica using a Byzantine agreement protocol [5]. Contrarily to our protocol,
in Oceanstore and Bayou, consistency is achieved in a conscious manner. Note
that a similar notion of unconsciousness has been introduced in the context of
self-stabilizing communication protocols [12].

6 Concluding Remarks

This paper combines various self-stabilization techniques within a replication
protocol that ensures unconscious eventual consistency. The protocol is stable,
non-blocking, and scalable. Our simulations convey the reasonable latency of the
protocol during synchronous periods, and its high throughput under load.

In contrast to a conscious notion of eventual consistency, where the repli-
cas would know when they reached a stable consistent state, the guarantee we
provide can be implemented in permanently asynchronous environments, while
still supporting important classes of distributed applications such as interactive
applications based on continuous shared data.
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