
AMethodology for Mapping Multiple Use-Cases onto Networks on Chips

Srinivasan Murali
CSL, Stanford University

Stanford, USA
smurali@stanford.edu

Martijn Coenen, Andrei Radulescu, Kees Goossens
Philips Research Laboratories

The Netherlands
{martijn.coenen,andrei.radulescu,kees.goossens}@philips.com

Giovanni De Micheli
LSI, EPFL
Switzerland

giovanni.demicheli@epfl.ch

Abstract
A communication-centric design approach, Networks on

Chips (NoCs), has emerged as the design paradigm for
designing a scalable communication infrastructure for fu-
ture Systems on Chips (SoCs). As technology advances, the
number of applications or use-cases integrated on a single
chip increases rapidly. The different use-cases of the SoC
have different communication requirements (such as differ-
ent bandwidth, latency constraints) and traffic patterns. The
underlying NoC architecture has to satisfy the constraints of
all the use-cases. In this work, we present a methodology
to map multiple use-cases onto the NoC architecture, satis-
fying the constraints of each use-case. We present dynamic
re-configurationmechanisms that match the NoC configura-
tion to the communication characteristics of each use-case,
also accounting for use-cases that can run in parallel. The
methodology is applied to several real and synthetic SoC
benchmarks, which result in a large reduction in NoC area
(an average of 80%) and power consumption (an average
of 54%) compared to traditional design approaches.
Keywords: Networks on Chips, Systems on Chips, Use-

Cases, Modes, Dynamic Re-Configuration.
1 Introduction
Systems on Chips are high-complexity, high-value chips

that are used in a wide variety of areas such as cellular
phones, TV processors, set-top boxes. As technology ad-
vances, it becomes cost-effective to integrate several differ-
ent applications or use-cases onto a single SoC chip. As an
example, the PNX8550 (Viper2) set-top box SoC based on
the Philips Nexperia platform has multiple resolution video
processing capabilities (like high definition, standard defini-
tion), multiple picture modes (like split-screen, picture-in-
picture), video recording features, high speed internet ac-
cess, file transfer services, etc. [10], [11].
Current state-of-the-art SoCs also allow several of the

use-cases to run in parallel. As an example, in a set-top box
SoC, video display and recording applications can run in
parallel, where the recorder could potentially record a dif-
ferent program than what is being displayed on the screen.
We refer to such use-cases that run in parallel as compound
modes (Figure 1). The transition between the single use-
case mode to compound mode needs to be smooth. As
an example, when we start a new function such as video-
recording in a set-top box, the video display that is currently

standard definition video display

compoundcompound

high definition video display

use−cases

Use−Cases

Time

smoothsmooth mode
switching

time overhead switching
mode

switching
mode

modemodemode
use−case
single

 video recordingfile transfer

Figure 1. Use-cases and compound modes
going on should be unaffected. However, when there is a
switching between compoundmodes, there can be a config-
uration time overhead to load the new set of use-cases, as
shown in Figure 1.
As the communication requirements of the SoCs in-

crease, current single or multiple bus-based solutions be-
come inefficient in terms of throughput and performance
[1]. A communication-centric design approach, Networks
on Chips (NoCs), has recently emerged as the design
paradigm for designing a scalable communication infras-
tructure for future SoCs [1]-[5]. The NoC architecture for
the design should closely match the traffic characteristics
and performance requirements of the different use-cases.
As the different use-cases have different functionalities, the
communication characteristics can be very different across
the use-cases. As an example, in Figure 2, a small frag-
ment of the communication constraints for two different
use-cases for the Viper2 set-top box SoC is presented, where
the bandwidth requirements for some of the traffic streams
for the use-cases are quite different.
One of the important phases of the NoC design is to build

a network that can support the communication constraints
and traffic characteristics of each use-case. The design pro-
cess includes mapping of the cores onto the NoC compo-
nents, such as the switches, network interfaces (NIs) and
configuration of the NoC to support the traffic flows. The
NoC configuration has several sub-phases such as finding
paths and reserving resources for the various traffic flows
in the NoC. In most current SoC designs, the interconnect
architecture is manually designed to support the different

3-9810801-0-6/DATE06 © 2006 EDAA

118

filter 1

output

filter 3

filter 2

mem2

mem1

input

50 MB/s

50 MB/s

200 MB/s

150 MB/s

100 MB/s

50 MB/s

100 MB/s

(a) Use-case 1

filter 1

output

filter 3

filter 2

mem2

mem1

input
50 MB/s

50 MB/s

50 MB/s

200 MB/s

150 MB/s

50 MB/s

100 MB/s

50 MB/s

(b) Use-case 2
Figure 2. Example use-cases

...

Traffic

PUC

Generation
Parallel mode

use−case
generation

SUC

NoC Performance
Verification

Integrated NoC
Mapping and

Configuration

SystemC & RTL
VHDL NoC
Simulation

phase 3

phase 2

phase 1

parallel
use−cases

use−cases
requiring
smooth
switching

Multiple (design constraints)Use−cases

& Back End
RTL Synthesis

U1 U2 U3 Un

Use−Case
grouping for

switchingsmooth

Figure 3. Multi use-case NoC design methodology
use-cases [12]. As the SoCs can have several hundred use-
cases, manually checking whether the design constraints of
the individual use-cases are satisfied by the NoC is a tedious
process. Even if such checking can be done, converging to
a single design for the NoC that supports the different use-
cases is a non-trivial problem. If the NoC is designed to
run only one of the use-cases, such as the most communi-
cation intensive use-case, it may not be able to support the
constraints of the other use-cases.
In this work we present a design methodology for map-

ping, path selection and resource reservation in the NoC
that satisfies the communication constraints of multiple use-
cases of the SoC. We consider compoundmodes, where two
or more use-cases run in parallel, and automatically com-
pute the communication constraints for such modes from
the constituent use-cases. When there is switching between
the use-cases that are run, there is a possibility of chang-
ing the paths and resource reservations in the NoC across
the use-cases. The dynamic network re-configuration can
be applied when the use-case switching times are large and
it helps in reducing the operating frequency and power con-
sumption of the NoC. In our methodology, we pre-process
the use-cases and identify the set of use-cases that need to
share the same NoC configuration and use-case switching
where the NoC configuration can be changed. We also ex-
plore the effect of dynamic voltage and frequency scaling
(DVS/DFS) techniques for reducing the power consumption
of the network across the different use-cases. We apply our
methods to several SoC designs (set-top box, TV proces-
sor SoCs) and synthetic benchmarks to validate the design
methodology. The methods are scalable to a large num-
ber of use-cases and are applicable even when the use-cases
have very different communication characteristics.
2 Previous Work
A large body of research focuses on the architecture [5]-

[8] and automating the design flow for NoCs [22], [23]. We
refer the reader to [21] for an overview of the various issues
in the design of NoCs.
In [9], theÆthereal architecture is presented. It supports

Quality-of-Service (QoS) for applications by using Guaran-
teed Throughput (GT) connections for traffic streams that
have bandwidth/latency constraints and by using Best Effort
(BE) connections for the remaining traffic streams. Map-
ping and topology selection/generation for a single use-case
has been explored by several researchers [13]-[20].
The multi-use case mapping problem is addressed in

[25], where a method to map multiple use-cases onto NoCs
is presented. The approach is based on building a synthetic

worst-case use-case that includes the constraints of all the
use-cases and to design and optimize the NoC based on the
worst-case use-case. Such an approach results in a NoC that
satisfies the design constraints of all the use-cases and per-
forms well on SoCs that have similarity in the traffic pat-
terns across the different use-cases and when there are a
small number of use-cases. However, it performs poorly
on systems where the traffic characteristics of the use-cases
are very different or when the number of use-cases is large.
This is because the worst-case use-case has highly over-
specified constraints (as it is based on the worst-case com-
binations) and leads to a large NoC design. As an example,
for a synthetic 20 use-case 20 core design, the size of the
NoC designed using the method presented here is less than
10% of the size of the NoC produced using the method in
[25] (details presented in Section 6.2 of this work). As the
number of use-cases on a SoC is increasing with each new
platform, scalability of the mapping process is critical. The
methodology presented in this work is scalable to a large
number of use-cases and is applicable even when the com-
munication patterns in the use-cases are very different.
3 Design Methodology
The communication characteristics and constraints of the

various use-cases of a SoC are the input to our design
methodology (U1 · · · Un in Figure 3). The user specifies
the set of use-cases that can run in parallel (PUC in the
Figure). In the first phase of the design process, new use-
cases are generated automatically to represent such parallel
modes of operation.
For a multiple use-case SoC, when the system switches

between use-cases, some timing overhead is incurred in
loading the new use-case. This delay is mainly due to the
fact that the new use-case’s data and code need to be loaded,
control signals need to be distributed to different parts of the
design and the already running use-case need to be grace-
fully shut down. This switching time varies with different
use-cases and depends on the underlying computational ar-
chitecture. Some use-cases represent control sequences that
are critical and are loaded and run quickly. For many other
use-cases, the switching time is of the order of hundreds
of micro-seconds to milli-seconds. In this time, we can re-
configure the paths and TDMA slot-tables in the NoC to
match the communication characteristics of the use-cases.
We can also scale the supply voltage and NoC frequency
to match the use-case characteristics that can lead to a re-
duction in the NoC power consumption. A description of
the ways to achieve the re-configuration and the associated
overhead (in terms of time, resource usage, energy) is pre-

2

119

Group 1 Group 2

Group 3

Group 4

U1

U2

U3

U_123

U4
U5

U_45

U6

U7

U8

Figure 4. Smooth switching graph
sented in our earlier work [25].
When some use-cases can run in parallel, we require

a smooth transition between the single use-case mode to
the parallel use-case mode and the network configuration
should not be changed. Other use-cases that require smooth
switching between them are given as an input to the design
flow (SUC in Figure 3). In the second phase of the design,
we pre-process the use-cases identifying those set of use-
cases that can have re-configuration and those that should
share the same NoC configuration. The detailed description
of this phase is presented in Section 4.
In the third phase of the design, we performmapping and

NoC configuration. The objective of the mapping process is
to design the smallest size NoC (in terms of the number of
the switches used) that satisfies the design constraints of all
the use-cases. We assume that all of the use-cases utilize
the same mapping of cores onto the NoC components and
only the paths and TDMA slot-tables can be potentially re-
configured across the different use-cases. This is because,
if each individual use-case has a different mapping, then
each core potentially needs to be connected to several dif-
ferent NIs, which may not be feasible because of physical
layout restrictions and wiring complexity. The methods pre-
sented in this paper can be easily extended to support even
limited re-configuration of the mapping across the different
use-cases.
In the last phase of the design, the SystemC/VHDL code

for the NoC design is generated and simulations of the de-
sign are performed. The NoC performance for the GT con-
nections is also verified analytically in this step.

4 Use-Case Pre-Processing
The set of use-cases that can run in parallel is specified

by the user as an input. As the number of combinations of
the use-cases can be large, it is a tedious process for the user
to manually create use-cases to represent the parallel modes.
In the first phase of the methodologywe automatically com-
pute the bandwidth, latency requirements for such parallel
modes from the individual use-cases. The bandwidth of a
flow between two cores in such a compound mode is ob-
tained by summing the bandwidth of the flows between the
two cores across the use-cases that comprise the mode and
the latency requirement of the flow is taken to be the mini-
mum of the requirements of the flows across the different
use-cases in the mode. Such compound modes are then
taken as separate use-cases in the design flow.
To capture the constraints that certain use-cases need

smooth switching between them (and hence should have the
same NoC configuration), we obtain the set of such use-
cases as an input from the user. We automatically con-
sider those use-cases in a compound-mode to also require
smooth-switching. Once the set of use-cases are obtained,
we construct a switching graph SG:

Definition 1 The switching graph is an undirected graph,
SG(SV, SE) with each vertex svi ∈ SV representing an
use-case and the undirected edge (svi, svj) (or (svj , svi)),
representing the fact that the use-cases svi and svj require
smooth switching between them.
As an example, in Figure 4, a SG graph for 10 use-cases

is presented. The use-cases U 123, U 45 are automatically
generated by the first phase of the design flow to represent
the compound modes of operation where use-cases 1, 2, 3
and 4, 5, respectively, run in parallel. We require a smooth
switching between use-cases 6 and 7, as use-case 7 is con-
sidered to be critical. The set of use-cases that need to have
the same NoC configuration have an edge between them in
the SG graph.
To find the set of all use-cases that need to have the

same NoC configuration, we use the algorithm presented
in Algorithm 1. In the algorithm, the SG graph is traversed
and those vertices that are reachable from each other are
grouped. The vertices in the same group represent those
use-cases that need to have the same NoC configuration.
This is obtained by performing depth-first search of the SG
graph, possibly multiple times, until all vertices are tra-
versed. The set of vertices traversed in a single search are
grouped together, as they are reachable from each other.
During the mapping process, the set of use-cases that are
in the same group utilize the same NoC configuration.

Algorithm 1 Use-Case Grouping
1. Initialize svi ∈ SV,∀i ∈ 1 · · · |SV |, unvisited.
2. Choose unvisited vertex v ∈ SV and mark it visited.
3. Perform depth first search from v on SG. Group all vertices tra-
versed in the search and mark them visited.
4. Remove visited vertices and their edges from SG.
5. Repeat steps 2-4 until all vertices in SG are visited.

5 Unified Mapping-NoC Configuration
As graph mapping is an instance of the NP-Hard

quadratic assignment problem [13], [16], we use a heuristic
algorithm to perform the multi use-case mapping. The basic
algorithm for a single use-case for the Æthereal architec-
ture is presented in [20], and in this section, we extend the
approach to consider multiple use-cases. Unlike previous
works in the domain [13]-[19], in our approach, the selec-
tion of paths for the different traffic flows and the reserva-
tion of TDMA slot-table entries for the GT traffic flows are
unified with the mapping process. Such a unified mapping-
NoC configuration mechanism leads to quicker pruning of
solution search space and results in quick convergence to a
mapping that satisfies the design constraints.
To perform the mapping, let us formulate the following:

Definition 2 Let the set of use-cases be U . The commu-
nication between set of all pairs of cores in an use-case
i, ∀i ∈ 1 · · · |U |, is represented by the set Fi. Each flow in
the use-case i, flowi,j , ∀j ∈ 1 · · · |Fi|, is associated with a
bandwidth, bwi,j and a latency constraint, lati,j .
The bandwidth of the flow represents the maximum rate

of traffic communicated in the flow and the latency of the
flow represents the maximum delay by which a packet of
the flow should reach the destination.
The mapping algorithm for multiple use-cases is pre-

sented in Algorithm 2. In the first step, a NoC topology
is generated. The size of the topology is varied in the outer-
loop until a valid mapping is obtained in the subsequent

3

120

C1

C2

C3

C4

10010

75

cores

chosen flow

(a) Use-Case 1

C1

C2

C3

C4

42

11

52
(b) Use-Case 2

S S

S S

switches

100

C4

C3

NI

(c) Path for use-case 1

S S

S S

C4

C3

42
(d) Path for use-case 2

Figure 5. (a), (b): Example use-cases with traffic flows annotated with bandwidth values (in MB/s).
(c), (d): The paths chosen for the two use-cases for a flow between cores C3 and C4.

steps. When we vary the size, we assume that the topology
structure is a mesh, although the mapping design method-
ology is applicable to any NoC topology. Initially, all the
cores of the SoC are unmapped. In the second step of the
algorithm, the traffic flows are sorted in a non-increasing or-
der of their bandwidth values for all the use-cases in the de-
sign. Then the flow with the maximum bandwidth value is
chosen across all the use-cases. The intuition behind choos-
ing the flow that has the largest bandwidth value first is that
it reduces bandwidth fragmentation and larger flows get to
use shorter paths, which is desirable as it leads to lower
power consumption [15]. While choosing a flow, we pre-
fer to choose a flow from the already mapped nodes before
other flows, as it further helps in satisfying the bandwidth
constraints.
Each use-case maintains separate data structures that

represent the available bandwidth and TDMA slots in the
NoC for that use-case. Once the maximum available flow
across all the use-cases is chosen, the source and desti-
nation cores of the flow, if they are not already mapped,
are mapped onto the NoC, and all the use-cases use the
same mapping of the cores onto the NoC. When perform-
ing the mapping of these cores, the path with the least cost
(path cost is a combination of hop delay and residual band-
width/slots [20]) satisfying the constraints of the flow is
chosen and the resources (bandwidth, slots) are reserved for
the flow for that use-case.

Algorithm 2 Unified Mapping and Path Selection
1. Generate a NoC topology with one switch.
2. Sort the flows fi,j , ∀i ∈ 1 · · · |U |, j ∈ 1 · · · |Fi|, in non-increasing
order of the bandwidth values.
3. Choose the flow in order of the bandwidth value, preferring flows
that have source/destination vertices already mapped. Let fm,n be the
flow chosen.
4. Choose a least cost path that satisfies the constraints for the flow
fm,n in the use-case m. If the source, destination of the flow is un-
mapped, map them onto the NIs on the ends of the chosen path. Reserve
bandwidth bwm,n and TDMA slots for the flow on the path.
5. For all other use-cases i, ∀i ∈ 1 · · · |U |, i /∈ m, choose the flow
f , that has the same source and destination vertices as fm,n, if such a
flow exists.
6. Choose a least cost path in each use-case that satisfies the constraints
and reserve resources. For use-cases in same group, choose path for
that use-case in the group that has the maximum bandwidth value for
the flow and reserve resources across the path in each use-case.
7. Remove mapped flows and repeat steps 3-6 until all flows are
mapped.
8. If a valid mapping is not possible, increase the topology size and go
to step 1.

For all the other use-cases (other than the one whose flow
was chosen and mapped now), the flows that have the same
source-destination nodes as the mapped flow are chosen and
the paths are selected and resources are reserved.
Example 1 Let us consider a small example of the proce-
dure for 2 use-cases shown in Figures 5(a) and 5(b). The

largest flow across the 2 use-cases is the flow between the
cores C3 and C4 in use-case 1. A mapping of the cores C3,
C4 onto the NoC topology, along with unified path selec-
tion and TDMA slot table reservation for the first use-case
is performed (Figure 5(c)). The flow between C3 and C4 in
the other use-case is selected next and a path for the flow is
found in the NoC. Note that the other use-case uses the same
mapping of the cores onto the topology as the first use-case,
but can use a different path if NoC re-configuration is pos-
sible when the two use-cases switch. The residual capacity
and time slots on the NoC links are updated separately for
the two use-cases. The process is repeated for all the re-
maining flows in the use-cases.
During the path selection step, we take in to account the

groupings obtained from Algorithm 1, where the use-cases
in the same group have the same path, slot-table reserva-
tions. In this scenario, the path and slot reservation are
chosen for the flow that has the maximum bandwidth value
across the different use-cases in the group and the same
path, slot-table reservation is utilized in all the use-cases
of the group.
The above procedure is repeated until all the flows in all

the use-cases are mapped. Note that once the initial map-
ping step is performed, the solution space can be explored
further by considering swapping of vertices using simulated
annealing or tabu search, as performed in [19]. We refer
the interested reader to [20] for several optimizations car-
ried out (during path selection, slot-table allocation), dead-
lock free path selection mechanisms, mathematical details
of the objective function modeling, which are applied to a
single use-case scenario. Such features are maintained in
this multi use-case algorithm as well.
The key difference between this work and the earlier ap-

proach to multi-use case mapping presented in [25] (which
is also based on [20]), is that instead of using a synthetic
worst-case use-case that captures the design constraints of
all the use-cases, here we maintain separate data-structures
for the different use-cases. That is, during the mapping
process we simultaneously consider the bandwidth, latency
constraints of all the use-cases and when a flow is mapped,
we update the data structures of the individual use-cases.
As the worst-case use-case is over-specified, as it has to
account for the worst constraints for every flow, such an
approach is not scalable, while the method presented here
scales much better with the number and variety of use-cases.
The comparisons of the methods is presented in the next
section.
6 Simulation Results
6.1 Experimental Benchmarks
To validate the performance of the multiple use-case

mapping methodology, we perform experiments on exist-
ing SoC designs and synthetic benchmarks. We consider
four simplified versions of real SoC designs: a set-top box

4

121

D1 D2 D3 D4
0

0.2

0.4

0.6

0.8

1

SoC Designs

N
or

m
al

iz
ed

 S
w

itc
h

Co
un

t

(a) SoC Designs

2 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Number of Use Cases

N
or

m
al

iz
ed

 S
w

itc
h

Co
un

t

(b) Spread (Sp) benchmarks

2 5 10 15 200

0.05

0.1

0.15

0.2

0.25

Number of Use Cases

No
rm

al
ize

d
Sw

itc
h

Co
un

t

(c) Bottleneck (Bot) benchmarks

Figure 6. The number of switches used for the current method normalized with respect to the theWC
method

SoC with 4-use-cases [11] (D1), set-top box SoC with 20
use-cases (D2), a video processing SoC used in TVs with
8-use-cases (D3), and video processing SoC with 20-use-
cases (D4). The designs D2 and D4 are based on scaled
versions of the designsD1 and D3 for supporting more use-
cases. Each use-case has a large number of (50 to 150) com-
municating pairs of components. The set-top box SoC and
the TV processor have different functionalities and commu-
nication patterns. The set-top box design uses an external
memory for storing and retrieving data and the amount of
data communicated to the memory is very large when com-
pared to the rest of the design. The video processor design
uses a streaming architecture with local memories on the
chip, thereby distributing the communication load across
several components. We apply our design method to these
SoCs with different architectures to validate the generality
of the method.
We also generated synthetic benchmarks for testing the

method with more number and variety of use-cases. The
benchmarks are structured to follow the application pat-
terns of real SoCs. We identify two classes of such bench-
marks: (i) Spread communication benchmarks (Sp), where
each core communicates to few other cores. These bench-
marks represent designs such as the TV processor that has
many small local memories with communication spread
evenly in the design. (ii) Bottleneck communication bench-
marks (Bot), where there are one or more bottleneck ver-
tices to which most of the communication takes place.
These benchmarks characterize designs using shared mem-
ory/external devices such as the set-top box example. We
vary the bandwidth and latency constraints across the dif-
ferent traffic flows of the use-cases. Most of the video
processing architectures have traffic flows that have band-
width/latency values that fall in to few (around 3-4) clus-
ters. As an example, the HD video streams have traffic
flows with bandwidth requirements of few hundred MB/s,
the SD video streams have few MB/S bandwidth needs, the
audio streams have low bandwidth needs and the control
streams have low bandwidth needs, but are latency critical.
We capture such effects in the synthetic benchmarks gener-
ated, with the traffic parameters taking a cluster of values,
with small deviations in the values within each cluster.
6.2 Effect of Mapping for SoC Benchmarks
In order to compare the quality of mappings produced by

the design approach presented in this paper with the worst-
case design method (WC method) presented in [25], we fix
the operating frequency and link sizes of the NoC to be the
same (500 MHz, 32 bits) for the methods. We apply the
design methods and find the smallest size network that sat-

isfies the constraints of the use-cases. We fix the number of
cores to be same (equal to 20 with 60-100 connections be-
tween cores) for all the synthetic benchmarks and vary the
number of use-cases across the benchmarks (from 2 to 40
use-cases) to evaluate the quality of the mappings. In Fig-
ure 6, the number of switches used in the mesh NoC for the
current design methodology normalized with respect to the
number of switches used in the WC method for the various
benchmarks is presented. For the designs D1, D2 and for
the synthetic benchmarks with small number of use-cases,
theWC method performs reasonably when compared to the
method presented in this work. However, as the number of
use-cases increase, theWC method starts to perform poorly,
as the worst-case use-case becomes heavily over-specified
and the resulting NoC design becomes big. The method
presented here, on the other hand, performs well even for
large number of use-cases and is scalable. As an example,
for the D3 design, the current methodology produced a suc-
cessful mapping of the application onto a 2×2mesh, while
theWC method required a 11× 11mesh for the design. For
the synthetic benchmarks (both Sp and Bot) with 40 use-
cases, the current methodology resulted in a 2 × 2 mesh,
while the WC method failed to produce a valid mapping
even onto a 20× 20mesh topology (thus they not plotted in
Figures 6(b) and 6(c)). Compared to the Bot benchmarks,
for the Sp benchmarks the current method performs much
better than the WC. This is attributed to the fact that the
Sp benchmarks have more variations in the communication
patterns across the different use-cases and theWCmethod is
unable to adapt to such variations, while the current method
does. For all the benchmarks, both the methods produced
the results in less than few minutes when run on a Linux
workstation.
6.3 Frequency-Area Tradeoffs
We can perform area-frequency trade-offs using the

method presented in this work. When the NoC frequency
is higher, the bandwidth and resources available across the
NoC is higher and a smaller network can satisfy the con-
straints of the design. On the other hand, higher frequency
of operation implies a higher power consumption in the net-
work. In Figure 7(a), we present the Pareto curve for the
area-frequency trade-off for the D1 design. The area of
the switches is obtained from layouts with back-annotated
worst-case timing in 0.13 µm technology. At low operating
frequencies (≤ 350 MHz), the area of the NoC (which is
taken to be the sum of the area of all the switches1) is large
as more number of switches are needed to satisfy the design
1Here we assume that the NI area is taken to be part of the core area.

5

122

0 500 1000 1500 2000
0

5

10

15

20

NoC Operating Frequency (in MHz)

A
re

a
of

 S
w

itc
he

s (
in

 sq
ua

re
 m

m
)

(a) Area-Frequency Trade-off

D1 D2 D3 D4
0%

10%

20%

30%

40%

50%

60%

70%

SoC Designs

Po
w

er
 S

av
in

gs
 (i

n
%

)

(b) Effect of DVS/DFS

1 2 3 4
0

200

400

600

800

1000

1200

Number of parallel use−cases

N
oC

 F
re

qu
en

cy
 (i

n
M

H
z)

(c) Frequency effects of parallel use-cases

Figure 7. (a) Area-Frequency trade-offs (b) The power savings achieved using DVS/DFS, (c) The
impact of running use-cases in parallel

constraints. At very high-frequencies (≥ 1.5GHz), the area
of the NoC is very small. The optimum design point can be
chosen based on the objectives of the designer from such a
curve.
6.4 Dynamic Configuration
The switching time between most use-cases in a SoC

is of the order of few milli-seconds. When the use-cases
are expected to run for a long time, the frequency of op-
eration of the NoC can be varied during this switching
time to match the communication characteristics of the use-
cases, thereby resulting in large power savings for the sys-
tem. When the different use-cases require different NoC
frequencies, the voltage of the NoC can also be dynami-
cally changed to match the requirements of the use-cases.
We use a conservative model for voltage scaling, where we
assume that the square of the voltage scales linearly with the
frequency [24]. The dynamic voltage and frequency scal-
ing technique (DVS/DFS) results in an average of 54% re-
duction in power consumption for the different SoC designs
when compared to the design where no DVS/DFS scheme
is used (Figure 7(b)).
6.5 Parallel Use-Cases
As the number of use-cases that can run in parallel in-

creases, the NoC size or frequency also increase. Our
methodology can be applied by the designer to quickly per-
form trade-offs involving the number of use-cases that run
in parallel with the size/frequency required for the NoC to
support the parallel use-cases. As an example for a 20-core,
10 use-case Sp benchmark, the required NoC frequency as
the number of use-cases run in parallel is varied is presented
in Figure 7(c). Such a plot helps the designer in evaluating
the trade-offs involved in the NoC for supporting multiple
parallel use-cases.
7 Conclusions
The number of applications or use-cases integrated in a

single SoC chip increases rapidly with each SoC platform.
Designing an efficient NoC that supports the communica-
tion constraints of all the use-cases is a non-trivial problem.
In this work, we presented mapping and NoC configura-
tion methods for designing such high-end SoCs that sup-
port multiple use-cases and compound modes of operation,
where multiple use-cases run in parallel. When the switch-
ing time between use-cases is large, the paths and TDMA
slot tables of the NoC can be re-configured to match the
use-case characteristics. In our methodology, we identify
the use-case switchings where the NoC can be re-configured

and consider this during the mapping process. We also ex-
plore the effect of dynamic voltage and frequency scaling
(DVS/DFS) techniques for reducing the power consump-
tion of the network across the different use-cases. We val-
idate our design methodology on set-top box and TV SoC
designs and on several synthetic benchmarks. The method-
ology is efficient and scalable to a large number of use-cases
with varying communication patterns. In future, we plan to
consider physical layout details to apply re-configuration of
mappings across use-cases.
References
[1] L. Benini and G.DeMicheli, “Networks on Chips: A New SoC Paradigm”, IEEE
Computers, pp. 70-78, Jan. 2002.

[2] W. J. Dally, B. Towles, ”Route packets, not wires: on-chip interconnection net-
works”, Proc. DAC 2001.

[3] D.Wingard,”MicroNetwork-Based Integration for SoCs”, Design Automation
Conference DAC 2001, pp. 673-677, Jun 2001.

[4] M. Sgroi et al. , ”Addressing the System-on-a-Chip Interconnect Woes Through
Communication-Based Design”, Proc. DAC 2001.

[5] F.Karim et al., ”On-chip communication architecture for OC-768 network pro-
cessors”, Proc. DAC, pp. 678-678, June 2001.

[6] S.Kumar et al., ”A network on chip architecture and design methodology”,
ISVLSI 2002, pp.105-112, Apr 2002.

[7] P.Guerrier, A.Greiner,”A generic architecture for on-chip packet switched inter-
connections”, DATE 2000, pp. 250-256, March 2000.

[8] M. Dall’Osso et. al, ”xpipes: a Latency Insensitive Parameterized Network-on-
chip Architecture For Multi-Processor SoCs”, pp. 536-539, ICCD 2003.

[9] E. Rijpkema et al., “Trade offs in the design of a router with both guaranteed and
best-effort services for networks on chip”, DATE 2003.

[10] Philips, Nexperia PNX8550 Home Entertainment Engine, Dec. 2003.
[11] S. Dutta et al., “Viper: A multiprocessor SOC for advanced set-top box and
digital TV systems”, IEEE Design and Test of Computers, pages 21-31, Sept-
Oct 2001.

[12] K. Goossens et al., ”Interconnect and Memory Organization in SOCs for
advanced Set-Top Boxes and TV — Evolution, Analysis, and Trends”,
Interconnect-Centric Design for Advanced SoC and NoC, Kluwer, April, 2004.

[13] J. Hu, R. Marculescu, ”Energy-Aware Mapping for Tile-based NOC Architec-
tures Under Performance Constraints”, Proc. ASP-DAC 2003.

[14] J. Hu, R. Marculescu, ”Exploiting the Routing Flexibility for En-
ergy/Performance Aware Mapping of Regular NoC Architectures”, Proc. DATE
2003.

[15] S. Murali, G. De Micheli, ”Bandwidth-Constrained Mapping of Cores onto
NoC Architectures”, Proc. DATE 2004.

[16] S. Murali, G. De Micheli, ”SUNMAP: a tool for automatic topology selection
and generation for NoCs”, Proc. DAC 2004.

[17] A. Pinto et al., ”Efficient Synthesis of Networks On-Chip”, Proc. ICCD, 2003.
[18] A. Pinto et al., ”Constraint-Driven Communication Synthesis”, Proc. DAC
2002.

[19] S. Murali et al., ”Mapping and Physical Planning of Networks-on-Chip with
Quality-of-Service Guarantees”, Proc. ASPDAC 2005.

[20] A. Hansson et al., “A unified approach to constrained mapping and routing on
network-on-chip architectures”, pp. 75-80, Proc. ISSS 2005.

[21] A.Jantsch, H.Tenhunen, ”Networks on Chip”, Kluwer Academic Publishers,
2003.

[22] K. Goossens et al., ”A Design Flow for Application-Specific Networks on Chip
with Guaranteed Performance to Accelerate SOC Design and Verification”, pp.
1182-1187, DATE 2005.

[23] D. Bertozzi et al., ”NoC Synthesis Flow for Customized Domain Specific
Multi-Processor Systems-on-Chip”, IEEE Transactions on Parallel and Dis-
tributed Systems, Feb 2005.

[24] J. Rabaey et al., ”Digital Integrated Circuits”, Prentice Hall, 2002.
[25] S. Murali et al., “ Mapping and Configuration Methods for Multi-Use-Case
Networks on Chips”, to appear in ASPDAC, 2006.

6

123

