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Abstract

On-chip wires are becoming unreliable as the effect of
various noise sources increases with technology scaling.
This leads to unpredictable timing delay variations on the
interconnect wires. There is a significant need to mitigate
the effect of parasitics on the interconnects, while keeping
performance and area overheads at a minimum. In this
work, we present a timing error tolerant design methodol-
ogy, T-error, that provides dynamic recovery from timing
delay variations on the interconnects. We validate the func-
tionality of the T-error methodology using cycle-accurate
RTL models of a Network-on-Chip (NoC) design, that are
integrated onto a multiprocessor virtual platform. Our com-
parisons with the state-of-the-art error recovery mecha-
nisms show that the T-error system provides error recovery
with higher performance than the existing schemes. We also
present the synthesis results for the T-error scheme, which
show that the scheme has negligible overhead.

Keywords: Networks on Chips, Systems on Chips, tim-
ing errors, retransmission, double sampling

1 Introduction

With technology scaling, the communication complex-
ity of Systems-on-Chip (SoCs) is rapidly increasing. To
tackle the resulting complexity, Networks-on-Chip (NoCs)
have emerged as the paradigm for designing scalable com-
munication architecture for SoCs [1]-[5].

Another effect of Deep Sub-Micron (DSM) technolo-
gies is the appearance of significant delay variations on
the wires. Wires are becoming thicker and taller, but their
widths are not increasing proportionally, thereby increasing
the effect of coupling capacitance on the delay of wires. As
an example, the delay of a wire can vary between τ and
(1 + 4λ)τ (where τ is the delay of the wire without any
capacitive coupling and λ is the ratio of the coupling ca-
pacitance to the bulk capacitance) [9]. The wire delay for
data transfers on a communication bus depend on the data
patterns that have to transferred. As presented in [7], the
data-dependent variations in wire delay can be as large as

50% for different switching patterns. With technology scal-
ing, the device characteristics fluctuate to a large extent due
to process variations and can cause significant variations in
wire delay [8]. Wire delay is also affected by other forms
of interference, such as supply bounce, transmission line ef-
fects, etc. [8].

The major effect of these noise sources is that the delay
incurred by the data traversing the interconnect becomes
unpredictable, causing timing delay violations and timing
errors on the interconnects. There is a significant need to
mitigate the effect of parasitics on link performance. In
most state-of-the art NoCs, when such errors are detected,
the packets that incurred errors are retransmitted [18]-[21].
However, retransmission of data incurs significant perfor-
mance penalties. Moreover, timing delay variations due
to the noise sources can potentially affect multiple data
bits in a packet, requiring complex multi-bit error detect-
ing/correcting codes that are of impractical use [21].

In this work, we present a Timing-error tolerant design
methodology, T-error, that makes the NoC design tolerant
to timing errors caused by the unpredictability in the en-
vironment and wire characteristics. In the T-error scheme,
a double data sampling technique is used to recover from
timing errors in the NoC. The double data sampling tech-
nique has been widely used by several researchers for gen-
eral purpose processor designs [10]-[15]. In this work, we
integrate the basic double sampling technique with the net-
work buffers and the link level flow control protocol used in
the NoC. The resulting system can detect and correct timing
errors dynamically, with minimum performance and area
penalty.

In the proposed design methodology, the normal FIFOs
used in the network components (links, switches and net-
work interfaces) of the NoC are replaced by the T-error FI-
FOs, which can be designed and used as library elements.
Thus, adding support for timing error recovery in existing
NoC systems using the proposed approach requires only
a marginal amount of design effort. To the best of our
knowledge, the T-error methodology is the first work that
addresses the issue of dynamic timing error resiliency in
NoCs using the double data sampling technique. The T-
error scheme is explained in detail in Section 2.

The basic approach of the T-error design methodology
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as applied to network links has been presented by us in [22]
and a comparison with other flow control schemes has been
presented in [24]. In this work, we validate the performance
and area overhead of the methodology by developing cycle-
accurate SystemC models of the T-error network compo-
nents, and incorporate them within the ×pipes NoC archi-
tecture [16]. To obtain results on typical SoC benchmarks,
the T-error based NoC is integrated into MPARM [23], a
general multiprocessor virtual platform.

We perform functional cycle-accurate SystemC simu-
lations on an image processing benchmark application to
validate the performance of the scheme. We also run ex-
periments on state-of-the-art NoC error recovery schemes,
based on retransmission of data in case of errors, which
show that the T-error scheme is faster. We also present syn-
thesis results for the T-error NoC, which show that the area
overhead incurred by the scheme is negligible.

We would like to state here that the T-error methodology
only targets the recovery from timing errors, which how-
ever constitute a major portion of the faults that may be en-
countered in NoCs. To tolerate other kinds of errors (such
as soft errors), mechanisms presented in several other re-
search works (such as [17]-[21]) should be used in conjunc-
tion with the T-error methodology.

2 T-error Scheme

The basic operation of the T-error scheme is explained in
this section. In order to obtain high throughput, we realisti-
cally assume that the long links in the baseline error-prone
NoC are pipelined and have 2-entry FIFOs at each pipeline
stage (see Figure 1) [6]. In the T-error scheme, the 2-entry
FIFOs are modified to support timing error tolerant opera-
tion; the FIFOs in the switches and network interfaces of
the NoC are also modified in a similar manner.

The modified 2-entry FIFO structure is shown in Fig-
ure 2. The second flip-flop of the FIFO (called delayed flip-
flop) is clocked at a delayed clock (ckd) when compared
to the clock ck of the main flip-flop. Both clocks ck and
ckd have the same period, but they are phase shifted. Note
that in this configuration, the data has more time to settle
if sampled by the delayed flip-flop when compared to being
sampled by the main flip-flop. The phase shift between the

clocks is configured after proper delay analysis, as will be
discussed later in this section.

There are two modes of operation at each pipeline stage
of the link: main mode and delayed mode. Initially all the
pipeline FIFOs are set to the main mode and data transmis-
sion begins. In every cycle, at the rising edge of clock ck,
the main flip-flop captures and transmits the incoming data
(time instant t0 in Figure 3). At the rising edge of clock ckd,
the delayed flip-flop does a second sampling of the same
incoming data (time instant t1). At this point, a detection
circuit checks whether there is any difference between the
main and the delayed flip-flop values, i.e. detects a timing
error. As shown in Figure 2, an EXOR gate is connected
to the outputs of the main flip-flop and delayed flip-flop to
detect such occurrences. The err signals of all w bits of the
link (vertically across the width of the link) at a pipeline
stage are ORed and fed as an input to the control circuit.
A timing error in any bit of the data word triggers the con-
trol circuit to toggle the muxsel signal; the correct data, as
sampled by the delayed flip-flop, is therefore fed to the main
flip-flop on the next rising edge of clock ck (time instant t2),
and properly propagated. The correct version of the whole
data word is thus sampled at the next pipeline stage.

Whenever a timing error is detected (i.e. the err signal
is raised), a stall signal is sent to the previous stage, so that
the previous stage suspends data transmission for one cycle
while the error is handled. Also, a valid signal is sent to
the following stage, informing that the data sent in the pre-
vious cycle was faulty and that a new, correct copy is now
incoming.

A FIFO at a pipeline stage of the link enters the delayed
mode when a stall signal from the next stage causes queuing
of data at the FIFO. The stall signal can be issued to handle
regular congestion, that is as a flow control wire, or to let
the downstream stage sort out an error condition. When a
FIFO is in delayed mode, all timing errors are automatically
avoided, as the incoming data is always sampled through the
delayed flip-flop. Thus, in networks with congestion, most
timing errors are automatically avoided. Examples of op-
eration of the FIFOs for a network with no congestion and
with congestion are presented in Figures 4, 5. In the net-
work with no congestion, at each pipeline stage, data is al-
ways directly sampled by the main flop-flop and sent out by
it. In the network with congestion, the data from the preced-
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ing pipeline stage is always captured by the delayed flip-flop
at the current pipeline stage, and later sent out by the main
flop-flop. Since data is always sent at ck from the preceding
stage and sampled at ckd in the current stage, the wire tran-
sitions have more than one clock period to settle and thus
timing errors are automatically avoided. In the worst case,
if the FIFO always operates in the main mode, each tim-
ing error occurrence will incur one clock cycle penalty for
recovery.

The amount of timing delay that is tolerated by the T-
error design depends on the phase shift between the clocks
of the main and the delayed flip-flops. This shift should be
as large as possible, so that the delayed flip-flop is guaran-
teed to sample the right data and to provide correct system
operation. However, the maximum shift is constrained by
internal repeater delays (the error detection logic must oper-
ate between a ckd edge and the following ck edge). Detailed
timing analysis and SPICE simulations (for a link size of 32
bits) showed that clock ckd can be delayed by 53.3% of the
clock period with respect to ck. In this work, we assume
that a maximum delay of 50% of the clock is tolerable with
a T-error enabled system. Thus, the delayed clock ckd is
just the inverted value of the main clock, and delay chains
are not needed to generate it. At the same time, the maxi-
mum delay which is tolerated on a wire is 150% of the clock
period, providing ample margin for timing error correction.
We refer the interested reader to [22] for transistor-level im-
plementation details, timing analysis and SPICE simulation
results of the T-error scheme.

3 Experimental Results

3.1 Comparisons with Retransmission Scheme

We now compare the performance of systems that use
traditional retransmission mechanisms (we assume switch-
to-switch retransmission) for handling timing errors against
the T-error scheme. To evaluate the designs, we define a
new metric: Potential Error-Rate (PER). The PER repre-
sents the percentage chance that a data word reaching a
FIFO incurs one or more timing errors, if the data is sam-
pled directly on the ck rising edge. Note that in T-error, in
most scenarios, the data is sampled first by the delayed flip-
flop and only later by the main flip-flop; for example, this
occurs under congestion, or whenever a string of incoming
data blocks follows a faulty transmission. This automati-
cally avoids any potential errors. Therefore, even with a
PER of 100%, the actual errors happening at the T-error

FIFO can be few, as most of the faults after the first error
are transparently corrected by the design.

We first present an experiment where a serial intercon-
nect (of 1-bit data width) is used for the links. In this ex-
periment, the data bits are sent between two switches and
links with two pipeline stages each. This models the nearest
neighbor traffic pattern, which is typical for SoCs [21]. In
Figure 6, the latency for data transmission for two different
PER values (1% and 5%) is analytically plotted for various
data sizes for the T-error based design and a traditional de-
sign where errors are corrected by retransmission. These
PER values are reasonable estimates for the error rates in
future interconnects, which are obtained from [21].

The T-error scheme incurs negligible latency penalties
and the plots for both 1% and 5% PER values for the scheme
overlap. This is due to the above mentioned fact that most
of the faults after the first error are transparently corrected
by the design. For a chosen PER value, as the size of data
to be transferred increases, there are significant latency sav-
ings in the T-error system when compared to the traditional
scheme of retransmission. Moreover, as the error rate starts
to increase, there are much larger savings in latency for the
T-error based system. For the data size of 1000 bits and a
potential error rate of 5%, there is a 35% reduction in la-
tency in the T-error based system when compared to the
retransmission scheme.

In the second experiment, we leverage upon a full
NoC platform. The simulation platform consists of cycle-
accurate SystemC models of the T-error designs for the
switches, links and network interfaces, incorporated within
the ×pipes architecture. We use the MPARM simulation
environment [23], which allows several interconnect struc-
tures (such as AMBA, STBus, ×pipes) to be utilized to con-
nect processor/memory cores, and has support for a variety
of benchmark applications. A functional SystemC simula-
tion is carried out on an image processing benchmark (re-
ferred to as MAT2). For illustrative purposes, we assume
that the retransmission mechanism is capable of detecting
all timing errors; in reality, all the data bits can have timing
errors and such a scheme may not even be applicable. The
percentage increase in application runtime for different PER
values for the retransmission scheme when compared to the
T-error scheme is presented in Figure 7. Please note that
the application execution time includes the computational
time as well. For a PER value of 5%, the retransmisson
scheme when compared to the T-error scheme incurs an 8%
increase in total application runtime.
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Table 1. Area Overhead
Design Area

(mm2)
Base NoC 4.9

T-error Scheme NoC 5.1

3.2 Synthesis Results

We synthesize with Synopsys Design Compiler the T-
error based NoC design to get area estimates. For synthesis,
we use a UMC 0.13µ technology library, a NoC operating
frequency of 1 GHz and an operating voltage of 1.2 V. Ta-
ble 1 shows the area overhead for the T-error scheme, for
a 32-bit 5 × 5 mesh NoC. The base NoC area is the sum
of the area of switches, links and network interfaces with-
out the T-error design changes. As seen from the table, the
T-error scheme incurs a negligible increase in area of the
NoC.

4 Conclusions

Robust design methods are needed to cope with the in-
creasing timing uncertainty on the interconnects. It is im-
portant to achieve a robust design with minimum perfor-
mance and area overhead. In this work, we present a tim-
ing error tolerant design methodology, T-error, that pro-
vides dynamic recovery from timing errors. We implement
the T-error scheme using cycle-accurate RTL models and
present the simulation and synthesis results for the design.
Experimental comparisons with state-of-the-art error recov-
ery mechanisms show that T-error provides large perfor-
mance improvements with minimum area overhead. As fu-
ture work, we plan to apply the timing error tolerant scheme
to the computation architecture.
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