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La science a eu des merveilleuses applications;
mais la science qui n’aurait en vue que les
applications ne serait plus de la science, elle ne
serait plus que de la cuisine. Il n’y a pas d’autre
science que la science désintéressée.

Henri Poincaré, 1911





Abstract

The distributed optical-fibre sensors based on the properties
of Brillouin scattering is the central object of this thesis. In
the past decade, optical fibres have gained a large interest as
sensors: attractive solutions based on the non-linear stimulated
Brillouin scattering have been proposed in the early 90s and the
possibility to achieve long-range fully distributed strain mea-
surements has been extensively demonstrated. The Brillouin
interaction is responsible for the coupling between two optical
waves and an acoustic wave when a resonance condition is ful-
filled. Since the resonance condition is strain and temperature-
dependent, by determining the resonance frequency we directly
get a measure of temperature or strain. Local information
about the acousto-optical resonance condition is typically ob-
tained by using pulsed lightwaves and a classical time-of-flight
technique (BOTDA technique).

The main goal of this work has been the development of an
innovative technique for the generation of optical signals, using
a set of locked lasers - instead of the traditional techniques
using external modulators. The utilisation of the injection-
locking of semiconductor lasers is the key of the entire set-up
and represents an entirely new and original approach, since it
brings significant improvements in terms of SNR and costs.
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As long as intense pulses propagate along the fibre, the
optical signals can be seriously degraded by several nonlin-
ear interactions occurring inside the fibre; we show that the
nonlinear effect exhibiting the lowest threshold power is the
modulation instability (MI) process. From the study of the
dynamic behaviour of MI we could observe the Fermi-Pasta-
Ulam (FPU) recurrence over few periods in very comfortable
conditions.

One original application of Brillouin sensing has been the
dosimetric measurement of ionising radiations in a nuclear en-
vironment. The measurement campaign has not only shown
that distributed sensors based on Brillouin spectral analysis
are radiation tolerant up to very high doses, but has also re-
vealed the first observation - to our knowledge - of the negative
compaction of silica in fibres.

Distributed fibre sensors based on stimulated Brillouin scat-
tering offer a unique capability for the analysis of optical sig-
nals and nonlinear phenomena in optical fibres. We present
a generalised theoretical approach to the problem of localised
sensing and report on the first distributed measurement - to
our knowledge - of the parametric gain in a single-pump fibre-
optics parametric amplifier (FOPA).

Keywords: nonlinear optics, Brillouin scattering, optical
fibres, distributed measurements, modulation instability, four-
wave mixing, semiconductor lasers, injection locking, radiation
effects, silica compaction, optical signals analysis, parametric
amplification.



Version abrégée

Les capteurs distribués à fibre optique basées sur les propriétés
de la diffusion Brillouin font l’objet de cette thèse. Au cours de
la décennie passée, les fibres optiques ont suscité un grand in-
térêt en tant que capteurs : des solutions attrayantes basées sur
la diffusion non linéaire Brillouin stimulée ont été proposées au
début des années ’90 et la possibilité de réaliser des mesures de
contrainte entièrement distribuées à longue portée a été large-
ment démontrée. L’interaction Brillouin est responsable du
couplage entre deux ondes optiques et une onde acoustique,
quand une condition de résonance est remplie. Puisque cette
condition est dépendante des contraintes et de la température,
en déterminant la fréquence de résonance, on obtient directe-
ment une mesure de la température ou des déformations subies
par la fibre. En employant des ondes lumineuses pulsées et une
technique classique de temps-de-vol (technique de BOTDA) on
peut obtenir une information locale sur les charactéristiques de
la résonance acousto-optique.

Le but principal de ce travail a été le développement d’une
technique innovatrice pour la génération des signaux optiques,
utilisant un jeu de lasers verrouillés - au lieu des techniques
traditionnelles qui utilisent des modulateurs externes. La mise
en oeuvre du verrouillage par injection de lasers à semicon-
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ducteur est le point central de tout le montage expérimental
et représente une approche entièrement nouvelle et originale,
puisqu’elle apporte des améliorations significatives en termes
de rapport signal-sur-bruit (SNR) et de coûts.

Au fur et à mesure que des impulsions intenses se propagent
le long de la fibre, les signaux optiques peuvent être sérieuse-
ment dégradés par le truchement de plusieurs interactions non-
linéaires se produisant à l’intérieur de la fibre ; on montre que
l’effet non-linéaire manifestant la plus basse puissance de seuil
est le processus d’instabilité de modulation (MI). De l’étude
du comportement dynamique de l’instabilité de modulation,
nous avons pu observer dans des conditions très confortables
la récurrence de Fermi-Pasta-Ulam (FPU) sur quelques péri-
odes.

Une application originale des capteurs Brillouin a été la
mesure dosimétrique des rayonnements ionisants dans un envi-
ronnement radioactif. La campagne de mesure a non seulement
montré que les capteurs distribuées basées sur l’analyse spec-
trale Brillouin sont largement insensibles aux rayonnements
jusqu’à des doses très élevées, mais nous a également permis
d’observer pour la première fois - à notre connaissance - la
compaction négative de la silice dans les fibres optiques.

Les capteurs distribuées basées sur la diffusion Brillouin
stimulée offrent des possibilités uniques pour l’analyse des sig-
naux optiques et des phénomènes non-linéaires dans les fibres
optiques. Nous proposons une approche théorique généralisée
du problème de la mesure localisée et présentons également la
première mesure distribuée - à notre connaissance - du gain
paramétrique dans un amplificateur paramétrique à fibre op-
tique (FOPA).

Mots-clés : optique nonlinéaire, diffusion Brillouin, instabilité
de modulation, verrouillage par injection, effets de radiation.
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Chapter 1

Introduction

Mais cependant voila deux Horloges trouvees, qui ne
s’ecartent jamais de rien ce qui semblera incroyable: &
toutesfois est tresveritable. Jamais d’autres Pendules que
de cette nouvelle invention n’ont pu faire la meme chose;
& l’on peut voir par la combien elles sont exactes; puis
qu’il faut si peu de chose pour les maintenir dans un ac-
cord perpetuel. C. Huygens, 1665

This work mainly owes to the vivid curiosity of Christian Huy-
gens and to the brilliant intuition of Léon Brillouin. The first
observation of synchronisation between two distinct oscillators,
as well as the prediction of light scattering from the density
fluctuations in condensed matter, can be considered true mile-
stones in both theoretical and applied physics. Probably, nei-
ther the Dutch scientist nor the French physicist (three cen-
turies later) could foresee the extremely high practical impact
of their work on distributed sensors.

Hopefully, with the advent of the laser in the early 60s, the
wide availability of intense coherent lightwaves opened new
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directions of research, and nonlinear optics started to attract
much attention. The injection-locking of two helium-neon laser
oscillators could be successfully demonstrated, and the stimu-
lated Brillouin scattering could be experimentally observed in
crystals. Successively, with the invention of the first low-loss
optical fibres and the advent of the first generation of semicon-
ductor lasers, both Brillouin scattering and injection-locking
techniques became prolific domains of interest for almost two
decades.

A deeper insight into the mechanisms of the Brillouin scat-
tering revealed that the Brillouin gain curves are actually very
sensitive to several extrinsic parameters, like temperature and
strain. It was then suggested that the inherent dependence
of the Brillouin gain on local environmental variations can
be advantageously exploited for making distributed fibre sen-
sors. Attractive solutions based on the non-linear stimulated
Brillouin scattering have been proposed in the early 90s and
the possibility to achieve long-range fully distributed strain
and temperature measurements has been extensively demon-
strated.

The basic idea is quite simple. The Brillouin interaction is
responsible for the coupling between two optical waves (called
respectively pump and probe) and an acoustic wave when a
resonance condition is fulfilled. Since the resonance condition
is strain and temperature-dependent, by determining the reso-
nance frequency one obtain directly a measure of temperature
or strain. Local information about the acousto-optical reso-
nance condition is typically retrieved by using pulsed light-
waves and a classical time-of-flight technique (BOTDA tech-
nique). Several experiments have been performed using two
distinct lasers for generating pump and probe signals, with
a manifest limitation residing in the difficulty to maintain a
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stable frequency difference between the two light sources.
The parallel development of both theory and techniques

for injection locking provides interesting solutions to overcome
this instability. An interesting experimental configuration can
then be obtained, combining the benefits of the distributed
Brillouin sensing and the potentialities offered by the injection
locking concept. The aim of this work is to demonstrate an
innovative technique for the generation of the optical signals,
and show as well that this brings significant improvements in
the performances of distributed sensors, especially in terms of
noise immunity and costs.

Nonlinear optics is a fascinating and continuously evolving
field, which offers original possibilities of investigations. The
high versatility of the Brillouin effect makes actually possible to
use distributed sensing in a variety of different configurations.
In particular, we present a generalised theoretical approach to
the problem of localised sensing and demonstrate unique capa-
bility for the analysis of optical signals and nonlinear processes.

Outline of the dissertation
The present work is organised as follows:

Chapter 2 provides some of the mathematical backgrounds
needed for a theoretical understanding of the nonlinear phe-
nomena in optical fibres. A particular attention is devoted to
the modulation instability process, regarding its detrimental
effect on the performances of distributed sensors. From the
study of the dynamical behaviour, we were able to experimen-
tally observe the Fermi-Pasta-Ulam recurrence, which predicts
reversibility of energy.

Chapter 3 is devoted to the physics of the Brillouin scatter-
ing in optical fibres. A general approach to the thermodynamic
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nature of spontaneous scattering, as well as the coherent and
intensity models describing the nonlinear stimulated Brillouin
scattering are presented.

Chapter 4 deals with distributed fibre sensors based on the
stimulated Brillouin scattering. The Brillouin optical time do-
main analysis (BOTDA) technique is described and an original
experimental set-up using two injection-locked lasers is pre-
sented. The negative role played by modulation instability in
long-range high-pulse powers performances is also adressed.

Chapter 5 presents two original applications of distributed
sensing involving the dosimetric measurement of ionising radi-
ation in nuclear environments and the distributed analysis of
optical signals.

Chapter 6 is devoted to the conclusions.



Chapter 2

Nonlinear effects in
single mode optical
fibres

The boat suddenly stopped—not so the mass of water in
the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well defined heap of water, which
continued its course along the channel without change of
form or diminution of speed. J. S. Russell, 1834

This chapter provides some of the mathematical backgrounds
needed for a theoretical understanding of the nonlinear phe-
nomena in optical fibres. The fundamental equation governing
the propagation of electromagnetic fields on nonlinear disper-
sive fibres is established. A particular attention is devoted
to the modulation instability (MI) process whose dynamical
behaviour exhibits the Fermi-Pasta-Ulam (FPU) recurrence.
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2.1 Fibre nonlinearities
The response of any dielectric to light becomes nonlinear when
exposed to intense electromagnetic fields. The origin of the
nonlinear response is related to anharmonic motion of bound
electrons and charge reorientation under the influence of ap-
plied field [1, 2]. As a result, the induced polarization P from
the electric dipoles is not linear in the electric field E and sat-
isfies the equation:1

P = ε0

(
χ(1) ⊗E+ χ(2) ⊗EE+ χ(3) ⊗EEE+ ...

)

= P(1)
L +P(2)

NL +P(3)
NL + ...

(2.1)

where ε0 is the vacuum permittivity, χ(j) are tensors of rank
(j + 1) representing the jth order susceptibility, and the ⊗
products are tensorial products (the spatial and time depen-
dences have been omitted for simplicity and the response of
the medium has been supposed to be instantaneous).

The dominant contribution to the polarisation is the lin-
ear susceptibility χ(1) whose effects are included through the
Kramers-Krönig relations in the refractive index n and the at-
tenuation coefficient α.

The second-order susceptibility χ(2) is responsible for many
effects like second harmonic generation (SHG) and sum fre-
quency generation (SFG) in materials with a lack of inver-
sion symmetry at molecular level. In optical fibres, principally
made of silica which is an amorphous medium, it is actually
negligible as a result of the macroscopic inversion symmetry
of the material. In fact, the existence of a centre of inversion
implies that the properties of the medium have no preferred

1Within the convention adopted throughout this dissertation, vector
and tensor quantities appear in bold typeface, unless specified differently.
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P
(2)
NL,n = 2

∑
k,l

χ
(2)
nkl(−ωn, ωk, ωl)EkEl

−ωn, ωk, ωl Identification Susceptibility
−ω, 0, ω PE <(χ(2))
0,−ω, ω OR <(χ(2))
−2ω, ω, ω SHG <(χ(2))
−ω3, ω1, ω2 SFG <(χ(2))
−ω3, ω1,−ω2 DFG, PG <(χ(2))

Table 2.1: Selected second-order processes. PE: Pockels effect; OR:
optical rectification; SHG: second harmonic generation; SFG: sum-
frequency generation; DFG: difference-frequency generation; PG:
parametric gain. The following frequency convention has been
adopted [2]: −ωn + ωk + ωl = 0.

direction: P(2)
NL(−E) = −P(2)

NL(E). As a result, χ
(2)
ijk = 0 and

optical fibres do not normally exhibit second-order nonlinear
effects2 [3, 4]. A selection of second-order processes is given in
table 2.1.

2.1.1 Nonlinear refraction
The third-order susceptibility χ(3) is responsible for the lowest-
order nonlinear effects in fibres such as third-harmonic gener-
ation (THG), four-wave mixing (FWM) and nonlinear refrac-
tion. These phenomena can be considered elastic in the sense
that there is no exchange between the electromagnetic field and
the dielectric medium, the entire energy of the wave remain-
ing within the wave (see discussion on parametric processes on

2Weak second-order effects can although be generated, under particular
phase-matching conditions, by the existence of electric-quadrupole and
magnetic-dipole moments. We will ignore these effects in the frame of this
work.
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P
(3)
NL,n = 4

∑
k,l,m

χ
(3)
nklm(−ωn, ωk, ωl, ωm)EkElEm

−ωn, ωk, ωl, ωm Identification Susceptibility
−ω, ω,−ω, ω SPM <(χ(3))

−ω2, ω1,−ω1, ω2 XPM <(χ(3))
−ωB, ωL,−ωL, ωB SBS, SRS =(χ(3))
−ωa, ωp, ωp,−ωs CARS =(χ(3))
−ωi, ωp, ωp,−ωs PG <(χ(3))
−ω3, ω1, ω2,−ω4 FWM <(χ(3))

Table 2.2: Selected third-order processes. SPM: self-phase modula-
tion; XPM: cross-phase modulation; SBS: stimulated Brillouin scat-
tering; SRS: stimulated Raman scattering; CARS: coherent anti-
Stokes Raman scattering; PG: parametric gain; FWM: four-wave
mixing. The following frequency convention has been adopted [2]:
−ωn + ωk + ωl + ωm = 0.

page 48). Since the processes leading to the generation of new
frequencies are poorly efficient in optical fibres - on account of
the difficulties to achieve a good phase matching - the main
contribution originates from nonlinear refraction.

This phenomenon refers to the dependence of the refractive
index upon the intensity of the electromagnetic field, resulting
from the contribution of χ(3):

n(I) = n0 + n2I (2.2)

where I is the optical intensity (W/m2) inside the fibre, n0 is
the linear part, and n2 (m2/W) is the nonlinear-index related
to the only component of χ(3) by the relation n2 = 3

8n0
χ

(3)
xxxx.

n2 has been experimentally evaluated [5] and is approximately
equal to 2.2 · 10−20 m2W−1 in silica.

A selection of third-order processes is given in table 2.2. It
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is worth to cite here two classes of effects most widely studied
in nonlinear optics:

• Self-phase modulation (SPM): an optical field experiences
a self-induced phase shift during the propagation within
the fibre:

φNL = n2Ik0L (2.3)

where k0 is the wavevector and L is the fibre length.
This phenomenon is responsible for spectral broadening
of ultrashort pulses and for soliton generation.

• Cross-phase modulation (XPM): an optical field at wave-
length λ1 experiences a phase shift induced by a coprop-
agating field at a different wavelength λ2:

φNL = n2k0L(I1 + 2I2) (2.4)

The second term in the right-hand side is responsible
for the asymmetric spectral broadening of copropagative
pulses.3

2.1.2 Inelastic scattering

A second class of nonlinear effects results from stimulated in-
elastic scattering in which the optical field transfers part of its
energy to the nonlinear medium. Among these effects, two im-
portant phenomena in optical fibres are related to vibrational
excitation modes of silica: the stimulated Raman scattering
(SRS) and the stimulated Brillouin scattering (SBS). The main

3The factor of 2 on the right-hand side shows that XPM is twice as
effective as SPM for the same intensity, and specifically occurs for copo-
larised optical waves.
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difference is that optical phonons are involved in the SRS pro-
cess while acoustic phonons participate in SBS interaction.

Within a simple quantum-mechanical approach applicable
to both SRS and SBS, a photon coming from the incident field
is annihilated to create a photon to a downshifted frequency
(which is called Stokes frequency) and a phonon with right
energy and momentum to satisfy both conservation principles.
On the other hand, a photon to an up-shifted frequency (which
is called anti-Stokes frequency) can also be created if a phonon
of right energy and momentum exists in the medium.

In spite of the similarities in the origins of the two pro-
cesses, the different dispersion relations lead to some basic dif-
ferences between the two: the major one is that SBS can only
occur in the backward direction whereas SRS is more domi-
nant in the forward direction. In the framework of this thesis,
we will focus principally on the SBS which will be discussed in
more details in Chapter 3.

2.2 Wave propagation in nonlinear media
To examine the propagation behaviour of an optical wave in a
material, we need to consider the coupling between the light
waves and the induced polarization in the matter. The starting
point is Maxwell’s equations for macroscopic variables, here
listed in their general form (in SI units):

∇×E(r, t) = −∂B(r, t)
∂t

(2.5a)

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t) (2.5b)

∇D(r, t) = ρ(r, t) (2.5c)
∇B(r, t) = 0 (2.5d)
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where E andH are respectively electric and magnetic field vec-
tors and D and B are the corresponding electric and magnetic
flux densities; ρ is the density of free charges and J the cor-
responding current density vector. In dielectric media (such
as optical fibres) which contain only bound charges one has
rigorously J(r, t) = 0 and ρ(r, t) = 0.

The electric displacement D and the magnetic induction B
vectors are related to the electric E and magnetic H fields by
the following constitutive relations [6]:

D(r, t) = ε0E(r, t) +P(r, t) (2.6)
B(r, t) = µ0H(r, t) +M(r, t) (2.7)

where ε0 is the vacuum permittivity, µ0 is the vacuum per-
meability, P is the macroscopic polarization density (electric
dipole moment per volume) andM is the magnetization (mag-
netic dipole moment per volume) of the medium. Since an
optical fibre is a non-magnetic medium we assume M = 0.

By taking the curl of (2.5a) and using (2.6), (2.7) and (2.5b)
one gets:

∇×∇×E(r, t) = − ∂

∂t
∇×B(r, t)

= −µ0
∂

∂t
∇×H(r, t)

= −µ0
∂

∂t

∂D(r, t)
∂t

= −µ0

(
ε0

∂2E(r, t)
∂t2

+
∂2P(r, t)

∂t2

)

(2.8)

Since µ0ε0 = 1/c2, with c being the speed of light in vacuum,
we finally obtain a driven vector equation for the electric field
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in time domain:

∇×∇×E(r, t) +
1
c2

∂2E(r, t)
∂t2

= −µ0
∂2P(r, t)

∂t2
(2.9)

which is the most general form of the wave equation in nonlin-
ear optics. It can be simplified by using the following vector
identity:

∇×∇×E = ∇(∇E)−∇2E = −∇2E (2.10)

and by supposing that the first term in the right-hand side
vanishes because ∇E is very small for cases of interest.4

To complete the description and close the problem, a rela-
tion between P and E is needed. In general the evaluation of
P requires a quantum-mechanical approach, especially if the
optical frequency is near the medium resonance. However, in
the range of interest (0.5− 2µm) for the study of nonlinear ef-
fects in optical fibres, we are far from the medium resonances
and a phenomenological relation can be used in a way similar

4In the linear optics of isotropic source-free media, the first term in
(2.10) vanishes because ∇D = 0 implies that ∇E = 0. In nonlinear optics
this term is generally non vanishing even for isotropic materials, owing
to the more general relation (2.6) between D and E. Fortunately it can
be shown to be very small, especially when the slowly-varying amplitude
approximation is valid.
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to a series expansion in the field strength:

P(r, t) = ε0

∫ ∞

−∞
χ(1)(t− t1)⊗E(r, t1)dt1

+ ε0

∫∫ ∞

−∞
χ(2)(t− t1, t− t2)⊗E(r, t1)E(r, t1)dt1dt2

+ ε0

∫∫∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)⊗E(r, t1)·

·E(r, t2)E(r, t3)dt1dt2dt3 + . . .

(2.11)

The first term associated to χ(1) represents the linear response
of the fibre and is responsible for the wave propagation when
the power is low:

PL(r, t) = ε0

∫ ∞

−∞
χ(1)(t− t1)⊗E(r, t1)dt1 (2.12)

As discussed previously in section 2.1, the second term asso-
ciated to χ(2) is vanishing due to the symmetry properties of
the silica molecule. The principal contribution to the nonlin-
ear polarization is thus represented by the term associated to
χ(3):

PNL(r, t) = ε0

∫∫∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)⊗E(r, t1)·

·E(r, t2)E(r, t3)dt1dt2dt3 + . . .

(2.13)

All the terms of order greater than three do not contribute
significantly to the nonlinear polarization and have hence been
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neglected. The polarization reduces finally to:

P(r, t) = PL(r, t) +PNL(r, t) (2.14)

and the formalism for dealing with the nonlinearities in fibres
is completely described by (2.9), and (2.12)-(2.14). Since the
nonlinear effects are relatively weak (|PNL| ¿ PL) in silica fi-
bres, a simplification can be made by considering the nonlinear
polarization PNL as a small perturbation to the linear regime
discussed below.

2.2.1 Linear regime
In this section we focus on the solutions of the wave equation
when nonlinearities are negligible (PNL = 0). Because (2.9) is
linear in E, we can work in the frequency domain:

∇×∇× Ẽ(r, ω)− ω2

c2
Ẽ(r, ω) = µ0ω

2P̃L(r, ω) (2.15)

by expressing E(r, t) and P(r, t) in terms of their Fourier trans-
forms

Ẽ(r, ω) =
∫ +∞

−∞
E(r, t)exp(−iωt)dt (2.16a)

P̃L(r, ω) =
∫ +∞

−∞
PL(r, t)exp(−iωt)dt (2.16b)

Using (2.10) and (2.12), the wave equation takes the following
form:

∇2Ẽ(r, ω) + ε(ω)
ω2

c2
Ẽ(r, ω) = 0 (2.17)

where ε(ω) = 1 + χ̃(1)(ω) is the frequency-dependent dielec-
tric tensor and χ̃(1)(ω) is the Fourier transform of χ(1)(t).
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Since χ̃(1)(ω) is symmetrical [2] and the fibre is an isotropic
medium, the dielectric tensor can be described by his unique
scalar component χ̃(1)(ω) and the dielectric constant becomes:
ε(ω) = 1 + χ̃(1)(ω).

The attenuation and the refractive index of the fibre are
related to the real and imaginary parts of the susceptibility by
the relations

n(ω) = 1 +
1
2
<[χ̃(1)(ω)] (2.18a)

α(ω) =
ω

nc
=[χ̃(1)(ω)] (2.18b)

and contribute to the dielectric constant in the following way:

ε = (n + iαc/2ω)2 (2.19)

Because of the low optical losses in fibres, the imaginary part
is negligible in comparison to the real part and we can replace
ε(ω) by n2(ω) obtaining the final form of (2.17):

∇2Ẽ(r, ω) + n2(ω)
ω2

c2
Ẽ(r, ω) = 0 (2.20)

To solve (2.20) it is usual to rewrite the problem in cylindri-
cal coordinates and consider just one component of the electric
field,5 typically Ẽz(r, ω). Applying the separation of variables
method, we will look for solutions of the form

Ẽz(ρ, φ, z, ω) = Ã(ω)F (ρ)exp(imφ)exp(iβz) (2.21)
5Since E and H satisfy Maxwell’s equations (2.5a)-(2.5d), only two

components among six are independent. Due to the cylindrical symmetry
of optical fibres, it is customary to choose Ẽz and H̃z as independent vari-
ables and obtain the transverse components in terms of the longitudinal
ones.
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where Ã(ω) is the amplitude term, F (ρ) a modal function, m
an integer identifying the mode and β the propagation con-
stant. By substituting one finds:

∂2F

∂ρ2
+

1
ρ

δF

δρ
+

(
n2(ρ, ω)k2

0 − β2(ω)− m2

ρ2

)
F = 0 (2.22)

with k0 = ω/c.
The physical solutions are unambiguously determined by

the radial dependence of the refractive index. For a step-index
fibre of core radius a, the profile is given by:

n(ρ) =
{

n̂1 for ρ < a
n̂2 for ρ > a

(2.23)

and the transverse distributions are respectively

F (ρ < a) = Jm(κρ) with κ = (n̂2
1k

2
0 − β2) (2.24)

in the core, and

F (ρ > a) = Km(γρ) with γ = (β2 − n̂2
2k

2
0) (2.25)

in the cladding, where Jm and Km represent the ordinary and
modified Bessel’s functions of order m.

In the case of the fundamental mode, the modal distribu-
tion can be approximated by a Gaussian distribution of the
form:

F (ρ) = e−
ρ2

w2 (2.26)
where w represents the effective radius occupied by the mode.

The propagation constant is obtained by solving the eigen-
value equation associated to (2.22) and its frequency depen-
dence results from the frequency and radial dependence of the
refractive index. Approximate analytic expressions exist in
particular cases, although the evaluation of β(ω) generally re-
quires a numerical approach [7].
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2.2.2 Chromatic dispersion
The frequency dependence of the propagation constant β(ω)
plays a critical role in the propagation of optical waves, espe-
cially in the case of short optical pulses, since each different
spectral component travels at a different speed. In the linear
regime, dispersion-induced broadening can be detrimental for
optical communication systems. In the nonlinear regime the
combination of dispersion and nonlinearities can result in a
very different behaviour, giving rise to a variety of interesting
applications and phenomena.

From a mathematical point of view, the effects of fibre dis-
persion are accounted for by considering a quasi monochro-
matic field, with its spectrum centred at a frequency ω0 and
a spectral width ∆ω, such that |∆ω| ¿ ω0. The propagation
constant can thus be expanded in a Taylor series about the
centre frequency:

β(ω) = β0 + β1(ω − ω0) +
1
2
β2(ω − ω0)2 + . . . (2.27)

where
βi(ω) =

diβ

dωi

∣∣∣∣
ω=ω0

(i = 0, 1, 2, ...) (2.28)

From a physical point of view, β1 is inversely related to the
group velocity:

vg =
dω

dβ
=

1
β1

(2.29)

The group velocity is the speed at which the pulse shape, or
more generally the wave envelope, moves along the fibre. In
dispersive media, it is different from the phase velocity, which
represents the speed of the wavefronts of a plane wave, but even
if they are not identically equal, their value is approximately
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the same (about 2 ·108 m · s−1) in the windows of transparency
of silica.

The parameter β2 is also related to the group velocity in
the following way:

β2 =
dβ1

dω
=

d

dω

(
1
vg

)
=

dτg

dω
(2.30)

where τg is the group delay per unit length. β2 takes account of
the variations of the group delay experienced by the different
spectral components around the central frequency ω0 and is
therefore responsible for the broadening of pulses propagating
along the fibre in the linear regime. This is the reason why
β2 is often referred to as the group-velocity-dispersion (GVD)
coefficient. In the fibre-optics literature and in the optical com-
munication domain, it is common to use another parameter,
D, in stead of β2, called chromatic dispersion. It is related to
β2 by the relation:

D =
dβ1

dλ
= −2πc

λ2
β2 (2.31)

From a dimensional point of view, β2 is measured in ps2 ·km−1

and D in ps · nm−1 · km−1. Figure 2.1 shows the typical mea-
sured dispersion curves of two commercially-available fibres.

One notable feature is that the chromatic dispersion curve
of standard fibres vanishes at a certain wavelength λ0, called
zero-dispersion wavelength (ZDW).6 Fibres with modified dis-
persion characteristics (obtained for instance using two or four

6It should, however, be noted that when pulses propagate near λ0 the
cubic and higher-order terms have to be be included in (2.27), and the
dispersion does not vanish at λ = λ0. Such higher-order effects can bring
significant distortion both in the linear and nonlinear regime. Within the
range of few nanometres around λ0 their inclusion is no longer necessary.
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Figure 2.1: Measured variations of dispersion coefficient D with
wavelength for a single mode fibre (SMF) and a dispersion shifted
fibre (DSF).

cladding layers around the core) actually exhibit two ZDWs [8].
For wavelengths such that β2 > 0 (D < 0), the fibre is said to
exhibit normal dispersion, whereas for wavelengths such that
β2 < 0 (D > 0), the fibre exhibits anomalous dispersion. This
kind of terminology clearly identifies two different regimes in
which the interplay between the GVD and the nonlinearities
leads to a qualitatively different behaviour. In one case, for
example, the fibre can be used for pulse compression, while in
the other case the fibre can support optical solitons, as it will
be discussed later.

2.2.3 Nonlinear regime

In this section we focus on the solution of (2.9) when nonlin-
earities are present and the term (2.13) is no longer negligible.
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Several simplifying assumptions are necessary in order to de-
rive the basic propagation equation.

First, we consider that the polarization is maintained con-
stant along the fibre so that a scalar approach is valid: this
implies that only one component, χ

(3)
xxxx, of the susceptibil-

ity tensor χ(3) is used.7 Second, we assume that the optical
field is quasi-monochromatic, so that it is possible to separate
the rapidly-varying part of the electric field from the slowly-
varying envelope (SVEA approximation):

E(r, ω) =
1
2
x̂<[E(r, t)exp(−iωt)] (2.32a)

PN (r, ω) =
1
2
x̂<[PN (r, t)exp(−iωt)] (2.32b)

PNL(r, ω) =
1
2
x̂<[PNL(r, t)exp(−iωt)] (2.32c)

Third, since the nonlinear effects are relatively weak in fibres,
we consider the nonlinear polarization PNL as a small pertur-
bation to PL. This results in an additional term in the total
dielectric constant

ε(t) = 1 + χ(1)(t) + εNL(t) (2.33)

given by:
εNL(t) =

3
4
χ(3)

xxxx|E(r, t)|2 (2.34)

7In an isotropic medium, the third-order susceptibility χ(3) has only
four non-zero components: χ

(3)
xxxx, χ

(3)
xxyy, χ

(3)
xyxy and χ

(3)
xyyx. Far from the

transition frequencies of the medium, the overall permutation-symmetry
[2,9] implies that only one non-zero independent element remains eventu-
ally: χ

(3)
xxyy = χ

(3)
xyxy = χ

(3)
xyyx = 1

3
χ

(3)
xxxx. As a consequence, the response

of the medium exhibits only two privileged directions: parallel and per-
pendicular to the wave polarization.
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Finally, we will make the usual assumption that the nonlinear
response of the fibre is instantaneous and we neglect the con-
tribution of the molecular vibrations to χ(3). The vibrational
(Raman) response occurring over a time scale of τR = 60-70 fs
in silica fibres, it is usual to consider this approximation valid
for pulse widths down to the picoseconds range. We will see
how to include the Raman contribution later.

The approach used to obtain the wave equation for the
slowly-varying amplitude E(r, t) is very similar to that used
for the linear regime in section 2.2.1. In particular we suppose
that the solution can be written by separating variables in the
form:

E(r, t) = F (x, y)A(z, t)exp(iβ0z) (2.35)

where F (x, y) represents the radial distribution of the field,
A(z, t) the longitudinal slowly-varying function and β0 the
wavenumber.

Within the first-order perturbation theory, the radial dis-
tribution is not affected by the existence of nonlinear effects
in the fibre and F (x, y) still satisfies (2.22). The wavenumber,
instead, becomes intensity dependent through an additional
term affecting also the longitudinal propagation.

The details of the solution are quite complex and can be
found in [3,10]. Here, we report simply the resulting equation
for the complex function A(z, t):

∂A

∂z
+ β1

∂A

∂t
+ i

β2

2
∂2A

∂t2
+

α

2
A = iγ|A|2A (2.36)

where the spatial and temporal dependences have been omitted
for simplicity and the amplitude function A(z, t) is assumed
to be normalised such that P (z, t) = |A(z, t)|2 represents the
optical power. γ is called the nonlinear coefficient of the fibre
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and is defined by:

γ =
n2ω0

cAeff
=

3χxxxxω0

8ncAeff
(2.37)

where n2 is the nonlinear index introduced in section 2.1.1.
The parameter Aeff is known as the effective core area

and represents the area effectively occupied by the optical field
inside the fibre. It is related to the modal distribution by:

Aeff =

(∫∫ +∞
−∞ |F (x, y)|2dxdy

)2

∫∫ +∞
−∞ |F (x, y)|4dxdy

(2.38)

and its typical values are about 85 µm2 for single mode fibres
and about 50 µm2 for dispersion-shifted fibres.

The basic propagation equation (2.36) is usually rewritten
using a retarded frame of reference moving at the group veloc-
ity. By making the following transformation

τ = t− z/vg = t− β1z (2.39)

we easily obtain:

∂A

∂z
+ i

β2

2
∂2A

∂τ2
+

α

2
A = iγ|A|2A (2.40)

This particular form of the propagation equation is often re-
ferred to as the nonlinear Schrödinger equation (NLSE) and
has been the starting point of all the investigations on soliton
propagation in fibres.8 It is also responsible for the modu-
lation instability process whose dynamical evolution exhibits
some remarkable properties we will discuss in the next section.

8Rigourously, (2.40) reduces to the actual nonliner Schrödinger equa-
tion with nonlinear potential only when α = 0.
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Delayed nonlinear response

The above equation has been derived within the assumption
that the nonlinear response of the fibre is instantaneous. In
general the response of the material exhibits some delay or
inertia, meaning that the polarization of the medium is non
resonant with the incident electric field. This is due to the
fact that both electrons and nuclei respond to the optical field
in a nonlinear and non-instantaneous manner. The delayed
molecular contribution to the susceptibility tensor can be in-
cluded in the propagation equation in the following way:

∂A

∂z
+ i

β2

2
∂2A

∂τ2
+

α

2
A = iγA

[|A|2 ∗R(τ)
]

(2.41)

where ∗ denotes the convolution product and R(τ) the nonlin-
ear response function of the fibre.

Within the Born-Oppenheimer approximation [2,11], R(τ)
is normalised such that

∫∞
0 R(τ) = 1 and takes the form:

R(τ) = (1− fR)δ(τ) + fRhR(τ) (2.42)

where δ(τ) is the delta function and fR represents the frac-
tional contribution of the delayed Raman response to the non-
linear response of the fibre and is tipically estimated to be
about 0.18. hR is the Raman response function and can be
expressed in an approximate analytic way:

hR(τ) =
τ2
1 + τ2

2

τ1τ2
2

e−τ/τ2sin(τ/τ1)u(τ) (2.43)

where u(τ) is the Heaviside function and τ1 = 12.2 fs and
τ2 = 32 fs are chosen to fit the actual Raman gain spectrum.

The extended equation (2.41) governs the evolution of very
short pulses (down to femtoseconds range) and is used to de-
scribe fast-type interactions in fibres. It is also responsible for
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interesting higher-order effects and has been extensively stud-
ied in relation to soliton self-frequency shift [12].

Effective lengths

It is useful to introduce here some length scales that are com-
monly employed in fibre optics literature. We refer to [3] (chap-
ters 3 and 9) for further details.

First of all, the effective interaction length, that keeps into
account the distance over which the nonlinear effects interact
along the fibre:

Leff (L) =
∫ L

0
e−αzdz =

1− e−αL

α
(2.44)

where L represents the fibre length. For small values of length
Leff ≈ L, whereas for big lengths it reduces to Leff ≈ 1/α ≈
21.7 km.

The dispersion length

LD =
T 2

0

|β2| (2.45)

where T0 is the initial width of a pulse propagating in the fibre,
represents the lengths over which the dispersive effects become
important for the pulse evolution.

Similarly, the nonlinear length

LNL =
1

γ|P0| (2.46)

represents the distance over which the nonlinear effects take
place within the fibre. Depending on the relative magnitudes of
L, LD and LNL, the interplay of nonlinearities and dispersive
effects can give rise to very different behaviours during the
propagation of optical waves.
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2.3 The nonlinear Schrödinger equation:
basic dynamical effects

The nonlinear Schrödinger equation (NLSE) is a universal phys-
ical model providing a canonical description for the envelope
dynamics of quasi-monochromatic plane waves propagating in
weakly-nonlinear dispersive media [13, 14]. It arises in vari-
ous physical contexts and can be applied, besides nonlinear
optics [15–18], to hydrodynamics [19–21], nonlinear acoustics,
quantum condensates [22], heat pulses in solids, molecular
chains [23], plasma physics [24,25] and various other nonlinear
instability phenomena [26]. The NLSE assumes weak non-
linearities but a finite dispersion at the scale of the carrying
wave; in situations where both dispersion and nonlinearities are
equally weak a ‘reductive perturbative expansion’ leads to the
important class of long-wavelength equations, like Korteweg-
de Vries and Benjamin-Ono equations [14,27]. NLSE can also
be viewed as the adiabatic limit of the more complex Zacharov
systems, currently used as a model for the study of Langmuir
and Alfven waves in plasmas, and the Dawey-Stewartson sys-
tems, providing canonical description of two-dimensional wave
packets [14,28].

On short times and relatively short distances, these equa-
tions exhibit linear dynamics, but cumulative nonlinear inter-
actions can result in a significant and intense modulation of
the wave amplitude on large time and space scales. As a con-
sequence, new spectral components appear around the carrier
wave up- and down-shifted by the modulation frequency. The
process by which these sidebands grow exponentially during
the propagation within the medium is referred to asmodulation
instability (MI) or Benjamin-Feir instability, after the name of
the first discoverers investigating deep water waves [29]. The
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phenomenon has been observed independently in nonlinear op-
tics [30] and cold plasmas [31], and has gained a great inter-
est in optical fibres since the first observations two decades
ago [32]. Since then, it has been extensively exploited for the
generation of ultrashort pulses with high repetition rate [33]
and more recently as a basis for the generation of supercon-
tinuum sources [34]. More generally, this effect is also respon-
sible for self-focusing, self-collapsing and wave-packet contrac-
tion [14].

The growth of the unstable modulation, however, repre-
sents only the first stage of the instability. At later stages
of evolution, the wave tends to demodulate and return to its
original state. The energy of the system, initially confined
to very few low modes, spreads to many higher modes due
to the instability, but eventually returns back to the origi-
nal low modes. This process repeats periodically in time and
is known as Fermi-Pasta-Ulam (FPU) recurrence [35], by the
name of the three scientists who first predicted it within the
study of anharmonic lattice vibrations.9 Further studies on the
nature of the recurrence paradox have successively brought to
the formulation of complete integrability of nonlinear differen-
tial equations and to the discovery of solitary stable waves,
called solitons [39]. The occurrence within the NLSE has
been experimentally verified in a large variety of research do-

9Fermi, Pasta and Ulam wanted to investigate the evolution of a crystal
towards thermal equilibrium, by simulating a chain of particles linked by
a quadratic interaction potential and a weak nonlinear interaction. They
expected that the nonlinear coupling between the vibration modes would
lead to an irreversible equipartition of energy, as predicted by the ergod-
icity hypothesis of traditional statistical mechanics. On the contrary, the
long-time dynamics appeared to be periodic, with almost perfect returns
to the initial conditions. A comprehensive review of the phenomenon can
be found in [36–38].
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mains [31, 40–46] and more recently has been demonstrated
also in optical fibres [47, 48]. A comprehensive analytical ap-
proach is still lacking, but the problem can be efficiently stud-
ied, in particular conditions, restricting the analysis to the
lowest order Fourier modes [49–52]. For more complex and
general cases, however, a numerical approach is best suitable.

In this section, we start discussing the theoretical model
dealing with the modulation instability process in optical fi-
bres, with a particular attention to the nonlinear dynamics in
the strong conversion regime. Finally, we conclude reporting
on our experimental observation of the FPU recurrence and on
the reversible behaviour of modulation instability.

2.3.1 Modulation instability

Modulation instability in optical fibres result from the inter-
play between nonlinearities and dispersion, and its typical man-
ifestation consists in a spontaneous break up of the initially
perturbed continuous wave into a periodic solitonlike pulse
train [53–55]. It can also be interpreted, in the frequency do-
main, as a degenerate four-wave mixing process in which an
intense pump wave transfers energy to a pair of weak side-
bands located symmetrically on each side of the pump wave
(see section 2.4.2).

A rigorous approach to the problem moves from the the
NLSE (2.40), in which we have neglected the fibre losses (α =
0):

∂A

∂z
+ i

β2

2
∂2A

∂τ2
= iγ|A|2A (2.47)

Focusing on a pure continuous wave propagating inside the
fibre, the equation (2.47) admits a plane wave stationary solu-
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tion with an intensity-dependent phase shift of the form:

A(z, τ) =
√

P0e
iγP0z. (2.48)

We can study the linear stability of this solution considering
an infinitesimal perturbation a(z, τ) of the amplitude:

A(z, τ) =
[√

P0 + a(z, τ)
]
eiγP0z. (2.49)

where P0 is assumed constant and |a(z, τ)|2 ¿ P0. By sub-
stituting (2.49) in (2.47), and linearizing with respect to a we
obtain:

∂a

∂z
+ i

β2

2
∂2a

∂τ2
= iγP0(a + a∗) (2.50)

Looking for harmonic perturbations proportional to eiΩτeKz,
this leads to the following dispersion relation:

K = ±1
2
|β2|Ω

√
−Ω2 − sgn(β2)Ω2

c (2.51)

where Ωc =
√

4γP0/|β2| and K and Ω are respectively the
wave number and the frequency of the perturbation.

From the equation (2.51) it is easy to see that the stability
of the stationary solution strongly depends on the sign of β2. In
the normal dispersion regime (β2 > 0), K is imaginary for all
Ω and the wave amplitude remains bounded. In the anomalous
regime (β2 < 0), on the contrary, K exhibits a positive real part
for Ω < Ωc and the perturbation is exponentially amplified
with z. Therefore, MI occurs only in the anomalous regime
and can be explained as the instability of a wave train of wave
number κ relatively to disturbances in the form of a large-
scale long-time modulation, or equivalently in the form of two
sideband modes κ±K appearing in the spectral domain.
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Figure 2.2: Theoretical curves showing the dependence of modula-
tion instability spectra on several power levels. The parameters are
those typical for SMF: β2 = −21.9 ps2km−1 and γ = 1.78 W−1km−1

at 1550 nm.

The spectral gain curve of modulation instability is easily
given by:

g(Ω) = 2<(K) = |β2Ω|
√

Ω2
c − Ω2 (2.52)

and is shown in Fig. 2.2 for different power levels. The maxi-
mum occurs at two frequencies shifted by Ωmax from the inci-
dent frequency

Ωmax = ± Ωc√
2

= ±
√

2γP0

|β2| (2.53)

and has the corresponding value gmax = 2γP0, which is in-
dependent of the dispersion and increases linearly with the
incident power. Since gmax has the dimension of an inverse
of a distance, the total gain along the fibre is simply obtained
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multiplying gmax by the interaction length. When the fibre
losses are taken into account, however, the critical frequency
Ωc previously calculated has to be replaced by Ωce

−αz/2: as a
direct consequence the gain is significantly reduced and even-
tually vanishes as the fibre length goes to infinity. A detailed
study of MI in lossy optical fibres is reported in [56] and its
impact on coherent transmission systems is analysed in [57].
An interesting generalization of the linear stability analysis to
the extended NLSE (2.41) can be found in [58,59].

An evident effect of spontaneous10 MI is the appearance of
spectral lobes located symmetrically at ±Ωmax on both sides
of the pump11 frequency. This corresponds, in the time do-
main, to the conversion of the continuous (or quasi-continuous)
wave beam into a periodic pulse train with a period equal to
T = 2π/Ωmax. In Fig. 2.3 we show the power spectra of
spontaneous MI measured at the output of a SMF fibre as a
function of two different launched peak powers, while in Fig.
2.4 we show the shape of a typical pulse measured at the out-
put of the same fibre. This measurement has been made by
means of a second-harmonic-based autocorrelator, developed
in our laboratory.

2.3.2 Solitons
The nonlinear development of the modulational instability in
the time domain leads to the formation of self-similar struc-
tures resulting from an exact balance between the dispersive

10We make the distinction between a spontaneous MI seeded by sponta-
neous or thermally generated photons, and an induced MI seeded by one
or two probe waves propagating with the incident wave.

11Here pump indicates the incident wave. The use of this terminology
will be clearer when discussing parametric amplifiers (cf. section 2.4.2)
and fibre sensors (see chapter 4).
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Figure 2.3: Experimental observation of spontaneous MI. The power
spectra have been measured at the output of a 11.8 km long SMF
fibre in the anomalous dispersion region (β2 = −21.92 ps2 km−1).
The input lightwave was a 20 ns pulse.
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Figure 2.4: Autocorrelation trace of 20-ns input pulses measured at
the output of a 11.8 km long fibre, showing the breaking into a 4 ps
soliton-like pulse, measured at the FWHM. The input peak power
was 300 mW.
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and nonlinear effects. These structures are generally called
solitons (often collapsons in plasma physics) and have the in-
teresting property of keeping their form unchanged during the
propagation within the medium [16].

From a mathematical point of view, they can be derived as
the stationary solutions of the equation (2.47). Operating the
following normalization

u = N
A√
P0

ζ =
z

LD
θ =

τ

T0
(2.54)

we easily obtain the canonical form:

i
∂u

∂ζ
+

1
2

∂2u

∂θ2
+ |u|2u = 0 (2.55)

The parameter N =
√

γP0T 2
0 /|β2| is called the order of the

soliton and identifies the shape and the number of solutions
admitted by the equation (2.55).

The fundamental soliton corresponds to the case N = 1.
Looking for solutions of the form u(ζ, θ) = v(θ)eiκζ , where κ
is a constant, and solving the ordinary differential equation
satisfied by v(θ), we finally get:

u(ζ, θ) = sech(θ)eiζ/2 (2.56)

In the context of optical fibres, the solution (2.56) indicates
that if we are able to launch a hyperbolic-secant pulse inside
an ideal lossless fibre, provided that N = 1 (i.e., γP0T

2
0 = |β2|),

the pulse will propagate undistorted without change in shape
for arbitrarily long distances. This feature makes the funda-
mental soliton particularly attracting for information trans-
mission in optical systems, especially because it can be excited
at power levels available from standard semiconductor lasers.
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Higher-order solitons can be found integrating the equation
(2.55) by the inverse scattering transform (IST). The descrip-
tion of this method, which reduces the resolution of the initial
value problem to that of an inverse scattering problem for an
associated linear eigenvalue equation, is quite complex and is
beyond the scope of our work. We refer to [18,27,60] for more
details. The integrability by IST leads, however, to some in-
teresting conclusions: firstly, for a large class of initial condi-
tions vanishing at infinity, the solutions evolve asymptotically
in time to a finite set of solitons with some radiation escaping
to infinity; secondly, solitons can strongly interact with other
solitons, but they emerge from the collision unchanged apart
from a phase shift.

2.3.3 Dynamical evolution of the instability in the
strong conversion regime

The theoretical model introduced in the above section is very
useful to predict the first stages of the instability and the ini-
tial soliton build-up. Since it relies on a perturbative approach,
however, it does not bring any information about the longterm
behaviour of modulationaly unstable waves. The exponential
growth of the weak spontaneous sidebands, or equivalently the
amplification of co-propagating probe waves, occurs at the ex-
pense of the pump power. Once the pump is significantly de-
pleted, the growth is no longer exponential and other energy
transfer processes take place in the fibre.

2.3.3.1 Three-wave mixing (TWM) model

A convenient technique for going beyond the limit of validity
of the linear stability consists in an analytic treatment based
on a truncated three-wave model [51]: in this approach the
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phenomenology of the instability is limited to the interaction
between the pump wave and the two first symmetric sidebands,
provided there are no other spectral components falling inside
the MI gain.

The waves situated at ∓Ω with respect to the pump fre-
quency are respectively called Stokes and anti-Stokes waves,
or signal and idler if we refer to the case of induced MI (see
section 2.4.2). We consider that the total transverse electric
field propagating along the fibre may be written as:

E(x, y, z, t) = f(x, y)[Ep(z)eiβ0z + Es(z)ei(βsz+Ωt)+

Ea(z)ei(βaz−Ωt)]e−iωt
(2.57)

where f(x, y) is the common transverse modal profile, Ep(z),
Es(z) and Ea(z) are the complex amplitudes of the pump,
Stokes and anti-Stokes waves, and βp = β(ω), βs = β(ω − Ω)
and βa = β(ω +Ω) are the propagation constants evaluated at
the relative frequencies.

By substituting in the NLSE (2.36) and by retaining only
the terms which are phase-matched, the evolution of the sys-
tem is then described by the following equations:

−i
dEp

dz
= γ

[
|Ep|2 + 2(|Es|2 + |Ea|2)

]
Ep + 2γEsEaE

∗
pe−i∆βz

(2.58a)

−i
dEs

dz
= γ

[
|Es|2 + 2(|Ea|2 + |Ep|2)

]
Es + 2γE∗

aE2
pei∆βz

(2.58b)

−i
dEa

dz
= γ

[
|Ea|2 + 2(|Es|2 + |Ep|2)

]
Ea + 2γE∗

sE2
pei∆βz

(2.58c)
where γ is the nonlinear coefficient, and ∆β = 2βp−βs−βa =
β2Ω2 represents the linear wave-vector mismatch. The first
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terms in the right-hand sides are self-phase modulation terms,
whereas the last cubic terms are are responsible for the energy
exchange among waves.

We can conveniently rewrite the equations (2.58) in terms
of amplitudes and phases of the waves through the relations
Ej = |Ej |exp(iΦj) = Ajexp(iΦj) with j = (0, s, a). Since the
total power Ptot = |Ep|2 + |Ea|2 + |Es|2 is conserved, it is more
practical to work with normalised dimensionless variables de-
fined as follows: η(z) = A2

p/(Ptot) and aa,s(z) = Aa,s/(Ptot)1/2.
Finally, making a scaling on the longitudinal coordinate ξ =
γPtotz, as suggested in [48], the number of effective equations
reduces to the following four:

dη

dξ
= −4ηasaa sinΦ (2.59a)

das

dξ
= ηaa sin Φ (2.59b)

daa

dξ
= ηas sinΦ (2.59c)

dΦ
dξ

= κL +
[
2η − (a2

s + a2
a)

]
sinΦ

+
[
η

(
as

aa
+

aa

as

)
− 4asaa

]
cosΦ

(2.59d)

where Φ(ξ) = κLξ+Φa(ξ)+Φs(ξ)−2Φp(ξ) is the phase govern-
ing the degenerate four-wave mixing process (see section 2.4.1)
and κL = β2Ω2/γPtot is the normalised linear wave-vector mis-
match.

As it can be easily verified from the equations (2.59), the
power flow between the pump and the sidebands only depends
on their relative phase. When sinΦ > 0 the power flows
from the pump to the sidebands, while for sinΦ < 0 power
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flows from sidebands back to the pump. The maximum power
transfer (or gain) is expected for Φ = ±π/2. The information
about the phase matching is entirely contained in the equation
(2.59d). In particular, the first term on the right-hand side, κL,
represents the normalised linear phase mismatch as seen be-
fore, whereas the second term, κNL = 2η−(a2

s +a2
a), represents

the nonlinear contribution due to the self- and cross-phase in-
teraction terms. Considering the propagation of two weak side-
bands in the presence of an intense pump wave ((a2

s + a2
a) ¿

η ≈ 1) we find that the growth rate reaches a maximum for
κL = −2, or equivalently for |Ω| = (2γPtot/|β2|)1/2. This turns
out to be nothing but the detuning corresponding to the max-
imum gain Ωmax of modulation instability, found within the
linear stability approach.

The set of equations (2.59) admits, besides total power con-
servation:

η + a2
s + a2

a = 1 (2.60)

the conservation of the power difference between the two side-
bands:

α = a2
s − a2

a (2.61)

and the conservation of the following Hamiltonian:

H = 4ηasaa cosΦ− (κ− 1)η − 3/2η
2 (2.62)

By means of these invariant quantities, the analysis of the dy-
namics can be pursued by reducing the whole system to a single
equation for the normalised pump power which is therefore in-
tegrable by quadrature [49,50]. Solutions of this equation can
be found in terms of periodic Jacobian elliptic or hyperbolic
functions and, for suitable initial conditions, they can exhibit
a recurrent behaviour.
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On the basis of the first two invariants, it has also been
shown [51] that the entire dynamics of the system can be equiv-
alently described by means of a one dimensional Hamiltonian:

H(η, Φ) = 2η
[
(1− η)2 − α2

]1/2 cosΦ−(κ−1)η−3/2η
2 (2.63)

as a function only of the pump power and the phase. The
canonical conjugate variables (η,Φ) are thus linked together
by a set of two self-consistent coupled equations:

dη

dξ
=

dH

dΦ
= −2η

[
(1− η)2 − α2

]1/2 sin Φ (2.64a)

dΦ
dξ

=
dH

dη
= (κ− 1) + 3η − 2

1 + 2η2 − 3η − α2

[(1− η)2 − α2]1/2
cosΦ

(2.64b)

whose solutions are related to the topology of the phase-space
portrait. This model allows immediate insight into the prop-
erties of solutions, since closed trajectories clearly identify a
recurrent behaviour of the system.

We focus now on the case of initially symmetric weak side-
bands. When pump depletion effects are neglected, we have
seen that the maximum growth rate of the sidebands is pre-
dicted when the nonlinear phase-matching condition is satis-
fied, i.e. when κL = −2 or equivalently Ω = Ωmax. Provided
that the detuning of the sidebands is fixed, the power flows
from the pump to the sidebands if sinΦ > 0. As pump de-
pletion effects cannot be neglected any more (strong conver-
sion regime), the frequency detuning of the sidebands, yielding
phase matching, starts to shift towards lower values. As a con-
sequence, the initially phase-matched interaction becomes pro-
gressively mismatched and the rate of power transfer saturates,
reducing the conversion efficiency. In an opposite way, if the
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frequency detuning of the sidebands is lower than Ωmax, the
waves are initially phase mismatched, but the interaction be-
comes progressively phase matched because of the pump deple-
tion along the fibre. Better efficiencies can be obtained for such
detunings and a complete conversion (full pump depletion) is
predicted when κL = −1/2, or equivalently Ω = Ωmax/2.
Figures 2.5 and 2.6 show respectively the phase-space portraits
and the evolution of the normalised power along the fibre, the-
oretically calculated for these two cases of interest. The system
is supposed to be ideally lossless and exhibit instantaneous re-
sponse: the effect of the fibre losses and the Raman scattering
is simply to speed-up the dynamics and reduce the recurrence
period, as addressed in [48].

The description given by the three-wave model efficiently
predicts the recurrent nature of the solutions, but provides
a good estimation of the recurrence periods only in the first
stages of evolution. For longer propagation distances, the dy-
namics become more complex, since cascaded four-wave mix-
ing effects generate further non-negligible spectral components
which make the three-wave model not completely valid: this
situation can be very critical when the newly generated side-
bands fall within the spectrum of MI. In this case, an approach
based on the numerical solutions of the NLSE is more suitable
to have a complete description of the behaviour of the system.

2.3.3.2 Reversible behaviour of MI: experimental ob-
servation

The theoretical predictions of the TWM model are of a great
interest for our work, on account of the serious impact they
can have on the performances of fibre sensors based on the
Brillouin scattering. As it will be discussed in more details
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Figure 2.5: Phase-space portraits describing modulation instability
with initially symmetrical weak sidebands. (a) Maximum gain condi-
tion: κ = −2, Ω = (2γPtot/|β2|)1/2. The solutions are divided in two
regions of periodic orbits. (b) Full depletion condition: κ = −1/2,
Ω = (γPtot/2|β2|)1/2. The separatrix trajectory has a cusp in the
origin.
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(a)

(b)

Figure 2.6: Evolution of the normalised power along the scaled lon-
gitudinal coordinate. The solid curves represent the pump power,
whereas the dotted curves represent the sidebands power. (a) Max-
imum gain condition: κ = −2, Ω = (2γPtot/|β2|)1/2. (b) Full deple-
tion condition: κ = −1/2, Ω = (γPtot/2|β2|)1/2.
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Figure 2.7: Experimental set-up. DFB: laser diode; EAM: electro-
absorption modulator; RF: radio frequency generator; SOA: semi-
conductor optical amplifier; EDFA: erbium-doped amplifier; BPF:
optical bandpass filter; OF: optical fibre; OSA: optical spectrum
analyser; FP: Fabry-Perot analyser; A: optical port for evaluating
the input spectra.

in Chapter 4, the Brillouin probe wave can strongly seed the
MI amplification process initiated by the pump pulse and, as
a consequence, an energy transfer from pump to probe takes
place, causing a depletion of the Brillouin pump wave. The
degree of pump depletion significantly depends on the total
power of the interaction and on the relative frequency shift
between pump and probe. For standard values of the Brillouin
shift and for normal operating regimes, both the maximum
gain condition and the full depletion condition, predicted by
the TWM, can be achieved.

Experimental set-up
Figure 2.7 shows the experimental set-up used to investigate
the recurrent behaviour of modulation instability. The source
was a distributed feedback laser operating at 1550 nm, co-
integrated with an electro-absorption modulator (EAM). The
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modulator was driven by an RF generator in order to generate
two sidebands situated around the pump which acted as a seed
for the MI process. By changing the modulation frequency, the
sidebands could be shifted relatively to the pump within the
range of real Brillouin frequencies. The continuous wave light
was finally gated through a semiconductor optical amplifier
(SOA) driven by a pulse generator and boosted using an er-
bium doped fibre amplifier (EDFA). An optical bandpass filter
with a 3 dB bandwidth of 1 nm was used at the output of the
EDFA to reduce the additive noise due to the amplified spon-
taneous emission. The pump and the seed waves were then
injected into a 11.8 km long standard single-mode fibre, with
β2 = −21.9 ps2km−1 and γ = 1.78 W−1km−1, and the output
spectra were observed on an optical spectrum analyser. By
acting on the amplitude and the repetition rate of the pulses
driving the SOA, the pump pulse peak power could be easily
varied from 100 to 800mW, and, by acting on the RF modu-
lation amplitude, the relative intensity of the sidebands to the
pump could be varied as well. The optical port A, from the
99:1 coupler, was used to monitor the power and the spectrum
at the input of the fibre.

While general theories describing the dynamical evolution
of MI have continuous waves (CW) as initial conditions, we
performed the experiment using square-shaped pulses. The
main reason has to be found in the fact that, in optical fi-
bres, the high pump powers required for a rigorous observation
of the MI in the CW regime, would activate other nonlinear
processes, the stronger of which is Brillouin scattering. This
effect could seriously impair the experiment, because it is re-
sponsible for significant amounts of pump power depletion, and
consequently acts like a dissipative source which negates the
predictions of the conservative NLSE [48]. The use of square
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pulses, actually, leads to an increase of the power threshold for
the Brillouin scattering above the pump power, since the Bril-
louin gain is considerably reduced by the spectral spreading
of the pump [61]. On the other hand, it has also been shown
that square-shaped pulses approximate very well the continu-
ous case and keep intact the long-term recurrent behaviour of
the instability [48].

Experimental results (I)
We firstly set the sidebands intensity to 1/10 of the pump
intensity, and fixed the frequency detuning between the pump
wave and the sidebands to 10 GHz which, for an initial power
of 100 mW and taking into account the attenuation over 11.8
km of fibre (see section 2.3.1), corresponds approximately to
the maximum-gain condition predicted by the TWM model.
The output spectra were then recorded at the far end of the
fibre, for different values of the total input power. A 13 ns
pulse was used and the power was varied between 100 and 750
mW.

Figure 2.8 depicts the dynamic evolution of the MI power
spectra as a function of the total power, and figure 2.9 shows
the powers of the pump, Stokes and anti-Stokes waves, nor-
malised by the total input power, as a function of the total in-
put power itself. We clearly see that, as far as the input power
increases, the pump power gradually flows to the sidebands
which undergo an amplification at the expense of the pump.
At the same time, the interaction becomes progressively mis-
matched, as previously discussed, and the growth rate satu-
rates for Ptot ≈ 560 mW. From this point on, the power starts
to flow back to the pump and the sidebands tend to return
back to the initial state. The pump depletion achieved in this
case is about 69%.



44 Chapter 2. Nonlinear effects in fibres

-15 -10 -5 0 5 10 15

0,0

0,2

0,4

0,6

0,8

1,0

In
te

n
si

ty
 (

a.
u
.)

Frequency (GHz)

Pulse
 p

ea
k p

ow
er

 (m
W

)
100

750

Figure 2.8: Experiment (I). Dynamical observed evolution of the MI
power spectra recorded as a function of the input power.
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Figure 2.9: Experiment (I). Normalised powers of pump (squares),
Stokes (circles) and anti-Stokes (triangles) waves as a function of the
scaled distance.
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Experimental results (II)
The frequency detuning was fixed to the value of 10.93 GHz
which, for an initial total power of about 240 mW, corresponds
approximately to the full depletion condition predicted by the
TWM model. In this case, the evolution of the induced mod-
ulation instability was observed by keeping the input power
approximately constant and by varying only the amplitude of
the sidebands through the RF generator.

The evolution of the fundamental and of the first low-order
modes is shown in figure 2.10 as a function of the RF modula-
tion power. As predicted by the TWM model, the power flows
from the pump to the first sidebands until they reach a maxi-
mum. At this point the power starts to flow back to the pump,
but, since the high-order modes fall within the MI band, a part
of the power starts to flow to the second sidebands, too. The
process repeats again, and for increasing values of the side-
bands amplitude, the interaction involves a significant number
of modes as shown in figure 2.11: as a main consequence, the
power does not return entirely back to the pump within the
range of amplitudes considered. For such a complex dynam-
ics, the TWM analysis loses its validity after the first half-
period of recurrence and the interaction must be described by
a numerical model.

By varying the sidebands amplitude, the total input power
could vary between 240 and 350 mW, spanning the scaled dis-
tance ξ (ξ = γPtotL, where L is the fibre length) over the
range: ξ ∈ [5.04, 7.35]. We numerically solved the NLSE by
simulating the physical conditions of our experiment and re-
stricted our analysis to the range ξ ∈ [5.04, 6.11], over which
the total input power and, consequently, the linear mismatch
do not change significantly. We report and compare in figure
2.12 the numerical and experimental evolution of the powers
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Figure 2.10: Experiment (II). Dynamical evolution of the MI spectra,
as a function of the RF modulation power, showing the interaction
between the first low-order modes.
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Figure 2.11: Experiment (II). Spectrum recorded at the maximum
value of the RF modulation power showing the spreading of energy
towards up to fourteen high-order modes. The initial spectrum is
shown in the inner plot. The slightly asymmetrical aspect of the
spectrum is due to the Raman response of the fibre.
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Figure 2.12: Normalised powers as a function of distance. The solid
curve represents the pump wave; the dotted and the dashed curves
represent respectively the anti-Stokes and the Stokes modes. (a)
Numerical. (b) Experiment.
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of the pump, Stokes and anti-Stokes waves, normalised by the
total input power, as a function of the scaled distance.

The experimental data are in good agreement with the pre-
dictions of the numerical model. In both cases there are two
recurrence periods over the range of scaled distance considered,
and the evolution in the first half-period is fully comparable.
The small differences appearing from ξ ≈ 5.6 are probably
due to the presence of additional nonlinear effects, in particu-
lar four wave mixing products, generated in the fibre amplifier
and in the semicondctor amplifier, that we have not consid-
ered in the numerical approach. This may be a reason to the
fact that the theoretical model predicts a full pump depletion
(100%), whereas the pump depletion we experimentally ob-
served reaches about 95%.

While extremely interesting from a physical point of view,
this behaviour is very critical for distributed sensors, since with
such strong depletions distributed measurements are no longer
possible, as addressed in section 4.5.

2.4 Parametric processes

As we will discuss in the next chapter, in the stimulated scat-
tering processes the fibre plays an active role as a nonlinear
medium through the participation of molecular vibrations or
acoustic phonons. In many other nonlinear phenomena in-
stead, the fibre plays a passive role mediating the interaction
between several optical waves only through the nonlinear re-
sponse of bound electrons. Such processes are referred to as
parametric processes since they originate from the modula-
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tion of the refractive index induced by the propagating light.12
Within a quantum-mechanical approach, this means that the
initial and final states of the system are identical and hence
that the photon energy is conserved.13 Four-wave mixing and
parametric amplification fall into this category.

2.4.1 Four-wave mixing (FWM)
Frequency mixing represents one of the most general nonethe-
less important phenomena in nonlinear optics. In this process,
two or more waves interact in a nonlinear medium to produce
an output at various sum or difference frequencies. Four-wave
mixing [51,62–64] comes from the nonlinear response of bound
electrons to the applied optical field, and refers to the interac-
tion of four waves via the third order nonlinear polarization.
From the point of view of the nonlinear refraction, assuming
two input frequency components ω1 and ω2 (with ω2 > ω1),
the refractive index is modulated by the difference frequency
∆ω = ω2−ω1, which creates new sidebands for each of the in-
put waves (often referred to as pumps); as a consequence, two
new frequency components appear at ω3 = ω1−∆ω = 2ω1−ω2

and ω4 = ω2 + ∆ω = 2ω2 − ω1. The generation of these
new frequencies is schematically shown in figure 2.13. From

12Historically, the term was used to indicate those nonlinear optical pro-
cesses for which the Manley-Rowe relations are valid (i.e., those involving
pure reactive or lossless systems). Unfortunately, with the passing of time,
the meaning has altered and is now much less precise. It is often used to
refer broadly to those processes whose efficiencies, in a travelling-wave
interaction, depend on phase-matching [2].

13Actually, some energy may be exchanged in the course of the inter-
action between photons and electrons (or phonons), and some photons
are allowed to reside in virtual levels: the duration of this stay, however,
is governed by the uncertainty principle and after very short intervals of
time all the photons return to the initial state.
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Figure 2.13: Four-wave mixing interaction in optical fibres.

a quantum-mechanical point of view, the process occurs when
photons from both pumps are annihilated and new photons are
created at different frequencies such that the total energy and
the total momentum are conserved during the interaction [3].

The FWM is a phase-sensitive process, since the interac-
tion strongly depends on the relative phases of all involved
waves [63]. Its effect can efficiently accumulate over longer
distances in a fibre only if the frequencies are symmetrically
positioned relatively to each other (as described above) and
the wave vectors satisfy a phase-matching condition:

∆β = β1 + β2 − β3 − β4 = 0 (2.65)

This condition is achieved when the pump frequencies are situ-
ated in the vicinity of the zero dispersion wavelength, because
only in this region it is possible to have interacting waves with
similar group velocities.

The process is referred to as degenerate in the particular
case in which the two pumps at the input of the fibre coincide
(ω1 = ω2). In this situation, we consider that a idler14 wave

14This terminology is borrowed from the field of microwaves and is
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(ωi) is generated from a pump (ωp) and a signal wave (ωs), and
the whole interaction can be described by the TWM model
discussed in section 2.3.3.1.

2.4.2 Parametric amplification

According to the theoretical predictions of the TWM model,
the four-wave mixing in the degenerate case is able to trans-
fer energy from a strong pump to two waves, respectively up-
shifted and down-shifted in frequency from the pump by an
amount ∆ω = ωp − ωs = ωi − ωp. The process is governed by
the equations (2.59), where Φ(ξ) is the relative phase difference
between the three involved waves. By controlling the phase re-
lation, we can control the direction of the power flow between
the pump and the sidebands, thus creating a phase-sensitive
amplifier. In other words, by having signal, idler and pump
photons present at the fibre input and adjusting their relative
phases we are able to decide if the signal will be amplified or
attenuated.

In the case of a phase-insensitive amplifier (see figure 2.14),
we assume a strong pump, a weak signal and the idler to be
zero at the input of the fibre. In this special case it results
that Φ(ξ) = π/2 at the fibre input port [65] and, by conse-
quent, from (2.59), the signal and the idler will start to grow
immediately in the fibre. By assuming that the pump remains
undepleted during the parametric gain process, we may set
dEp/dz = 0 in the equation (2.58a) and derive an analytical

widely used in the literature of parametric amplifiers. In the TWM model
the Stokes wave corresponds to the signal wave, and the anti-Stokes wave
to the idler wave.
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Figure 2.14: General scheme of phase-insensitive fibre-based optical
parametric amplifier. From [65].

solution for the signal wave [63]:

Ps(L) = Ps(0)

(
1 +

[
γP0

g
sinh(gL)

]2
)

(2.66)

where L is the length of the fibre and g is the parametric gain
coefficient given by:

g2 = (γP0)2 − (κ/2)2 (2.67)

with κ = ∆β + 2γP0 the total phase mismatch. The unsatu-
rated single pass gain Gs may then be written as:

Gs =
Ps(L)
Ps(0)

= 1 +
[
γP0

g
sinh(gL)

]2

(2.68)

Two different regimes can be distinguished in (2.68). For signal
wavelengths close to the pump and for small fibre lengths such
that the dispersion between the waves can be neglected, we
have ∆β ≈ 0 and the gain reads:

Gs ≈ 1 + (γP0L)2 (2.69)
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In stead, in the special case of perfect phase matching κ = 0
and for γP0L À 1, the gain may be rewritten as:

Gs ≈ 1
4
e2γP0L (2.70)

Equation (2.69) and (2.70) identify respectively the region of
quadratic parametric gain and the region of exponential para-
metric gain.

We conclude this section by observing that the perfor-
mances of fibre-optics parametric amplifiers (FOPAs) strongly
depend on the longitudinal fluctuations of the zero dispersion
wavelength (λ0) [66]. In fact, expanding the linear mismatch
as a function of wavelength around λ0, we find that:

∆β = −(2πc)3

λ4
p

β3(λp − λ0)(λp − λs) (2.71)

where β3 is the third order dispersion term. The variations
on λ0 locally modify the phase matching conditions between
pump, signal and idler and dramatically affect the properties
of the parametric gain spectrum.

A localised analysis of the parametric gain along the optical
fibre could, thus, reveal possible imperfections in the behaviour
of the amplifier and, at the same time, provide useful informa-
tions on the longitudinal distribution of the zero-dispersion
wavelength, as addressed in section 5.2.2.
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Chapter 3

Brillouin Scattering

...mes premiers raisonnements étaient assez complexes et
ne laissaient pas apparaître le sens physique des calculs...

Léon Brillouin, 1931

3.1 Linear scattering
3.1.1 Generalities
Scattering is a general physical process whereby some form of
radiation, such as light, sound, or moving particles, is forced
to deviate from a straight trajectory by one or more localised
non-uniformities in the medium through which it passes.

Light scattering specifically occurs as a consequence of fluc-
tuations in the optical properties of a material medium: a com-
pletely homogeneous material can actually scatter light only
in the forward direction [1,2]. When the optical power is such
that the optical properties of the system are unmodified by
the presence of the incident light beam, we refer to the scat-
tering process as spontaneous or linear. Additionally, if the
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Figure 3.1: Spontaneous scattering. Typical spectral components of
the observed spectrum in an inhomogeneous medium.

energy of the scattered photons is conserved, and hence there
is no frequency shift induced by the process, the scattering is
considered to be elastic, whereas if an energy exchange occurs
within the medium during the process, the scattered photons
undergo a frequency shift and the scattering is considered to
be inelastic.1

Under the most general circumstances, the spectrum of the
scattered light has the form shown in figure 3.1, in which
Raman, Brillouin, Rayleigh and Rayleigh-wing features are
present. By definition, the components that are shifted to
lower frequencies are known as Stokes components, whereas the
components that are shifted to higher frequencies are known
as anti-Stokes components. The different features in the scat-
tered spectrum are generated by different processes, depending

1These terminology derives from the kinetic theory of the collision of
solid bodies, which can often be used to model scattering processes.
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on the particular type of interaction between the radiation and
the matter.

Rayleigh scattering is an elastic process originating from
non propagating density fluctuations. Formally, it can be de-
scribed as the scattering from fluctuations of the medium en-
tropy (i.e., variations of the degree of molecular organization
state).

Rayleigh-wing scattering is an elastic scattering resulting
from fluctuations in the orientation of anisotropic molecules.
Since the molecular reorientation process is very rapid, the
corresponding peak has a very large spectral width. A rigorous
physical description is quite complex and can be found in [1,3].

Brillouin scattering is an inelastic process generated by
travelling density perturbations, associated to pressure vari-
ations in the medium [4]. Formally, it can be considered as
the result of the interaction of photons with acoustic phonons.
The relatively low frequencies of these modes induce a limited
frequency shift, in the 1010 Hz region.

Raman scattering is a highly inelastic process originating
from the interaction of light with high-frequency vibrational
modes of the molecules of the medium. Formally, it results
from the the interaction between photons and optical phonons
of the structure. This yields frequency shifts in the 1014 Hz
region, namely three orders of magnitude greater than for Bril-
louin shifts. Further details can be found in [2].

The propagation of optical waves in an optical material is
governed by the following equation (see section 2.2):

∇2E(r, t)− 1
c2

∂2E(r, t)
∂t2

= µ0
∂2P(r, t)

∂t2
(3.1)

where, for an homogeneous and isotropic medium, the polari-
sation vector is related to the electric field through the dielec-
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tric susceptibility of the medium, P = ε0χE. Nevertheless,
a real medium is generally inhomogeneous and anisotropic;
since light scattering originates from fluctuations in the optical
properties of the medium, the dielectric susceptibility can be
conveniently represented as follows [5]:

χ(r, t) = χI+ ∆χ(r, t) (3.2)

where χ and I are respectively the mean dielectric susceptibil-
ity of the medium and the identity tensor, and where ∆χ(r, t)
represents the fluctuations in the dielectric susceptibility tensor
leading to light scattering. Due to this change in the suscepti-
bility, the material develops an additional polarisation:

P(r, t) = ε0χE(r, t) + ε0∆χ(r, t)⊗E(r, t)
= ε0χE(r, t) + ∆ε(r, t)⊗E(r, t)

(3.3)

where the second term is usually referred to as the induced
electronic polarisation.

Introducing (3.3) in (3.1) and using the fact that n =√
1 + χ (see section 2.2.1), we easily obtain:

∇2E(r, t)− n2

c2

∂2E(r, t)
∂t2

= µ0
∂2

∂t2
(∆ε⊗E) (3.4)

where the right-hand side acts as a source for the generation
of scattering processes.

The fluctuations in the dielectric tensor can be decomposed
into the sum of a scalar contribution and a traceless tensor as
follows:

∆ε(r, t) = ∆ε(r, t)I+ ∆εt(r, t) (3.5)

The diagonal scalar term ∆ε arises from fluctuations in ther-
modynamic quantities like density, temperature, entropy or



3.1 Linear scattering 67

pressure and is responsible for Brillouin and Rayleigh scatter-
ings [6]. The purely out-of-diagonal terms ∆εt can in turn
be decomposed into the sum of a symmetric (∆εs) and an
anti-symmetric (∆εa) contribution, both statistically indepen-
dent and intrinsically related to the optical polarisability of the
medium [3]. The symmetric part is responsible for Rayleigh-
wing scattering, whereas the anti-symmetric part gives rise to
Raman scattering.

In this section we focus our attention to the processes based
on static and propagating density fluctuations.

3.1.2 Rayleigh scattering

The fluctuations in the scalar dielectric constant can be related
to the fluctuations in thermodynamic variables, such as the
material density (ρ) and temperature (T ), by the following
relation:

∆ε =
∂ε

∂ρ

∣∣∣∣
T

∆ρ +
∂ε

∂T

∣∣∣∣
ρ

∆T (3.6)

To good accuracy, the second term can usually be ignored (the
error is estimated to be of the order of 2%), since the dielectric
constant typically depends more on density than on tempera-
ture [1]. We can thus rewrite (3.6) as:

∆ε =
γe

ρ0
∆ρ (3.7)

where ρ0 denotes the mean density of the material and where
we have introduced the electrostrictive constant [7]:

γe = ρ0
∂ε

∂ρ

∣∣∣∣
ρ=ρ0

(3.8)
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The variations in density, ∆ρ, can be expressed in terms of
pressure p and entropy s, as follows:

∆ρ =
∂ρ

∂p

∣∣∣∣
s

∆p +
∂ρ

∂s

∣∣∣∣
p

∆s (3.9)

The first term describes adiabatic density fluctuations (i.e.,
acoustic waves) and leads to Brillouin scattering. The second
term corresponds to isobaric density fluctuations (i.e., temper-
ature or entropy variations at constant pressure) and is respon-
sible for Rayleigh scattering.

Entropy fluctuations can be described by a diffusion equa-
tion having the following form:

ρcp
∂∆s

∂t
− κ∇2∆s = 0 (3.10)

where cp denotes the specific heat at constant pressure and κ
the thermal conductivity. A general solution of (3.10) is:

∆s(r, t) = ∆s0e
−δte−iq·r (3.11)

where the damping rate of the entropy disturbance is given by
δ = κq2/ρcp. It is easy to see that these entropy waves do
not propagate; as a result the term of the induced polarisation
proportional to ∆s gives rise only to unshifted components of
the scattered light.

3.1.3 Spontaneous Brillouin scattering
The propagation of pressure fluctuations, ∆p, through the
medium is governed by the following equation [1, 2]:

∂2∆p

∂t2
− Γ∇2 ∂∆p

∂t
− v2

a∇2∆p = 0 (3.12)
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where va is the velocity of sound in the medium.2 It can be
conveniently expressed in terms of thermodynamic variables as
follows:

va =

√
∂p

∂ρ

∣∣∣∣
s

=

√
K

ρ
=

√
1

ρCs
(3.13)

where K is the bulk modulus and Cs is the adiabatic compress-
ibility. The coefficient Γ is an acoustic damping parameter,
related to the shear (ηs) and bulk (ηb) viscosity coefficients of
the material: Γ = (4/3ηs + ηb)/ρ0.

Equation (3.12) admits a general solution of the form:

∆p(r, t) =
1
2
∆p0<

[
ei(q·r−Ωt)

]
(3.14)

where q and Ω must satisfy the phonon dispersion relation
[10], Ω = va|q|. By assuming that the incident optical field is
monochromatic

E(r, t) =
1
2
E0<

[
ei(k·r−ωt)

]
(3.15)

and by inserting into (3.4) the term of the induced polarisation
proportional to ∆p, the scattered field must obey the following
wave equation:

∇2E− n2

c2

∂2E
∂t2

= −1
2

γeCs

c2
<

[
(ω − Ω)2ei(k−q)r−i(ω−Ω)t+

(ω + Ω)2ei(k+q)r−i(ω+Ω)t
]

(3.16)

2This equation, which is well known in the field of acoustics, can be
easily derived from the Navier-Stokes equations for the case of a viscous
and compressible fluid [8, 9].
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The first term in the left-hand side is an oscillating compo-
nent with wave vector k′ = k−q and frequency ω′ = ω−Ω, and
leads to Stokes scattering. The wave vectors and the frequen-
cies of the three interacting waves are related by the dispersion
relations ω = |k|c/n, ω′ = |k′|c/n, Ω = |q|va, and have definite
values that depend on the scattering direction considered, as
illustrated in figure 3.2. The frequency of the acoustic wave
(Ω) being much smaller than the optical frequencies involved
(ω,ω′), we have that |k| ≈ |k′|. The analysis of the figure eas-
ily shows that |q| = 2|k| sin(θ/2), which brings to the final
expression:

Ω = 2nω
va

c
sin(θ/2) (3.17)

We note that the frequency shift is equal to zero for forward
scattering, and is maximum for backscattering (θ = π). In
this case of particular interest for optical fibres, the shift reads:
Ω = 2nωva/c. From a quantum point of view, the absorption
of an incident photon is followed by the emission of a phonon
and of a new photon at a lower frequency.

In an analogous way, the second term in (3.16) is an oscil-
lating component with wave vector k′ = k + q and frequency
ω′ = ω+Ω, and leads to anti-Stokes scattering (see figure 3.3).
From a quantum point of view, the absorption of an incident
photon and of a phonon is followed by the emission of a new
photon at a higher frequency.

If we include in the analysis the attenuation of the acoustic
wave through the damping parameter Γ, we find that the light
scattered into direction θ is not monochromatic, but exhibits
a frequency broadening whose width is given by:

δω = Γ|q|2 = 4n2Γ
ω2

c2
sin2(θ/2) (3.18)

This is due to the fact that the acoustic waves propagate only
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q, Ω

k, ω

k' = k - q

ω' = ω - Ω θ

Figure 3.2: Illustration of Stokes scattering

q, Ω

k, ω

k' = k + q

ω’ = ω + Ω θ

Figure 3.3: Illustration of anti-Stokes scattering
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Wavelength
(nm)

Brillouin shift
(GHz)

Brillouin
linewidth (MHz)

514 34 100
832 21.6 70
1320 12.8 35
1550 10.8 29

Table 3.1: Characteristics of the Brillouin spectrum in optical fibres
at different operating wavelengths. The acoustic velocity in silica is
approximately equal to 5775 m/s.

over a few optical wavelengths (just few micrometres) and that,
consequently, the intensity of the acoustic wave undergoes an
exponential decrease:

|∆p(t)|2 = |∆p(0)|2e−t/τp (3.19)

where τp = 1/(Γ|q|2) represents the average lifetime of the
acoustic phonons in the medium and is inversely proportional
to the acoustic damping coefficient. In the Fourier domain,
the backscattered spectrum of the exponential damping has a
Lorentzian shape with a full width at maximum half (FWMH)
equal to:

δω

2π
=

1
πτp

(3.20)

Table 3.1 summarises some typical values of the characteristics
of the Brillouin spectrum in standard single-mode silica optical
fibres at different operating wavelengths.
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3.2 Stimulated Brillouin scattering

We dealt, in the previous section, with spontaneous scatter-
ing which is a linear effect occurring as the result of thermal
fluctuations in the density. In contrast, when the fluctuations
within the medium are induced by the presence of the optical
field the scattering process becomes a nonlinear effect and is
referred to as stimulated.

Stimulated Brillouin scattering (SBS) in optical fibres can
be described as a three-wave interaction between a pump wave,
an optically induced acoustic wave, and the scattered light in
the form of a counterpropagating Stokes wave. The diagram of
the three wavevectors is schematically reported in figure 3.4.
Actually, the pump light is scattered by the refractive index
variations associated to the sound wave via Bragg diffraction;
the pump and the scattered signal interact then to produce
a moving interference pattern, which reinforces the acoustic
wave, and the process continues.

The physical mechanism by which the interference between
the pump and the Stokes wave can drive an acoustic wave is
electrostriction.

θ

q

kpkS

z

Figure 3.4: Geometry of Brillouin scattering in optical fibres. kp:
forward propagating pump wave; kS : backscattered Stokes wave; q:
acoustic wave.
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3.2.1 Electrostriction

Electrostriction is the tendency of many materials (silica is
one of them) to become compressed in the presence of an elec-
tric field. This process may be viewed as a consequence of
the maximisation of potential energy, the molecules being at-
tracted towards the regions of high optical intensity in order
to increase the stored energy.

From a microscopical point of view, the electrostrictive
force acting on the dielectric material can be derived in terms
of the dipole moment acting on an individual molecule placed
in the fringing field of a capacitor [2]. Nonetheless, we have
opted here for a more global point of view and we derive the
electrostrictive force on the basis of energy considerations [11].

We consider a volume V of a dielectric material, globally
unperturbed and located in a quasi-stationary electric field
E(r). We admit, moreover, that the surface S, boundary of V ,
stay unchanged and that the response of the material is instan-
taneous. Under these conditions, the electric energy contained
in the volume V is given by:

W (t) =
1
2

∫∫∫

V
D∗(r, t)E(r) dV =

1
2

∫∫∫

V
ε(r, t)|E(r)|2 dV

(3.21)
where ε(r, t) = ε0(1 + χ(r, t)). As a result of electrostriction,
the local changes in density (dρ) result in local changes in the
dielectric constant (dε) by means of (3.7). Consequently the
energy variations are accounted for by:

∂W

∂t
=

1
2

∂ε

∂ρ

∫∫∫

V

∂ρ(r, t)
∂t

|E(r)|2 dV (3.22)

Expressing the conservation of matter in the form of the con-
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tinuity equation

∂ρ(r, t)
∂t

= −∇(ρ(r, t)v) (3.23)

where v = v(r, t) is the velocity of the matter displacements,
we obtain:

∂W

∂t
=

1
2

∂ε

∂ρ

∫∫∫

V
|E(r)|2∇ (ρ(r)v) dV

= −1
2

∂ε

∂ρ

∫∫∫

V

[∇(ρ(r)|E(r)|2v)− ρ(r)v∇|E(r)|2] dV

(3.24)

The first term in the previous integral is vanishing: applying
the divergence theorem and using the fact that the boundary
S is supposed to stay unchanged, we easily find that

∫∫∫

V
∇(ρ(r)|E(r)|2v) dV =

∮

S
ρ(r)|E(r)|2v dS = 0 (3.25)

and thus obtain the final expression for the electric power dis-
sipated within the dielectric medium:

∂W

∂t
=

1
2

∂ε

∂ρ

∫∫∫

V

[
ρ(r)v∇|E(r)|2] dV (3.26)

On the other hand, the total work dW of the external forces
within the volume V during the time interval dt can be written
as [12]:

dW

dt
=

∫∫∫

V
f · v dV (3.27)

where f represents the force density per unit volume. Com-
paring the expression for the mechanical power transferred to
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the material (3.27) and the expression for the electrical power
dissipated through electrostriction (3.26), we eventually find:3

f(r) =
1
2
ρ

∂ε

∂ρ
∇|E(r)|2 =

1
2
γe∇|E(r)|2 (3.28)

where f represents the electrostrictive force per unit volume,
and γe is the electrostrictive constant previously defined in
(3.8).

Since the molecular mass displacement is an inherently slow
effect, the material is characterised by a reaction time much
higher than the period of the incident optical waves. For this
reason, in the above formulation the intensity of the electric
field should be replaced by its time-average over several optical
periods:

f(r) =
1
2
γe∇

〈|E(r)|2〉 (3.29)

As a consequence, only the low frequency components of the
optical intensity (associated for example to the envelope of the
interference pattern between two optical waves) would give rise
to an electrostrictive pressure within the medium, as depicted
in figure 3.5.

As we will show in the next section, the electrostrictive
force defined by (3.29) actually behaves as a source term in
the equation describing the evolution of the material density,
thus making the nonlinear coupling between the acoustic and
the optical waves.4

3In the derivation of this expression we have implicitly assumed that
the electrostriction is the only force at the origin of the compression (adi-
abaticity condition).

4One must not forget that the electrostrictive effect is also an important
component of the Kerr effect, and contributes to the nonlinear refractive
index, n2, as well [13].
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Electrostriction

EP

ES

∆ρ

|EP + ES|2

Figure 3.5: Generation of a pressure wave by means of electrostric-
tion. The density variations of the medium are induced by the enve-
lope of the interference between the two optical waves (counterprop-
agating as for SBS in optical fibres).

3.2.2 Classical theory

The process of SBS acts classically as a nonlinear interaction
between a pump lightwave and a Stokes lightwave (respectively
at frequencies νp and νS < νp), by means of a sound wave.

For an incident pump of sufficient intensity, the sponta-
neously scattered light can become quite intense. The beat
field resulting from the interference of the two optical waves
generates an acoustic wave (at frequency νB) through elec-
trostriction. The incident pump is then scattered off the re-
fractive index variation engendered by the density variations,
and the scattered light (downshifted in frequency by an amount
νB) adds constructively with the Stokes radiation that induced
the acoustic disturbance. The process repeats again and, as
a result, the acoustic and Stokes waves reinforce each other
leading to the amplification of the Stokes wave. The physical
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Figure 3.6: Graphical representation of the processes involved in the
SBS process. From [14].

process is referred to as stimulated Brillouin scattering and can
be schematically illustrated by the feedback loop of figure 3.6.

The propagation of the three involved waves is described
by the following equations:

∇2Ep−n2

c2

∂2Ep

∂t2
= µ0

∂2PNL
p

∂t2
(3.30a)

∇2ES−n2

c2

∂2ES

∂t2
= µ0

∂2PNL
S

∂t2
(3.30b)

∂2∆ρ

∂t2
− Γ∇2 ∂∆ρ

∂t
− v2

a∇2∆ρ = −∇f (3.30c)

where Ep and ES are respectively the pump and the Stokes
waves, and ∆ρ is the density variation which has been chosen
instead of pressure to describe the acoustic wave. The equa-
tions (3.30) are coupled together through the driving terms in
the right-hand side, given by the following constitutive rela-
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tions:

PNL
p,S (r, t) = ∆εEp,S(r, t) =

γe

ρ0
∆ρ(r, t)Ep,S(r, t) (3.31a)

∇f(r, t) =
1
2
γe∇2

〈|Ep(r, t) +ES(r, t)|2〉 (3.31b)

We focus essentially on the properties of Stokes scatter-
ing - the mathematical description of anti-Stokes scattering
being similar, except only a sign change in the definition of
the Brillouin gain - and we assume that the waves are quasi-
monochromatic so that the slowly-varying envelope approxi-
mation (SVEA) can be applied:

Ep = ep
1
2
<

[
Ep (z, t) ei(ωpt−kpz)

]
(3.32a)

ES = eS
1
2
<

[
ES (z, t) ei(ωSt+kSz)

]
(3.32b)

∆ρ =
1
2
<

[
A (z, t) ei(Ωt−qz)

]
(3.32c)

where ep and eS are the unit polarisation vectors for the pump
and the Stokes waves.

By substituting the equations (3.32) in the source terms
(3.31), and by retaining only the resonant terms for each wave,
we obtain:

PNL
p = ep

1
2

γe

ρ0
<

[
A (z, t) ES (z, t) ei(ωpt−kpz)

]
(3.33a)

PNL
S = eS

1
2

γe

ρ0
<

[
A∗ (z, t) Ep (z, t) ei(ωSt+kSz)

]
(3.33b)

∇f =
1
2
γeq

2√ηP <
[
Ep(z, t)E∗

S(z, t)ei(Ωt−qz)
]

(3.33c)

where ηP = |ep ·eS |2 represent the polarisation efficiency of the
process. Substituting then (3.33) and (3.32) into (3.30) and
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applying the SVEA, after some calculation we get the system
of three coupled equations often referred to as coherent model
of the SBS [9,15,16]:

[
∂

∂z
+

n

c

∂

∂t
+

α

2

]
Ep = −√ηP

ikpγe

4ερ0
AESei∆ωt

(3.34a)[
∂

∂z
− n

c

∂

∂t
− α

2

]
ES =

√
ηP

ikSγe

4ερ0
A∗Epe

−i∆ωt

(3.34b)[
∂

∂z
+

2Ω− jΓq2

2Ωva

∂

∂t
+

Γq2

2va

]
A = −√ηP

iqγe

4v2
a

EpE
∗
Se−i∆ωt

(3.34c)

where the optical attenuation, α, and a possible frequency de-
tuning from the resonance condition, ∆ω = ωS + Ω−ωp, have
been added phenomenologically.

Since the phonon propagation distance is typically small
compared to the distance over which the optical waves vary
significantly, the electric fields in (3.34c) can be considered as
constants with respect to the spatial integration. Assuming
steady-state conditions, the amplitude of the acoustic wave is
then given by:

A(z, t) = − iqγe

4ΓBva

√
ηP EP (z, t)E∗

s (z, t)
e−i∆ωt

1− i(2∆ν/∆νB)
(3.35)

with ∆νB = ΓB/π, where ΓB = Γq2/2 denotes the Bril-
louin linewidth (cf. equation (3.18)). Substituting (3.35) into
(3.34a) and (3.34b), and still assuming steady-state conditions,
we get two coupled equations relating just the pump and the
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Stokes waves:

∂Ep

∂z
= −ηP

qkpγ
2
e

16ερ0ΓBva

Ep |ES |2
1− i (2∆ν/∆νB)

− α

2
Ep (3.36a)

∂ES

∂z
= −ηP

qkSγ2
e

16ερ0ΓBva

ES |Ep|2
1− i (2∆ν/∆νB)

+
α

2
ES (3.36b)

The real part of the right hand members is responsible for the
energy transfer between the optical waves, whereas the imagi-
nary part is responsible for a propagation phase associated to
the nonlinear interaction.

These equations can be transformed in a more easily han-
dled system of coupled equations for the optical intensities of
the fields through the transformation: Ip,S = 1

2nε0c|Ep,S |2.
Substituting into (3.36), with proper manipulation we eventu-
ally obtain the intensity model of the SBS:

∂Ip

∂z
= −ηP gB (ν) Ip IS − αIp (3.37a)

∂IS

∂z
= −ηP gB (ν) Ip IS + αIS (3.37b)

where gB(ν) denotes the Brillouin gain spectrum defined as:

gB (ν) = gB
(∆νB/2)2

(ν − νB)2 + (∆νB/2)2
(3.38)

gB is the line-centre Brillouin gain factor and corresponds to
a frequency detuning between the pump and the Stokes wave
exactly equal to the Brillouin shift: νp − νS = νB = Ω/2π. It
can be related to the constitutive parameters of the medium
through the following relation:

gB = 2
qkSγ2

e

16ερ0ΓBva

2
nε0c

=
2πn7p2

12

c λ2
pρ0 ∆νB va

(3.39)
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where λp denotes the pump wavelength and p12 is the longi-
tudinal elasto-optic coefficient. In amorphous silica, the mea-
sured value of gB is approximately equal to 5 · 10−11 m/W.

From the equations (3.37), we clearly see that the nonlinear
interaction between the two counterpropagating optical waves
brings an energy transfer from the pump to the Stokes wave
resulting in a net amplification for the Stokes signal, and that
the gain spectrum follows a Lorentzian distribution, centred
on νB, with FWHM equal to ∆νB (see figure 3.7).5 On the
other hand, by expressing the electrical fields in the equations
(3.36) in terms of their intensities and phases

Ep,S(z) =
√

2
nε0c

Ip,S(z)e∓iφSBS
p,S (z) (3.40)

and by taking the imaginary part, we easily obtain the ex-
pression for the additional phase shifts due to the stimulated
scattering process:

∂φSBS
p

∂z
=

1
2
ηP gBIS

(2∆ν/∆νB)
1 + (2∆ν/∆νB)2

(3.41a)

∂φSBS
S

∂z
=

1
2
ηP gBIp

(2∆ν/∆νB)
1 + (2∆ν/∆νB)2

(3.41b)

The nonlinear phase shifts have been defined such that a pos-
itive φSBS

p,S results in a supplementary positive delay. Conse-
5While in the spontaneous scattering Stokes and anti-Stokes compo-

nents have comparable amplitudes (cf. figure 3.1), in the stimulated scat-
tering the Stokes is dominant and the anti-Stokes vanishes. On account
of energy and momentum conservation throughout the process (cf. sec-
tion 3.1.3), Stokes scattering creates phonons, while anti-Stokes scattering
annihilates them [17]. As the stimulated process starts, the anti-Stokes
phonon population is rapidly depleted and the anti-Stokes scattering is sig-
nificantly reduced. Eventually, when the full stimulated regime is reached,
the anti-Stokes component totally disappears.
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Figure 3.7: Representation of the Lorentzian shape of the Brillouin
gain spectrum and of the associated nonlinear phase shift.

quently, equations (3.41) imply that both the optical waves
are retarded when ∆ν is positive and advanced when ∆ν is
negative. The Kramers-Krönig relations are then satisfied and
it is possible to see in figure 3.7 the proportionality between
the nonlinear shift and the derivative of the Brillouin gain
curve. The phase characteristics of the SBS can be success-
fully utilised in fibres to optically control the group velocity of
optical signals, as it has been recently demonstrated [18].

Stimulated anti-Stokes scattering

The mathematical development just presented for the Stokes
scattering can be used as well to describe the propagation of a
wave at the anti-Stokes frequency (νAS > νp). The interaction
between the pump and a counterpropagating anti-Stokes wave
can then be described by the following equations:

∂Ip

∂z
= −ηP gB (ν) Ip IAS − αIp (3.42a)

∂IAS

∂z
= +ηP gB (ν) Ip IAS + αIAS (3.42b)
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Figure 3.8: Representation of the Lorentzian shape of the Brillouin
loss spectrum and of the associated nonlinear phase shift.

which are formally similar to equations (3.37). Nevertheless,
while the minus sign in the first right-hand term of equation
(3.37b) predicts an amplification of the Stokes signal, the plus
sign in the first right-hand term of equation (3.42b) implies
that the anti-Stokes signal undergoes an attenuation during
the propagation (in the −z direction) within the fibre.

The Brillouin loss spectrum still follows a Lorentzian dis-
tribution, centred on νB, with FWHM equal to ∆νB, as shown
in figure 3.8.

3.2.3 Steady-state solutions

The equations (3.37), respectively (3.42), can not be solved in a
close analytic form [19], except for the case of zero attenuation
[20, 21]. By setting α = 0 in the (3.37), we easily see that
∂Ip

∂z = ∂IS
∂z , and hence we have:

Ip(z) = IS(z) + C (3.43)
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where the value of the integration constant C depends on the
boundary conditions. Using this result, the equation (3.37b)
can be rewritten as:

∂IS

∂z
= −ηP gB(ν)(IS(z) + C)IS(z) (3.44)

which admits a general solution of the form:

IS(z) =
KCe−ηP gB(ν)z

1−KCe−ηP gB(ν)z
(3.45)

where the value of the integration constant K also depends on
the boundary conditions.

Since the value of Ip(z) is known at z = 0, the constant C
can be conveniently expressed as follows: C = Ip(0) − IS(0).
Substituting then into (3.45) for z = 0, we easily find that:
K = Ip(0)/IS(0).

The spatial distributions of the pump and Stokes waves
intensities are then fully described by the following equations:

Ip(z) = Ip(0)
1− r

1− re−γz
(3.46a)

IS(z) = Ip(0)
r(1− r)
eγz − r

(3.46b)

where γ = ηP gB(ν)Ip(0)(1 − r) is often referred to as simple-
pass gain and r = Ip(0)/IS(0).

Three different regimes can be distinguished, corresponding
to three different physical situations: weak interaction regime,
weak saturation regime and strong interaction regime [16].

Weak interaction regime

In the weak interaction regime, pump depletion can be ne-
glected and, consequently, the probe is exponentially ampli-
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fied. To the lowest order in r, the equations (3.46) can be
approximated by:

Ip(z) = Ip(0) (3.47a)
IS(z) = rIp(0)e−ηP gB(ν)Ip(0)z (3.47b)

These solutions are in agreement with the general solutions as
far as r < 10−4. Curves (i) on figures 3.9(a) and 3.9(b) show
the evolution of Ip(z) and IS(z) for r = 10−5.

Weak saturation regime

The weak saturation regime is obtained for r in the range 10−3

to 10−2. The pump is still undepleted, but the single-pass gain
is now lower than in the case of weak interaction regime:

Ip(z) = Ip(0) (3.48a)
IS(z) = rIp(0)e−ηP gB(ν)Ip(0)(1−r)z (3.48b)

Curves (ii) show the solutions for r = 0.005.

Strong saturation regime

The strong saturation regime is obtained for r > 10−2. To take
into account the pump depletion which is no more negligible
in this situation, we can expand the equation (3.46a) to the
first order in r, and neglecting the term in r2, we obtain:

Ip(z) = Ip(0)[1− r(1− e−ηP gB(ν)Ip(0)(1−r)z)] (3.49a)
IS(z) = rIp(0)e−ηP gB(ν)Ip(0)(1−r)z (3.49b)

Curves (iii) and (iv) show the solutions for r = 0.01 and r =
0.5.
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To conclude this section, we stress on the fact that the
equations (3.46) give the spatial distribution of the field inten-
sities in terms of the boundary values Ip(0) and IS(0). How-
ever, since the boundary values that are physically known are
Ip(0) and IS(L), we must express the unknown quantity IS(0)
in terms of Ip(0) and IS(L). We set, then, z = L in (3.46b) and
obtain the following transcendental equation in the variable r:

IS(L) = Ip(0)
r(1− r)
eγL − r

(3.50)

which can be numerically solved to express r in terms of the
known quantities Ip(0) and IS(L).

Approximate solutions of the equations (3.37) and (3.42)
including the attenuation terms can be found in [19] and [22].

3.2.4 SBS in optical fibres
All nonlinear effects are dependent upon the intensity of the
electromagnetic field in the medium. However, since it is the
total optical power entering and leaving the fibre that is usu-
ally measured, some method is required for converting between
the two when comparing theoretical and experimental results.
The measured optical power leaving a fibre is simply the in-
tegral of the intensity distribution over the fibre cross section.
Assuming a uniform intensity distribution, I, over a core of
area Acore, the intensity can be calculated from the measured
power, Pmeas, using:

I =
Pmeas

Acore
(3.51)

Nevertheless, the field in a single mode fibre is not evenly
distributed or even fully contained within the core. It is larger
at the fibre axis than near the core-cladding interface and ex-
tends into the cladding to a degree depending on the actual
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refractive index profile. Calculating a uniform intensity in the
core using previous equation will underestimate the value on
the axis of the fibre and overestimate the value near the core-
cladding interface [23].

The effective area parameter, Aeff , introduced in section
2.2.3 (see page 22) has been defined for the purposes of cal-
culating nonlinear effects. It is a single value, based on the
modal field distribution (MFD), and can be used instead of
Acore to calculate a value for the optical intensity. In conven-
tional step-index fibres, the mode field is well approximated by
a Gaussian function of radius w at the 1/e amplitude points
(cf. equation (2.26) on page 16). In this case, the effective area
can be shown simply to be

Aeff = πw2(λ) (3.52)

where 2w(λ) represents the MFD diameter of the fibre at the
operating wavelength, λ.

The mode field diameter is a well-established parameter
with recognised measurement procedures. However, for fi-
bres that do not have simple step-index geometry such as
dispersion-shifted and dispersion-flattened fibres, the mode field
cannot be approximated by a Gaussian function and alterna-
tive methods are required to calculate the effective area. This
can be done either by measuring the field distribution and
using the equation (2.37) (see [24]), or by including a fibre-
dependent correction factor into expression (3.52) and using
the standard fibre MFD value [25].

SBS power threshold

On the basis of the considerations given above, the equations
(3.37) of the incoherent model describing the spatial evolution
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of the pump and Stokes waves can be expressed in terms of the
optical powers, instead of the optical intensities:

∂Pp

∂z
= −ηP

gB(ν)
Aeff

Pp PS − αPp (3.53a)

∂PS

∂z
= −ηP

gB(ν)
Aeff

Pp PS + αPS (3.53b)

where Pp and PS are respectively the pump and Stokes power.
The evolution of the Stokes wave in the case of undepleted

pump, but considering the attenuation term, is then given (ac-
cordingly to (3.47b)) by:

PS(z) = PS(L)e−α(L−z)e
−ηP

gB(ν)

Aeff
Pp(0)Leff (z) (3.54)

where Leff is the effective length defined in section 2.2.3 (see
page 24).

The Brillouin threshold is the critical pump power for which
the emerging Stokes backscattered power becomes equal to
the transmitted pump power [26]. It can be expressed as fol-
lows [27]:

Pth ≈ KSBS
19Aeff

gBLeff
(3.55)

where KSBS is a polarisation factor depending on the polari-
sation of the pump and Stokes waves and takes values between
1 and 2 (typically 1.5 for completely scrambled polarisation).
Pth typically amounts to some mW for 20-25km long stan-
dard fibres; it can be, however, conveniently increased in opti-
cal communication systems by broadening the gain spectrum
through proper dithering of the pump wave frequency [28].
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3.3 Influence of extrinsic parameters on
the Brillouin gain spectrum

The properties of the Brillouin gain spectrum in an optical
fibre can be modified by a variety of parameters. Some of
them are intrinsic in the sense that they are related to the
physical constitution of the medium, like the refractive index
profile, the dopant material, the concentration of dopants and
the birefringence. Others are extrinsic because they are not
related to the physical structure of the medium and act as
external variables, like temperature, strain and pressure.

The major interest in using Brillouin scattering for dis-
tributed sensing purposes comes expressly from the inherent
sensitivity of the gain curve to the extrinsic parameters (see
chapter 4), whereas the effect of the intrinsic variables is gen-
erally considered as a drawback to performances.

Effect of polarisation

By inspection of the equations (3.37) it is easy to see that
the polarisation is a particularly critical parameter. In fact,
since the polarisation efficiency ηP multiplies the Brillouin gain
factor, the efficiency of the stimulated scattering process de-
creases if the optical waves do not have the same polarisation
(ηP < 1). Eventually, when the polarisations are perfectly or-
thogonal (ηP = 0), no acoustic wave is generated and the SBS
is completely suppressed. A comprehensive review of the po-
larisation effects on the Brillouin gain is reported in [14,24,29].

In an ideal fibre, the two fundamental eigenmodes are fully
degenerated and carry uncoupled linear orthogonal polarisa-
tions having the same propagation constant. In real fibres,
slight imperfections in the shape of the fibre’s core induce a
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finite amount of birefringence, resulting from the difference
in the propagation constants of the eigenmodes. As a conse-
quence, the state of polarisation of the optical waves varies
during the propagation within the fibre. In the case of low-
birefringent standard fibres, the polarisation variations are usu-
ally modelled as a three-dimensional Brownian motion [30]. It
can be shown that the resulting efficiency ηP of the scattering
process lies between 1/3 and 2/3 depending on the relative in-
put polarisation of the two counterpropagating waves [24, 29].
As a major consequence, the measure of the Brillouin gain
curve has to be made as a two-stages procedure, consisting in
an adjustment of the polarisations in order to have respectively
the maximal and the minimal gain contrast [31].

Effect of dopant concentration
The wave-guiding properties of an optical fibre are intimately
related to the refractive index difference between the core and
the cladding. The index enhancement in the core of stan-
dard fibres is typically obtained by the introduction of small
quantities of dopants, such as germanium, phosphorus or ti-
tanium [24], in the core silica matrix. The nature and the
concentration of dopants have a direct influence on the guid-
ing properties of the acoustic waves inside the fibre [32–34].

Figure 3.10 reports the measurements of the Brillouin fre-
quency shift and the Brillouin linewidth for several fibre sam-
ples exhibiting different concentrations of germanium oxide in
the core.6 The experimental points show an excellent corre-
lation with the linear regression, and, for a pump wavelength
of 1550 nm, the slope of the regression line is -80 MHz/mol%

6The concentration of germanium dioxide is generally expressed in per-
centage of the molar weight of GeO2 over the molar weight of SiO2.
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Figure 3.10: Influence of GeO2 dopant concentration on the Brillouin
gain spectrum at 1550nm. (a) Brillouin frequency shift. (b) Brillouin
linewidth. From [24] (curves have been recalculated at 1550 nm
by [14]).
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GeO2 (figure 3.10a). The negative sign of the slope finds its
origin in the fact that the sound velocity in pure GeO2 (∼
3780 m/s) is markedly lower than in silica (∼ 5775 m/s). This
dependence on the chemical composition can be used to iden-
tify the different fibers in a telecom network or to check the
homogeneity of their composition [35]. The linewidth of the
Brillouin gain is also found to vary linearly with the GeO2

concentration, the constant of proportionality being close to 1
MHz/mol% GeO2 (figure 3.10b).

Effect of temperature and strain

According to the equation (3.17), the Brillouin shift, νB, is
directly proportional to the acoustic velocity, va, which in turn
is essentially dependent on temperature and density [36]. Any
variations of these quantities can be evaluated through the
measurement of the Brillouin gain spectrum.

Several studies [24,37] have previously demonstrated a lin-
ear variation of the Brillouin shift with temperature in the
range -30 to 90◦C (figure 3.11). This dependence can be ex-
pressed as:

νB(T ) = νB(Tr) + CT (T − Tr) (3.56)

where Tr is a reference temperature and CT denotes the Bril-
louin temperature coefficient. Typical values for CT lie be-
tween 1.05 and 1.36 MHz/◦C, at 1550 nm, depending on the
fibre type. Is has also been shown that the increase in the Bril-
louin gain peak value exactly compensates for the narrowing of
the spectrum [14,24], such that the product g0(T )∆νB(T ) stays
constant. A comprehensive study of the physical properties of
the Brillouin spectrum at very low and very high tempera-
tures can be found in [22, 38]. When a longitudinal7 strain
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is applied to an optical fibre, the acoustic velocity changes ac-
cording to the density variations of the medium. The Brillouin
shift exhibits then a dependence on the applied strain of the
form:

νB(ε) = νB(0) + Cεε (3.57)

where ε denotes the tensile strain applied to the fibre and Cε

is the Brillouin strain coefficient. The resulting curve (figure
3.12) displays a linear behaviour practically up to the break-
ing limit of the fibre (∼1% of elongation). For the depicted
fibre, Cε has a typical value of 50.5 kHz/µε.8 In general, the
strain coefficient depends on the fibre composition and on the
nature of the coating material. Some coatings are expressly
used to reinforce the mechanical characteristics of the fibre and
take a part of the applied stress, while other are simply used
to protect the fibre from external agents. For what concerns
the Brillouin linewidth, it does not seem to exhibit significant
strain dependent variations.

We conclude this section reporting on the case when the
fibre is submitted to high hydrostatic pressure. The Brillouin
shift can then be expressed as:

νB(P ) = νB(0) + CP P (3.58)

where P is the pressure and CP is the Brillouin pressure coef-
ficient. A typical value for CP is -91MHz/kbar [22].

7By longitudinal strain we mean strain induced by stress along the
fibre length. Strain induced by lateral pressure has very little effect on
the Brillouin frequency shift [24].

8Elongations are usually measured in % of the overall length. Nonethe-
less, µε are often employed in literature, one microstrain (µε) correspond-
ing to a relative elongation of 10−6.
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Chapter 4

Distributed sensing
based on stimulated
Brillouin scattering

4.1 Introduction

The action of sensing is a very common and natural action
human beings do in every-day life in order to collect informa-
tions about the physical world. How these informations are
perceived and interpreted by the brain, and how the reality
is modelled on our perception are fascinating speculations for
philosophers and epistemologists [1, 2].

From a metrological point of view, a sensor is a physical
(electrical, mechanical, chemical, dielectric, ...) device that
maps an environmental attribute to a quantitative measure-
ment in a form easily understandable by the brain. Sensors
are based on a transduction principle consisting in the conver-
sion of energy from one form to another.
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The optical fibre, which has been specifically designed to
transmit light signals and is the major responsible of the infor-
mation revolution which has characterized the past 20 years,
can behave as a transducer as well. This aspect has brought
to another technological revolution, not involving communica-
tions, which is the ever expanding field of optical fibre sensors.

An important advantage of fibre optic sensors is their abil-
ity to provide passive sensing of a wide range of physical fields.
This not only means that the sensor head operates without the
need for electrical power, but that the overall system, includ-
ing the input-output fibres which serve as telemetry links, is
also electrically passive. By consequence, the whole system
exhibits a low intrinsic susceptibility to the effects of electro-
magnetic interference and electromagnetic pulse, making fibre
sensors suitable for use in explosively hazardous or electrically
noisy environments [3–5].

Sensors can be mainly classified distinguishing between two
general approaches to the problem of sensing: point and dis-
tributed measurement. Point sensors are able to retrieve in-
formations about a particular physical quantity only relatively
to their specific spatial position. On the contrary, distributed
sensors can collect informations about physical parameters on
an extended region throughout the sensor itself [6–8].

The inherent distributed sensing nature of intrinsic fibre
sensors can be used to create unique forms of sensors for which,
in general, there is no counterpart on conventional sensor tech-
nologies. In an intrinsic sensor, the modulation of the optical
carrier induced by the measurand field occurs while the light
remains guided within the fibre, in contrast to extrinsic sensors
where the light, in general, leaves the fibre in the sensing re-
gion, passes through some external transduction element and is
then re-coupled back into a fibre that guides the optical signal
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to a detector [9].
Intrinsic distributed fibre sensors are particularly attrac-

tive for use in applications where monitoring of single or mul-
tiple measurands is required for a large number of points or
continuously, as a function of location, along the path of the
fibre. They can be used for measuring strain [10], tempera-
ture [11], pressure [12], electrical and magnetic fields, radia-
tion (neutrons, γ-rays, and X-rays) and vibrations. Other ap-
plication areas include monitoring of stress in large civil struc-
tures [13,14] such as buildings, bridges, dams, mines (detection
of surface movements) and tunnels (detection of rock defor-
mation during construction), vehicles and machines (such as
aircraft, ships, high-speed trains, or space shuttles). They can
also be used for leakage and crack detection in pipelines, for
temperature profiling over a wide range of temperatures [11]
in electrical power transformers, generators, reactor systems,
pressure vessels, power cables [15] and for simple fire detec-
tion. Other important applications include the evaluation of
damages in composite materials and the monitoring of com-
posite materials during production processes, especially in the
aerospace industry [4,5,7,16,17]. Good reviews of distributed
fibre sensing applications can be found in [17–19].

Distributed optical fibre sensors involve a large variety of
different techniques. Classical methods, such as optical time-
domain reflectometry (OTDR) [20] and Raman OTDR [21],
rely on the measurement of the intensity of backscattered light
as a function of time, whereas polarisation optical time-domain
reflectometry (POTDR) [22] is based on the monitoring of the
polarisation state of the back-reflected light. In Brillouin op-
tical time-domain reflectometry (BOTDR) [23], the location
information is obtained as in OTDR, except the fact that
the signal magnitude is obtained from the Brillouin scatter-
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ing frequency shift. An improved version of BOTDR, of par-
ticular interest in the frame of this work, is Brillouin opti-
cal time-domain analysis (BOTDA) [24], which utilises two
counterpropagating lightwaves to amplify the optical signal
bringing the location information. In frequency-modulated
continuous-wave (FMCW) [25] methods, the frequency spec-
trum of the detected light yields the spatial distribution of the
measured variable, and in optical coherence domain reflectom-
etry (OCDR) [26] an optical coherence function is synthesized
into a sensing fibre, which returns the measured-variable in-
formation at a certain distance. Finally, interferometric tech-
niques employ a ring interferometer, such as a Sagnac loop,
with some other interferometer, such as a Michelson [27] or
another Sagnac [28] interferometer, to obtain the spatial infor-
mation. A comprehensive review of the state of the art and a
comparison of the performances (according to range and reso-
lution) of the different methods can be found in [5].

In this chapter we illustrate the technique of distributed
measurement based on the Brillouin scattering (BOTDA) and
we describe our original sensing system, presenting the figures
of merit and discussing some of the physical effects which limit
the performances of the sensor. After spending some words on
the theory of injection-locking in semiconductor lasers, and
presenting its application to the generation of extremely pure
optical signals, we focus in particular on the impact modula-
tion instability has on the performances of Brillouin sensors.
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4.2 Brillouin optical time domain analy-
sis: a distributed sensing technique

The first idea at the origin of distributed fibre sensing tech-
niques has to be found in the invention of the optical time-
domain reflectometry (OTDR) [20], which enables nondestruc-
tive evaluation of the optical fibre loss by time-resolved mea-
surement of backward Rayleigh scattering. The principle of op-
eration is very straightforward and consists in a time-of-flight
analysis [29, 30] like that used by radars: an intense pulse is
launched into the fibre and the backscattered light is recorded
as a function of time; knowing the velocity of light in silica,
the temporal variations of the backscattered power can be con-
verted into spatial variations, making thus possible the location
of bad splices or other regions with abnormally high losses.

Nonetheless, since Rayleigh scattering is very weak espe-
cially in single mode fibres and at long wavelengths, to over-
come the dynamic range limitations of conventional OTDR,
Horiguchi and Tateda [24] proposed and demonstrated a new
technique based on the Brillouin interaction between an optical
pump pulse and a counterpropagating continuous probe wave,
and they named it BOTDA (Brillouin optical time-domain
analysis). The optical configuration is depicted in figure 4.1.
The principle of operation is similar to that of OTDR with
the only difference that when the frequency shift between the
pump pulse and the probe wave is tuned to the Brillouin fre-
quency shift of the fibre, the probe intensity is amplified through
the stimulated Brillouin scattering process. The existence of
localised anomalies within the fibre is then detected as a func-
tion of time through the usual reflectometric analysis. The
optical signal power of BOTDA can be more than 100 times
greater than the Rayleigh backscattered power, and the use of
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Figure 4.1: Optical configuration for the BOTDA. The frequency
shift between the pump pulse wave and the continuous probe wave
is tuned to the Brillouin shift of the fibre. In the crossing region with
the pump pulse, the probe intensity undergoes an amplification and
is spatial-resolved through the usual time-of-flight analysis.

an optical filter before the detection stage can further enhance
this contrast.

The dependence of the Brillouin gain on several extrin-
sic parameters, like strain and temperature (see section 3.3),
makes the BOTDA a good candidate for distributed sens-
ing [31, 32]. Since the sensing information is frequency en-
coded in the Brillouin shift by means of the relations (3.57)
and (3.56), it is essential to retrieve the Brillouin gain spec-
trum at any location along the fibre, by simply varying the
frequency of the continuous probe wave relatively to the pump
pulse frequency. The Brillouin shift is then unambiguously
determined as a function of distance and the spatial profiling
of variables like temperature or strain can be easily retrieved.
The principle of operation of such a distributed sensor is de-
picted in figure 4.2.

BOTDA for distributed strain and temperature measure-
ment was first demonstrated at 1.32 µm by using a Nd:YAG
laser and a DFB laser diode [31]: the frequency accuracy was
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Figure 4.2: Principle of operation of a distributed sensor in the
pulsed pump-continuous probe wave configuration. Under normal
conditions, the optical fibre exhibits a Brillouin frequency equal to
νB and the Brillouin gain is constant along the fibre. When strain
and/or temperature are applied on some section of the fibre, the
Brillouin frequency shifts to ν′B and the Brillouin gain drastically
decreases. (a) If the frequency difference between the pump and the
probe waves is tuned to νB , the probe is amplified all over the fibre
except at the specified location; (b) conversely, if the frequency dif-
ference is tuned to ν′B , the probe is amplified only at the specified
location.
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10 MHz and the spatial resolution was 100 m. The frequency
accuracy could be improved to 1 MHz (corresponding to a
strain and temperature accuracy of 20 µε and 1.5◦C) by us-
ing an external grating cavity laser diode with a narrower
linewidth; better spatial resolutions (down to 1 m) could suc-
cessively be obtained at 1.55 µm using an erbium doped fibre
amplifier (EDFA) to boost the power of the pump pulse. Later,
Bao et al. [33] significantly extended the BOTDA performances
by using Brillouin loss rather than Brillouin gain, and achieved
a 32 km sensing length with a spatial resolution of 5 m.

These measurements were performed using two distinct
lasers for generating pump and probe signals, with a manifest
limitation residing in the difficulty to maintain a stable fre-
quency difference between the two light sources.1 To overcome
this problem, Niklès et al. [34] proposed to generate both the
pump and the probe waves from a single physical light source
by using an electro-optical modulator (EOM) and by properly
setting its DC bias. This approach implies, withal, that the
probe signal is made of two sidebands, the upper of which is
not relevant for the measurement and needs to be accurately
filtered. In addition, to efficiently suppress the carrier fre-
quency, the DC bias must be correctly set using a very stable
and precise PID regulator and the EOM must exhibit a good
extinction ratio (at least 30 dB). Since standard commercially
available EOMs are rather expensive components and exhibit
a typical extinction ratio of 20 dB, we report on a different and
efficient scheme using two distinct injection-locked lasers.

1The wavelengths of two independent lasers drift slightly in time
through scarcely controllable environmental parameters such as tempera-
ture or electrical current, but sufficiently enough to decrease the signal to
noise ratio and seriously impair the Brillouin gain measurement.
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4.3 Theory and applications of injection
locking in semiconductor lasers

In march 1665 Christiaan Huygens wrote a letter to his father
Constantyn to tell him an amazing phenomenon he had ob-
served some days before while confined to bed by illness. He
noticed that the pendulums of two clocks hung on the wall of
his room invariably felt into synchronism when brought close
enough to each other, but became free-oscillating when kept
farther apart [35]: he explained the coupling mechanism by
mechanical vibrations transmitted through the wall2 [36]. This
simple anecdote (mainly cited on [37] and [38]) represents the
first observation of synchronization between two oscillators.
This effect is very common in a variety of natural systems, from
mechanical constructions to highly complex biological organ-
isms involving two or more oscillators: some striking natural
examples include the locking of human circadian rhythms to
the length of the day3, the interaction between pacemaker cells
in the heart, the communication between neurons in the cor-
tex and the synchronised flashing mating calls of entire trees
of tropical fireflies [41,42].

The frequency locking phenomenon between two oscillators
has been an area of interest for physicists and mathematicians
for centuries. Later observations are reported by Lord Rayleigh
in 1907 who observed the coupling between two tuning forks on

2Huygens had not only given an exact description, but also a bril-
liant qualitative explanation of mutual synchronization; he correctly un-
derstood that the conformity of the rhythms had been caused by an im-
perceptible motion of the beam.

3It has been observed for example that humans left in isolated bunkers
reveal a “free-running” sleep-wake period of about 25 hours but, when
brought back to the nature, they are injection-locked to the Earth’s cycle
[39,40].
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a table top and studied the locking behaviour as a function of
frequency and coupling strength [43]: this could be regarded as
the beginning of a systematic investigation of synchronization
in modern physics. Nevertheless, the phenomenon did not be-
gin to be entirely understood until the development of nonlin-
ear dynamics by Poincaré [44]. This new mathematical tool al-
lowed Appleton [45] and Van der Pol, another Dutch scientist,
to study the forced oscillator in details for the first time [46,47].
The advent of radio-communication era brought on a vigorous
research into electrical circuits that also led to advances in the
understanding of locking phenomena. With his pioneer works
on microwave-tubes oscillators, Adler demonstrated nearly two
decades later that the frequency locking synchronization can
also apply to electronic circuits [48] with a significant improve-
ment regarding phase noise reduction [49,50].

It was not until 1966, shortly after the invention of the
laser, however, that Stover and Steiner demonstrated the lock-
ing of two helium-neon laser oscillators [51] and only in the
early seventies Buczek provided a review of the theory and ap-
plications of laser injection locking with CO2 lasers [52]. In the
late seventies, the improvements in semiconductor laser char-
acteristics, such as increased spectral purity and high mode
stability, provided new motivation for injection locking these
lasers. The first demonstration of semiconductor laser injection
locking is due to Kobayashi and Kimura in 1980 [53] and the
theoretical approach was generalized by Otsuka and Tarucha
in 1981 [54]. Later works dealt with several promising applica-
tions for both speed digital and coherent transmission systems.
It was shown that the technique ensures single-mode operation
under high-speed modulation [55–58]; enhances the modula-
tion bandwidth reducing relaxation oscillations [59–61]; can
reduce the partition noise, the linewidth, and the frequency
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noise [62–64]; can limit the frequency chirping [65, 66]; is able
to generate optical frequency- and phase-modulation [67, 68];
can amplify FM signals [69]; can be used to obtain optical fre-
quency conversion [70] and to generate microwave signals [71].

In parallel with the development of applications, the the-
ory of semiconductor laser locking has evolved as well. Lang
pointed out that including the linewidth enhancement fac-
tor, which takes account of the carrier-dependent refractive
index, was necessary for the theoretical developments of injec-
tion locked semiconductor lasers [72]. He showed also, from
the linear stability analysis of the semiconductor rate equa-
tions, that for certain operating conditions within the locking
bandwidth, the slave becomes dynamically unstable. Succes-
sive works dealt with the theoretical evaluation of the spectral
densities of the intensity and phase noise [73, 74], and more
recently a particular attention has been devoted to bistability
and chaos synchronisation in injection-locked lasers [75].

We briefly report here some mathematical tools needed for
a theoretical understanding of the injection locking phenom-
ena in distributed feedback (DFB) semiconductor lasers. A
comprehensive study can be found in [76].

4.3.1 Rate and phase equations

In the cavity of an optically injected laser the electromagnetic
field of the light from the master laser adds to the internal field
of the free-running laser. Let Es(t) and Em(t) be the complex
electric fields of, respectively, the slave and the master laser.
According to [72], the rate equation for the intracavity field
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may be written as:

dEs

dt
=

{
−iωth +

1
2
(G(t)− γ)(1− iβc)

}
Es(t) +

1
τL

Em(t)

(4.1)
where ωth is the angular frequency of the slave laser at thresh-
old, G(t) is the modal gain per unit time, and τL is the cavity
round trip time. βc is the linewidth enhancement factor and is
defined by the carrier-induced variation of real and imaginary
part of the susceptibility χ [77]:

βc ≡ d[<{χ}]/dN

d[={χ}]/dN
(4.2)

with N the free charge carrier number in the active region of
the laser. γ is the photon loss, and is defined as the sum of
the cavity loss αm and the internal loss αint, multiplied by the
group velocity:

γ = vg(αm + αint) (4.3)

The slave laser intracavity field and the injected optical
field from the master laser can be written as:

Es(t) = As(t)e−i(ωRt+φs(t)) (4.4a)
Em(t) = Am(t)e−i(ωRt+φm(t)) (4.4b)

where As and Am are slowly varying field amplitudes, φs and
φm are phase terms, and ωR is a constant reference angular
frequency. Assuming that the master laser is an ideally sta-
ble monochromatic source, the phase of the injected signal is
constant: φm(t) = φm0. Since the reference frequency can be
freely chosen [37,76], it is advantageous to set ωR equal to the
angular frequency of the master laser: ωR = ωm.
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Inserting the equations (4.4) in (4.1), after separating the
real and imaginary parts, we easily get two equations for the
amplitude and phase of the intracavity field:

dAs

dt
=

1
2
(G− γ)As +

1
τL

Am cos(φm0 − φs) (4.5a)

dφs

dt
= −(ωm − ωth) +

1
2
βc(G− γ) +

1
τL

Am

As
sin(φm0 − φs)

(4.5b)

where the explicit time dependences have been dropped for
simplicity. The above equations can be conveniently expressed
in terms of the intracavity laser photon numbers, Ps and Pm

[77]. To this end, the slowly varying amplitudes As and Am

are normalised as follows:

Ps = VP A2
s Pm = VP A2

m (4.6)

where VP = V/Γ is the volume of the optical mode, defined
as the active volume (V ) divided by the confinement factor
(Γ) [78]. By expressing the fields As and Am in terms of the
dimensionless intracavity photon populations, respectively Ps

and Pm, we obtain:
dPs

dt
= (G− γ)Ps + Rsp + 2ρPs cos θ (4.7a)
dθ

dt
= ∆ω − 1

2
βc(G− γ)− ρ sin θ (4.7b)

where ρ contains the ratio between the injected and the total
photon numbers:

ρ =
1
τL

√
Pm

Ps
(4.8)

θ contains the slave laser phase: θ(t) = φm0 − φs(t), and ∆ω
denotes the angular frequency difference between the master
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and the free-running slave: ∆ω = ωm − ωth. The term Rsp,
keeping account of the spontaneous emission rate, has been
added phenomenologically.4. From the inspection of the equa-
tions (4.5), we clearly see that the terms which are actually
responsible for the external injection locking are the sine and
cosine terms in the right-hand side.

The description of the model is completed by the equations
relating the carrier number to the modal gain. We mainly focus
on distributed feedback (DFB) lasers, which have been used in
the frame of this work. For a single-mode diode laser with a
bulk active region, the carrier rate equation reads [77]:

dN

dt
= ηi

I

q
− γeN −GPs (4.9)

where ηi is the internal quantum efficiency, I the electric cur-
rent driving the device, q the unit charge, and γe the total
carrier loss rate which takes account of both radiative and
nonradiative recombination mechanisms. The modal gain per
unit time G is related to the carrier and the photon number
by the following expression:

G =
Γvga

V

N −N0√
1 + Ps/Psat

(4.10)

where a is linear gain constant, Psat the saturated photon num-
ber, and N0 the active layer carrier number at transparency.

4Rsp(t) is assumed to depend linearly on the gain through the popula-
tion inversion factor, nsp, which is determined by the separation between
the quasi-Fermi levels in the valence and conduction bands and the lasing
frequency [77]
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4.3.2 Steady-state behaviour of injection-locked
slave lasers

Assuming that the slave laser is driven at constant current
above threshold, the steady-state behaviour is obtained by set-
ting the time derivatives in equations (4.7) and (4.9) equal to
zero:

(G− γ)Ps + Rsp + 2ρPs cos θ = 0 (4.11a)

∆ω +
1
2
βc(G− γ)− ρ sin θ = 0 (4.11b)

ηi
I

q
− γeN −GPs = 0 (4.11c)

By combining the first two equations and neglecting the spon-
taneous emission rate, one get an expression for the angular
frequency offset ∆ω:

∆ω = ρ(sin θ − βc cos θ) (4.12)
The first sine term is characteristic for any kind of externally
locked oscillators [48] and hence also for injection-locked laser
oscillators. The second term, in stead, is specific to semicon-
ductor devices because of their non-negligible linewidth en-
hancement factor, βc.

Setting θ0 = arctan (βc) as an auxiliary variable, the equa-
tion (4.12) may be rewritten as:

∆ω = ρ
√

1 + β2
c sin(θ − θ0) (4.13)

and, considering that the sine takes values within [−1, +1], we
obtain a simple expression for the maximum angular frequency
offset between the master and the free-running laser:

∆ωmax = |ωm − ωth|max = ρ
√

1 + β2
c =

1
τL

√
Pm

Ps
(1 + β2

c )

(4.14)
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Equation (4.14) shows that for a given photon number (or
power) ratio, Pm/Ps, the static locking range extends from
−∆ωmax to +∆ωmax, and increases with the square root of
the injected power. The steady-state solutions for the photon
P and carrier populations N , as well as for the phase θ of the
injection-locked slave laser at a given point (Pm/Ps,∆ω) inside
the locking range, are reported in [76].

To investigate the stability of the steady-state solutions
with respect to weak perturbations, a small signal analysis of
the equations (4.7) and (4.9) must be applied. Omitting exces-
sive mathematical details for which we refer to [76–78], from
the linear stability analysis it is seen that the static locking
range is divided into two main regions: an area of stable lock-
ing and an area of dynamic instability, predominantly at pos-
itive detunings. This situation is depicted in figure 4.3, where
the predictions of the theoretical model are fully validated by
experimental measurements [76].

To compare the measurements with the model, a relation-
ship is needed between the injected photon number Pm and the
incoming mode-matched power Pinj , and also between the to-
tal intacavity photon number Ps and the outcoupled power per
facet P fr

out. Admitting that the slave diode laser emits about
the same power through both facets, P fr

out may be related to
Ps by [77]:

P fr
out =

1
2
~ωthPs

τL
2αm L (4.15)

where ~ωth is the photon energy, αm the distributed mirror loss
and L the cavity length. Since the frequency of the injected
signal from the master laser is virtually identical to the reso-
nant frequency of the free-running slave lasing mode, αm can
be viewed as the cavity loss for both out- and in-coupled light.
Therefore, by analogy, the injected energy per round-trip time
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Figure 4.3: Locking range ∆ν versus optical power ratio Pinj/P fr
out.

Dots, circles and diamonds denotes measurements, while lines result
from theoretical model. Mainly four regimes can be distinguished:
stable locking (A), unstable locking with undamped relaxation os-
cillations at low injection (B,C), unstable locking with chaos at high
injection (F), and a regime with no locking (D,E). From [76].

coupled into the slave may be written as [76]:

~ωthPm

τL
= 2αmLPinj (4.16)

and by combining (4.15) and (4.16) we easily find:

Pinj

P fr
out

= ζ
Pm

Ps
(4.17)
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Figure 4.4: Basic injection-locking configuration of two DFB semi-
conductor lasers. The isolator protects the master from any light of
the slave, and polarisation controller (PC) is properly set to max-
imise the polarisation coupling.

with ζ = 1/[2(αmL)2] the coupling factor. Measurements and
theoretical model are now entirely linked.

In the next section we address an important case of ap-
plications in which two DFB semiconductor lasers are in a
master–slave configuration, and we present the advantages of
injection locking for optical signal processing as well (especially
for the generation of pure AM, pure FM and frequency-shifted
optical wave forms).

4.3.3 Application of injection locking to the gen-
eration of optical signals

The basic injection-locking configuration of two DFB semicon-
ductor lasers is shown in figure 4.4. The master is carefully
isolated in order to prevent light coupling from the slave to
the master and to protect master cavity from back-reflected
light, and a polarisation controller (PC) is properly set to make
polarisation matching inside the cavity (see section 4.4).

Beyond the trivial case of injection locking when the slave
laser simply perfectly replicates the master CW emission, more
interesting configurations can be set up to achieve more so-
phisticated signals. In particular the traditional drawback of
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mixed FM–AM modulation resulting from the direct modula-
tion of a laser diode can be overcome to a wide extent using
injection locking. Traditionally pure AM, FM and SSB modu-
lation spectra are obtained using a single or a combination of
expensive external modulators. It can be shown that the same
result can be obtained with excellent performances using an
injection-locking scheme with two DFB lasers [79]. Such a so-
lution turns out to be frequently cost-effective with the further
advantage of better signal purity.

Pure AM modulation This is achieved by operating the
master laser in CW mode and modulating the current of the
slave at the modulation frequency. The carrier of the slave
locks on the master emission line, resulting in no frequency
dithering and therefore no unwanted FM modulation, as shown
in figure 4.5. It can be observed that the spectrum is substan-
tially narrowed and becomes symmetrical as expected for pure
AM, while the time response is unchanged with or without
locking. The amount of injected power into the slave must be
carefully adjusted to obtain the proper emission characteris-
tics.

In figure 4.5, for a modulation frequency f = 200 MHz, the
AM power modulation index M = ∆P/P remains unchanged
at M = 0.2 before and after locking, while the FM modulation
index β = ∆f/f is changed from β = 6.4 to β = 0.013, demon-
strating the massive reduction in frequency dithering resulting
from injection locking.

Pure FM modulation In this case the current of the mas-
ter laser is modulated at the modulation frequency while the
slave is operated in CW mode. The instantaneous frequency
of the slave laser locks onto the instantaneous emission line of
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the master. The slave shows no significant change in its emis-
sion power, resulting in a pure frequency dithering, as shown
in figure 4.6 where the slave spectrum is broad and symmetri-
cal. While the master shows in the time domain an important
AM modulation as expected from direct modulation, no AM
modulation is observed in the slave emission, demonstrating
pure FM modulation. Here the operating condition requires
that the instantaneous frequency range lies within the lock-
ing range. More quantitatively a FM modulation index of
β = 2.8 was measured, while the power AM modulation index
was M = 0.41 in the master emission and was only M = 0.009
in the slave emission, corresponding to a -20.5 dB residual AM
modulation.

Locking on a modulation sideband Optical frequency
shifting can be simply achieved by modulating the current of
the master laser and by locking the slave on one of the modu-
lation sidebands: as a consequence, the frequency difference of
the two lasers is perfectly stable (see section 4.4). The exper-
imental configuration is identical to that shown in figure 4.4,
the only difference being that the modulation frequency ex-
ceeds the locking range, so that only one frequency component
of the modulation spectrum matters for the injection locking.
It must be pointed out that the slave laser may be locked as
well on a higher order sideband, resulting in an optical fre-
quency difference that is a multiple of the applied modulation
frequency. This is particularly convenient in the microwave
domain, and locking up to the fifth harmonic was successfully
demonstrated [76]. Such a scheme can be conveniently ap-
plied in many experimental configurations, in particular for
distributed Brillouin fibre sensing for which this technique was
successfully demonstrated, as discussed in the next section.
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Figure 4.5: Injection-locking configuration for pure AM modulation.
The spectrum and time-domain wave form of the slave laser are
shown before and after locking to the master laser.
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Figure 4.6: Injection-locking configuration for pure FM modulation.
The spectra and time-domain wave forms of the master and of the
slave laser are shown.
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4.4 Experimental set-up based on injec-
tion locking of two distinct lasers

We saw in section 4.2 that both the pump and the probe waves
for distributed Brillouin sensing can be generated from a sin-
gle physical light source by using an electro-optic modulator
and by properly setting its DC bias [34]. We addressed as well
some practical problems concerning the relatively high costs
and the unsatisfactory extinction ratios exhibited by commer-
cially available EOMs. Actually, the effect of the finite extinc-
tion ratio of an electro-optic modulator on the performances of
distributed probe–pump Brillouin sensor systems is quite crit-
ical, since it affects the Brillouin spectral shape and limits the
ability of BOTDA to obtain localised spatial information [80].

Injection-locking constitutes an alternative and efficient me-
thod to provide stable, while tunable, frequency difference be-
tween the two lightwaves. This approach consists in modu-
lating the master laser radiation and locking the (unmodu-
lated) slave laser to a sideband of the master. The beat note
between the master laser and the injection locked slave laser
provides, this way, a high power and spectrally very pure RF
signal. This concept of millimetre-wave optical generation by
modulation sideband injection locking has been experimentally
demonstrated in [76] and [81].

The block diagram of our set-up is schematically shown
in figure 4.7. Both master and slave lasers are distributed-
feedback (DFB) semiconductor lasers at the operating wave-
length of 1550 nm, characterised by a few mW output power.
The master laser is directly modulated in intensity at a fre-
quency within the Brillouin shift range, thanks to the built-
in electro-absorption modulator (EAM), which creates small
sidebands which are used for injection locking. The locking
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Figure 4.7: Schematic diagram of the injection-locking based config-
uration. Master, Slave: distributed feedback lasers; EAM: electro-
absorption modulator; SOA: semiconductor optical amplifier; EDFA:
erbium-doped fibre amplifier; RF: radio-frequency generator; PG:
pulse generator; PC: polarisation controller; PS: polarisation scram-
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channel consists in a short fibre line used to lock the frequency
of the slave laser on one modulation sideband of the free run-
ning master laser, by injecting a small quantity of the master
radiation into the cavity of the slave laser. It must be pointed
out that the main peculiarity of this configuration resides in
the fact that the slave laser exhibits two cleaved facets without
anti-reflexion coatings and built-in isolators, and that, conse-
quently, the cavity is accessible through both facets, as shown
in the figure.5 In our case, the left facet is used for locking,
while the right facet is used as the actual output of the laser.

5In previous experiments [76, 81], injection locking was performed
through the built-in slave isolator in the blocking direction.
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Figure 4.8: Schematic representation of the spectra of the master
and slave lasers. (a) No locking: the free running slave laser lays
outside the locking range. (b) Locking: the slave frequency is tuned
within the locking range.

In order to maximise the interaction and avoid undesirable
polarisation switching between TE and TM modes, the intra-
cavity and injected fields polarisations are properly set using a
polarisation controller (PC). The master laser is isolated up to
70 dB in order to prevent light coupling from the slave to the
master and to protect master cavity from backreflected light.
The output facet of the slave laser is isolated as well up to 80
dB to avoid backreflections at the fibre ends, which could lead
to injurious self-injection locking.

The operating principle is schematically depicted in figure
4.8. In its free-running operation, the slave laser lays out-
side the locking range and is not influenced by the presence of
the master radiation in its cavity. When the slave frequency
is tuned within the locking range, in stead, the slave laser
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locks very rapidly on the modulation sideband of the master.
Thereafter, by simply changing the RF modulation frequency,
the probe-pump detuning is changed accordingly. For standard
values of the injection ratio (see figure 4.3), the frequency scan-
ning range, that extends usually over a few hundred of MHz, is
fully contained within the locking range, and the phase lock-
ing between master and slave is maintained throughout the
scanning of the Brillouin gain curve.

This configuration provides two outputs with distinct op-
tical frequencies, showing a beat note with the ideal stabil-
ity given by the microwave generator, as shown in figure 4.9.
These outputs can be simply delivered in two separate fibres
and be used as different pump and probe signals. Unlike the
sideband technique [34], no other idle wave is present in the
set-up, except the residual modulation sideband with very low
amplitude, which turns out to very significantly improve the
noise characteristics of the technique.

The master laser was used to deliver the probe signal, and
the light from the slave laser was boosted through an erbium-
doped fibre amplifier (EDFA) to act as a pump in the Bril-
louin interaction. As described so far, the configuration makes
possible the measurement of the Brillouin gain spectrum only
integrated over the whole length of the fibre placed in the mea-
surement channel. To make distributed measurements possi-
ble, the pump was simply gated through a semiconductor op-
tical amplifier (SOA), driven by a pulse generator, and placed
just before the EDFA.

Previous works investigated the possibility of taking profit
of the dynamical characteristics of injection-locking, by per-
forming the time coding of the Brillouin signal through the
application of a short pulse on the driving current of the slave
laser [79]. According to this approach, the pump (slave) laser
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Figure 4.9: Electrical spectrum of the beat note between the master
laser and the injection-locked slave laser. (a) Slave unlocked; (b)
Slave locked.
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is always on and its operating current is set, so that none of
the emission lines (carrier+sidebands) of the master lie inside
both the locking range and the Brillouin gain spectrum. When
a current pulse is applied to the slave to move its free-running
frequency into the locking range, it rapidly locks and the in-
teraction takes place. When the pulse is stopped, the locking
condition is no longer satisfied and the slave free-running fre-
quency is again out of the locking range and of the Brillouin
spectrum, so that no interaction is possible.

While promising and flexible over short distances, this tech-
nique is not entirely suitable for long-range operations, where
high pump powers must be used (see section 4.5). The neces-
sary requirement that the launched power is limited to below
the threshold of any nonlinear effects becomes even more re-
strictive for CW pump powers. For these reasons, a different
solution based on SOAs, in an optical gating configuration,
was investigated. In the context of distributed Brillouin sen-
sors, moreover, commercially available SOAs represent a good
alternative to EOMs, since they are less expensive and can
exhibit very high extinction ratios (> 35 dB).

To reduce the additive noise due to the amplified sponta-
neous emission, the output signal from the EDFA was filtered
by an optical bandpass filter (BPF1) with a 3 dB bandwidth
of 1 nm. A polarisation scrambler (PS) was additionally used
to get rid of the random variations of the Brillouin gain due
to the birefringence of the sensing fibre (see section 3.3). For
very high pump pulse power operations, a second filter (BPF2)
was also used in front of the detector, to filter the additional
noise originated by the Rayleigh backscattered light from the
Brillouin pump pulse (cf. section 5.2.2).

The distributed measurement is performed by acquiring
the spatial (temporal) traces of the Brillouin gain for different
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Figure 4.10: Brillouin gain spectrum measured in a sample of 50 m
long γ-irradiated single-mode fibre (cf. section 5.1).

frequencies covering the Brillouin gain spectrum, gB(νi, z). At
each position zk, the parameters of the Brillouin gain gB(ν, zk)
are, then, extracted (through a Lorentzian nonlinear fit) and
the Brillouin frequency shift and linewidth are fully retrieved.

In figure 4.10 we show the Brillouin gain spectrum mea-
sured in a sample of 50 m long γ-irradiated single-mode fibre
(see section 5.1). This measurement was performed in very
critical conditions, since the irradiated sample exhibited an
optical attenuation equal to 170 dB/km. Nevertheless, de-
spite the high noise level, the quality of the detected signal is
quite representative of the efficiency of our sensing technique,
in terms of SNR.

Figure 4.11 shows, in stead, a 3D representation of the
Brillouin gain distribution, gB(ν, z), and the processed Bril-
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louin shift, νB(z), over the concatenation of a 200 m long
single-mode fibre (SMF) and a 450 m long dispersion-shifted
fibre (DSF), with a spatial resolution of 2m. In figure 4.11(a)
we can distinguish the secondary Brillouin gain peak typically
present in DSF, and in figure 4.11(b) the two different fibres
are clearly shown. This measurement was effectuated without
optical filters.

This set-up is very stable and intrinsically characterised by
a very low noise level, which is imputable to the way pump
and probe signals are generated and interact locally within
the fibre. Distributed Brillouin sensors suffer, however, from
some physical limitations to performances. We refer to [19]
for a detailed discussion of the limitations due to the Raman
scattering and the spectral broadening of the pump pulse. In
the next section, we discuss the detrimental role played by
another nonlinear effect: the modulation instability process.

4.5 Impact of modulation instability on
the performances of distributed fibre
sensors

We saw in the previous sections that BOTDA techniques in-
volve the use of two counterpropagating optical waves, called
respectively pump and probe waves, whose frequency separa-
tion must be kept constant and close to the Brillouin shift, νB,
of the fibre. The most straightforward method to obtain these
waves is through the modulation (at a frequency νB) of the
light emitted by a single laser [34,81]. In the spectral domain,
this modulation process results in the creation of one or more
lateral bands on both hands of the laser centre frequency: the
use of one of these sidebands as Brillouin probe results in an
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Figure 4.11: (a) 3D representation of the Brillouin gain distribu-
tion, gB(ν, z), along two concatenated fibres. The DSF exhibits a
secondary Brillouin peak gain. (b) Processed Brillouin shift, νB(z),
clearly showing the the two different fibres.
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ideal frequency stability between the pump and probe waves.

In order to maximise the sensor range and to improve the
spatial resolution, high power pump pulses must be used, with
the necessary requirement that the launched power is limited
to below the threshold of any nonlinear effects that would,
otherwise, be no longer negligible and would introduce errors
in the detected Brillouin signal. In previous works, it was
considered that the stimulated Raman scattering is the main
effect which seriously limits the permissible input powers [82],
and hence degrades long range measurements.

However, taking into account that the fibres used for sens-
ing usually present anomalous dispersion at the pump wave-
length and that the peak power of the pump pulse reaches
typically 200-300 mW, the modulation instability (MI) process
turns out to be the principal limiting effect, since it exhibits a
much lower threshold. This was recently accounted for in sen-
sors based on spontaneous Brillouin scattering [83], as a result
of the spectral self-broadening of the pump pulse. In the case of
BOTDA sensors based on stimulated Brillouin scattering, the
effect of modulation instability is initiated entirely differently
and is even more critical, since the probe wave can strongly
seed the MI amplification process and this may consequently
lead to an energy transfer from pump to probe. This results
in a rapid pump depletion in the case of conventional SMFs,
which manifests itself through a dramatic degradation of the
sensor performances.

In this section we report on the experimental evidence
of the detrimental effect of modulation instability in sensors
based on stimulated Brillouin scattering [84].
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4.5.1 Pump broadening

The experimental set-up used to investigate the impact of mod-
ulation instability on the performances of Brillouin distributed
sensors is the same used to investigate FPU recurrence and is
shown in figure 2.7 (on page 41).

We investigated and compared the effects of MI on two dif-
ferent fibres, respectively a 11.8 km-long SMF in the anoma-
lous dispersion region (β2 = −21.92 ps2 km−1) and a 3.5 km-
long DSF in the normal dispersion region (β2 = +7.65 ps2 km−1).
A 20 ns pulse was used and the peak power was varied from
100 to 600 mW.

First, the output spectrum of spontaneous MI (with no
modulation of the laser) was measured on an optical spectrum
analyser for both fibres as a function of the input power. Fig-
ures 4.12 and 4.13 show the power spectra recorded at the
far end of the fibres as the launched pulse peak power is in-
creased. In the case of the SMF (figure 4.12) the effect of
the MI becomes stronger as the power increases. The spectral
lobes, which appear symmetrically on both sides of the central
frequency, become broader and a significant amount of pump
depletion is observed. In the case of the DSF (figure 4.13), ac-
cording to theory (see section 2.3.1), the MI does not manifest
itself by reason of its negative dispersion at 1.55µm, and the
power spectrum shape stays unchanged. The pump depletion
observed for high pulse peak powers is due to stimulated Ra-
man scattering [82] present at 1660 nm, as shown in the inner
plot.

A brief word of comment becomes here necessary. One
could object that the results shown in figures 4.12 and 4.13 are
not fully comparable on account of their different lengths (by
approximately a factor 3). This is partly true in the sense that
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a pulse peak power of 600mW in the case of the DSF would
correspond to a pulse peak power of approximately 200mW in
the case of the SMF. Nonetheless, considering that the DSF ex-
hibits a smaller effective area than the SMF by approximately
a factor 2 (we remind that Aeff is related to the nonlinear
fibre coefficient by an inverse proportionality law), the results
depicted in figures 4.12 and 4.13 can be compared by means
of approximately a factor 1.5. According to the example cited
above, a pulse power of about 600mW for a DSF would corre-
spond to approximately 400mW for a SMF.

Finally the expected absence of MI and, consequently, of
pump broadening, suggest that the DSF can be more safely
used with larger input powers, and that the long range opera-
tions are limited, actually, only by the Raman threshold.

4.5.2 Sidebands amplification

Beside a significant amount of pump broadening, a second crit-
ical effect of MI consists in the amplification of the sidebands
resulting from the modulation of light at the Brillouin fre-
quency. Figure 4.14 shows the theoretical MI gain spectra,
discussed in section 2.3.1, on which the Brillouin sidebands
have been superposed.

The MI gain spectrum changes along the fibre as a result
of fibre loss and pump pulse power depletion. Using the ex-
pressions provided by Hasegawa and Tai [85], the spatially in-
tegrated gain, G =

∫ zm

0 g(z)dz, can be parametrised as follows:

G = 1.6
P

αλAeff

√
R

[(
1− R

4

)1/2

−
√

R

2
tan−1

(
4
R
− 1

)1/2
]

(4.18)
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by a quantity R defined by:

R = 1.1 · 10−4 ν2Aeff

P
(−λ3D) (4.19)

where P is the pulse peak power in mW, Aeff is the effec-
tive core area in µm2, α is the fibre loss rate in dB/km, λ is
the pump wavelength in µm, D is the dispersion coefficient in
ps/nm/km, zm = −(2α)−1 ln(R/4) is the distance at which the
MI gain becomes negative as a result of the fibre loss rate, and
ν is the sideband frequency in GHz.

In figure 4.15 we computed the spatially integrated gain for
the two sidebands plotted in figure 4.14 (at ν = νB) along a
standard SMF as a function of distance and for several launched
pulse peak powers. For a fibre length of 10 km the inte-
grated gain is approximately equal to 8dB for a launch power
of 250mW, and raises to about 20dB for a 600mW peak power.

To evaluate the MI effect existing in a standard SMF on
the modulated laser, we set the sidebands intensity to 1/20 of
the pump intensity and we recorded the output spectra at the
far end of an 11.8 km SMF for different pump pulse peak power
values. The results reported in figure 4.16 clearly show that,
as far as the input pulse power is increased, the intensity of
the pump wave gradually decreases and the sidebands undergo
an amplification, to the detriment of the pump power.

The occurrence of pump depletion is clearly depicted in
figure 4.17 where the left- and right-sideband intensities have
been normalised by the pump wave intensity and reported as
a function of the input pulse peak power. As shown, both
sidebands drastically increase along with power, and for pow-
ers above 500 mW the sidebands are even greater than the
depleted pump. Increasing further the input peak power, the
interaction can exhibit the FPU recurrence (see section 2.3.3.2)
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and the pump depletion can reach up to 100%. With such a
strong depletion distributed measurements based on BOTDA
techniques are definitely no longer possible.

It must be noticed, however, that modulation instability
has no influence on the probe wave, as a result of its counter-
propagating nature. By contrast, it can play an active role on
any wave components which copropagate in the vicinity of the
pump wave. This is actually the case of the residual modu-
lation sidebands from optical filtering [34]: assuming filtering
with a typical 20 dB of rejection ratio, the residual sidebands
have sufficient intensity to undergo an amplification during the
propagation within the fibre, and may be responsible for sig-
nificant amounts of pump depletion in long-range operations.

4.5.3 Discussion

We investigated the undesirable effects of modulation instabil-
ity in BOTDA sensors, with an aim of understanding the pump
depletion occurring in the case of high pulse power operations.
It turns out that not only the MI process is responsible for a sig-
nificant amount of pump broadening, but that the probe wave
lying within the MI gain spectrum, generated by the pump
pulse, can also be amplified along a fibre exhibiting anomalous
dispersion at the detriment of the pump power. SMFs seem,
thus, to be inappropriate to be used at high powers to achieve
high resolutions and range, as previously demonstrated for the
systems based on spontaneous Brillouin scattering [83].6

To overcome the pump depletion due to MI, one solution
consists in using single mode fibres exhibiting normal disper-

6At first glance MI may look more limitative in BOTDA, but actually it
is not the case, since such systems require a lower pump power to observe
Brillouin gain thanks to the stimulated process.
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sion, in which case, we were not able to observe any appreciable
changes in the sidebands intensity. One other solution could
consist in substituting the intensity modulation by a phase
modulation: ideally the presence of strong ripples due to SPM
seeding the MI process would be avoided. Further experiments
should be done to verify if the phase modulation is not rapidely
converted into an intensity modulation due to the propagation
within a dispersive fibre.
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Chapter 5

Original applications of
distributed Brillouin
sensing

In this chapter we report on an original application of dis-
tributed sensing to nuclear environments and on the observa-
tion of negative silica compaction in optical fibres. Omitting
the well-known applications involving strain and temperature,
extensively reviewed elsewhere [1–4], we emphasize in partic-
ular on the application of distributed measurements to the
analysis of optical signals. In this context, we present a new
generalised theoretical approach to the problem of sensing and
report, eventually, on the first distributed measurement of the
parametric gain in a single pump fibre-optics parametric am-
plifier (FOPA).
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5.1 Application of distributed sensing to
nuclear environments

Fibre optics sensing technology have been under evaluation for
the past several years by the nuclear industry since it may bring
promising alternatives to classical measurement techniques in
harsh nuclear environments [5–8]. Distributed fibre sensing
would allow, in particular, structural integrity monitoring of
reactor containment buildings, nuclear waste repository survey
and remote safety control of nuclear installations with signifi-
cant benefits over conventional electronic instrumentation.

It is well known, however, that the exposure of optical fibres
to ionising radiation results in a wavelength-dependent attenu-
ation penalty. This effect limits the radiation acceptance level
of intensity-based fibre optic sensors in nuclear environments
and results in some radiation-induced errors which restrict
the applicable area of such sensors. The potentialities of Ra-
man distributed temperature sensors have already been stud-
ied in radiation environments [9–11], and special correction
techniques for radiation-induced losses have been developed
in order to take account of the differential radiation-induced
attenuation for the Stokes and anti-Stokes lines which could
cause incorrect temperature measurements. In contrast, the
narrow wavelength encoding of the sensing information signifi-
cantly helps to avoid the influence of the broadband radiation-
induced loss, as already shown for fibre Bragg grating sen-
sors [12].

Distributed sensors based on stimulated Brillouin scatter-
ing have actually an interesting potential for distributed strain
and temperature monitoring in the nuclear industry. Since the
sensing information is frequency-encoded, hence potentially ra-
diation tolerant, it was interesting to study the radiation effects
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on the Brillouin shift for application in ionising environments.
In this section, we present novel results on the properties of
the Brillouin gain spectrum under high gamma irradiation in
a standard optical fibre up to very high gamma doses and the
first observation - to our knowledge - of the compaction of silica
in optical fibres.

5.1.1 Validation of the technique

We have investigated the effects of ionising radiation on the
characteristics of the Brillouin gain spectrum in standard Ge-
doped telecom single mode fibres (Lucent AllwaveTM). Dur-
ing this irradiation campaign, four fibre samples, cleaved to an
identical length of 50 m, have been irradiated off-line in the
underwater gamma irradiation facility ‘BRIGITTE’ of SCK
·CEN, Belgium (figure 5.1). The test chamber consists of
a pressurised canister (figure 5.2), in which the samples are
placed, which is then lifted down into the irradiation facility,
so that the samples are surrounded by ten 60Co γ-sources [13].
In this configuration the fibres have been irradiated at the same
dose rate of 27 kGy·h−1 but with different exposure times to
reach different total doses. The measured total dose absorbed
by each fibre is listed in table 5.1.1

The fibre samples have been tested six weeks after the
gamma irradiation campaign and have been monitored dur-
ing several days.

We have first measured the total radiation-induced atten-
uation in the 1550 nm window for each sample using a com-
mercial OTDR analyser. The results, summarized in table

1The absorbed dose is a measure of the energy deposited in a medium
by ionising radiation. It is measured in gray (Gy) and corresponds to 1 J
of energy per kg of matter.
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Figure 5.1: Photograph of BRIGITTE irradiation facility at
SCK·CEN showing the ten 60Co γ-sources. The open space inside
the ring is the location where the sample canister is placed.

Fibre sample Length (m) Dose (MGy)
Reference 50 0

1 50 0.33
2 50 0.97
3 50 4.70
4 50 9.90

Table 5.1: Radiation dose experienced by the five samples of Lucent
AllwaveTM single-mode fibres before measuring their Brillouin gain
spectrum.
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Figure 5.2: Photograph of the sample canister showing the inside
structure with multiple shelves for sample storage. The canister is
sealed against water ingress and maintained at constant temperature
during the experiment, with dry nitrogen atmosphere at constant
pressure.
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5.2, are consistent with previous works [14]. Figure 5.3 shows
and compares the spectral responses of the radiation-induced
absorption measured by the cutback method, using a tung-
sten–halogen lamp and an optical spectrum analyser. This
behaviour is typical of doped optical fibres when exposed to
ionising radiation [14, 15]. However, despite the significant
radiation-induced absorption, frequency-based systems like Bril-
louin distributed sensors still operate unbiased since the radiation-
induced attenuation only affects the signal-to-noise ratio.

The effects of radiation on the properties of Brillouin scat-
tering have been evaluated by a distributed measurement of the
spectrum, in order to better discriminate the Brillouin char-
acteristics of the irradiated fibre segments from those of the
lead fibres. Figures 5.4 and 5.5 show the Brillouin central fre-
quency (νB) and the Brillouin linewidth (∆νB) as a function
of the absorbed dose. The results presented here have been
obtained by averaging several measurements carried out under
the same conditions and at the same ambient temperature (T
= 295.25 ± 0.05 K), in order to be free of systematic errors
which could bias our data. The results are summarized in ta-
ble 5.3 and show a small but clear dependence of the Brillouin
scattering on the ionising radiation: frequency and linewidth
increase nonlinearly as a function of the dose.

The reasons for this nonlinear behaviour will be discussed
in details in the next subsection. What is quite important to
stress here is that the frequency variation amounts to about
5 MHz for both central frequency and linewidth in the worst
case (i.e., for the most irradiated sample). This corresponds
approximately to a temperature change of about 5 K, or to a
relative elongation of about 100µε for a total dose of about 10
MGy. It is useful to note, however, that the required radiation
acceptance level for nuclear monitoring instrumentation is of
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Fibre sample Attenuation (dB/km) Dose (MGy)
Reference 0.43 0

1 45 0.33
2 62 0.97
3 144 4.70
4 170 9.90

Table 5.2: Radiation-induced attenuation in the 1550 nm window
measured using an OTDR analyser.
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Figure 5.3: Spectral response of the radiation-induced attenuation.
Curves have been normalized with respect to the spectrum of the
reference fibre.
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Figure 5.4: Brillouin central frequency νB measured as a function of
the absorbed dose. All measurements were performed at a constant
temperature (T = 295.25 ± 0.05 K).
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Figure 5.5: Brillouin FWHM linewidth ∆νB measured as a func-
tion of the absorbed dose. All measurements were performed at a
constant temperature (T = 295.25 ± 0.05 K).
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Fibre
sample

Brillouin
frequency (GHz)

Brillouin
linewidth (MHz)

Dose
(MGy)

Reference 10.8413 10.8413∗ 43.2 43.2∗ 0
1 10.8417 10.8417∗ 43.6 43.5∗ 0.33
2 10.8426 10.8426∗ 44.4 44.2∗ 0.97
3 10.8451 10.8451∗ 46.0 46.0∗ 4.7
4 10.8462 10.8462∗ 48.0 48.1∗ 9.9

Table 5.3: Brillouin frequency and Brillouin linewidth as a function
of the absorbed dose. The accuracy of the Brillouin central fre-
quency is ±50 kHz and the accuracy of the half-linewidth is ±200
kHz. Starred values denotes the measurement of the Brillouin gain
spectrum ten months later the irradiation campaign.

the order of 10–100 kGy at maximum. This means that, in
practice, the radiation-induced shift of the Brillouin frequency
cannot exceed 0.1 MHz (about 0.1 K on an equivalent temper-
ature scale, and about 2µε on an equivalent strain deformation
scale), so that it can be considered to be practically negligible
in real applications.

Distributed sensors based on stimulated Brillouin scatter-
ing can, thus, be considered to be radiation-tolerant up to total
doses of about 100 kGy, provided that the signal-to-noise ratio
is kept acceptable, and constitute in this way an efficient mon-
itoring tool for the nuclear facilities [16]. The sensing fibres
can, moreover, be carefully pre-irradiated in order to minimise
the effect of the radiation-induced shift (as adressed in the next
section).
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5.1.2 Observation of negative compaction in irra-
diated amorphous silica

The capability of Brillouin sensors to measure temperature or
strain variations is intrinsically related to the physical origin
of the Brillouin scattering, resulting from the change of the
acoustic velocity with respect to variations of the silica density.
In particular, the acoustic velocity can be related to the density
by the following equation [17]:

va =

√
E(1− ν)

(1 + ν)(1− 2ν)ρ
(5.1)

where E, ν and ρ represent respectively the Young modulus,
the Poisson’s number and the density of the fibre.

Since the Brillouin frequency νB is related to the acoustic
velocity by the relation (see chapter 3):

νB = 2nva/λ0 (5.2)

where n and λ0 represent respectively the refractive index and
the pump wavelength, a variation of the density inevitably
induces a variation of the Brillouin frequency νB.

The results listed in table 5.3 show the shift of the Brillouin
frequency νB due to ionisation radiation: this clearly tends to
indicate a change in the silica density during the irradiation,
by means of (5.1) and (5.2). It is well known that the radiation
exposure of glasses and ceramics can cause important changes
in the physical properties of the matter, such as density [18].
Depending on the type of silica, the irradiation can induce
either a compaction or an expansion.

The most comprehensive experimental study of the com-
paction in bulk silica has been performed from the late 1950’s
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by Primak, who first investigated the physical mechanisms at
the origin of radiation damages [19–22]. He observed that the
products of irradiation can be described by a compacted vitre-
ous state, which is characterised by a higher density with more
disordered vitreous phase than vitreous silica. When silica is ir-
radiated, knock-on displacements on the network atoms can oc-
cur as a result of collisions between incident particles or Comp-
ton electrons. In the same way, non-radiative decay of excitons
(bound electron-hole pairs) formed by much lower energy pho-
tons can cause radiolytic displacements of the atoms. In either
case, the irradiation creates displacements, electronic defects
and breaks in the Si−O−Si bonds, which allow the structure
to relax and fill the relatively large interstices existing in the
interconnected network of silicon and oxygen atoms [19, 23].2
A more recent review of compaction phenomena is available
in [26].

In our case, the results depicted in figure 5.6 show that
the ionising radiation induces a significant negative compaction
(i.e., dilatation) of the optical fibres. These results are in ex-
cellent agreement with the pioneer work of Starodubtsev and
Azizov [27], who first reported of an expansion caused by γ-
irradiation. Primak and Kampwirth [22] suggested that the
existence of impurities (Al or alkali) in the silica, fused from
natural quartz, could be at the origin of the radiation-induced
expansion. However, since the expansion has been observed in
synthetic silicas with extremely low metallic impurity content,
there must be an additional mechanism. Several studies have
shown that a significant concentration of OH correlates with

2This phase, also known as the metamict phase, results from a
radiation-induced loss of topological order [24]. The exact nature of this
amorphous phase is still debated but has its origin in the change of the
tetrahedral geometry and the ring-size arrangement distribution [25].
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Figure 5.6: Dilatation due to ionisation radiation as a function of
the absorbed dose. Experimental data (triangles) have been fitted
with a power law (solid line): ∆V/V = ADc. The fitted constants
read: A = 2.577 and c = 0.566.

radiation-induced expansion. When silica containing OH is ir-
radiated, the radiolytic electrons and holes are trapped by the
Si − OH, forming atomic hydrogen and non-bridging oxygen
hole centres (NBOHCs) [28,29]:

≡ Si−OH + e− + h+ → ≡ Si−O• + H0 (5.3)

Following electron trapping, if the temperature is high enough,
the atomic hydrogen diffuses away forming H2, which can un-
dergo a second reaction with the silica network [30]:

≡ Si−O− Si ≡ +H2 → ≡ Si−OH+ ≡ Si−H (5.4)

Large amounts of hydroxyls and hydrides are produced under
these conditions, while NBOHCs and colour centre formation
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are suppressed. If the expansion associated with reaction (5.4)
is greater than any compaction associated with reaction (5.3)
the net effect will be bulk expansion of the silica under irradi-
ation [23].

Figure 5.6 shows, in addition, that the dose dependence of
the dilatation obeys a power law as previously shown [23,31]:

∆V

V
= ADc (5.5)

where V is the volume, D the dose and A and c are constants.
The exponent varies with the silica type and the nature of
radiation. Primak and Kampwirth [19] found that c = 1 (linear
growth) when silica was irradiated with neutrons (n0), He+, or
D+, whereas c = 0.5− 0.7 when irradiated with H+, electrons
(e−), or γ-rays [18]. By fitting our experimental data we have
obtained A = 2.577 and c = 0.566, in agreement with previous
results. Primak also showed that the sign of the compaction
strongly depends not only on the silica type but also on the
type and concentration of the dopants [20,21].

The radiation induced compaction being an irreversible
phenomenon, even for discontinued exposures to ionising ra-
diation, the shift in the Brillouin frequency due to γ-rays is
then permanently frozen in the fibre. This opens the way
for preparing optical fibres with a reduced shifted Brillouin
frequency by carefully choosing the dopant concentration and
the fibre type, together with pre-irradiation. Measurements of
the Brillouin gain spectrum done ten months after the irradi-
ation campaign confirm the irreversibility of the compaction,
the measured Brillouin frequencies and linewidths staying un-
changed as shown in table 5.3.3

3The measurements have been held in the same experimental condi-
tions than for the first measurement campaign.
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Table 5.3 and figure 5.5 show the effect of the ionising ra-
diation on the Brillouin linewidth ∆νB, as well. The reasons
behind these variations are less clear than those about the
Brillouin frequency, but they can be found in the structural
change of the silica during the irradiation. Since the spectral
broadening of the Brillouin spectrum is inversely proportional
to the phonon lifetime (∆νB = 1/πτp), the results appear to
confirm that the effect of irradiation is to introduce scattering
centres into the fibre and lower the thermal phonon relaxation
time [32–34]. The equivalent increase in the acoustic losses
at high doses is certainly attributable to the appearance of
radiation-induced defects, such as dislocations, interstitialcies,
NBOHCs [35] and peroxy-radicals [36], which can be described
by phenomenological models based on the existence of config-
urational tunnelling states, more simply described as two-level
systems (TLS) [4,37]. Further investigations on different types
of fibres with different types of dopants would be, anyhow,
necessary to understand what really happens within the mat-
ter during irradiation. Nevertheless, this modest change in
linewidth causes no impairment for the measurement of the
Brillouin frequency νB, which is the essential information for
sensing.

The results presented in this section represent - to our
knowledge - the first observation and evidence of negative com-
paction due to ionising radiation in optical fibres [38]. More-
over, the use of the radiation-induced Brillouin shift as a tool
of analysis can certainly bring new perspectives in the under-
standing of the compaction mechanisms and defect centres gen-
eration in irradiated amorphous silica. A short review of the
origins of point defects in vitreous silica and of the radiation-
induced damage processes is given in appendix A.
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5.2 Application of distributed sensing to
the analysis of optical signals

Distributed fibre sensors based on stimulated Brillouin scatter-
ing offer a unique capability for the analysis of optical signals
and nonlinear phenomena in optical fibres. The local gain am-
plification inherent to the distributed measurement technique
together with the back-scattered nature of the Brillouin scat-
tering, which prevents possible mischievous interactions of ei-
ther the pump or the probe4 with the signal to be measured
in the forward direction, make the BOTDA a versatile set-up
and a useful tool of analysis for nonlinear optics.

During the past decade, on the ever increasing demand of
the market for technical innovations, the efforts of the scientific
community have been mainly concentrated on distributed sens-
ing of different physical fields (strain, temperature, pressure,
...), with very successful and promising results; howbeit, few
work has been carried out on the measurement of the spatial
evolution of optical signals and the characterisation of non-
linear processes within the fibre. Horiguchi and Tateda [39]
originally proposed and demonstrated the BOTDA technique
as an efficient tool for the measurement of the optical fibre at-
tenuation coefficient. Later, Thévenaz et al. [40] showed that
an evaluation of the local birefringence of the fibre is also pos-
sible and, more recently, Song et al. [41] obtained an accurate
mapping of local chromatic-dispersion with the best spatial res-
olution ever reported. Subías et al. [42] showed as well that,
utilising the narrow spectral properties of the Brillouin spec-
trum, a full spectral analysis with very high resolution can also

4From this point on, the terms pump and probe denote exclusively the
Brillouin pump and Brillouin probe of the BOTDA experiment, unless
differently specified.
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be performed.
In this section, we firstly present a generalised theoretical

approach to the problem of localised sensing, and report, fi-
nally, on an original application of distributed sensing to the
analysis of the parametric gain profile in a single-pump para-
metric amplifier.

5.2.1 Theoretical analysis
Generally, the optical fields exhibit a spatial evolution during
their propagation within the fibre as a result of several nonlin-
ear interactions occurring over the optical path. The optical
signals of practical interest can be classified in two categories,
according to the nature of their spatial dependence:

A. signals whose intensity variations are not issued from a
gain (loss) interaction;

B. signals whose intensity variations result from an amplifi-
cation (respectively attenuation) process.

A good example of the first case is represented by the power
distribution of the FWM product fields generated from two
strong copropagating pumps. By reason of the phase mismatch
(∆β) between the waves involved in the interaction (see section
2.4.1), the corresponding power spatially oscillates according
to the following law [43]: PFWM (z) = PFWM,0 sin2(∆βz/2),
admitted that PFWM,0 is sufficiently low [43, 44].5 It is inter-
esting to note that the nature of these intensity variations only
depends on the phase-matching conditions of the interaction
and is in no case related to a gain (loss) process. On the con-
trary, the spatial evolution of a signal which passes through a

5The factor PFWM,0 actually depends on the pump powers and the
phase mismatch ∆β.
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parametric amplifier (as it will be shown in section 5.2.2) fall
in the second category.

Both these classes of signals can be efficiently retrieved as
a function of location using the Brillouin optical time domain
analysis in its pulsed pump-CW probe configuration (see sec-
tion 4.2), but at rather diverse conditions.

In the first case (A), the BOTDA technique is used in a sim-
ple distributed Brillouin-amplifier configuration: the Brillouin
pump is launched in the opposite direction to the signal to be
measured (henceforth called the measurand signal) and we do
not need to inject a CW probe in the fibre, the measurand
signal acting itself as a probe for the Brillouin amplification
interaction. In the second case (B), by contrast, to evince the
spatial profile of an amplification (attenuation) process act-
ing on a optical signal, both probe and pump must be used:
the pulsed pump is then employed to seed the measurand pro-
cess, while the spatial information is retrieved through the CW
probe, which propagates in the opposite direction to the pump
as in usual BOTDA. In principle, there is no reason why the
probe should not be used as a seed for the interaction; in this
particular condition, however, the spatial information can not
be retrieved, the reasons of which are discussed below. For
simplicity, the two cases are considered separately.

5.2.1.1 Case A

The optical waves involved in the analysis process are depicted
in figure 5.7. We assume that the pump wave Pp(z) propagates
forward in the form of a narrow square pulse of width ∆z,
whereas the measurand signal PS(z) exhibits arbitrary spatial
profile and propagates in the backward direction.

The pump pulse can be mathematically described by a rect-
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Figure 5.7: Brillouin analysis of optical signals. Case A. PS(z) can
be decomposed into a CW part (black dashed line) and a varying
envelope (black solid line). After the interaction with the pump
pulse, the CW part (dashed grey line) and the envelope of the signal
(solid grey line) are locally amplified.

angle function Π∆z(z) defined as follows:

Π∆z(z) = u(z)− u(z −∆z) (5.6)

where u(z) represents the Heaviside function (see page 23).6
The measurand signal PS(z) can be decomposed as:

PS(z) = PCW (z)[1 + s(z)] (5.7)

where PCW (z) denotes the mean continuous wave7 part and
s(z) represents the varying envelope of the signal.

The forward-travelling pump pulse (launched at t = 0)
crosses the signal at a generic position zt and produces local
Brillouin gain, which is detected at the input of the fibre (z =
0) at time t = 2zt/vg, with vg the group velocity in the fibre
(see section 2.2.2).

6Square pulses are used here for mathematical convenience; the ap-
proach can, anyway, be extended to any arbitrary pulse shape.

7The spatial dependence of the CW keeps into account the optical
attenuation of the signal during its propagation within the fibre.
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We assume then that the Brillouin interaction actually oc-
curs between the pulsed pump, Pp(z), and the CW part of the
measurand signal, PCW (z), and that the envelope part, s(z),
only acts like a perturbation to the mean value. On the ba-
sis of the equations (3.53) introduced in Chapter 3, we can
write two equations describing the evolution of the pulse peak
power and of the continuous wave, and we associate the rectan-
gle function Π∆z(z − zt), which keeps account of the localised
nature of the interaction, to the Brillouin gain, gB. Assuming
that the probe power is sufficiently low such that the interac-
tion entirely occurs in conditions of non-depleted pump, and
considering the optical attenuation, the process is completely
modelled by the following equations:

Pp(z) ≈ Pp(0)e−αz (5.8a)
∂PCW

∂z
= − gB

Aeff
Π∆z(z − zt)Pp(z)[1 + s(z)]PCW (z) + αPCW (z)

(5.8b)
By integration over the whole length of the fibre we obtain:

PCW (0, zt) = PCW (L)e−αL·

· e

0
@−

∫ 0

L

gB

Aeff
Pp(z)[1 + s(z)]Π∆z(z − zt)dz

1
A

= PCW (L)e−αLe

0
@ gB

Aeff

∫ zt+∆z

zt

Pp(z)[1 + s(z)]dz

1
A

= PCW (L)e−αLe

 
gB

Aeff
Pp(0)e−αzt [1 + s(zt)]∆z

!

(5.9)

where PCW (0, zt) denotes the power detected at z = 0 as a
function of the pulse location, and where we used the fact
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that:
∫ zt+∆z

zt

Pp(z)[1 + s(z)] dz ≈ Pp(zt)[1 + s(zt)]∆z (5.10)

for ∆z sufficiently small to neglect the spatial variations of s(z)
and Pp(z) over the pulse duration.

As long as the Brillouin gain is not too large, at a first-
order of approximation, the equation (5.9) can be simplified as
follows:

PCW (0, zt) ≈ PCW (L)e−αL(1+GBe−αzt)

+ GBPCW (L)s(zt)e−α(L+zt)

︸ ︷︷ ︸
∆PCW

(5.11)

where GB = gBPp(0)∆z/Aeff represents the net Brillouin gain
over ∆z. If we neglect the attenuation terms, this expression
reveals that the detected variations (∆PCW ) of the CW power
are essentially proportional to the localised value of the enve-
lope signal:

∆PCW (0, zt) ∝ s(zt) (5.12)

in agreement with the model presented in [41].
We have thus demonstrated that the intensity variations of

a CW signal - not issued from a gain (loss) process - can be
fully retrieved through BOTDA.

5.2.1.2 Case B

Signals subjected to an amplification process exhibit a spatial
profile as a consequence of the gain (respectively loss) cumu-
lated during their propagation inside the fibre, which can be
investigated only through the use of a test (or seed) signal. In
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the context of BOTDA, this means that, a priori, either the
pulsed pump or the CW probe could be employed to seed the
measurand process; in practice, though, the probe fails in this
task and only the pump can be efficiently used to retrieve the
spatial evolution of the process.

We first consider the case involving the CW probe as a test
signal (see figure 5.8(a)). If ψ(z) denotes the cumulative gain
(loss) as a function of position - this case includes also the
optical attenuation - the equation governing the evolution of
the probe wave reads:

∂PS

∂z
= − gB

Aeff
Π∆z(z − zt)Pp(z)PS(z)∓ ψ(z)PS(z) (5.13)

with Pp(z) ≈ Pp(0), in non-depleted pump regime. Integrating
over the whole length of the fibre we obtain:

PS(0, zt) = PS(L)e
∓

∫ 0

L
ψ(z) dz

e
−
∫ 0

L

gB

Aeff
Pp(z)Π∆z(z − zt) dz

= PS(L)e
∓

∫ 0

L
ψ(z) dz

e

gB

Aeff
Pp(0)∆z

(5.14)

where the dependence on the local position zt has disappeared
in the right-hand side. This means that the measurand process
acts on the probe in a completely independent way from the
localised Brillouin interaction, and that a CW probe is not able
to sense the spatial profile of such a process.

We consider now the case involving the pulsed pump as a
test signal (see figure 5.8(b)). Assuming that the probe power
is sufficiently low such that the interaction entirely occurs in
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Figure 5.8: Brillouin analysis of signals. Case B. (a) The CW probe
is used to seed the measurand process and experiences overall am-
plification: no local information can be retrieved. (b) The pulsed
pump seeds the measurand process and experiences local amplifica-
tion: spatial profile is fully retrievable.
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conditions of non-depleted pump, and still neglecting the op-
tical attenuation, the analysis process is completely described
by the following equations:

∂Pp

∂z
= ψ(z)Pp(z) (5.15a)

∂PS

∂z
= − gB

Aeff
Π∆z(z − zt)Pp(z)PS(z) (5.15b)

By integrating (5.15a) over a generic distance z, and (5.15b)
over the whole length of the fibre, we get:

Pp(z) = Pp(0)e

 ∫ z

0
ψ(ζ) dζ

!

(5.16a)

PS(0, zt) = PS(L)e

 
gB

Aeff
Pp(zt)∆z

!

(5.16b)

and inserting (5.16a) into (5.16b) we finally obtain:

PS(0, zt) = PS(L) e


GBe

 ∫ zt

0
ψ(ζ) dζ

!


(5.17)

which, for small Brillouin gains (GB ¿ 1), reduces to:

PS(0, zt) ≈ PS(L) + GBPS(L)e

∫ zt

0
ψ(ζ) dζ

(5.18)

This expression reveals that the detected variations of the CW
probe power in logarithmic scale are essentially proportional
to the definite integral of the cumulative gain (loss) measured
at each position zt within the fibre:

ln∆PS(0, zt) ≈ ln[GBPS(L)] +
∫ zt

0
ψ(ζ) dζ (5.19)
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By simple derivative with respect to the localised position, it
is possible to retrieve the exact distribution of the cumulative
gain over the whole fibre length:

d ln∆PS(0, zt)
dzt

≈ ψ(zt) (5.20)

We have thus demonstrated that the spatial profile of signals
resulting from an amplification (attenuation process) is fully
retrievable through BOTDA.

In literature, the only existing example utilising this kind
of optical analysis process is the original paper of Horiguchi
and Tateda [39]. They demonstrated that BOTDA is an effi-
cient tool for the measurement of the optical fibre attenuation
coefficient and they successfully (maybe unconsciously) used
the pump pulse to seed the attenuation process. According to
our development, the optical attenuation can be retrieved by
simply setting: ψ(z) = −α. No other applications involving
distributed measurement of amplification processes have been
reported since then. Only recently, the first spatial analysis of
the parametric gain in a fibre-optics parametric amplifier has
been demonstrated, and we report on this original application
in the following section.

5.2.2 Distributed analysis of parametric gain in
fibre-optics parametric amplifiers

Numerous recent studies have shown the extremely high po-
tential of fibre-optics parametric amplifiers (FOPAs) for the
realisation of future ultra-high bandwidth optical communica-
tion devices [45]. FOPAs are based on an efficient four-wave
mixing (FWM) process between one or two pump waves and
co-propagating signal and idler waves. Since the efficiency
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of the FWM process relies on the phase-matching condition
between these four interacting waves, it is essential to tune
the pump wavelength near the zero-dispersion wavelength, λ0,
of the amplifying fibre, in order to maximize the overall gain
bandwidth. In such conditions, usual FWM and modulation
instability theories predict an exponential-like amplification for
FOPA gain when the phase-matching condition is satisfied (see
section 2.4.2).

In practice, though, the random fluctuations of λ0 - which
originate from the random variations of the optogeometric prop-
erties of the fibre during its fabrication - locally modify the
phase matching conditions between pump(s), signal and idler
and dramatically affect the properties of the parametric gain
spectrum. The performances of FOPAs become, then, strongly
phase-sensitive once the idler wave is generated, leading to a
reduction of both the achievable parametric gain and band-
width [46–48]. A distributed measurement of the FOPA gain
along the optical fibre could, thus, reveal possible imperfec-
tions in the behaviour of the amplifier and, at the same time,
provide useful informations on the longitudunal distribution of
the zero-dispersion wavelength (ZDW) [43].

A technique based on gain optical time domain reflectom-
etry (GOTDR) was recently proposed to characterise the gain
of a FOPA as a function of the position along the fibre [49]: a
pulse is launched through the amplifier in the opposite direc-
tion and the amplification on the weak Rayleigh backscattered
light from the pulse is recorded. Nevertheless, this technique
only brings informations on the accumulated gain from ran-
domly distributed Rayleigh sources within the FOPA. By con-
trast, we propose and demonstrate an alternative and efficient
approach to probe the localised small-signal parametric gain,
using Brillouin optical time domain analysis [50].
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5.2.2.1 Experimental set-up

The experimental set-up is shown in figure 5.9. The upper part
is responsible for the generation of the continuous wave FOPA
pump, whereas the lower part reproduces the BOTDA set-up
presented in section 4.4.

The light emitted by a tunable laser (TL) is phase modu-
lated by a pseudo-random binary sequence (PRBS) generator
at the frequency of 3.5 GHz, in order to broaden the Bril-
louin gain bandwidth of the fibre and increase the threshold
for noise generated by the stimulated Brillouin scattering (see
section 3.2.4). The output of the modulator is then boosted
by a 33 dBm-EDFA and filtered by an optical bandpass filter
with a 3 dB bandwidth of 1 nm.

The FOPA pump and the BOTDA pump are then com-
bined together using a 99:1 coupler, such that the pulsed Bril-
louin pump seeds the FOPA amplification process and the the-
oretical analysis described in section 5.2.1.2 can be applied.
Additional optical bandpass filters have been used at the out-
put of the EDFAs, to reduce the additive noise due to the am-
plified spontaneous emission, and in front of the detector, to
filter the Rayleigh backscattered light from the Brillouin pump
pulse. Finally, a polarization scrambler (PS) is used to reduce
the polarisation-dependence of the Brillouin interaction.

Inside the fibre, the BOTDA pump pulse copropagates with
the FOPA CW pump and experiences a parametric gain (cf.
page 52) given by:

Gs(z) =
Pp(z)
Pp(0)

= 1 +
[
γP0

g
sinh(gz)

]2

(5.21)

where Pp(z) is the pump peak power as a function of location,
g is the parametric gain coefficient and γ the nonlinear coeffi-
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Figure 5.9: Experimental set-up for the measurement of parametric
gain in fibres. TL: tunable laser; PC1, PC2: polarisation controllers;
PM: phase modulator; PRBS: pseudo random binary sequence gener-
ator; BPF1, BPF2, BPF3: optical band pass filters; PS: polarisation
scrambler.

cient. As discussed in section 2.4.2, for small gains (such that
g ≈ 0), the amplifier operates in the parabolic regime:

Gs(z) ≈ 1 + (γP0z)2 (5.22)

whereas for perfect phase matching (κ ≈ 0) the amplifier op-
erates in the exponential regime:

Gs(z) ≈ 1
4
e2γP0z (5.23)

The spatial profile of the parametric gain is then retrieved at
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HNLF DSF
Length (km) 0.49 3.1

λ0 (nm) 1553 1549.5
γ (W−1km−1) 11.2 2

Table 5.4: Generation of parametric gain in optical fibres: charac-
teristics of the measured fibres.

each position along the fibre through the CW probe by means
of the equation (5.18) by simply setting:

ψ(z) =
d ln Gs(z)

dz
(5.24)

By tuning the CW probe at a frequency vS = vp + vB,
we operate the distributed measurement using Brillouin loss
instead of Brillouin gain, and ensure that no BOTDA pump
depletion takes place during the interaction.

5.2.2.2 Results

Two different fibres were tested: a 490 m-long highly non linear
fibre (HNLF) and a 3.1 km-long dispersion shifted fiber (DSF).
The principal characteristics are summarised in table 5.4. Dur-
ing the whole measurement campaign, the probe wavelength
was fixed to 1550.8 nm, and the BOTDA pump pulse width
was set to 100 ns, corresponding to a spatial resolution of ap-
proximately 10 m. The measured FOPA pump power was 400
mW.

Figure 5.10(a) shows a typical evolution of the Brillouin
loss spectra along the DSF fibre when the BOTDA pump is
parametrically amplified. To be free of systematic errors which
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could be introduced by possible variations of the Brillouin shift
(due for example to inhomogeneities or local strains of the fi-
bre), the experimental curves have been fitted for each posi-
tion and only the maximum gain of each lorentzian curve has
been retained. The net Brillouin losses for the cases where the
FOPA pump is switched on and off are then depicted on Fig.
5.10(b), which clearly shows the parametric amplification of
the BOTDA pump.

Figure 5.11 shows the derived FOPA local gain in linear
units. In particular, figure 5.11(a) clearly shows both expo-
nential gain (κ = 0) regime and small-gain parabolic (g = 0)
regime, obtained by simply tuning the FOPA pump wave-
length. We can see a fairly good agreement between the ex-
perimental results and the unsaturated gain (plotted in dashed
lines) theoretically predicted by the equations (5.22) and (5.23),
without saturation. Figure 5.11(b) reports instead the dis-
tributed FOPA gain in the HNLF for both forward and back-
ward directions, with the FOPA pump wavelength close to λ0:
the profiles in the two directions show a similar gain but differ-
ent longitudinal fluctuations. We can infer that the long scale
(tens of meters) gain variations are due to the small κ or λ0

fluctuations [48], and that they represent the signature of the
phase-sensitive nature of FOPA.

Using the Brillouin optical time domain analysis in a novel
configuration, we have been able for the first time - to our
knowledge - to perform a distributed measurement of the para-
metric gain in a single-pump FOPA. The set-up could be easily
extended to the study of other configurations, like two-pumps
FOPAs, while the localised measurement of the parametric
gain along a fibre opens up new means for the accurate map-
ping of ZDW fluctuations.
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Figure 5.10: (a) Three dimensional plot showing the typical evolution
of the Brillouin loss spectra along the DSF fibre when the BOTDA
pump is parametrically amplified. (b) Profiles of the net Brillouin
losses for the cases where the FOPA pump is switched on (black)
and off (grey).
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Chapter 6

Conclusions

The distributed optical-fibre sensor based on the properties of
Brillouin scattering is the central object of this thesis. A fully
operative Brillouin optical time domain analysis (BOTDA)
system, in a new and original configuration is presented. The
key of the entire set-up resides in an innovative technique for
the generation of optical signals based on the injection locking
of two semiconductor lasers, instead of the traditional tech-
niques using external modulators. This not only represents an
innovative approach, but also brings significant improvements
in terms of SNR and costs.

When intense pulses propagate along the fibre, however,
the optical signals can be seriously degraded by several nonlin-
ear interactions occurring within the fibre. Taking into account
that the fibres used for sensing usually present anomalous dis-
persion at the pump wavelength, we point out that the non-
linear effect exhibiting the lowest threshold power is the mod-
ulation instability (MI) process. Its effect is twofold: on the
one hand, it is primarily responsible for a significant amount of
pump broadening, and on the other hand, the probe wave lying
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within the MI gain spectrum generated by the pump pulse can
experience an amplification along the fibre at the detriment of
the pump power. From the study of the dynamical behaviour
of MI, we could observe the Fermi-Pasta-Ulam (FPU) recur-
rence over few periods in very comfortable conditions, in good
agreement with predictions of both theoretical and numerical
models.

First intended as exploratory tests of feasibility for the ap-
plication of Brillouin sensing to nuclear environments, we in-
vestigated the effects of ionising radiation up to very high to-
tal doses on the characteristics of the Brillouin gain spectrum
in standard Ge-doped telecom single mode fibres. The mea-
surement campaign has shown that distributed sensors based
on stimulated Brillouin scattering are radiation-tolerant up to
total doses of about 100 kGy, equivalent to the required radi-
ation acceptance level for nuclear monitoring instrumentation,
and constitute in this way an efficient monitoring tool for the
nuclear facilities. The observation of a small but clear nonlin-
ear dependence of the Brillouin frequency shift and Brillouin
linewidth on the total dose constitutes the first observation -
to our knowledge - of the negative compaction due to ionising
radiation in silica-based optical fibres.

Distributed fibre sensors based on stimulated Brillouin scat-
tering offer, as well, a unique capability for the analysis of op-
tical signals and nonlinear phenomena in optical fibres. The
local gain amplification inherent to the distributed measure-
ment technique together with the back-scattered nature of the
Brillouin scattering make the BOTDA a versatile set-up and a
useful tool of analysis for nonlinear optics. We presented a new
generalised theoretical approach to the problem of localised
sensing and reported also on the first distributed measurement
- to our knowledge - of the parametric gain in a single-pump
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fibre-optics parametric amplifier (FOPA).

Original contributions
The original contributions of this work can be summarised by
the following points:

1. We pointed out the serious impact of modulation insta-
bility in the performances of distributed sensors in high
pulse powers operations, giving an explanation to the
pump depletion occurring in long-range measurements;

2. We experimentally observed the FPU recurrence in good
agreement with the predictions of both theoretical and
numerical models;

3. We demonstrated the tolerance of distributed Brillouin
sensors to the ionising radiation up to very high doses,
and we extended the potential applications to the moni-
toring of harsh environments in the nuclear industry;

4. We consider the observation of the negative compaction
in silica-based fibres as a major result from a fundamen-
tal physics point of view, since it validates the Brillouin
analysis as a useful tool for investigating the nature of
the products resulting from irradiation, and contributes
to a better understanding of the fascinating nature of
amorphous silica;

5. We discussed an original new approach to the problem of
distributed sensing, validating the Brillouin analysis as a
useful tool in nonlinear optics for investigating the spatial
evolutions of optical signals and nonlinear processes;
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6. We demonstrated the first distributed measurement of
the parametric gain in a fibre parametric amplifier, open-
ing up new means for the accurate mapping of ZDW
fluctuations along the fibre.



Appendix A

On the nature of
vitreous silica

This appendix aims to give short review of the radiation-induced
damages in amorphous silica and owes mainly to the mono-
graphs of [1] and [2].

A.1 Physical properties of amorphous sil-
ica and point defects

Thermodynamic studies have shown that silica has a glass
transition and a stable state at room temperature. The most
generally adopted structural model of a-SiO2 is the continuous
random network (CRN) [3], which is based on the assumption
that directional bonding of mixed covalent and ionic character
applies both in crystalline and a-SiO2. In this model, short-
range order dominates, with each Si atom at the centre of
a regular tetrahedron and four oxygen atoms at the vertexes
forming O-Si-O angles of 109.5◦ (see figure A.1). Each oxygen
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Figure A.1: Fragment of amorphous silica representing the atomic
disposition and the linking between tethraedra (α = 109.5◦). From
[2]

atom binds two silicon atoms and bridges two tetrahedra. This
order is similar to that of most of the crystalline polymorph of
SiO2, but in the amorphous state the Si−O−Si angle presents
some variability, resulting in a random orientation distribu-
tion of SiO4 tetrahedra. The amorphous matrix features, in
this way, a crystalline-like short-range order, due to the close
similarity between the structural units SiO4 in both matrices.
As a consequence, the electron structure and density of states
are very similar, which yields, also in the amorphous state,
a wide energy-gap between the valence and the conduction
bands (nearly 8 eV for an ideal a-SiO2 matrix). This explains
why the a-SiO2 reproduces several macroscopic properties, like
transparency in the visible and electrical insulation, typical of
α-quartz crystalline SiO2. These properties are on the basis of
many technological applications of a-SiO2, such as optical fi-
bres and most of the silicon-based metal–oxide–semiconductor
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devices.
It is worth to note that the CRN model for the amorphous

state is still debated. Other models have been constructed
from old crystallite theory that depicted the amorphous as an
aggregate of extremely small crystals [4]. Besides, other models
derive from computational techniques (molecular dynamics, for
example) [5] or from topological construction [6]. Nevertheless,
it has been quite well established that the CRNmodel, in which
the SiO4 tetrahedral units are randomly linked together at the
corners, well describes the structure of a-SiO2.

In the framework of the CRN model, point defects are de-
fined in a straightforward way by extending the models pro-
posed for a crystal. The embedding of defects in the amor-
phous state has the consequence that, even if they have a well-
defined structural identity, they explore various different envi-
ronments. In general, a point defect can be visualised as a local
distortion of the atomic structure caused by a bond rupture,
an over or undercoordinated atom, the presence of an impu-
rity atom (homo or heterovalent substitution, interstitialcies),
etc. [7]. These defects are usually indicated as intrinsic when
they are due to irregular arrangements of the crystal atoms
(Si and O for SiO2), and extrinsic when they are related to
impurities (atoms differing from Si or O).

A further general classification of the point defects can be
made on the basis of their electronic configuration: those hav-
ing unpaired electrons constitute paramagnetic defects, and
the others the diamagnetic defects. Both typologies could in
principle be characterised by optical activities as absorption
and emission bands. Instead, only the paramagnetic defects
have a further feature since they are responsible for a non-zero
magnetic moment, having unpaired electrons, and are respon-
sible for the magnetic resonance absorption (Electron Param-
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agnetic Resonance, EPR).1
Examples of point defects are: the vacancy (an atom is

removed from its ‘reticular’ position), the interstitial (an atom
is in a non-reticular position) and the valence defect (a break in
the Si-O bonds) [1]. In particular, among the intrinsic defects
in silica we found:

- the neutral oxygen vacancy: O ≡ Si− Si ≡ O

- the peroxy bridge: O ≡ Si−O−O− Si ≡ O

- the non-bridging oxygen: O ≡ Si−O• (NBOHC)

- the tricoordinated silicon: O ≡ Si• (E’ centre)

- the twofold coordinated silicon: O = Si••.

Some of these defects are shown in figure A.2. It is worth to
note that these defects may present several charge states due
to electron or hole trapping.

Many extrinsic defects in amorphous silica are associated
to metallic, halogen and substitutional elements trapped in the
starting materials or involved in the manufacturing procedure.
The Germanium (Ge) is particularly important since it is ho-
movalent to Si and it can give rise to defects with analogous
structures to the intrinsic defects reported in figure A.2 but
with Ge substituting Si. Another impurity that plays a promi-
nent role in amorphous silica is the hydrogen. This is mainly
captured during the manufacturing in the form of OH radicals

1EPR, also referred to as Electron Spin Resonance (ESR), is a spec-
troscopic method which detects the presence of unpaired electrons in a
sample under test. It can provide meaningful structural and dynamic
information, even from ongoing chemical or physical processes without
influencing the process itself.
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Figure A.2: Fragments of amorphous silica representing various point
defects. By arrows are indicated the electron spins, inserted in pic-
torial orbits.

(from <1 ppm, to ∼1000 ppm) or bonded to Si. Its importance
is due to the supposed participation in various generation pro-
cesses of defects, both intrinsic and extrinsic, and to the high
mobility, also at low temperatures [8].

Electronic states (ground and excited) of a point defect
may have energy separation lower than the energy-gap (∼ 8
eV) of the silica matrix. The broken bond defects like O ≡ Si•

or O = Si••, for instance, are related to the (anti-bonding)
localised states that should actually be found between the va-
lence and the conduction band [8]. As a consequence, the
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transitions among electronic states of the defect, induced by
the electromagnetic field, give rise to absorption and emission
bands with energy spanning from below ∼ 2 eV, in the visible
range, up to ∼ 8 eV, in the vacuum UV (VUV) region, thus ex-
plaining the loss of transparency of the material. In addition,
the defects may trap charges, electrons or holes, hence influ-
encing the insulation properties of silica. Finally, in the case
of paramagnetic defects, a redistribution of the electronic lev-
els, related to the presence of a magnetic field, is introduced
with very low separation energy (∼10 meV), which induces
variations in the magnetic properties of the material.

A.2 Formation processes of point defects
The origin of point defects has to be found in the manufac-
turing and the history of the material. The same traditional
production of a-SiO2, in fact, implies its rapid cooling (quench-
ing) from a high temperature melt (∼2000 K) with the ensu-
ing formation of intrinsic defects [1]. Also, depending on the
starting material used in the melt and on the atmosphere of
the manufacturing process, some impurities may be trapped.
On the basis of the traditional commercial manufacturing pro-
cedures four main typologies of high purity silica glasses have
been distinguished. In general, they contain different low con-
centrations of metallic, OH and other impurities:

• Type I (natural dry): fusion of quartz powder by elec-
tric arc in a crucible in vacuum or inert gas atmosphere
at low pressure. [OH] < 30 ppm; other impurities, usu-
ally less than 10 ppm.

• Type II (natural wet): flame fusion of quartz powder
in water vapour atmosphere. [OH] = 150 ÷ 400 ppm;
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other impurities are less than the starting material be-
cause some of them are volatilised in the flame.

• Type III (Synthetic wet): hydrolysis of pure silicon
compounds, usually SiCl4, injected in gas-phase into a
hydrogen/oxygen flame. Actually, the process is an oxi-
dation, since the compound is transformed in the flame
into fused drops of SiO2. [OH] ≥100 ppm; other impuri-
ties content negligible since the starting material contains
much less impurities than the natural quartz.

• Type IV (Synthetic dry): Reaction of O2 with SiCl4
in water-free-plasma. [OH] < 1 ppm; other relevant im-
purity: [Cl] ∼ 100 ppm

It is worth to note that comparison of the point defects in these
four silica types may be useful to evidence if a defect is related
with a particular impurity, for example containing it, or if the
defect induction is favored by the impurity, as evidenced for
the hydrogen [8].

Of course, post-manufacture treatments of the material can
also produce defects [9]. In particular, it is known that defects
may be induced or transformed after the exposure to special
atmosphere, heating, drawing, as in the production of optical
fibers [10], exposure to particle or ionising radiation, etc. [1].
The examination of the external treatments effects has been
and is still of basic importance in the physics of defects in
solids since it gives useful information on their atomic struc-
tures and generation mechanisms. A given external treatment
may cause the appearance, the increment or the reduction of a
specific macroscopic property (e.g., an optical absorption band,
an EPR signal, etc. . . ). The variations (growth, reduction or
bleaching, thermal annealing) of these physical properties may
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be measured as a function of the time duration or intensity of
the external treatment and often they can evidence correlation
(or anti-correlation) among kinetics of the different properties.

A lot of progresses in the knowledge of defects is related
to the individuation of these correlations, which may be used
to clarify the different phenomenologies of the properties re-
lated to defects. Besides, the correlations may put in evidence
conversion mechanisms from a type of defect to another, giv-
ing precious information to identify their atomic structures.
By this way it can be evidenced if the defects arise from the
unperturbed matrix or from a pre-existing defect, named pre-
cursor.

A particularly useful technique in the investigation of the
mechanisms of defect generation is the irradiation of silica with
beam of particles (electrons, neutrons, ions, etc.) or ionising
radiation (UV, X, g, etc.) [11]. Three main mechanisms are
distinguished [1]:

• the knock-on processes, in which atomic displacements
are caused by the direct transfer of the projectile kinetic
energy;

• the radiolysis processes, in which atomic motion or bond
ruptures are caused through ionisation or electron exci-
tation;

• the electronic rearrangement processes, in which the elec-
trons or holes resulting from the excitation can either be
trapped into diamagnetic defects or can cause bonds to
break.

The radiation induced defects include all the typologies en-
countered in vitreous silica, vacancy, interstitial and valence
defects. By this method, the characterisation of a wide variety



A.3 Radiation-damage processes 207

of defects is thus possible. The kinetics of variation of the de-
fects can be easily investigated by varying the irradiation time
or intensity. As an example, when the concentration of a radi-
ation induced defect reaches a constant value after a prolonged
irradiation, the existence of a precursor can be reasonably as-
sumed. In fact, the irradiation process converts the precursor
until they are exhausted. Also, since some of the irradiation
processes may occur only at a given energy, the selection of an
appropriate beam can discriminate the reaction mechanisms.

Thermal annealing is another external treatment which is
frequently used for the investigation of point defects. In fact,
many varieties of radiation-induced defects can be destroyed
on increasing the temperature, as for the case of the E’ cen-
tres [8].2 In general, by warming an irradiated material it is
possible to individuate the temperature at which a given de-
fect is destroyed. By this way, useful information related to the
defect structure, as for example the strength of the molecular-
bonds and the depth of the defect potential well, can be ob-
tained.

A.3 Radiation-damage processes
Knock-on processes

In the knock-on processes the projectile particles of the in-
cident beam interact directly with the atoms of the mate-
rial causing displacements (for example, vacancy-interstitial
Frenkel pair) or site distortions. Two kinds of knock-on pro-
cesses are generally considered: the elastic, that conserves the
total kinetic energy, and the inelastic, in which some of the

2The E’ centres identify the situation in which an electron is trapped
in the sp3 hybrid orbital of Si at the site of an oxygen vacancy.
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projectile kinetic energy is lost in electronic transitions (ex-
citation, ionisation,. . . ) or nuclear reactions [1]. In order to
create defects by displacements, it is necessary that the projec-
tile gives sufficient energy to the target atom to break its bonds
and to prevent that the knocked-on atom is recaptured from
its neighboring atoms. The value of this energy for a given
atom in the matrix is called displacement energy Td, and it
has been estimated that, in SiO2, TO

d ≈ 10 eV and TSi
d ≈ 20

eV, for O and Si displacements, respectively, assuming a Si-O
bond energy of ∼5 eV [12]. The environment of the knocked-on
atom influences these energies and in general they are found
to depend both on the topological arrangement and on the
temperature.

Several types of radiation may produce displacements by
knock-on collisions: fast neutrons, thermal neutrons, energetic
ions, energetic electrons and γ-rays (through the generated
electrons). Cascades of knock-on may also occur in the case of
energetic particles when they transfer a large amount of kinetic
energy to the displaced atoms [13].

Radiolytic processes

In radiolytic processes the irradiation primarily changes the
state of an electron, but no stable ionic or atomic defects are
initially formed [1, 11]. The energy absorbed appears in the
form of electrons in a normally empty conduction band and
holes in the normally occupied valence bands, or in the form
of excitons (electron-hole pairs bound to each other) at some
site of the material. These excitations can be considered just
as a first step and are followed by other processes that lead to
stable electronic states. A significant fraction of these electron-
hole pairs recombine radiatively (inducing luminescence) or are
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separately trapped on impurities, on pre-existing defects or
on radiation-induced defects, or are absorbed in non-radiative
processes involving phonons. Finally, if the electron-hole pair
recombines non-radiatively and its energy is focused on an
atom it may be converted into kinetic energy of the latter (as
for example an ion repelled by electrostatic forces), resulting in
bond ruptures or in the creation of vacancy-interstitial pairs.

The radiolysis processes (electronic excitation, ionisations
and bond rupture) have been found to be predominant in elec-
tron and γ-irradiation as they overcome the efficiency of the
knock-on processes by at least an order of magnitude [1].

Among the various irradiation damage sources the γ-rays
are very interesting. They can act through photoelectric effect,
Compton effect and pair production (electron-positron) [14]
and give rise to primary electrons and a cascade of scattered
energetic electrons and photons. The electrons produced by γ-
rays are sufficiently energetic to induce knock-on as well as ra-
diolysis processes. In this respect, the path of a γ-ray through
the matrix can be visualised as a succession of electrons, ions
and excited molecules that may directly produce defects or
may diffuse outside the path to react with other sites of the
material.

Metamictisation

A final interesting aspect regards the limit of very high doses
of irradiation. In particular, after prolonged irradiation, the
physical properties (density, refractive index, elastic constants)
of crystalline and amorphous SiO2 become almost identical
and, in addition, a common amorphised structure is observed
[15]. This state is also almost independent of the irradiation
process (knock-on or radiolysis), and is distinguishable from or-
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dinary non-irradiated vitreous silica since it has density slightly
higher by 3-4%. This heavily damaged state of SiO2 is known
as metamict state [1,16,17] and is considered to arise through
different stages involving point defects. In particular, it has
been proposed that the metamictisation process is a structural
relaxation triggered by a critical defects concentration, since
the latter provides enough freedom to influence the atomic net-
work connectivity [18, 19]. For example, in quartz it has been
supposed that point defects progressively lower the network
connectivity, until the solid can no longer freely accommodate
additional point defects, and a rearrangement of the damaged
network takes place. The transition to the metamict state
should thus be definitely considered as a cooperative effect re-
sulting from the presence of point defects [20].
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Nomenclature

List of symbols

α Attenuation coefficient

αm Laser cavity loss

αint Laser internal loss

β Optical propagation constant, FM modulation
index

βc Linewidth enhancement factor

β2 Second-order dispersion term

β3 Third-order dispersion term

βa Propagation constant of the anti-Stokes wave

βi ith-order dispersion term

βp Propagation constant of the pump wave

βs Propagation constant of the Stokes wave

χ Mean dielectric susceptibility
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χxxxx Unique non-zero component of χ(3)

∆ε Scalar fluctuations of the dielectric constant

∆νB Brillouin linewidth

∆ω Spectral width

δω Angular frequency broadening of spontaneous
Brillouin scattering

∆ρ Density variations

∆p Pressure fluctuations

∆s Entropy fluctuations

ε0 Vacuum permittivity

εNL Non-linear dielectric constant

η(z) Normalised dimensionless pump wave amplitude

ηi Laser internal quantum efficiency

ηb Bulk viscosity coefficient

ηP Polarisation efficiency of the Brillouin process

ηs Shear viscosity coefficient

Γ Acoustic damping coefficient, laser confinement
factor

γ Non-linear coefficient of the fibre, photon loss

ΓB Modified acoustic damping coefficient

γe Electrostrictive constant, laser total carrier loss
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κ Thermal conductivity

κL Normalised linear mismatch

κNL Normalised non-linear mismatch

λ Optical wavelength

λ0 Zero-dispersion wavelength

λp Wavelength of the pump optical wave

λs Wavelength of the signal optical wave

µ0 Vacuum permeability

ν Poisson’s number

νB Brillouin frequency shift; acoustic wave frequency

νp Pump lightwave frequency

νS Stokes lightwave frequency

Ω Angular frequency of the MI perturbation

ω, ω′ Angular frequency

ωth Angular frequency of the slave laser at threshold

Ωc MI critical angular frequency

ωi Angular frequency of the idler optical wave

Ωmax Angular frequency at which the MI gain is max-
imum

ωp Angular frequency of the pump optical wave



220 Nomenclature

ωs Angular frequency of the signal optical wave

Φ(ξ) Phase of the FWM process

φs, φm Slave and master laser phases

φNL Non-linear phase shift

φSBS
p,S Additional phase shifts on the pump and Stokes

waves induced by the Brillouin process

ρ Free charges density, material density, injection-
locking ratio

ρ0 Mean density of the material

τπ Acoustic phonons lifetime

τL Cavity round-trip time

τR Vibrational time delay

τg Group delay per unit length

ξ Longitudinal scaled distance

ζ Injection-locking coupling factor

χ Susceptibility tensor

χ(1) First-order susceptibility tensor

χ(2) Second-order susceptibility tensor

χ(3) Third-order susceptibility tensor

∆χ Tensor representing the temporal fluctuations in
the dielectric susceptibility
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∆ε Tensor representing the temporal fluctuations in
the dielectric tensor

∆εa Anti-symmetric part of ∆εt

∆εs Symmetric part of ∆εt

∆εt Traceless tensor describing the contribution of
the fluctuations to the dielectric tensor

ε Dielectric tensor

∆ω Angular frequency difference between master and
slave laser

χ̃(1) Fourier transform of the linear susceptibility ten-
sor

n̂1 Fibre core refractive index

n̂2 Fibre cladding refractive index

x̂ Unit polarisation vector

Ã(ω) Amplitude function

Ẽz Longitudinal component of the electric field

H̃z Longitudinal component of the magnetic field

a Fibre core radius

a(z, τ) Amplitude of the MI perturbation

A(z, t) Longitudinal slowly-varying amplitude

As, Am Slave and master laser slowly varying field am-
plitudes



222 Nomenclature

aa(z) Normalised dimensionless anti-Stokes wave am-
plitude

Aeff Effective core area

as(z) Normalised dimensionless Stokes wave amplitude

c Vacuum light speed

cp Specific heat at constant pressure

Cs Adiabatic compressibility

D Chromatic dispersion

E Young modulus

Es, Em Slave and master laser complex electric field

Ea Electric field of the anti-Stokes wave

Ep Electric field of the pump wave

Es Electric field of the Stokes wave

Ep,S Pump and Stokes wave amplitudes involved in
the Brillouin process

F (ρ) Modal function

fR Fractional contribution of the delayed Raman
response to the non-linear response of the fibre

G Integrated modulation-instability gain

g Parametric gain coefficient

g(Ω) MI spectral gain
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G(t) Modal gain per unit time

gB Line-centre Brillouin gain factor

gB(ν) Brillouin gain spectrum

gmax Maximum MI gain

Gs Unsaturated single-pass parametric gain

H(η, Φ) Hamiltonian of the TWM process

hR Raman response function

I Optical intensity

Ip,S Pump and Stokes intensities involved in the Bril-
louin process

K Bulk modulus

K Wave number of the MI perturbation

k0 Optical wavevector

LD Dispersion length

Leff Effective interaction length

LNL Non-linear length

M AM power modulation index

m Integer identifying the fibre mode

N Order of the soliton, laser free charge carrier
number

n Refractive index



224 Nomenclature

n0 Linear refractive index

n2 Non-linear refractive index

p Pressure

P fr
out Free-running laser output power per facet

Pm Master laser injected photon number

Ps Slave laser intracavity photon number

p12 Longitudinal elasto-optic coefficient

Psat Laser saturated photon number

Ps Power of the signal optical wave

q Optical wave vector modulus

Rsp Laser spontaneous emission rate

S Boundary surface of V

s Entropy

T Temperature

t Time

T0 Initial width of a pulse propagating in the fibre

u(θ, ζ) Soliton optical wave

V Volume

vg Group velocity

VP Volume of the laser optical mode
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va Velocity of sound

W Electrical energy dissipated within a dielectric
medium; total work

L Optical fibre length

B Magnetic induction vector

D Electric displacement vector

E Electric field vector

ep,S Unit polarisation vectors

Ep Pump optical wave

ES Stokes optical wave

f Electrostrictive force density per unit volume

H Magnetic field vector

I Identity tensor

J Current density vector

k,k′ Optical wave vector

M Magnetisation vector

P Polarisation vector

PL Linear polarisation vector

PNL Non-linear polarisation vector

PNL
p,S Nonlinear polarisation terms originating from elec-

trostriction



226 Nomenclature

q Optical wave vector

r Displacement vector

v Matter displacement velocity vector

Ẽ Fourier transform of the electric vector

P̃L Fourier transform of the linear polarisation
• Symbol denoting a hole centre in a chemical el-

ement

List of acronyms

AM Amplitude modulation

BOTDA Brillouin optical time domain analysis

BOTDR Brillouin optical time domain reflectometry

BPF Band-pass filter

CARS Coherent anti-Stokes Raman

CD Chromatic dispersion

CRN Continuous random network

CW Continuous wave

DFB Distributed-feedback laser

DFG Difference-frequency generation

DSF Dispersion shifted fibre

EAM Electro-absorption modulator
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EDFA Erbium-doped fibre amplifier

EOM Electro-optic modulator

EPR Electron paramagnetic resonance

ESR Electron spin resonance

FM Frequency modulation

FMCW Frequency-modulated continuous wave

FOPA Fibre optics parametric amplifiers

FP Fabry-Pérot

FPU Fermi-Pasta-Ulam

FWM Four-wave mixing

FWMH Full width at maximum half

GOTDR Gain optical time domain reflectometry

GVD Group velocity dispersion

HNLF Highly non-linear fibre

IST Inverse scattering transform

MFD Mode field distribution

MI Modulation instability

NBOHC Non-bridging oxygen hole centre

NLSE Non-linear Schrödinger equation

OCDR Optical coherence domain reflectometry



228 Nomenclature

OR Optical rectification

OSA Optical spectrum analyser

OTDR Optical time domain reflectometry

PC Polarisation controller

PE Pockels effect

PG Parametric gain

PID Proportional-integral-derivative

POTDR Polarisation optical time domain analysis

PRBS Pseudo random binary sequence

RF Radio frequency

SBS Stimulated Brillouin scattering

SFG Sum-frequency generation

SHG Second-harmonic generation

SMF Single-mode fibre

SOA Semiconductor optical amplifier

SPM Self-phase modulation

SRS Stimulated Raman scattering

SVEA Slowly-varying envelope approximation

TE Transversal electric

THG Third-harmonic generation
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TLS Two-level system

TM Transversal magnetic

TWM Three-wave mixing

XPM Cross-phase modulation

ZDW Zero-dispersion wavelength
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