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Preface 
 

 

“A world where people understand, value, and conserve the 

diversity of life on Earth” 

 

Vision for the future of the international Society for Conservation Biology 

(www.conbio.org/) 

 

 

 

 

 

 This research is a contribution of the WSL Research Focus “Land Resources 

Management in Peri-Urban Environments” (www.wsl.ch/programme/periurban). 

Amphibian data used in this work were for the most part furnished by the Swiss 

Amphibian and Reptile Conservation Program (www.karch.ch). We also benefited 

from habitat data collected in summer 2004 during a Master’s thesis, which I had the 

chance to supervise in the laboratory of Ecosystem Management at the EFPL. A 

second Master’s thesis in the context of landscape dynamics, and the collaboration 

(2003-2005) with the Forest and Landscape Service (Canton Valais, Switzerland) 

also enlarged the data-set and provided enriching discussions. Data on land cover in 

the Rhone plain for the years 1850, 1900, 1950 and 2003 were collected in 

collaboration with the Swiss Federal Institute for Aquatic Science and Technology 

(www.eawag.ch). The issue of spatial autocorrelation in data was approached and 

developed in 2004 during a visit to the Spatial Ecology Laboratory at the University of 

Queensland, Australia (www.uq.edu.au/spatialecology). Metapopulation analyses 

would have been impossible without the close collaboration with the department of 

Ecology and Evolution at the University of Lausanne, Switzerland, 

(http://www.unil.ch/dee). 

 This thesis comprises a general introduction and conclusion, and five research 

manuscripts. Manuscripts in Chapter 3, 4, 6 and 7 are reproduced here in their 

current state as submitted to the relevant journals, whereas the manuscript 

presented in Chapter 5 is in preparation for submission. 
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Abstract 
 

 Global biodiversity is experiencing a worrying decline. Habitats destruction, associated 

to their degradation and fragmentation are among the greatest causes. Amphibians are 

particularly interesting because they are more threatened and decline more rapidly than 

either birds or mammals. In this context, the objective of our research is to improve some 

methodological approaches and offer practical scientific bases for decision making in 

landscape management and amphibian conservation. Our study focuses on fragmented 

Swiss landscapes.  

 We developed a method that uses land-cover data and expert knowledge to enable a 

spatially explicit assessment of 1) the temporal changes in the nature conservation value of 

the landscape and 2) the rehabilitation potential of the landscape. We applied this 

Geographical Information Systems (GIS) based approach in the Swiss Rhone plain and we 

used the years 1900 as the reference state. The method constitutes a helpful tool for 

communication, decision-making and biological conservation management in landscape 

planning. 

 Effective and optimal species management strategies can only be formulated after 

relationships between species distribution and environmental factors have been identified. 

Concerning amphibians, several approaches exist but they generally suffer from two 

limitations: 1) the spatial autocorrelation (i.e. the dependency between two observations) in 

data is rarely explicitly analyzed, even if it may affect the accuracy of species-habitat 

relationships models. We showed how this spatial autocorrelation can be measured and 

included in logistic models with the example of the agile frog (Rana dalmatina) in north-

eastern Switzerland. We used the Moran’s I and the autologistic model (i.e. a logistic model 

including a measure of the spatial arrangement of the response variables). We found that if 

spatial autocorrelation is not considered, then conclusions on species-habitat relationships 

can be incorrect. 2) The effect of landscape on amphibian occurrence in ponds is often 

assumed to be equal in every direction (isotropic). However, barriers and inhospitable 

surfaces may reduce movement patterns and the area around ponds accessible to species. 

This implies that the ideal circular area has in reality a shape depending on the surrounding 

landscape. We developed a method to determine the effect of habitat variables on amphibian 

species distribution, considering physical barriers in their movement around ponds. We 

studied two amphibian species: the common toad (Bufo bufo) and the common frog (Rana 

temporaria) in the Rhone plain. We demonstrated that reducing the boundaries of circular 

area following barriers, allowed to compute landscape predictors which better explained 

species distribution. These results suggested that the proposed approach is more pertinent 

than the traditional circular buffers analysis. Our results stress the necessity to consider 
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barriers and ecological corridors in species distribution models in order to avoid incorrect 

inferences. 

 Species distribution models are usually established for a single region. It is generally 

unknown whether the identified relationships between species distribution and environmental 

variables can be directly transferred to another geographical area. We examined landscape-

level habitat relationships for six amphibian species by measuring correlations with their 

presence in 655 ponds of five different regions. We analyzed several models by using the 

information-theoretic approach and the Akaike Information criterion (AIC). For five out of six 

species, the best models predict that site occupation probability depends on region. Our 

results suggest that caution is needed when predictions of species occurrence and species 

management strategies are done using models built in other geographic regions. We also 

observed that connectivity was generally more explicative than landscape variables. In 

addition, we found that the spatial scale at which habitat affected species occurrence varied 

from pond to several km around ponds. Management strategies for amphibian conservation 

should be conducted taking into account the geographic context, connectivity of ponds and 

habitat characteristics at multiple spatial scales. 

 Finally, we demonstrated that the landscape, separating patches in metapopulation 

models, has to be considered in order to avoid incorrect conclusions on population viability 

analyses. We explored how patch occupancy is sensitive to Euclidean (shortest) versus a 

landscape-based distance (least-cost). We found: 1) from a theoretical standpoint, that inter-

patch landscape affects patch occupancy; 2) from a practical and conservation standpoints, 

which patches should be considered in priority for landscape management. The approach 

was illustrated in the case of two metapopulations of the Yellow-bellied Toad in the Rhone 

plain. 

 We applied successfully the developed practical approaches to the case of several 

amphibian species, but they can doubtlessly be extended to any species functioning on a 

spatially defined patch basis (e.g. pond, nesting place, den …), structured as a 

metapopulation and affected by landscape structure during movement. By improving and 

combining spatially explicit approaches, we are more likely to provide wildlife managers with 

tools for valuable decision making. 

 

Key words 

 

Conservation planning, landscape dynamics, landscape ecology, amphibians, spatial 

autocorrelation, generalization of species distribution models, dispersal barriers, patch 

occupancy metapopulations models, inter-patch ecological distance, least-cost algorithms, 

Geographic Information Systems. 
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Résumé 
 

 La biodiversité à l’échelle mondiale subit un déclin préoccupant. La destruction des 

habitats, leur dégradation et fragmentation en sont les principales causes. Les amphibiens 

méritent une attention particulière puisqu’ils sont plus menacés d’extinction que d’autres 

taxons tels les oiseaux ou les mammifères. Dans ce contexte, l’objectif de notre recherche 

est d’améliorer certaines approches méthodologiques et de fournir des bases scientifiques 

utiles pour la prise de décision dans le domaine de l’aménagement du territoire et de la 

conservation des amphibiens. Notre étude se concentre sur des paysages fragmentés de 

Suisse. 

 Nous avons développé une méthode basée sur l’occupation du sol et sur l’avis 

d’experts, permettant une évaluation spatiale 1) des changements dans le temps de la valeur 

du paysage pour la conservation de la nature et 2) du potentiel de réhabilitation du paysage. 

Nous avons appliqué cette approche au paysage de la Plaine du Rhône et utilisé la situation 

dans les années 1900 comme état de référence. La méthode constitue un outil de 

communication et de prise de décision pertinent dans la planification territoriale. 

 Une gestion efficace des espèces peut être atteinte uniquement si les relations entre la 

distribution des espèces et les facteurs environnementaux ont été identifiées. Plusieurs 

approches existent pour les amphibiens, mais elles possèdent deux limites majeures: 1) 

l’autocorrélation spatiale (i.e. la dépendance entre deux observations) est rarement 

explicitement analysée, même si elle peut affecter l’exactitude des modèles espèce-habitat. 

Nous avons montré comment cette autocorrélation spatiale peut être mesurée et intégrée 

dans un modèle logistique avec l’exemple de la grenouille agile (Rana dalmatina) au nord-

est de la Suisse. Pour cela nous avons utilisé le I de Moran et le modèle autologistique (i.e. 

un modèle logistique intégrant une mesure de l’arrangement spatial de la variable réponse). 

Nos résultats confirment que si l’autocorrélation spatiale n’est pas considérée, alors les 

conclusions sur les relations espèces-habitat peuvent être erronées. 2) L’effet du paysage 

sur la présence des amphibiens dans leur site de ponte est souvent supposé identique dans 

toutes les directions (isotrope). Cependant, des barrières ou des surfaces défavorables 

peuvent réduire l’aire accessible à l’espèce autour du site. Ceci implique que cette aire, 

idéalement circulaire, est en réalité d’une forme dépendante du paysage qui entoure le site. 

Nous avons donc développé une méthode pour déterminer l’effet du paysage sur la 

distribution des amphibiens en considérant les barrières physiques limitant leurs 

déplacements autour des sites. Nous avons étudié deux espèces d’amphibiens: le crapaud 

commun (Bufo bufo) et la grenouille rousse (Rana temporaria) dans la plaine du Rhône. Nos 

résultats confirment l’hypothèse que d’étudier uniquement le paysage potentiellement 

accessible aux espèces, permet de calculer des variables paysagères qui expliquent mieux 
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la distribution des espèces. Ce résultat suggère que la méthode proposée dans cette 

recherche est plus pertinente que la pratique traditionnelle. Nos résultats mettent l’accent sur 

la nécessité de considérer les barrières et les corridors écologiques des espèces dans les 

modèles prédictifs de distribution. 

 Les modèles de distribution des espèces sont en général établis pour une seule région. 

Il est donc peu connu, dans quelle mesure la relation entre une espèce et des variables 

environnementales peut être directement appliquée dans d’autres régions géographiques. 

Nous avons ainsi analysé les relations espèce-habitat pour six espèces d’amphibiens dans 

655 sites de reproduction et dans cinq régions différentes. Nous avons évalué plusieurs 

modèles en utilisant la théorie de l’information et le Critère d’Information de Akaike (AIC). 

Pour cinq des six espèces, les meilleurs modèles prédisent des probabilités d’occupation 

des sites qui sont différentes selon les régions. Ces résultats suggèrent une certaine 

prudence lorsque les prédictions de distribution et la mise en place de mesure de gestion 

d’une espèce sont réalisées dans d’autres régions géographiques que celles utilisées pour 

construire les modèles. Nous avons également observé que la connectivité est généralement 

un meilleur déterminant de l’occurrence d’une espèce que les variables paysagères. De plus, 

nous avons montré que l’échelle spatiale à laquelle l’habitat affecte la distribution des 

espèces varie entre celles du site de reproduction et jusqu’à quelques kilomètres de 

distance. Les stratégies de gestion des amphibiens devraient donc considérer le contexte 

géographique, la connectivité des populations et les caractéristiques de l’habitat à plusieurs 

échelles spatiales.  

 Enfin, nous avons démontré que le paysage qui sépare les patches dans des modèles 

de métapopulation doit être considéré afin d’éviter des erreurs dans les analyses de viabilité 

des populations. Nous avons analysé si la probabilité qu’un patch soit occupé est sensible à 

la distance Euclidienne (la plus courte) qui le sépare des autres, versus une distance basée 

sur les caractéristiques du paysage (distance de moindre coût). Nous avons trouvé que  1) 

d’un point de vue théorique, le paysage entre patches affecte la probabilité d’occupation et 

que 2) d’un point de vue pratique pour la conservation, notre approche permet d’identifier les 

patches prioritaires pour des mesures d’aménagement. L’approche a été illustrée avec 

l’exemple de deux métapopulations du sonneur à ventre jaune (Bombina variegata) dans la 

plaine du Rhône. 

 Nous avons appliqué les méthodes développées à des espèces d’amphibiens. Il est 

cependant évident que nos approches peuvent s’appliquer à d’autres espèces qui utilisent 

des patches spatialement définis tels que des étangs, des nids ou des tanières, qui sont 

structurés en metapopulation et affectés par la structure du paysage durant leurs 

déplacements. L’amélioration et combinaison de différentes approches spatiales fournissent 

des outils essentiels de prises de décision aux gestionnaires de la faune. 
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Riassunto 
 

 La biodiversità a livello mondiale mostra un declino preoccupante. La distruzione degli 

habitat, il loro degrado e riduzione in frammenti sempre più piccoli e isolati ne sono le cause 

principali. Gli anfibi meritano un’attenzione particolare visto che rappresentano un gruppo 

faunistico particolarmente minacciato di estinzione, ancor più di uccelli e mammiferi. In 

questo contesto, l’obiettivo della nostra ricerca è di migliorare alcuni approcci metodologici e 

fornire delle basi scientifiche utili alla presa di decisioni nell’ambito della pianificazione 

territoriale e della conservazione degli anfibi. Il nostro studio si concentra sui paesaggi 

frammentati in Svizzera. 

 La metodologia sviluppata nella prima parte della nostra ricerca si fonda sulle 

informazioni inerenti la copertura del suolo e sul parere di specialisti, e permette una 

valutazione spaziale 1) dei cambiamenti temporali del valore del paesaggio per la 

conservazione della natura; e 2) del potenziale di rinaturazione del paesaggio. Questo 

approccio è stato applicato ai paesaggi della pianura del Rodano, in Vallese, utilizzando la 

situazione nel 1900 come stato di referenza. La metodologia adottata costituisce un mezzo 

di comunicazione valido, e fornisce utili elementi nell’ambito dei processi decisionali di 

pianificazione territoriale. 

 Una gestione efficace delle specie può essere raggiunta unicamente se le relazioni tra la 

loro distribuzione sul territorio e i fattori ambientali che la determinano sono stati identificati. 

Esistono diversi approcci per gli anfibi, ma tutti presentano due importanti limiti: 1) 

l’autocorrelazione spaziale (la dipendenza tra due osservazioni) è raramente testata in modo 

esplicito, sebbene possa influenzare l’esattezza dei modelli specie-habitat. In questo studio, 

abbiamo mostrato come l’autocorrelazione spaziale può essere misurata e integrata in un 

modello logistico, usando, come esempio, la rana agile (Rana dalmatina) al nord-est della 

Svizzera. Per fare ciò, abbiamo utilizzato l’I di Moran e un modello autologistico (un modello 

logistico che integra una misura della disposizione spaziale della variabile risposta). I nostri 

risultati confermano che se l’autocorrelazione spaziale non viene considerata, allora le 

conclusioni sulle relazioni specie-habitat possono essere errate. 2) L’effetto del paesaggio 

sulla presenza degli anfibi nel loro sito di riproduzione è spesso ipotizzato identico in tutte le 

direzioni (isotropo). Tuttavia, ostacoli o superfici inospitali situati nei pressi del sito di 

riproduzione possono ridurre l’area realmente accessibile alla specie. Ciò implica che questa 

area, normalmente considerata come circolare, possiede in realtà una forma che dipende dal 

paesaggio circostante il sito. Durante la nostra ricerca, abbiamo quindi sviluppato un metodo 

per determinare l’effetto del paesaggio sulla distribuzione degli anfibi considerando le 

strutture che ostacolano il loro movimento attorno ai siti di riproduzione. Abbiamo studiato 

due specie nella pianura del Rodano: il rospo comune (Bufo bufo) e la rana temporaria 
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(Rana temporaria). I nostri risultati confermano l’ipotesi che studiare unicamente il paesaggio 

realmente accessibile alle specie, permette di calcolare delle variabili paesaggistiche che 

spiegano meglio la distribuzione delle specie. Questi risultati suggeriscono che la 

metodologia proposta in questa ricerca è più pertinente dell’approccio tradizionale e mettono 

l’accento sulla necessità di considerare le barriere e i corridoi ecologici nei modelli predittivi 

di distribuzione delle specie. 

 I modelli predittivi di distribuzione delle specie sono generalmente elaborati analizzando 

una sola regione geografica. È quindi relativamente poco conosciuto se le relazioni tra 

specie e variabili ambientali possono essere direttamente applicate in altre regioni. Abbiamo 

pertanto studiato le relazioni specie-habitat per sei specie d’anfibi in 655 siti di riproduzione e 

5 diverse regioni in Svizzera. Abbiamo valutato diversi modelli utilizzando la teoria 

dell’informazione e il Criterio d’Informazione di Akaike (AIC). Per cinque delle sei specie, il 

migliore modello prevede delle probabilità di occupazione dei siti che sono differenti secondo 

la regione geografica. Ciò significa che è necessaria una certa prudenza, quando si fanno 

previsioni sulla distribuzione di una specie e si definiscono misure di gestione basandosi su 

modelli realizzati in altre regioni rispetto a quella di studio. Abbiamo pure messo in evidenza 

che, per quanto riguarda la distribuzione delle specie, la connessione tra popolazioni è 

generalmente un fattore più importante rispetto alle variabili paesaggistiche. Inoltre, abbiamo 

dimostrato che la scala spaziale per la quale l’habitat esercita un’influenza sulla distribuzione 

delle specie, è compresa tra il sito di riproduzione fino ad alcuni chilometri di distanza. La 

strategia di gestione degli anfibi dovrebbe quindi considerare il contesto geografico, la 

connessione delle popolazioni e le caratteristiche dell’habitat a differenti scale spaziali. 

 Inoltre, abbiamo dimostrato che il paesaggio che separa due siti di riduzione (patch) nei 

modelli di metapopolazione deve essere considerato per evitare errori nelle analisi di vitalità 

delle popolazioni. Abbiamo verificato se la probabilità di occupazione di un sito fosse 

sensibile alla distanza Euclidea (lineare) che lo separa dagli altri, versus una distanza 

fondata sulle caratteristiche del paesaggio (distanza di minor costo). Abbiamo messo in 

evidenza che: 1) da un punto di vista teorico, il paesaggio presente tra due siti di 

riproduzione ne influenza la probabilità di occupazione e che 2) da un punto di vista pratico 

ai fini della conservazione, il nostro metodo permette di identificare i siti prioritari per delle 

misure di gestione. L’approccio è stato illustrato con l’esempio di due metapopolazioni di 

ululone dal ventre giallo (Bombina variegata) nella pianura del Rodano. 

 Sebbene le metodologie sviluppate nella presente ricerca siano state applicate 

unicamente agli anfibi, i nostri approcci possono essere estesi ad altre specie che utilizzano 

dei siti spazialmente definiti (come stagni, nidi o tane), che sono strutturate in 

metapopolazioni e i cui spostamenti sono influenzati dalla struttura del paesaggio. Il 

miglioramento e l’impiego combinato di diversi approcci spaziali fornisce ai gestori della 

fauna, e del territorio in genere, strumenti essenziali per la presa di decisioni. 



 





 

Chapter 1 

Introduction 

Biodiversity decline 

 Global biodiversity is experiencing a worrying decline. The 2004 update of the 

IUCN Red List (Baillie et al. 2004) assessed the threat of extinction for 38047 species 

including vertebrates, invertebrates, plants, and fungi. The results were clear: 15589 

species (41.0%) are threatened with extinction (listed as Critically Endangered, 

Endangered or Vulnerable), 844 (2.2%) are Extinct or Extinct in the Wild, 3700 

(9.7%) are listed as Near Threatened, 3580 (9.4%) are Data Deficient, and 14334 

(37.7%) are in the Least Concern category1. Only a very small proportion (2.5%) of 

the world's described species has been evaluated, which in addition indicates that 

the current list underestimates the real number of threatened species. In Switzerland, 

14 (70%) out of the 20 native amphibian species are listed as threatened on the Red 

List (Schmidt and Zumbach 2005). 

 Worldwide, the 15589 species threatened with extinction included 12% of 

all bird species, 23% of all mammal species and 32% of all amphibian species 

(i.e. one in every eight birds, one in every four mammals, and one in every three 

amphibians) (Baillie et al. 2004). Moreover, the world’s list of extinctions continues to 

increase. The 2004 IUCN Red List contains 844 documented extinctions since 1500 

AD. Over the past 20 years (1984-2004), 27 documented extinctions or extinctions in 

the wild have occurred. But these numbers certainly underestimate the true number 

of extinctions due to very incomplete and uneven sampling, both geographically and 

                                            
1 A taxon is 1) Extinct when there is no reasonable doubt that the last individual has died; 2) Extinct in 
the Wild when it is known only to survive in cultivation, in captivity or as a naturalized population (or 
populations) well outside the past range; 3) Critically Endangered when it facing an extremely high risk 
of extinction in the wild; 4) Endangered when it facing a very high risk of extinction in the wild; 5) 
Vulnerable when it facing a high risk of extinction in the wild. 6) Near Threatened when it is likely to 
qualify for a threatened category in the near future; 7) Data Deficient when there is inadequate 
information to make a direct, or indirect, assessment. The criteria used in these evaluations are 
presented by IUCN (2001). 
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taxonomically, and due to the fact that proving that a species has become extinct can 

take years to decades (Baillie et al. 2004). 

 Habitat destruction and associated degradation and fragmentation are the 

greatest threats to assessed terrestrial species (Baillie et al. 2004). Habitat loss 

appears to be by far the most pervasive threat, impacting 86% of threatened birds, 

86% of threatened mammals and 88% of threatened amphibians. Over-exploitation, 

invasive alien species, pollution and disease are other threats. Incidental mortality, 

human disturbance and persecution have so far had less impact in terms of the total 

numbers of species affected, but they can be serious for some susceptible groups. 

The impact and expected consequences of climate change have only recently been 

analyzed and remain uncertain. A recent work investigating the potential 

consequences of climate change across a range of global habitats suggested the 

extinction of 15-37% of the species in their sample (Thomas et al. 2004). However, it 

appears certain that habitat loss will remain a dominant threat, as there is no sign 

that human transformation of the landscape is slowing (Balmford and Bond 2005). 

Reversing this tendency is a worldwide priority challenge if we want to preserve the 

biodiversity of our planet (Dobson et al. 1997, Knop et al. 2006, Robinson 2006). 

A changing landscape due to human actions 

The context 

 Habitat destruction, degradation and fragmentation is often the result of human 

activities and it appears more and more evident that natural former ecosystems are 

undergoing changes which are mostly negative, ominously large in scale and 

accelerating (Balmford and Bond 2005). This is not a surprising statement if we look 

at the amount of human made landscapes in the world. Urbanization, agriculture 

rationalization and deforestation are among the main drivers of this worrying 

situation (Pimm and Raven 2000, Tilman et al. 1994, Stuart et al. 2004).  

 In this context, the research field of landscape dynamics has gained increasing 

interest. A landscape (i.e. the area that is spatially heterogeneous in at least one 

factor of interest”, Turner et al. (2001, p. 3)) can be described by its composition (the 

number or abundance of factors of interest) and its configuration (the spatial 

arrangement of factors of interest), which determine the structure of the landscape 
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(Forman and Godron 1986). The “factor of interest” can be for example land 

occupation classes. In addition to spatial heterogeneities at time t, a landscape 

has also to be characterized by its temporal dynamics (Forman and Godron 

1986). These temporal dynamics are driven by natural (e.g. volcanic eruption, river 

dynamics) or anthropogenic factors (e.g. deforestation, urbanization) called driving 

forces. Driving forces are the forces that cause observed landscape changes (Burgi 

et al. 2004). Driving forces determine landscape dynamics. 

 In recent years, numerous case studies have focused on several aspects of 

landscape dynamics: methodological (Kienast 1993, Cousins 2001, Petit and 

Lambin. 2002a), description of changes of landscape structure (Olsson et al. 2000, 

Lu et al. 2003, Bender et al. 2005, Soini 2005), consequences of these changes on 

biodiversity (Black et al. 1998, Parody et al. 2001, Turner et al 2003) and on fire 

occurrence (Moreira et al. 2001). Some works investigated the dynamics of specific 

ecosystems like grassland (Partel et al. 1999, Cousins et al. 2002), alluvial 

(Jungwirth et al. 2002, Hohensinner et al. 2004) and forest (Bürgi and Turner 2002, 

Bürgi and Schuler 2003). Other works investigated driving factors of changes 

(Poudevigne et al. 1997, Pan et al. 1999, Petit and Lambin. 2002b, Hietel et al. 2004, 

Bürgi et al. 2004). The large number of studies in various contexts testifies to the 

interest and the large potential applications of such research. In particular, the 

utilization of historical data in restoration or rehabilitation ecology has become 

increasingly interesting in recent years (Egan and Howell 2005, this thesis: 

Chapter 3).  

 In the next section, we present the landscape changes in a Swiss fragmented 

landscape (The Rhone plain) as an introductive example of the ecologically negative 

effects of anthropogenic landscape changes and to familiarize the reader with some 

commonly used methodological approaches in landscape dynamic studies. This 

section is based on Paulmier (2004a,b), Zanini (2005) and Zanini et al. (submitted). 

Habitat loss and degradation: the example of the Rhone plain in Switzerland 

 In Switzerland, as in other industrialized countries, the landscape has 

experienced important changes during last decades, which have negatively affected 

biodiversity (Broggi and Schlegel 1990, 1998). In the plain regions, the most evident 

transformation is the increase of the urban area to the detriment of agricultural fields. 

Recent studies of land cover changes between the periods 1979/85 and 1992/97 

revealed that the urban area has increased by 327 km2 (+13.3%) and in 1992/97 
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covered 6.8% of the surface area of Switzerland (http://www.bfs.admin.ch/). This is 

equivalent to the construction of 0.9 m2 of urban area per second. 

 The Swiss Rhone plain, in Valais, is a clear and emblematic example of this 

landscape transformation and natural habitat destruction due to human 

activity. In this region (240 km2: between Brig and the Lake Geneva, see Figure 1, § 

3), we described the landscape dynamics, in term of land cover changes, between 

1850 and 2003, in order to present an objective picture of the evolution of the 

landscape from a near-natural state to a highly anthropogenic state (Paulmier 

2004a,b, Zanini 2005, Zanini et al. submitted). The land cover data were digitalized 

on the basis of topographic maps (for a comprehensive description of data used in 

this study see § 3 and Zanini et al. submitted).  

 Landscape changes are already evident after a simple visual comparison of 

pictures and topographic maps (Figure 1 and Figure 2).  

 

View of Sion from Valère 

A) 1930-1940 

Raymond Schmid, Médiathèque Valais 

Region of Chippis 

A)1910 

 
Journal des Usines valaisannes 

B) 2006 

 
Flavio Zanini 

B) 2006 

Flavio Zanini 

Figure 1. Pictures showing some of the landscape changes in the Rhone plain 
(Valais, Switzerland) during the 20th century. 
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1850 (Dufour map, 1:100 000) 

EPFL, TOPO 

1900 (Siegfried map, 1:50 000) 

Médiathèque Valais 

1950 (National map of Switzerland 1:50 000) 

Médiathèque Valais 

2003 (National map of Switzerland, 1:50 000) 

© Swisstopo 2003 

Figure 2. Topographic maps illustrating landscape changes between 1850 and 2003 
in the region of Aproz (Rhône plain, Switzerland). The former alluvial area and river 
dynamics have been completely destroyed. Fragmentation increases, for example 
due to the construction of the highway (in orange) and the development of 
urbanization. 

 

 This visual examination is a simple and only qualitative estimation of land cover 

changes. It is possible to present a more accurate and quantitative descriptions of 

the changes by digitalize topographic maps and using GIS-based analyses (Figure 3 

and Table 1). This allows assessing clearly that formerly extensive natural habitats 

(forest, wetland and alluvial areas) have suffered from a fundamental reduction of 

their surface and an important fragmentation during the last 150 years. In the region 

of Martigny, most of these changes took place before the years 1950 (Figure 3). This 

period was characterized by the Rhone river canalization and important draining work 

(Wallis 2000). The first systematic river correction, which was carried out in the late 

19th century, almost completely destroyed the alluvial river-floodplain system, which 

covered 10.9% of the plain in 1850 and only 1.6% in 1900 (Table 1). Wetlands 

covered 8.2% of the plain in 1850 and only 1.3% in 2003, while forested areas were 

 500 m N 



Chapter 1 - Introduction 

 6 

reduced by almost half (Table 1). Furthermore, we observed a significant increase in 

urban area, in particular in the second half of the 20th century (3.6% in 1950 and 

13.8% in 2003). The agricultural zone continuously increased in its area until the 

middle of the 20th century, before losing a part of its surface during the last 50 years. 

As a result, the Rhone plain is today a human-shaped landscape dominated by 

intensively exploited agricultural land (76.6%) and significant urbanization, in which 

the former natural ecosystems have almost completely disappeared (Table 1). 

 

 

 

1850 

 

 
 

1900 

 

 

1950 

 

2003 

 
 

Figure 3. Maps of temporal evolution of natural areas (forest, wetland and floodplain) 
in the region of Martigny (Rhone Plain, Switzerland). Since 1900, the Rhone River 
has been canalized and the floodplain area completely destroyed (blue line). 

 

 

Forest

Wetland area

Floodplain

ForestForest

Wetland area

FloodplainFloodplain
Martigny 

Switzerland 
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Table 1. Changes in landscape composition in the Rhone plain (Switzerland) since 
1850. 

Land cover Composition for years Changes since 
 1850 1900 1950 2003 1850 (%) 
Forest                                              ha 2391 2081 1100 1248 

% 9.9 8.7 4.6 5.2 
- 48 

Wetland                                           ha 1971 1472 354 305 
% 8.2 6.1 1.5 1.3 - 85 

Floodplain, river Rhone                   ha 2614 396 365 133 
% 10.9 1.6 1.5 0.6 - 95 

Rhone, canalized                            ha 0 577 718 578 
% 0.0 2.4 3.0 2.4 - 

Floodplain tributary                         ha 15 32 1 0 
% 0.1 0.1 0.0 0.0 - 100 

Hill                                                   ha 44 40 27 26 
% 0.2 0.2 0.1 0.1 - 41 

Dune                                               ha 15 8 1 0 
% 15 8 1 0 - 100 

Urban area                                      ha 443 327 866 3320 
% 1.8 1.4 3.6 13.8 + 649 

Agricultural zone                             ha 16541 19101 20602 18424 
% 68.8 79.5 85.7 76.6 

+ 11 

 

 

 Important structural changes in the landscape of the Rhone plain were also 

observed (Table 2). During the past 100 years, the number of forest patches has 

increased by approximately 2.6 times (175%) and their average surface has been 

reduced by 78% (Table 2). This means that patches of forest are increasingly 

isolated and small. The number of wetland patches and their average surface have 

both decreased (66% and 40%, respectively). Inversely, the number of urban area 

patches increased by 2.2 times (122%) and their average surface by 4.4 times 

(344%). This confirms an expansion of urbanization; agglomerations have become 

bigger and new urban areas have appeared. From Table 2, we can also see a 

change in the trends of wetland transformation. In the first part of the last century, 

both the number and the mean area of patches decreased. However, between 1950 

and 2003, only the number of patch continued to decrease, while the mean area 

increased. This may be explained by the gravel mining exploitation in the Rhone 

plain, which created large pools in recent decades.  
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Table 2. Changes in the number of patches (NP) and their mean size (ha) in the 
Rhone plain (Switzerland) since 1900. 

1900 1950 2003 Changes since 
1900 (%) 

Land cover 

NP ha  NP ha  NP ha  NP ha 
Forest 127 16.4  266 4.1  348 3.6  +175 -78 
Wetland 88 16.7  38 9.3  30 10.2  -66 -40 
Floodplain, river Rhone 10 39.6  2 182.3  3 44.3  -70 +12 
Rhone, canalized 4 144.2  3 239.4  3 192.5  -25 +34 
Floodplain tributary 5 6.5  3 0.2  0 0.0  -100 -100 
Hill 41 1.0  18 1.5  19 1.3  -54 +30 
Dune 19 0.4  2 0.5  0 0.0  -100 -100 
Urban area 210 1.6  168 5.2  466 7.1  +122 +344 
Agricultural zone 121 157.9  88 233.4  171 107.7  +41 -32 
Total 625 38.5  588 40.9  1040 23.1  +60 - 40 
 

 

 Transition matrices (Cousins 2001, Moreira et al. 2001, Lu et al. 2003) explain 

the nature of the observed changes. In other words, the amount of land cover class i 

that has been converted into land cover class j between two temporal states. In the 

Rhone Plain, the extension and intensification of the agriculture and urbanization 

processes account for most changes since 1900 (Table 3). Most of the wetland area 

(86%) was converted into agricultural fields between 1900 and 1950. Then, between 

1950 and 2003, 12.1% of wetland turned into forest areas, indicating the banking of 

water ponds due to a natural succession of vegetation. The forested area has been 

converted into agricultural fields (65.2%), essentially between 1900 and 1950 (Table 

3). Finally, agricultural areas have lost 15% of their surface in the last 50 years, due 

to urban development. We note that in 1900 the floodplain area had already been 

destroyed and thus this important landscape transformation is not presented in Table 

3. 

 The description of landscape dynamics can objectively quantify the evolution 

over time of human action on the landscape. This allows decision makers, 

landscape planners, conservation biologists and the local population to 

evaluate landscape changes and thus become aware of the potential 

consequences for biodiversity and human life quality (Luyet 2005).  
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Table 3. Matrix of land cover transitions (%) in the Rhone Plain (Switzerland) since 
1900 (in bold proportion >10%). 

Land cover                   

1900 to 1950          

 F w FR CR FT H D U AZ 

Forest (F) 26.5 1.8 0.6 4.4 0 0 0 0.2 65.2 

Wetland (w) 2.0 9.7 0 0 0 0 0 0.4 86.8 

Floodplain, river Rhone (FR) 13.4 0.5 64.5 0.4 0 0 0 0.6 20.5 

Rhone, canalized (CR) 1.4 0.2 0 53.2 0 0 0 0.1 45.0 

Floodplain tributary (FT) 23.2 0 0 7.6 2.1 0 0 0 67.1 

Hill (H) 2.3 0.4 4.2 0.2 0 29.8 0 1.0 62.1 

Dune (D) 0 20.4 0 3.2 0 0 1.7 0 74.7 

Urban area (U) 0 0 0 0 0 0 0 73.3 26.7 

Agricultural zone (AZ) 2.4 0.9 0.5 1.6 0 0.1 0 3.2 91.2 

          

1950 to 2003          

 F w FR CR FT H D U AZ 

Forest (F) 59.0 5.0 0.3 0.5 0 0.1 0 1.8 35.9 

Wetland (w) 12.1 48.7 0 0.2 0 0 0 0.7 42.8 

Floodplain, river Rhone (FR) 31.9 0 32.1 0.1 0 1.0 0 1.9 33.0 

Rhone, canalized (CR) 5.1 0 0.1 60.0 0 0 0 0.8 34.0 

Floodplain tributary (FT) 0 0 0 0 0 0 0 0 100.0 

Hill (H) 1.9 0 0 0 0 37.6 0 6.1 54.4 

Dune (D) 0 0 0 0 0 0 0 0 100.0 

Urban area (U) 0.1 0 0 0.1 0 0 0 87.2 12.6 

Agricultural zone (AZ) 2.0 0.4 0.1 0.7 0 0.1 0 12.3 84.7 

          
1900 to 2003          

 F w FR CR FT H D U AZ 

Forest (F) 22.4 2.6 0 2.7 0 0 0 2.7 69.5 

Wetland (w) 4.6 6.9 0 0 0 0 0 6.6 81.8 

Floodplain, river Rhone (FR) 36.5 0.1 24.5 0.2 0 0.1 0 1.2 37.4 

Rhone, canalized (CR) 2.6 0.1 0 59.1 0 0 0 0.7 37.5 

Floodplain tributary (FT) 10.8 0.8 0 6.5 0 0 0 0 81.9 

Hill (H) 1.8 0 0 0 0 29.3 0 9.1 59.7 

Dune (D) 0 9.5 0 0 0 0 0 3.5 87.0 

Urban area (U) 0.2 0 0 0 0 0 0 86.4 13.4 

Agricultural zone (AZ) 2.9 0.8 0.2 0.9 0 0.1 0 15.0 80.1 
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Why are amphibians so threatened with extinction? 

 In the context of global biodiversity decline, amphibians are of particular interest 

because they are more threatened and are declining more rapidly than either birds or 

mammals (Baillie et al. 2004, Stuart et al. 2004). Even considering that sensitivity 

may be different among species, a global negative response and worrying worldwide 

decline has recently been reported (Alford and Richards 1999, Houlahan et al. 2000). 

At least 2468 amphibian species (43.2%) are experiencing some form of population 

decrease, whereas only 28 (0.5%) are increasing and 1552 (27.2%) are stable; 1661 

(29.1%) species have an unknown trend (Stuart et al. 2004). These statistics have 

triggered large-scale concern about amphibian conservation (Beebee 1996, 

Semlitsch 2003). 

 Amphibians are extremely sensitive to environmental stressors due to their 

permeable skin and their dual life cycle (aquatic and terrestrial). Hence, a large set of 

factors affecting the amphibian population have been identified on a global scale 

(such as climate change or increased UV-B exposure) and also on a more local 

scale, involving factors such as habitat destruction, agrochemicals and chemical 

pollution, introduced species, human exploitation and disease (reviewed by Alford 

and Richards 1999, Blaustein and Kiesecker 2002, Collins and Storfer 2003, Beebee 

and Griffiths 2005).  

 However, habitat destruction and the associated degradation and fragmentation 

seem to be the primary cause of amphibian decline and extinction (Dodd and Smith 

2003, Stuart et al. 2004, Cushman 2006). Although several studies have investigated 

amphibian autecology (i.e. the biological relationship between an individual organism 

or an individual species and its environment) and the effect of habitat loss and 

fragmentation on amphibian distribution (e.g. Fahrig et al. 1995, Vos and Chardon 

1998, Pope et al. 2000, Joly et al. 2001, Houlahan and Findlay 2003, Pellet et al. 

2004b, Van Buskirk 2005, Appendix 1) we still lack the knowledge necessary for 

effective conservation strategies (Cushman 2006). 

 For this thesis (Chapters 4, 5 and 6) we studied amphibian autoecology and 

improved some methodological and statistical approaches in order to better 

understand the determinants of amphibian distribution and persistence in a 

given landscape. 
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The effect of ponds and landscape characteristics on amphibian 

distribution 

 Amphibians often use aquatic and terrestrial habitats. The first provides the 

habitat for both breeding and larval development, and the second for juvenile and 

adult foraging, hibernation and estivation. The quality of breeding sites has long been 

identified as central for the preservation of local populations. Nevertheless, restricting 

habitat selection studies to pond-scale determinants has been shown to be 

insufficient because there is evidence that landscape-scale determinants (up to 

several km from breeding sites) can also influence the distribution of amphibian 

species (e.g. Vos and Stumpel 1995, Mazerolle and Villard 1999, Pope et al. 2000, 

Johnson et al. 2002, Houlahan and Findlay 2003, Van Buskirk 2005). For example, 

Houlahan and Findlay (2003), Gibbs et al. (2005) and Price et al. (2005) reported that 

land-use effects peaked at distances of several kilometers from breeding ponds. This 

suggests a regional effect on species distribution. Others reported that far smaller 

distances were important (less than 1000 m; e.g. Porej et al. 2004, Herrmann et al. 

2005, Mazerolle et al. 2005). Recently, Loman and Lardner (2006), found that in 

experimental conditions the water quality of farmland ponds in Southern Sweden 

have no effect on the reproductive success of two frog species. Their results indicate 

that other factors (i.e. the terrestrial habitat quality and the metapopulation structure) 

have to be considered in order to understand the drivers of distributional patters. 

 Based on a review of 27 recent papers (for more details see Appendix 1) dealing 

with the issue of amphibian habitat selection, we found that approximately half of the 

significant effects on species distribution concerns landscape scale factors (i.e. 

variables computed in a radius >30 m from ponds, Figure 4, A). At this scale, factors 

more frequently studied and having a significant effect on species distribution are 

those related with four land uses (forest, urban, road and agricultural cover) and 

connectivity of populations (i.e. the number and occupancy of surrounding ponds) 

(Figure 4, B). Clear prevalence of positive association has been found for forest and 

connectivity, while urban and road factors had essentially a negative effect.  

 The multi-scale effect of habitat variables on amphibian distribution has a 

central importance in conservation. Species have to be managed at the 

appropriate large spatial scale (Semlitsch 2000, Van Buskirk 2005) in order to avoid 

inappropriate conservation measures.  
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 A) Scale of predictor effects 
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 B) Type of predictors used to describe the landscape scale 
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Figure 4. Proportion and number of positive and negative predictor effects based on 
a review 27 recent articles (Appendix 1). The review considers 46 species and 267 
predictor effects (n): 147 at pond scale and 120 and landscape scale. A) Scale at 
which predictors have an effect; “landscape scale” refers to the area at >30m from 
the focal pond. B) Type of predictors used to describe the landscape scale; 
“surrounding ponds” refers to the amount and occupancy of ponds in the area 
surrounding the focal pond. For more details see Appendix 1. 

 

 In addition to the increasing and recognized importance of landscape scale 

determinants of amphibian distribution (Cushman 2006), we identify three additional 

issues in this research which have received scarce attention in herpetological 

research (Table 4). The first issue (Chapter 4) focus on statistical models of 
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species–habitat relationship. When data are not independent, then regression 

residuals may be autocorrelated, which violates the assumption of independence of 

errors for classical statistical tests (i.e. ANOVA). Thus, incorrect inference can result 

from models because of the incorrect estimation of the number of degree of freedom 

(Legendre 1993). Computed statistical tests with dependent variables are generally 

too often declared significant under the null hypothesis (Type I error), the magnitude 

of habitat effects tends to be overestimated and the relative importance of different 

habitat variables can shift (Legendre and Fortin 1989, Legendre 1993, Borcard et al. 

1992, Gumpertz et al. 1997, Lennon 2000, Lichstein et al. 2002, Legendre et al. 

2002). Although it is frequently observed in data, spatial autocorrelation is still rarely 

assessed and considered in models of amphibian habitat relationships (Klute et al. 

2002, Knapp et al. 2003). In the case of amphibians, we found that 18 (69.2%) out of 

26 recent studies did not test or measure autocorrelation in data (Table 4 A). 

 The second issue (Chapter 5) is the spatial generalization of the amphibian-

habitat relationship. Usually, these statistical relationships are used to make 

recommendations about habitat management for threatened species in the region 

studied (e.g. Pellet et al. 2004b). However, one desirable feature of such statistical 

models is their applicability in other, separate regions. The important question is 

whether the results of one study on one species in one region can be transferred to 

the same species in a different region. This question has only rarely been addressed 

(Graf et al 2006, Menendez and Thomas 2006), but the implications for effective 

species conservation are important. In the case of amphibians we found that only 

three studies (Knutson et al (1999), Lehtinen et al. (1999), Johansson et al. (2005)) 

analyzed the autoecology of species in different regions. These studies detected a 

regional effect of local and landscape factors suggesting a region-by-factor 

interaction. Nevertheless, most of the reviewed articles (24 out of 27, 88.9%) only 

investigate one single region (Table 4 B).  

 The third issue (Chapter 6) concerns the shape of the sampling area around 

ponds within which landscape variables are extracted. The common practice is 

to use concentric disks (Table 4 C) and assumes that the landscape has an isotropic 

effect on the species’ presence, so that species are supposed to be affected by a 

particular landscape element equally in every direction from a given pond. However, 

it is likely that frictions in the landscape, such as barriers or inhospitable surfaces, 

reduce movement patterns (e.g. Marsh et al. 2005, Gibbs 1998) and reshape the 

ideal circular surface into a non-circular form reflecting the actual use of the terrestrial 
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landscape by amphibians (Ray et al. 2002). In Chapter 6, we consider non-circular 

buffers shaped by barriers to amphibian movement. 

 

Table 4. Synthesis of the review of 27 recent articles (Appendix 1) analyzing 
predictors of amphibian distribution and regarding the issue developed in Chapter 4 
(A), Chapter 5 (B) and Chapter 6 (C) of this thesis. 

Issue References Number of 
articles 

% 

A) Autocorrelation in data    
    

Not tested 

Vos and Stumpel (1995), Vos and Chardon (1998), 
Knutson et al (1999), Kolozsvary and Swihart (1999), 
Pope et al. (2000), Carr and Fahrig (2001), Findlay et al. 
(2001), Hazell et al. (2001), Joly et al. (2001), Guerry and 
Hunter (2002), Hamer et al. (2002), Ray et al. (2002), Beja 
and Alcazer (2003), Bradford et al. (2003), Jansen and 
Healey (2003), Martin and McComb (2003), Knutson et al. 
(2004), Pellet et al (2004a), Weyrauch and Grubb (2004) 

18 69.2 

Correlogram analyses (Moran's I) Scribner et al. (2001), Houlahan and Findlay (2003), 
Johansson et al. (2005), Denoel and Lehmann (2006) 4 15.4 

Mantel test!  Mazerolle et al. (2005) 1 3.8 

Durbin-Watson test Lehtinen et al. (1999) 1 3.8 

Occupied ponds in neighborhood§  Pellet et al (2004b) 1 3.8 

Autologistic model Knapp et al. (2003) 1 3.8 
    
B) Geographic variation of landscape effect   
    

Not assessed 

Vos and Stumpel (1995), Vos and Chardon (1998), 
Kolozsvary and Swihart (1999), Pope et al. (2000), Carr 
and Fahrig (2001), Findlay et al. (2001), Hazell et al. 
(2001), Joly et al. (2001), Scribner et al. (2001), Guerry 
and Hunter (2002), Hamer et al. (2002), Ray et al. (2002), 
Beja and Alcazer (2003), Bradford et al. (2003), Houlahan 
and Findlay (2003), Jansen and Healey (2003), Knapp et 
al. (2003), Martin and McComb (2003), Knutson et al. 
(2004), Pellet et al (2004a,b), Weyrauch and Grubb 
(2004), Mazerolle et al. (2005), Denoel and Lehmann 
(2006) 

24 88.9 

Assessed and found! Knutson et al (1999), Lehtinen et al. (1999), Johansson et 
al. (2005) 3 11.1 

Assessed and not found - 0 0.0 

    
C) Area around focal pond within the landscape is studied   
    

Concentric disks 

Vos and Stumpel (1995), Vos and Chardon (1998), 
Kolozsvary and Swihart (1999), Knutson et al (1999), 
Lehtinen et al. (1999), Pope et al. (2000), Carr and Fahrig 
(2001), Findlay et al. (2001), Hazell et al. (2001), Joly et 
al. (2001), Scribner et al. (2001), Guerry and Hunter 
(2002), Hamer et al. (2002), Beja and Alcazer (2003), 
Bradford et al. (2003), Houlahan and Findlay (2003), 
Jansen and Healey (2003), Knapp et al. (2003), Martin 
and McComb (2003), Knutson et al. (2004), Pellet et al 
(2004a,b), Weyrauch and Grubb (2004), Mazerolle et al. 
(2005),  Denoel and Lehmann (2006) 

24 92.3 

Squared buffer Johansson et al. (2005) 1 3.8 
Friction-based buffer Ray et al. (2002) 1 3.8 
! Mantel test on the geographic distance between occupied ponds   
§ Effect on occupancy of the number and the density of occupied ponds in various concentric disks from focal pond 
! If the effect of at least one of the variables studied showed a geographic variation   
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Metapopulation structure and inter-patch distance 

 In simple terms, a metapopulation is a collection of partially isolated populations 

connected by occasionally dispersing individuals, whereby each population exists 

with a substantial extinction probability (Hanski 1999). Thus, long-term persistence of 

the species in a given landscape occurs only at the level of the metapopulation. 

Amphibians are suitable models for metapopulation studies because populations are 

generally organized in spatially discrete breeding sites which are straightforwardly 

considered as a pond-as-patch based framework (Sjogre-Gulve 1994, Marsh and 

Trenham 2001, but see Smith and Green 2005).  

 Ecologists and conservation biologists have developed metapopulation theories 

to predict populations’ responses to fragmentation (e.g. Hanski and Simberloff 1997, 

Hanski 1999) and metapopulation modeling is increasingly being used for the design 

of species conservation strategies (McCullough 1996, Akçakaya and Sjogren-Gulve 

2000, Hanski 2004). In the context of metapopulation models one central issue 

is the calculation of inter-patch distance considering the behavioral response 

of species to landscape structure, for which no published example has been 

found (Guisan and Thuiller 2005). Measuring this real inter-patch distance is far from 

obvious because it depends on how much the landscape features occurring between 

patches facilitate or impede the movement of organisms (Taylor et al. 1993; 

Tischendorf and Fahrig 2000, 2001, Moilanen and Hanski 2001). Inter-patch 

distance should take into account the resistance of landscape features to 

movement, as with the least-cost algorithms implemented in Geographic 

Information Systems (GIS). In Chapter 7, we explore how patch occupancy is 

sensitive to Euclidean versus landscape-based distance (least-cost algorithm). 

We also used the results to propose conservation strategies for one threatened 

amphibian species. The value of our results is notable because, when 

metapopulation models are used, there is a risk of devising incorrect conservation 

strategies if the landscape structure among patches is neglected (Wiens 1997). 
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Statistical tools 

General framework  

 Recently, powerful statistical techniques and Geographic Information System 

(GIS) tools have allowed the development of a range of approaches to species-

environment relationships and predictive habitat distribution models (Guisan and 

Zimmermann 2000). Such models relate the geographical distribution of species or 

communities to their present environment. The methodological approach to be used 

depends on the objective of the study and the quality of the data (for an exhaustive 

review see Guisan and Zimmermann (2000)). In this research we essentially used 

GLMs (Generalized Linear Models), which are extensions of classical multiple 

regression models, allowing non-normal response variables to be modeled. 

Because we have presence/absence data (binomial response variables) a 

special case of GLM can be used: logistic regression. A mathematical basis for 

these models can be found in statistical textbooks (Hosmer and Lemeshow 1989). 

We describe these models briefly in the next section. 

GLMs and logistic regression 

 Widely known and used, the basic linear regression model has the form: 

 

α β ε= + +Y      X  

 

where Y  denotes the response variable, α  is a constant called the intercept, 

= 1( ,..., )pX X X  is a vector of p  predictor variables, β β β= 1( ,... )p  the vector of p  

regression coefficients (one for each predictor), and ε  is the error term.  

 However, this classical linear regression cannot be used when the response 

variable is binary (e.g. presence/absence). The first reason is that the predicted 

values will become greater than 1 and less than 0 when moving far enough on the x-

axis ( X  ranges between −∞  and +∞ ) and such values are theoretically 

inadmissible. Then the error is not normally distributed because Y  takes on only two 

values. Finally, another assumption of linear regression is that the variance of Y  is 

constant across values of X , which cannot be the case with a binary variable 

(heteroskedasticity). 
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 In GLMs, the predictor variables X  are combined to produce a linear predictor 

LP  which is related to the expected value µ = ( )E Y  of the response variable Y  

through a link function g() , such as: 

 

α β ε= = + +( ( ))     g E Y LP X  

 

To carry out a logistic regression, the logit link function is used. The logit function is 

defined as: 

 

= = =
−

( ) ( ) ln
1

p
g p logit p LP

p
 

 

where p is the probability that the event (e.g. presence or absence of species) 

occurs. −/(1 )p p  is the odds ratio. To get from logits to probabilities, it is necessary to 

extract p from the previous equation: 

 

=
+
exp( )

1 exp( )
LP

p
LP

 

 

If the natural logarithm of odds ( −ln( /(1 ))p p ) is linearly related to X , then the 

relation between X  and p is not linear, and has the form of a sigmoid curve. Logistic 

regressions are used to assess the association with amphibian occurrence and 

various environmental variables in Chapters 4, 5 and 6. 

Model selection 

In this research we also used a recently developed and increasingly used 

statistical approach in ecology: the model selection (Burnham and Anderson 

2002). In Appendix 2 we give some details of the theoretical and mathematical 

aspects of this approach, which is based on information theory and constitutes an 

alternative to classical null hypothesis testing (Anderson et al. 2000). It allows 

models to be ranked and their relative weight to be estimated considering the 

principle of parsimony (Box and Jenkins 1970). The model selection approach is 

used in Chapters 5 and 6.  
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Chapter 2 
Aims of the study 

Conceptual design and structure of the thesis 

 A general overview of the structure and the relationships addressed in this thesis 

is presented in Figure 5. Chapter 3 focuses on the temporal evolution of landscape 

conservation value. In this chapter we propose a methodology allowing the 

localization of hot spots with the most negative ecological alteration over time and hot 

spots of rehabilitation potential. Chapters 4, 5, 6 and 7 concentrate on the problems 

associated with the conservation of one of the most threatened taxonomic groups in 

the world: amphibians. We studied several aspects of amphibian distribution 

modeling in order to improve the methodological approaches traditionally used and 

the ecological knowledge of the autoecology of this threatened species.  

 In Chapter 4 we use logistic and autologistic models in order to assess the 

potential bias when spatial autocorrelation is not considered in regression analyses.  

Our study also emphasizes the importance of incorporating spatial autocorrelation in 

statistical models of species distributions in order to avoid potential misinterpretation 

of species-habitat relationships.  

 In Chapter 5 the focus is on the geographic variation of the effect of landscape 

factors on species distribution. Indeed, in the context of predictive distribution models 

and applied ecology, the important question is whether the results of one study on 

one species in one region can be transferred to the same species in a different 

region. To suggest answers to this question, we studied amphibian distribution in five 

separate regions and tested the interaction of region-by-landscape variables. In this 

chapter we also assess the spatial scale (i.e. the distance from breeding pond) of the 

landscape variable effect.  

 In Chapter 6 we analyze the effect of pond scale and landscape scale factors on 

species occurrence by considering the area around a breeding pond which is really 

accessible to moving individuals. This area is not circular as commonly assumed, but 

shaped by the barriers surrounding ponds. The landscape variables were computed 
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within these barrier-based migration areas. In order to assess the validity of the 

proposed methods we compare the results with the commonly used circular radius. 

 Finally, in Chapter 7 we develop an approach allowing the identification of 

patches most sensitive to inter-patch landscape structure. The method is applied to 

two metapopulations of one threatened amphibian species and is based on patch 

occupancy metapopulation models. The approach allows a manager to identify those 

patches where improving connectivity would be a valuable and realistic conservation 

option. 

 We believe that the results of this thesis constitute valuable support for decision 

making in the planning of biodiversity conservation. 

 

 

 

Figure 5. Structure and relationships addressed in this thesis in the context of 
biodiversity conservation planning. 

 

§4.  

Modelling amphibian 
distribution with 

autocorrelation in data 

§5.  

Geographic variation of 
landscape effect on 

amphibian distribution 

Amphibian conservation 

§6.  

Effect of landscape 
structure in models of 
amphibian distribution 

§7.  

Effect of inter-patch 
distance calculation in 
metapopulation models 

§3.  

Temporal evolution of 
landscape conservation 

value 

Planning biodiversity conservation 



Chapter 2 - Aims of the study 

 25 

Specific objectives 

This thesis addresses the following specific objectives: 

 

Chapter 3: (1) To develop a feasible method for the assessment of the 

conservation value of the landscape in the Rhone plain for the years 

1900 and 2003 on the basis of land-cover maps and expert knowledge; 

(2) to locate hot spots where landscape transformation has mostly 

reduced the conservation value of the plain since 1900; and (3) to 

identify potential priority areas for landscape rehabilitation. 

  

Chapter 4: To assess the potential bias in logistic regression models when spatial 

autocorrelation in data is not accounted for by comparing logistic and 

autologistic regression estimates. 

  

Chapter 5: (1) To investigate the geographic variation in the effects of landscape 

composition around the ponds on the distribution of species; (2) to test 

the effect of pond connectivity; and (3) to determine the spatial scale of 

the effect of landscape composition on amphibian distribution. 

  

Chapter 6: (1) To assess the effect of pond scale and the surrounding terrestrial 

habitat on the distribution of two amphibian species by considering the 

area around the pond which is really accessible to moving individuals; 

(2) to compare the difference with the commonly used method 

considering circular areas. The proposed approach was called 

“Barriers-based buffers” (BBB). 

  

Chapter 7: (1) To assess the effect of landscape structure in metapopulation 

dynamic studies by comparing patch occupancy computed with 

Euclidean and least-cost inter-patch distance; (2) to determine the 

sensitivity of patch occupancy to colonization rate, extinction rate, and 

mean dispersal distance. 
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Abstract  

 In general, nature is undergoing gradual ecologically-negative change and 

landscape restoration is set to become a very important field in the future. In this 

paper, we document human-driven land-cover changes in an originally river-

dominated region of Switzerland, the Rhone plain, which developed from a near-

natural reference state in the early 20th century to a highly anthropogenic state in the 

early 21st. We present a method that uses land-cover data and expert knowledge to 

enable a spatially explicit assessment of changes in the nature conservation value of 

the landscape over time. Our results suggest that human activity has had a negative 

effect on the ecological state of over 97% of the plain since 1900. The hot spots 

which experienced the most negative ecological changes are related to wetland 

destruction. Our study proposes a methodological GIS-based approach for 
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determining and locating the rehabilitation potential of the landscape. The method 

enables the rapid, ecologically relevant and spatially complete evaluation of a large 

and heterogeneous landscape and could constitute an important tool for 

communication, landscape decision-making and biological conservation 

management in landscape planning. 

 

Keywords: Land cover changes, landscape history, reference state, fragmentation, 

GIS, Switzerland 

Introduction 

 Nature is undergoing changes which are mostly negative, anthropogenic in 

origin, ominously large in scale and accelerating (Balmford and Bond 2005). In 

addition to the risk of species extinction arising from climate change (Thomas et al. 

2004), anthropogenic habitat fragmentation and loss are recognized as major 

contributors to the general decline and future threat to biodiversity (Pimm and Raven 

2000, Tilman et al. 1994). If the world’s biological richness is to be conserved, natural 

and healthy ecosystems must be protected and recreated (Dobson et al. 1997). 

Given the limited financial, temporal and energy resources available, it is essential 

that priorities be set for conservation and restoration activities. 

The conservation value of the landscape 

 Nature conservation can be defined as the preservation and protection of the 

natural richness of a landscape (i.e. soil, geomorphology, flora and fauna). The 

process of assessing the significance of an area for nature conservation is called 

ecological evaluation (Spellemberg 1992). Thus, the conservation value of a 

landscape represents its capacity to ensure the persistence of natural richness over 

the time. According to these definitions, the performance of an ecological evaluation 

basically involves classifying the area under analysis into units of varying significance 

in terms of nature conservation (Geneletti 2002), i.e. different conservation values. 

This requires a general evaluation concept which specifies both the conservation 

objectives and the criteria that express their fulfilment. Conservation objectives range 

from species-centred approaches focusing on the conservation of one or several 

endangered taxa to more process-oriented procedures aimed at the maintenance of 
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functioning self-sustaining ecosystems (Geneletti 2002, Margules and Usher 1981, 

Noss et al. 1997, Spellemberg 1992). In recent decades, new evaluation criteria (e.g. 

connectivity, patch shape) have been related to the field of landscape ecology as it 

addresses the relationship between spatial patterns (landscape composition and 

configuration) and ecological processes (Forman and Godron 1986), therefore 

forming the base for the survival of species (Bridgewater 1993, Burke 2000, Hansson 

and Angelstam 1991).  

 Conservation value may vary spatially in a fragmented and heterogeneous 

landscape. Natural or near-natural ecosystems such as wetlands, forests or alluvial 

river systems are more significant in terms of conservation than intensively exploited 

or impaired components of the landscape matrix, such as agricultural lands, urban 

areas and road networks. However, the conservation value of the landscape also 

varies temporally, in particular as a result of human activities (Forman and Godron 

1986). The rationalization and intensification of agricultural practices in Switzerland 

during the second half of the last century had an extremely negative impact on the 

capacity of the agricultural area to ensure the viability of a wide variety of species 

(Broggi and Schlegel 1990, 1998). Former natural structures such as trees, hedges 

and shrubs have either disappeared or have become isolated. Thus, temporal 

landscape dynamics are among the most important characteristics that describe a 

landscape (Forman and Godron 1986) and may have important implications for 

restoration projects (Egan and Howell 2005a).  

Reference state and rehabilitation 

 The quantification of temporal landscape dynamics requires the definition of a 

reference state that describes the landscape in its pristine and generally less 

disturbed state. Several techniques can be used to establish the reference conditions 

of an ecosystem or a landscape. These include the study of historic records (e.g. 

written and oral histories, photographs, maps) and the analyses of proxy records 

derived from biological sources such as pollen, spores or macrofossils (White and 

Walker 1997). A reference state can support decision-making in landscape planning 

and biological conservation management and can also act as model or target for 

planning restoration projects, in particular when current conditions are seriously 

degraded and differ significantly with respect to the original state (Axelsson and 

Ostlund 2001, Christensen 1997, Gordon et al. 1997, Hohensinner et al. 2004, 



Chapter 3 – Evaluation of the landscape conservation value over time 

 

 30 

Jungwirth et al. 2002, Luyet 2005, Nordlind and Ostlund 2003, SER 2004, White and 

Walker 1997).  

 Nevertheless, historical analyses are generally carried out in places that have 

already been identified by previous investigations as suitable for restoration. Today, 

such reference conditions are used to drive restoration projects and not to locate 

them (Egan and Howell 2005b). The development of standardized methods which 

support decisions regarding the identification of areas most suitable for restoration at 

landscape and regional level is a recent and increasingly interesting research field 

(Hobbs and Norton 1996). Due to the increasing complexity of the ecological systems 

being studied, it is even more difficult to decide at a broader level what should be 

restored, where and how (Hobbs and Harris 2001). 

 In this study we used reference conditions as a model for the identification of 

locations in a given degraded and heterogeneous landscape where rehabilitation 

projects should take priority. Because it is recognized that ecological restoration will 

not necessarily translate into the re-establishment of the exact former state of an 

ecosystem or a landscape, we prefer to use the term rehabilitation (SER 2004). 

Rehabilitation shares with restoration a fundamental focus on historical or pre-

existing landscapes as models or references, however the goal is not the exact 

reconstruction of the original state. 

Goals 

 In this paper, we study the reference conditions and transformation over time of 

an originally river-dominated region of Switzerland, the Rhone plain. The objectives 

of the study are: (i) to develop a feasible method for the assessment of the 

conservation value of the landscape in the Rhone plain for the years 1900 and 2003 

on the basis of land-cover maps and expert knowledge; (ii) to locate hot spots where 

landscape transformation has mostly reduced the conservation value of the plain 

since 1900; and (iii) to identify potential priority areas for landscape rehabilitation. It is 

our view that our approach could provide a useful starting point for the definition of 

conservation goals and for ecological rehabilitation projects in which the target state 

is based on an historical reference. 
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Material and Methods 

Study area and land cover changes 

 The area studied is the section of the Rhone valley in Switzerland between Brig 

(678 m a.s.l.) and the mouth of the river Rhone into Lake Geneva (374 m a.s.l.) 

(Figure 1). The total area involved is 240 km2. The length of the river, which is now 

almost completely canalized, in that area is approximately 120 km. The river Rhone 

drains a catchment area of 5,520 km2 close to the mouth into Lake Geneva, and has 

an average annual discharge of 187 m3 s-1  (Loizeau and Dominik 2000). 

 

 

Figure 1. Location of the Rhone Plain in Switzerland. The current situation of the 
river Rhone is shown. 

 

 The valley was formed by the sweeping advance of the Rhone glacier at the 

beginning of the Quaternary Period (Département Fédéral de l’Intérieur 1964). The 

river Rhone and its tributaries filled and formed the plain with their bed loads over the 

course of the centuries. The region has undergone fundamental compositional 

change over the past 150 years. The first systematic river correction, which was 

carried out in the late 19th century, almost completely destroyed the alluvial river-

floodplain system, which covered 10.9% of the plain in 1850 and only 1.6% in 1900 

(Zanini et al. submitted). The braided active channel of the river Rhone was restricted 

Switzerland 
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to a single mainsteam, resulting in a shoreline reduction of 150 km (45 %; Weber et 

al. submitted). Additional damage was caused to the ecological state of the plain 

after 1900 by the second river correction, the drainage of the plain, agriculture 

intensification and settlement development. Wetlands covered 6.1% of the plain in 

1900 and only 1.3% in 2003. Furthermore, we observed a significant increase in 

urban area, in particular in the second half of the 20th century (1.4% in 1900 and 

13.8% in 2003). Today, the Rhone plain constitutes a human-shaped landscape 

dominated by intensively exploited agricultural land (76.6%), in which the former 

natural ecosystems have almost completely disappeared (Zanini et al. submitted). 

 Despite the two systematic corrections of the Rhone, the anticipated level of flood 

security was not entirely attained, and considerable damage was caused to the 

region by repeated and severe flood events in 1935, 1948, 1987 and 1993 (Wallis 

2000). As a result, it was decided in September 2000 to undertake a third correction 

of the river Rhone, with the help of which flood protection will be improved along a 

significant stretch of the river Rhone A simultaneous revaluation of ecological and 

socio-economic concerns is also planned (Wallis 2000). 

Historical sources 

 Based on the historical topographic maps mentioned in Table 1, 15 land cover 

classes (Table 2) were identified and digitized using ArcMapTM 8.3 (ESRI). These 

classes represent the most detailed information obtainable from the interpretation of 

topographical maps.  

 

 

Table 1. Cartographical sources used to reconstruct the former state of the Rhone 
Plain and to digitize land cover. 

Period Year of map 
publication General context Name Scale 

1900 1882-1904 Reference state (after first river correction, 
still with significant wetland area and 
extensive agriculture) 

Siegfried Map 1: 50 000 

2003 2003 Current state (significant agriculture 
intensification and urban development) 

Digital National 
Map of Switzerland  

1: 50 000 
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Table 2. 15 land-cover classes digitized from the historical topographical sources for 
the years 1900 and 2003. A buffer corresponding to an estimation of real width was 
set around the linear topographical elements (tributary, canal, highway, railroad and 
road). 

Land cover Topographic map interpretation 

Forest Map signature for closed forest. 

Wetland Map signature for wetland. 

Floodplain, Rhone 
river (natural active 
channel including 
floodplains) 

Active side-arms or reaches of the river Rhone with intact floodplains, along one 
bank at least. According to Müller-Wenk (2004), intact floodplains are defined 
as areas between two arms of the river Rhone or outside of the furthermost arm 
carrying the signatures for gravel or open forest. Periodic inundations by the 
Rhone can be expected (absence of settlements and infrastructure). Both land 
and water area (mainstem, side-arms etc.) are included. 

Rhone, canalized Area occupied by river Rhone, but with none of the features mentioned under 
the floodplain, river Rhone. 

Floodplain tributary Alluvial area within the influence of a tributary of the Rhone. 

Hill Map signature for hill. 

Dune Map signature for hill and cited in the literature as a dune (Farquet 1924, 
Delarze pers. comm. 2004). 

Urban area Area including (1) >5 buildings within max. 100 m distance; (2) isolated, but 
large buildings covering approximately the surface of five smaller buildings (e.g. 
industry, factories). 

Agricultural zone Remaining area of the plain, essentially agricultural area. 

Tributary Running water originating in the mountains and flowing into another river or 
canal or into Lake Geneva (width 6 m). 

Canal Running water originating in the plain or appearing at the surface after being 
piped (width 4 m). 

Highways Highway: width 30 m. 

Railways Railroad: width 10 m. 

Roads Roads of first and second class. Width: 4 m in 1900 and 6 m in 2003. 

Stagnant water Stagnant water of natural or artificial origin. 

 

 Topographical maps of the plain were available for 1850 and were digitized in 

previous studies (Zanini et al. submitted). However, due to low spatial accuracy and 

a high level of incertitude with regard to land-cover identification arising from the 

measurement techniques and small map scale (1:100 000), it was not possible to use 

these data in this study. Thus, we used the year 1900 as the reference state, which is 

also supported by ecological elements. Indeed, although the first Rhone river 

correction (1863-1876) produced dramatic ecological consequences with regard to 

the alluvial ecosystems, the overall ecological value of the plain and its conservation 

potential for biodiversity remained high. Flooding episodes were still frequent (Wallis 

2000) and several regions in the plain remained dominated by marsh, extensive 

agricultural practices and some unique ecosystems related to the Rhone alluvial 
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system (e.g. sand dunes) were still present. Thus, as confirmed by several studies, 

overall species richness in the plain was still high in 1900 (Delarze 1982, Desfayes 

1996, Farquet 1924, Gams 1916, 1927, Giugni 1985, Rey et al. 1985). 

Data quality  

 The quality of the digitized data is crucial for any inter-year analyses. It may be 

influenced by the incertitude of cartographical sources, transformation through 

scanning and geo-referencing or the screen-digitations (Johnson 1990, Kienast 

1993). Moreover, comparability between years is also influenced by data acquisition 

and generalization. In order to estimate the discrepancy between the 1900 and 2003 

maps, the position of nine churches was compared. Churches were the topographical 

elements that could be identified most accurately at our working scale. Because the 

map scale is relatively small (1:50 000, 1 mm=50m!), we expected errors to occur, 

mainly due to geo-referencing. However, we observed a median discrepancy of only 

24 m, which is sufficiently small to ensure limited errors in an inter-state comparison. 

Estimation of the conservation value of the landscape 

 In terms of landscape patterns, historical topographical maps and aerial 

photographs provide an important basis for reference construction (Hohensinner et 

al. 2004, SER 2004), which is available for many regions. In contrast, historical 

information on the biotic (e.g. species richness) and abiotic (water quality, soil type) 

state of ecosystems is generally difficult to obtain and is often extremely fragmented 

(for several examples see Egan and Howell 2005a), especially if the study region is 

large (Van Diggelen et al. 2001). One way of dealing with this problem is to use 

expert knowledge. Expert knowledge offers significant support in conservation 

planning and ecological assessment when evaluation models based on empirical 

studies are not available (Balram et al. 2004, Hellier et al. 1999, Store and Kangas 

2001).  

 We selected three experts who are familiar with the ecological characteristics of 

the ecosystems in the Rhone plain and their evolution over the last century. These 

experts are biologists by profession, live in the study area and work as environmental 

consultants in private offices. We asked them to estimate the land-cover 

conservation value in relation to the number and rarity of potentially present species 

of each land-cover class identified in 1900 (reference state) and 2003 (actual state). 
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The conservation value ranges from 0 (no conservation value) to 10 (maximum 

conservation value).  

 The conservation value of the entire plain (i.e. landscape conservation value) can 

be calculated using the following formula (equation 1): 

 

      =∑C ps      (eq. 1) 

 

where C is the conservation value of the plain, p the proportion of the land-cover 

class and s its expert score. We used this weighted summation because (i) no 

synergic effect is considered in our evaluation and (ii) it is easy to explain and 

transparent (Janssen 2001). 

 However, this result cannot be represented spatially. Therefore, we estimated the 

landscape conservation value in regular cells of 250 x 250 m in accordance with the 

aforementioned formula with p as the proportion of each land cover class in the cell. 

A total of 3,143 cells were delineated in the Rhone plain. As suggested by 

EUROSTAT (2000) and Chetelat (2005), cell size may affect the results. A small cell 

size accentuates diversity between cells and, conversely, large cells limit variability. 

The cell size used in our study was chosen as the best compromise between the 

scale of our study area, the incertitude regarding the boundary of the digitized land 

cover classes and the narrow shape of the Rhone plain.  

 Finally, the difference between the conservation value of the current state (2003) 

and reference state (1900) was computed for each cell. The result of this difference 

is consecutively termed ecological alteration. Ecological alteration ranges from -10 to 

10. A negative value is interpreted as a loss in landscape conservation value as 

compared with reference state. Conversely, a positive value represents a gain in 

landscape conservation value. The closer to zero the value, the smaller are the 

changes. 

 The expert evaluations were compared separately for each temporal state using 

the non-parametric Friedman-Test for related samples and the Wilcoxon-Wilcox-Test 

(a posteriori). All of the spatial analyses were computed using Mapbasic 7.5 and 

Mapinfo 7.5 software (Mapinfo corporation ©, 1985-2003). SPSS 11.0 for Windows 

was used for the statistical analyses.  
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Defining rehabilitation potential 

 According to the proposed methodology, the reference conditions and the 

estimation of the ecological alteration of the landscape over time enable the 

identification of areas in which anthropogenic landscape transformations caused the 

most negative ecological effects. These areas also have the higher rehabilitation 

potential because the deviation from near-natural reference conditions is the most 

significant, therefore the potential ecological gains from rehabilitation projects are 

greater. In all rehabilitation projects, reference conditions play a central role in 

determining the rehabilitation potential of a site (Egan and Howell 2005a, White and 

Walker 1997). Moreover, variations over time and historical aspects are not the only 

factors that can support the estimation of rehabilitation potential. Current conditions 

also have to be considered because the objective of rehabilitation projects is not only 

to re-establish former conditions, but also to fundamentally improve the current 

ecological state (Hobbs and Harris 2001). Hence, we assume that rehabilitation 

potential is the highest where (i) ecological alteration is the most negative and (ii) the 

conservation value is currently lower.  

 We proposed the use of a scale varying between 0 (no rehabilitation potential) 

and 5 (maximum rehabilitation potential). We considered a linear relationship 

between ecological alteration and rehabilitation potential (Figure 2), but assumed it to 

be 0 as long as the value of ecological alteration is positive. We also considered a 

linear relationship between conservation value in 2003 and rehabilitation potential. 

Finally, we calculated the mean between both rehabilitation potential values. Thus, 

for each cell in the landscape we obtained an estimation of its relative rehabilitation 

potential which varied between 0 and 5.  

 The proposed score scale and the linear function represent only one possible 

solution. The method is very flexible and can be quickly and easily adapted to the 

specific requests and strategies of project stakeholders and decision makers. This is 

an important point as the possibility of including various opinions and societal desires 

could influence the success of rehabilitation projects considerably (Hobbs and Harris 

2001).  
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Figure 2. Criteria used for the estimation of rehabilitation potential: the ecological 
alteration between 1900 and 2003, and the landscape conservation value in 2003. 
We assume a linear relationship between both criterion and the rehabilitation 
potential. Final rehabilitation potential is the mean between both estimations. 

Results 

 The area of natural habitats (in particular wetlands and forest) decreased 

between 1900 and 2003 (Table 3). In addition, experts estimated that an intrinsic 

degradation of the ecological quality of land cover also occurred among years. This is 

particularly evident in the case of agricultural area, which received a mean 

conservation value score of 6.3 in 1900 and a mean score of only 2.3 in 2003 (∆ =-4). 

In both temporal states, the alluvial floodplain area of the river Rhone has the highest 

mean value for conservation (9.7 and 7.7 respectively). Dunes and wetlands also 

obtained high scores. As expected, urban areas, roads and highway have a lower 

value. Based on the mean land cover scores and the formula (1), the conservation 

value of the entire Rhone plain corresponds to 6.5 in 1900 and 2.7 in 2003 (∆ = -3.8). 

This result is essentially dependent on the scores assigned to agricultural area which 
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represents the predominant land cover in both temporal phases (78% of the Rhone 

plain area in 1900 and 73% in 2003). 

 

Table 3. Land cover area (ha) and mean conservation value scores from the three 
expert evaluations (range is the difference between min and max expert score). Land 
covers are ranked in decreasing order for mean conservation score in 1900. 
Conservation value ranges from 0 (no conservation value) to 10 (maximum 
conservation value). The Rhone plain conservation value is computed using the 
formula in equation 1. 

Land cover Area (ha)  Mean conservation score  

 1900 2003 ∆ area 1900 Range 2003 Range ∆ scores 

         
Floodplain, river Rhone  389.6 131.8 - 257.8 9.7 1 7.7 2 -2.0 
Dune 7.4 0 - 7.4 9.3 2 - - - 
Wetland 1439.4 283.0 - 1156.4 9.0 2 7.3 1 -1.7 
Hill 39.6 25.4 - 14.2 8.7 1 7.3 4 -1.4 
Floodplain tributary 30.2 0.0 - 30.2 8.0 3 6.0 2 -2.0 
Canal 202.7 127.5 - 75.2 7.3 2 3.0 3 -4.3 
Stagnant water 9.3 153.6 + 144.3 7.3 5 7.0 3 -0.3 
Forest 2056.6 1227.8 - 828.8 7.0 3 6.7 3 -0.3 
Agricultural zone 18 610.3 17 474.1 - 1136.2 6.3 4 2.3 1 -4.0 
Tributary 85.4 47.6 - 37.7 6.0 2 4.3 5 -1.7 
Rhone, canalized 568.2 573.3 + 5.2 4.0 2 4.3 5 +0.3 
Urban Area 321.8 3282.4 + 2960.6 3.3 2 1.7 1 -1.6 
Railways 131.9 156.3 + 24.4 3.0 3 2.3 3 -0.7 
Roads 83.2 256.7 + 173.5 1.7 3 0.3 1 -1.4 
Highways 0 236.6 + 236.6 - - 1.7 2 - 
Mean    6.5 2.5 4.4 2.6 -1.6 

Rhone plain 
conservation value 

   
6.5  2.7  -3.8 

 

 

 Relative agreement was observed in the score attribution by the three experts 

(EXP) (Pearson’s correlation coefficient; EXP1-EXP2: r = 0.76; EXP2-EXP3: r = 0.74; 

EXP1-EXP3: r = 0.76) which would indicate that the experts share a common 

appreciation of the conservation value of the different land cover classes. However, 

significant differences existed between the experts for the evaluations of the 1900 

state (Friedman-Test, p < 0.05). EXP 2 assigned significantly higher scores than EXP 

1 and EXP 3 (Wilcoxon-Wilcox-Test, p < 0.05); there were no significant differences 

between the scores allocated by EXP1 and EXP3. There were no significant 

differences in the expert evaluations for 2003 (Friedman-Test, p = 0.736). 

 The results of the ecological alteration and estimation of the rehabilitation 

potential are presented in Table 4. We assigned the cells in four classes of same 

size. According to the expert evaluations and computed land-cover changes, our 
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method showed that ecological alteration in the Rhone plain was “negative” to “very 

negative” for more than 97% of the study area. For EXP3 ecological alteration was 

less negative than for the two other experts because the changes were classified as 

ecologically “very negative” for only 3.9% of the plain (as compared with 44.0% and 

39.6% for EXP1 and EXP2, respectively). Moreover, positive ecological alteration, 

i.e. an increased conservation value, was found for only two experts and for an 

extremely limited area of the plain (0.9% for EXP2 and 2.8% for the EXP3). 

 

Table 4. Proportion of the plain corresponding to different classes of ecological 
alteration and rehabilitation potential value. The views of all three experts are 
presented. 

Ecological alteration classes Description EXP1 EXP2 EXP3 
[-10,-5] Very negative 44.0% 39.6% 3.9% 
[-5,0] Negative 56.0% 59.4% 93.3% 
[0,5] Positive 0 0.9% 2.8% 
[5,10] Very positive 0 0 0 

<0 Negative and very negative 100% 99.1% 97.2% 
Rehabilitation potential classes     

[0,1] Very low 0.0% 1.9% 1.0% 
[1,2] Low  4.6% 4.6% 7.5% 
[2,3] Medium 39.3% 18.4% 85.2% 
[3,4] High 56.1% 74.4% 6.3% 
[4,5] Very high 0.0% 0.8% 0.0% 

 

 In order to identify spatially where ecological alteration is “very negative” and 

where the results for three experts are consensual, we superimposed the three maps 

of ecological alteration and selected those cells for which all three experts had the 

same class value. Figure 3 shows the hot spots of “very negative” ecological 

alteration for a section of the study area. The areas corresponding to “high” or “very 

high” rehabilitation potential were computed using the same methodological 

approach and are also illustrated for the same section of the plain (Figure 3). These 

hot spots generally overlapped. Positive ecological changes are not mapped as the 

results of three experts are not spatially consensual.  

 In Appendix 3 are presented the land-cover conservation value, the maps of 

ecological alteration and the maps of rehabilitation potential for all the experts 

separately. 
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Figure 3. Section of the Rhone plain (the Chablais) close to the mouth into Lake 
Geneva. The map shows the hot spots of “very negative” ecological alteration ([-10, -
5]) and the hot spots of “high” or “very high” rehabilitation potential ([3, 5]), on which 
all three experts agreed. The white boundaries indicate the wetland perimeter in 
1900 (MNT25, © Swisstopo 1995). 

Discussion 

 In this study, we presented a method for the quantification of the spatial and 

temporal variation in the nature conservation value of the landscape. Our approach 

enabled the localization of hot spots where land cover changes were most negative 

or positive from an ecological point of view. Our method is simple to understand, 

appropriate for different spatial scales and flexible because land-cover classes, cell 

size and expert scores can be modified easily and quickly. Rather than computing a 

mean value, we also identified consensus among experts so as to respect each 

specific expert opinion, which is very important for the communication and 

acceptance of results (Maystre and Bolliger 1999, Pictet 1996). Finally, due to its 

standardized and transparent method which indicates where the rehabilitation 

potential of the landscape is highest when an historical state is used as reference, 

our approach could have important implications for landscape planning. In this study, 
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we presented and discussed the implications for rehabilitation projects. However, we 

also noted that the map produced, which provides information about the current 

conservation value of the landscape, could be very useful for the definition of 

conservation strategies, e.g. for the selection of area to be protected.  

 As is commonly acknowledged, the establishment of the reference state is a very 

difficult and time-consuming task and past data provide only snapshots of system 

parameters (Hobbs and Harris 2001). Problems arise both due to the lack of 

historical information and the difficulty in defining what a reference state is (Egan and 

Howell 2005b). If the reference constitutes a landscape that is entirely devoid of 

human influence, it would be necessary to obtain pre-historic information because 

human impact, e.g. in the Rhone plain, is documented back to the Neolithic period 

(Département fédéral de l’intérieur 1964), and this would be a difficult task. Around 

1850, the river Rhone was still in a relatively natural state with high-quality 

longitudinal and lateral connectivity (Weber et al. submitted for publication). The fish-

species richness of the river Rhone was also appreciably higher at the end of 19th 

century (19 species) than today (only 2 species; see Weber et al. submitted for 

publication). However, at this time landscape was also already partially shaped by 

human activity (agriculture, farming practices and forestry) (Bender 2001, Farquet 

1924, Kuonen 1993). Several factors may influence the choice of the reference state, 

but, as suggested by Bradshaw (1997), the reference system is not necessarily 

intended to describe only the former state unaffected by humans. The reference must 

also be defined in accordance with the goals of the project, the availability of data 

and stakeholder acceptance. In our study, the 1900 state fulfilled these 

considerations.  

 For the Rhone plain we found that significant changes in landscape composition 

occurred over the past century with generally negative consequences for its 

ecological state. With the exception of stagnant water, which increased in area from 

9.3 ha in 1900 to 153.6 ha in 2003 (+144.3 ha), the area of all natural habitats (see 

Table 3) decreased from 1900. The increase of stagnant water area is related to the 

development of gravel mining during the last century. This activity multiplies the 

number and size of ponds and associated pioneer habitats. Such ecosystems 

created by human activity are of particular importance for many endangered species 

in the region, for example the yellow bellied toad (Bombina variegata; Grossenbacher 

1988). However, because of its small size and the generally extreme degradation of 



Chapter 3 – Evaluation of the landscape conservation value over time 

 

 42 

the ecological state of the study area in 2003 the effect of newly created stagnant 

water ponds on conservation value of the landscape was limited.  

 The hot spots which experienced the greatest negative ecological alteration are 

essentially located in the former wetland areas, which were still significant in size at 

the beginning of the last century (1439 ha, 6% of the plain), but have now almost 

entirely disappeared (283 ha, 1% of the plain). Wetland conversion was essentially 

due to agriculture rationalization and intensification. Indeed, previous studies 

revealed that 81% of the wetlands that existed in the plain in 1900 had been 

converted into agricultural area in 2003 and almost 7% had been converted into 

urban area (Zanini et al. submitted). The ecological importance of wetland for 

biodiversity conservation and the dramatic consequences arising their reduction have 

been documented for the plain. For example, between 1882 and 1982, at least 65 

plant species associated with marsh area disappeared in the Chablais region on the 

right bank of the river Rhone (Figure 3) (Delarze et al. 1982). In the same region on 

the left bank of the Rhone,116 plant species disappeared between 1850 and 1985 

(Giugni 1985) and 98 plant species probably became extinct in the regions close to 

the mouth of the Rhone into Lake Geneva (Morel 1985). Other species associated 

with wetland ecosystems also declined in the region. Among these, amphibians are 

emblematic of species that are sensitive to habitat degradation (Dodd and Smith 

2003). According to the Swiss Red List, eight out of twelve species are endangered, 

vulnerable to or threatened with extinction within the study area, (Schmidt and 

Zumbach 2005). Many studies have noted the worrying threat to amphibian 

populations in the Rhone plain and have identified some possible causes such as the 

destruction of breeding ponds, road mortality, natural succession of the vegetation 

and expansion of the invasive species R. ridibunda (Berthoud 1976, ECOTOEC 

1996, Farquet 1924, Grossenbacher 1988, Jordan et Rey 1973, Marchesi 1999, Praz 

1983, Rey et al. 1985). Other possible causes exist, such as climate change, 

increased UV-B exposure, agrochemicals and chemical pollution, human exploitation 

and disease (Alford and Richards 1999, Blaustein and Kiesecker 2002, Kiesecker et 

al. 2001). However, in the context of the Rhone plain, the dramatic habitat 

destruction (in particular of wetlands) and fragmentation and their direct and indirect 

consequences are probably the main drivers of amphibian decline. 

 In addition to changes in landscape composition, which were considered in the 

present study, changes in landscape configuration have also triggered a reduction in 

the suitability of landscape for species persistence (Zanini et al. submitted). The 
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number of forest patches increased by a factor of 2.6 (175%) from 1900 while their 

average size decreased by 78%. The number of wetland patches and their average 

size also decreased (by 66% and 40% respectively). Conversely, the number of 

urban area patches increased by 122% and their average size by 344%. This 

confirms the increasing of urbanization process with growing agglomerations and 

newly-created urban areas. As a result, because they were often isolated and 

stressed by the surrounding environment, the remaining natural areas offer fewer 

suitable living conditions for the species, (Zanini et al. submitted). Thus, it is our view 

that in order to obtain a more realistic ecological assessment, the approach proposed 

in this paper could be improved by considering supplementary criteria such as patch 

rarity, diversity, isolation, naturalness and exposure to disturbances (Geneletti 2002 

2004a, 2004b, Lee et al. 1999, 2001, 2002, Lesslie et al. 1988, Morgules and Usher 

1981, Spellenberg 1992). However, in the case of broad-scale landscape evaluation 

like this research, the utilization of multiple criteria may be inadequate due to (i) the 

complexity of the system under study (15 different land cover classes) and (ii) the 

subsequent potential difficulty in communicating the results to stakeholders (Jansenn 

2001).  

 Assessment based on expert knowledge is usually used when it is impossible to 

carry out an objective evaluation due to the lack of data. In principle, by including 

expert knowledge, we fill the gaps in data with the subjectivity of the experts. In order 

to limit errors in evaluation and to approximate the conservation value of the 

landscape as accurately as possible, in our study we were very strict in the selection 

of experts. The evaluation was a difficult exercise, in particular for 1900 as very little 

descriptive information was available on the state of ecosystems, species richness 

and human impacts. This incertitude resulted in significant differences between the 

experts’ evaluations carried out for 1900. In contrast, there were no significant 

differences between the evaluations for 2003, which would indicate the existence of a 

consensual perception of the conservation value of the landscape and validate the 

assessment of its current state. Thus, in order to reduce the discrepancies between 

the expert assessments, only the hot spots with very negative ecological alteration 

identified by all the experts were discussed. 

 In our study we estimated rehabilitation potential spatially and proposed that it be 

used to locate priority areas for rehabilitation. Decisions in the area of rehabilitation 

(or restoration) ecology could be driven and supported by historical information (Egan 

and Howell 2005a). However, we agree that historical information and rehabilitation 
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potential is only one element that can be considered in the planning of rehabilitation 

and restoration projects. Lindenmayer et al. (2002) stressed that the complexity of 

ecological problems at landscape scale suggests that there may not be just one 

straightforward way for setting targets for urgently needed restoration projects. 

Instead, it will be important to adopt a risk-spreading approach which involves the 

implementation of a wide range of strategies for landscape restoration. Moreover, to 

succeed, restoration activities not only need to be based on sound ecological 

principles and information, they must also economically feasible and practically 

achievable (Hobbs and Harris 2001). This implies that political acceptability often 

plays a more important role in the setting of priorities and choice of options than any 

rational process (Hobbs and Harris 2001). It is our belief that in situ historical 

elements are essential components of the decision making process in this context. 

As citizens, resource managers, and policy makers become more familiar with well-

validated and locally-generated pictures of landscape history, a shared 

understanding of present conditions and potential future scenarios becomes more 

possible, and a common vision of the future can emerge (Antrop 2005, Grossinger 

2005). 

Conclusion 

 The main contribution made by this study is its development of a feasible method 

for monitoring both spatial and temporal changes in nature conservation value and 

the identification of hot spots of landscape rehabilitation potential. Our approach is 

based on the historical reference state (1900) and on expert assessment of 

landscape conservation value. Due to the complex structure of fragmented and 

heterogeneous landscapes, significant assumptions and simplifications were made. 

However, simplification produced comprehensible results which can be quickly 

calculated and easily explained and understood (Jansenn 2001, Young and Jarvis 

2001). As suggested by Hobbs and Harris (2001), assessment processes carried out 

in the context of restoration project can be complicated and expensive, and if they 

are too complicated or expensive, they will not be carried out. 

 Historical references are only one of the sources that may be considered in the 

planning of nature conservation measures. However, the use of a reference state as 

target for a rehabilitation project is an important step, in particular if current 



Chapter 3 – Evaluation of the landscape conservation value over time 

 45 

landscape conditions show dramatic degradation and information is required 

regarding the pristine state (e.g. Jungwirth et al. 2002). The proposed methodology 

represents an additional helpful element for landscape planning. It could play an 

important role in facilitating communication in participation processes and provide a 

useful tool for decision makers involved in projects at landscape level and for 

sustainable land-use policy which is an important element of the Swiss Landscape 

Concept (OFEFP 1998, Stremlow et al. 2003). 
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Abstract 

 Modeling species distribution is important for the conservation and management 

of species. These models are based on the understanding of species-habitat 

relationships. However, spatial autocorrelations (SA) in data may affect the accuracy 

of these models. In spite of being frequently observed characteristic of spatial 

variables, SA is still rarely considered. In this study, we analyzed the effect of 7 

landscapes variables on the distribution of the agile frog (R. dalmatina) in north-

eastern Switzerland. Variables were extracted in 17 concentric discs of different radii, 

from 100 m to 3000 m, centered on agile frog breeding ponds. We described SA 

using Moran’s I correlograms and we built autologistic models. An autologistic model 

is a logistic model that includes a measure of the spatial arrangement of the 

response variables as a covariate; usually called “autocovariate”. Comparing logistic 

(without autocovariate) and autologistic models (with autocovariate) we found key 

differences in the statistical estimates. Because regression residuals of autologistic 

models are independent, while residuals for logistic models are autocorrelated, we 
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conclude herein that logistic models are not the statistically correct option for our 

study. Using logistic regression could produce distortions in the results of the 

regression. In logistic models the positive effect of marsh cover is accentuated and a 

supplementary variable (density of second class roads) became significant at various 

distances from the ponds. Our study also emphasizes the importance of 

incorporating SA in statistical models of species distributions in order to avoid 

potential misinterpretation of species-habitat relationships. 

 

Key words: autologistic/logistic regression, autocovariate, landscape structure, 

presence/absence, habitat modeling, conservation, amphibian. 

Introduction 

 Spatial autocorrelation (SA) is the property of random variables to take values, at 

pairs of locations a certain distance apart, that are more similar (positive 

autocorrelation) or less similar (negative autocorrelation) than expected by randomly 

associated pairs of observations (Legendre 1993). Thus, the value of spatially 

autocorrelated variables can be in part predicted by values of the variables in the 

neighboring locations. In wildlife species distribution analyses, these patterns can be 

driven by multiple causes that may be exogenous (e.g. disturbances, historical 

events, land use) and/or endogenous (e.g. conspecific attraction, dispersal, 

predation) (Sokal and Oden 1978b, Legendre and Fortin 1989, Legendre 1993).  

 Ecologists are frequently interested in modeling species distribution based on 

environmental variables. However, classical statistics (e.g. logistic regression for 

binary responses) assumes independence of the observations. Incorrect inference 

can result from models because SA in residuals violates the assumption of 

independence of observation. Indeed, autocorrelation in error structure of an ANOVA 

or regression-type model reduces the degree of freedom of the associated statistical 

test (Legendre 1993). Even if SA does not necessarily generate bias (Diniz et al 

2003), the computed statistical tests with dependent variables are generally too often 

declared significant under the null hypothesis (Type I error), the magnitude of habitat 

effects tend to be overestimated and the relative importance of different habitat 

variables can shift (Borcard et al. 1992, Legendre 1993, 1998, Gumpertz et al. 1997, 

Lennon 2000, Lichstein et al. 2002, Legendre et al. 2002). Despite this fact, SA is still 
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rarely considered in models of wildlife-habitat relationships even if it is a frequently 

observed characteristic of the spatial variables (Lennon 2000, Dale and Fortin 2002, 

Klute et al. 2002, Lichstein et al. 2002, Keitt et al. 2002). 

 Various methods may be used to detect spatial patterns in the data (Legendre 

and Fortin 1989, Dale et al. 2002, Perry et al. 2002). Among them, in the case of a 

single variable, the most common is the Moran’s I (Moran 1950, Appendix 4). This 

index is represented as a function of distance classes in correlograms. If SA is 

detected and not seen as a nuisance but rather as a part of the ecological process 

under study, then it is better to account for the SA in the statistical modeling rather 

than being avoided (e.g. by exclude autocorrelated observations). This is of interest 

because SA can in fact reflect ecological processes, such as dispersal. Logistic 

models that integrate the spatial patterns of the response variables are called 

autologistic models (Augustin et al. 1996). Some examples of autologistic models 

were proposed by Smith (1994) for mountain sorrel, Augustin et al. (1996) for red 

deer, Gumpertz et al. (1997) for diseases in bell peppers and Klute et al. (2002) for 

American woodcock distribution modeling. 

 In this study, we analyzed the distribution in north-eastern Switzerland of the 

agile frog (Rana dalmatina), a threatened amphibian species. While studies on the 

role of aquatic and terrestrial habitats in determining patterns of presence, 

abundance and richness of amphibians at breeding ponds has increased over the 

last few years (e.g. Vos and Chardon 1998, Pope et al. 2000, Houlahan and Findlay 

2003, Ficetola and De Bernardi 2004, Pellet et al. 2004, Rubbo et al. 2004, van 

Buskirk 2005, Herrmann et al. 2005), the question of the bias in the regression 

analysis due to SA is rarely addressed (Knapp et al. 2003). 

 Our objective is to compare the results of logistic regression analyses on habitat 

determinants of agile frog pond occupancy using two different approaches. Firstly, 

we applied a regression analysis using a logistic model without incorporating SA. 

Secondly, we used an autologistic model, where SA was assessed and included as a 

covariate in the regression analysis. We expected to find that in the logistic analysis 

habitat covariate effect will be overestimated. 
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Methods 

Species and study area 

 The agile frog (Rana dalmatina, Bonaparte 1840) is widely distributed in Europe 

(Nöllert and Nöllert 2003). However, in Switzerland this species have an extremely 

limited distribution and it is threatened to extinction (Schmidt and Zumbach 2005). 

Breeding, oviposition, and tadpole development take place in a wide range of 

wetlands, but usually in relatively sunny locations adjacent to forest patches 

(Geisselmann et al. 1971). Two months after the oviposition, metamorphosed froglets 

scatter into the terrestrial environment (Geisselmann et al. 1971). 

 

 

Figure 1. Study area and ponds visited (132) in north-eastern Switzerland. Black 
circle (46) shows ponds with at least one observation of agile frog reproduction 
between 1997 and 2003, white circle (86) illustrates ponds with no observations. 
Forest, roads and urban areas are showed within 3 km radius from ponds. 

Switzerland 
Shaffhausen 
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 We studied the distribution of the agile frog in 132 ponds in north-eastern 

Switzerland (Figure 1). Presence and absence of the species was determined by 

field surveys during the spring 2003, for the Swiss amphibian red list updating 

(Schmidt and Zumbach 2005). In addition, the distribution records were completed 

with data from the Swiss Amphibian and Reptile Conservation Program (KARCH). 

The specie was considered to be present in ponds if at least one of the breeding 

indicators (calling males, tadpoles, juveniles or amplexus) was detected on at least 

one occasion between 1997 and 2003. Agile frog distribution has been intensively 

monitored which help to minimize non-detection of the species (Pellet and Schmidt 

2005). The Agile frog was found in 47 ponds (prevalence of 35.6%). The landscape 

in the region is typical for the Swiss plateau. The land-cover in the region is 

characterized predominantly by arable land (55%), forest cover (32%) and urban 

settlements (9%). The mean altitude of the ponds is 419 m a.s.l. 

Landscape data extraction 

 Landscape variables were extracted from the VECTOR25 database, which 

represents the vector format of the 1:25000 topographical maps of Switzerland 

(SWISSTOPO 2003). Data precision is approximately 3-8 meters in flat areas 

(SWISSTOPO 2003). We selected 7 landscape covariates (predictors) which might 

affect the distribution of the agile frog (Table 1). In order to estimate the distance at 

which landscape variables affect the use of ponds by agile frogs, we used a multiple 

scale sampling (Pellet et al. 2004). The densities of each landscape variable (Table 

1) were calculated based on 17 concentric discs of different radii centered on each of 

the breeding ponds (100, 200, …, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500 

and 3000 m). We decided to include investigations across landscapes in large discs 

because recent studies suggest that the effect of adjacent land use can extend over 

comparatively large distances from ponds (Houlahan and Findlay 2003). 

 

Table 1. Landscape variables extracted in each of 17 concentric discs of radii from 
100 m to 3000 m. 

Variable Description Unit 
AGRI Proportion of arable lands and pastures % 
FOREST Proportion of forest % 
MARSH Proportion of marsh % 
BUSH Proportion of bushes and hedgerows % 
URBAN Proportion of urban areas % 
ROAD1CLASS Total length of 1st class roads divided by the disc area m/m2 
ROAD2CLASS Total length of 2nd class roads divided by the disc area m/m2 
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Statistical analyses 

 We constructed Moran’s I correlograms to investigate the degree of SA in 

response variables and predictors (Moran 1950, Legendre and Fortin 1989). Moran’s 

I varies between [-1;1], with positive values representing a positive correlation. 

Moran’s I was calculated in distance classes of 0-1000, 1000-2000, ..., 14000-15000 

meters. 1000 permutations were calculated to determine if SA for variables was 

significantly different from zero (p value<0.05) in all distance classes. We used the 

ncf package of R 2.1.0 (Bjørnstad 2001-2004) to calculate Moran’s I and associated 

statistics. 

 We built autologistic models to integrate the SA of the response variables 

(Augustin et al. 1996) (equation 1): 

 

   β β β β ε= + + + + Φ +0 1 1logit( ) ...i i n ni m ip X X   (eq. 1) 

 

where βm  is the parameter estimate for the autocovariate and ε  the error term. 

Augustin et al. (1996) and Knute et al. (2002) used the following autocovariate term 

(equation 2): 
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 The autocovariate in the model represents the weighted average of the number 

of occupied ponds by species in a set (i.e. buffer distance of all the landscapes) of Ki 

neighbours of pond i. dij is the distance between patch i and j. yi is a binary variable 

which indicates the state of occupancy of the patches j (yi =1 if the species is present 

and yi =0 if absent). In equation 2 the weight (1/dij) is the inverse of the Euclidean 

distance (dij) between breeding ponds i and j (Augustin et al. 1996). However, 

alternative measures of SA can be computed and introduced in autologistic models, 

assuming a negative exponential dispersal kernel ( α−( )ijde , Hanski 1994) (equation 3).  
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 A negative exponential relationship is used in metapopulation analyses to weight 

the effect of distance on the estimation of patch connectivity. The parameter α  

scales the effect of distance to migration ( α1/  is the average migration distance of 

the species under study). Equation 3 allows the representation of species-specific 

dispersal parameters in the estimation of spatial autocorrelation. We found only one 

published work estimating dispersal distances for adult agile frogs (max of 300 m, 

Ponsero and Joly 1998) but there appears to be no published data giving dispersal 

distances for the juveniles. Due to the scarcity of this dispersal distance data we 

decided to carry-out the statistical tests assuming various dispersal distances: 100 m, 

500 m, 1000 m and 2000 m. Thus, a total of 5 autocovariates were estimated. 

 We included in the autologistic model the autocovariate which explains the higher 

deviance (D2) in the univariate logistic regression (Sokal and Rohlf 1995). We then 

built an autologistic model for each buffer radius, following three methodological 

steps: firstly, we used a logistic regression and we kept for further analysis all 

predictors (landscape variables) whose univariate regression coefficient was 

significant at the 0.25 level (Hosmer and Lemeshow 1989). Secondly, we ranked 

retained variables and the autocovariates in autologistic model by decreasing the 

value of the explained deviance (D2). We then carried out a “both” stepwise 

regression using the minimum value of the Akaike Information Criterion (AIC) as the 

selecting criterion (Dalgaard 2002). “Both” stepwise regression removes (“backward” 

direction) and adds (“forwards” direction) successively the variables to the model. 

Thirdly, we retained in the final autologistic model only predictors whose explained 

deviance was significant at the 5% level (Hosmer and Lemeshow 1989). We made 

separate statistical analyses for each buffer radius (distance-dependent analysis), in 

order to estimate the spatial scale (i.e. the distance from the breeding pond) of the 

effect of the landscape variables (Vos and Chardon 1998, Houlahan and Findlay 

2003, Pellet et al. 2004). An identical analysis was also computed without the 

autocovariate term in order to estimate the consequences on the results due to the 

exclusion of SA. 
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Results 

Spatial autocorrelation patterns 

 The clustered distribution of agile frogs in this region is evident from the map in 

Figure 1. Three main population groups can be identified: in the north, centre and 

west of the study area, respectively. As expected, the clustered distribution is 

detected by Moran’s I correlogram, which measured significant SA for the response 

variable (Figure 2). Agile frog presence was most strongly autocorrelated for the four 

smallest distance classes (until 4 km). The significant autocorrelation that was 

detected in classes between 7 and 9 km was driven by the distance separating the 

three clusters of occupied ponds. Significant SA was also detected in the landscape 

predictors (Table 2). The landscape predictors that were measured within large disc 

radii from breeding ponds were generally found to be more correlated than the 

predictors measured at shorter distances. Indeed, if the discs’ radii are larger, then 

the overlapping area between discs is more likely to be larger. This correlation is 

more frequently significant for small Moran’s I distance classes. 

 

 

Figure 2. Moran’s I correlogram for response variable (presence/absence) of agile 
frog distribution in 132 breeding ponds. Filled circles indicate Moran’s I value 
significantly difference from zero (p<0.05) 



Chapter 4 – Autocorrelation in data: logistic and autologistic models 

 59 

Table 2. Moran’s I value significantly different from zero (p<0.05, black squares) for 
all the landscape variables measured in discs with radii varying between 100 - 3000 
m from breeding ponds of the agile frog. Moran’s I is calculated in 1 km distances 
classes.  

Moran's I distance classes [km] Moran's I distance classes [km]
Landscape predictors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Landscape predictors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AGRI 100 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 URBAN 100 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1
200 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 200 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1
300 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 300 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
400 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 400 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
500 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 500 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
600 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 600 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
700 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 700 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0
800 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 800 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0
900 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 900 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0
1000 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1000 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0
1200 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1200 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0
1400 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1400 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1
1600 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1600 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1
1800 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1800 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1
2000 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2000 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
2500 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2500 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
3000 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 3000 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1

FOREST 100 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 ROAD1CLASS 100 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0
200 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 200 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0
300 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 300 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0
400 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 400 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0
500 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 500 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0
600 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 600 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0
700 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 700 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0
800 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 800 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0
900 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 900 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0
1000 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1000 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0
1200 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1200 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0
1400 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 1400 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
1600 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1600 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
1800 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1800 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
2000 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2000 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
2500 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2500 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1
3000 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 3000 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0

MARSH 100 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 ROAD2CLASS 100 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1
200 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 200 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1
300 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 300 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1
400 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 400 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1
500 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 500 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1
600 0 0 1 0 1 1 1 0 0 0 1 1 1 0 1 600 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0
700 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 700 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0
800 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 800 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0
900 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 900 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0
1000 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1000 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0
1200 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1200 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0
1400 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1400 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1
1600 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1600 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1
1800 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1800 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1
2000 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 2000 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1
2500 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 2500 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1
3000 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 3000 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

BUSH 100 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0
200 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0
300 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0
400 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0
500 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0
600 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0
700 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0
800 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1
900 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1
1000 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1
1200 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1
1400 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1
1600 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1
1800 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1
2000 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1
2500 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1
3000 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1  
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Logistic and autologistic regression 

 We found that all five autocovariates are highly significant and explained a 

deviance higher than 20% in univariate logistic regression (Table 3). The highest 

deviance (D2=30.0%) is explained by the autocovariate with a mean dispersal 

distance of 1000 m. This autocovariate will be used in autologistic models. 

 

Table 3. Regression coefficients (β) and standard errors (SE) from the logistic 
regression using single autocovariates predictors. For autocovariate formulae 
explanations see equations 2 and 3. D2 is the explained deviance. 

Autocovariates 1/α β SE p-value! AIC§ D2 

expiΦ  1000 5.79 1.02 *** 123.44 30.0% 
expiΦ  2000 8.44 1.60 

*** 
126.55 28.2% 

expiΦ  500 4.00 0.69 
*** 

129.49 26.5% 

iΦ  - 11.83 2.23 
*** 

130.90 25.7% 
expiΦ  100 2.54 0.47 

*** 
139.93 20.4% 

! *p≤0.05, **p≤0.01, ***p≤0.001 (likelihood ratio test). 
§ Akaike Information Criterion. 

 

 

 The comparison between autologistic and logistic models revealed important 

differences (Table 4). The significant value of MARSH is accentuated and detected at 

all buffer radii, except at 600 and 700 m. In addition, a supplementary variable 

(ROD2CLASS) was significant, with a negative effect at several distances from the 

breeding ponds.  

 Moran’s I correlograms indicated significant autocorrelation of regression 

residuals for small-distance classes for the logistic models (Figure 3, B), while the 

autocorrelation of residuals is not significant for the autologistic models (Figure 3, A). 

 In the autologistic model, only the autocovariate and at most the proportion of 

marsh area (MARSH) are retained (Table 4). MARSH was retained at short distances 

from the ponds (100, 200 and 300 m) and at larger distances (1600, 1800 and 2000 

m) (Table 4). The best model was found for a distance of 1800 m and it explained 

34.6% of the deviance. Adding landscape covariates, after the autocovariate, 

increases the explained deviance of the autologistic model by less than 5% (Figure 

4).  
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Table 4. Multiple autologistic and logistic models with landscape predictors computed 
at various distance from agile frog breeding ponds. The parameter estimates and 
their standard error are shown for each retained predictor. The predictors retained in 
the models allowed (i) for the construction of the most parsimonious model, and (ii) 
they significantly reduced the explained deviance at the 5% level. Bold indicates the 
most parsimonious models (min AIC). D2 is the explained deviance. 

 Model predictors          

Distance (m) MARSH   ROAD2CLASS   expiΦ !   AIC§ D2 

A) Autologistic models           
100 9.524 ± 5.400 *  -   5.77 ± 1.05 ***  119.61 33.4% 

200 32.412 ± 16.494 **  -   5.78 ± 1.06 ***  118.09 34.3% 

300 33.118 ± 19.127 *  -   5.51 ± 1.03 ***  120.28 33.0% 

400 -   -   5.79 ± 1.02 ***  123.44 30.0% 

500 -   -   5.79 ± 1.02 ***  123.44 30.0% 

600 -   -   5.79 ± 1.02 ***  123.44 30.0% 

700 -   -   5.79 ± 1.02 ***  123.44 30.0% 

800 -   -   5.79 ± 1.02 ***  123.44 30.0% 

900 -   -   5.79 ± 1.02 ***  123.44 30.0% 

1000 -   -   5.79 ± 1.02 ***  123.44 30.0% 

1200 -   -   5.79 ± 1.02 ***  123.44 30.0% 

1400 -   -   5.79 ± 1.02 ***  123.44 30.0% 

1600 113.360 ± 50.830 *  -   5.19 ±  1.05 ***  120.04 33.2% 

1800 157.560 ± 58.513 **  -   5.16 ± 1.06 ***  117.62 34.6% 

2000 176.286 ± 69.598 *  -   5.07 ± 1.06 ***  118.76 33.9% 

2500 -   -   5.79 ± 1.02 ***  123.44 30.0% 

3000 -   -   5.79 ± 1.02 ***  123.44 30.0% 

B) Logistic models           

100 6.94 ± 2.94 **  -   -   162.53 7.1% 

200 23.78 ± 9.89 ***  -   -   160.74 9.3% 

300 38.25 ± 15.30 ***  -462.79 ± 232.25 *  -   158.71 10.5% 

400 46.97 ± 16.99 ***  -583.99 ± 267.25 *  -   157.92 11.0% 

500 37.49 ± 17.97 *  -732.59 ± 290.58 **  -   161.16 9.1% 

600 -   -988.30 ± 314.00 **  -   162.57 7.1% 

700 -   -1159.58 ± 347.99 ***  -   160.97 8.0% 

800 48.66 ± 25.10 *  -1204.00 ± 387.80 ***  -   156.64 11.7% 

900 53.24 ± 26.79 *  -1249.00 ± 412.00 ***  -   156.43 11.9% 

1000 64.69 ± 30.19 *  -1231.00 ± 434.80 ***  -   156.27 12.0% 

1200 90.63 ± 36.83 ***  -1196.340± 490.99 *  -   154.96 12.7% 

1400 118.77 ± 43.73 ***  -1186.33 ± 534.44 *  -   152.19 14.4% 

1600 151.74 ± 54.15 ***  -1208.06 ± 589.71 *  -   149.84 15.7% 

1800 272.65 ± 62.46 ***  -   -   148.04 15.6% 

2000 323.28 ± 72.25 ***  -   -   147.42 16.0% 

2500 363.20 ± 83.43 ***  -   -   150.86 14.0% 

3000 358.54 ± 114.62 ***  -1468.88 ± 757.29 *  -   154.28 13.1% 

*p≤0.05, **p≤0.01, ***p≤0.001 (likelihood ratio test). 
! Autocovariate with average dispersal distance (1/α) of 1000 m. 
§ Akaike Information Criterion. 
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Figure 3. Moran’s I correlograms of Pearson residuals from (A) autologistic and (B) 
logistic regression models for predicting agile frog presence in ponds based on the 
most parsimonious autologistic model (1800 m radius from ponds). Filled circles 
indicate Moran’s I value significantly different from zero (p<0.05). No spatial 
autocorrelation was observed in residuals from autologistic model. 

 

 

 

 

Figure 4. Explained deviance of autologistic regression models computed at different 
distances from agile frog breeding ponds. Triangles indicate models when only the 
autocovariate predictor was retained after variable selection. Circles indicate models 
with both autocovariate and MARSH variables. 
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Discussion 

 Legendre and Fortin (1989) underlined that ecologists have to consider a priori 

that their data are structured in space (i.e. autocorrelated). Ecologists therefore 

should test and describe spatial arrangements using structure functions. This is an 

imperative in order to avoid a distortion of the results (Lennonn 2000, Fortin and 

Payette 2002). 

 In this study, we describe SA in our data and we used autologistic regression to 

address the issue of non-independence of the data. Our results suggest that 

autologistic regression is a valuable solution and allows a better assessment of the 

species-habitat relationship and avoids the bias which may be encountered with the 

logistic regression analysis. These potential errors were observed in our case study, 

where logistics models proved inappropriate to investigate the effects of habitat 

variables on the distribution of agile frogs because the residuals of regression were 

dependent (Figure 3 A). Consequently, in logistic model the effect of marsh cover 

was accentuated and a new variable (ROAD2CLASS) was significant at various 

distances from the ponds. If we had ignored the spatial dependency in our data and 

had modeled using only logistic regression, we would have overemphasized the 

importance of the landscape variables because part of the effect due to the spatial 

dependencies between neighboring ponds would have been attributed to other 

variables. This has been underlined by other authors (Augustin et al. 1996, Gumpertz 

et al. 1997, Klute et al. 2002). In addition, the measurements of SA were improved in 

our study by using (i) a negative exponential relationship with distance among ponds 

rather than an inverse relationship and (ii) a parameter α  which scales the effect of 

distance to migration. This approach allowed a species-specific description of spatial 

autocorrelation and thus a better assessment of the spatial information in the data. 

 For agile frog, we found that an average dispersal distance of 1 km was the 

distance giving the autocovariate the highest explained deviance (Table 3). This 

means that 1 km is the dispersal distance for which the observed patterns of 

presence/absence of species in ponds are better described. Other studies have 

stressed the importance of a 1 km radius distance from breeding ponds on 

colonization success and terrestrial habitat use for several amphibian species (Vos 

and Chardon 1998, Findlay et al. 2001, Marsh and Trenham 2001, Semlitsch and 

Bodie 2003). However, our result represent only an indication of the dispersal 

capacity of the species in our landscape, but not an empirical support, since actual 
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distribution patterns could be driven by other factors, such as habitat quality or 

barriers to species movement. The estimation of dispersal capacity of the species 

can be done, for example, through field observations of terrestrial movement by 

radiotracking (Schabetsberger et al. 2004), harmonic direction (Pellet et al. 2006) or 

mark-recapture experiments (Vos et al. 2000).  

 Our approach could have several key implications because the non 

independence nature of the response variable can be expected to be important and 

frequent for amphibians. Amphibians are often poor dispersers relative to other 

vertebrates (Sinsch 1990), and a short distance between breeding ponds might be 

particularly important for their colonization (Sjogren 1991, Blaustein et al. 1994, Vos 

and Stumpel 1995, Marsh et al. 1999). In our study, the clustered distribution of the 

agile frog could be due to the dispersal process and colonization (by adults and 

juveniles) from surrounding ponds.  

 However, spatial patterns may be driven not only by biotic processes such as 

dispersal but also by species responses to variations in environmental factors. 

Environmental factors are themselves also spatially structured (Wagner and Fortin 

2005): examples are historical events (e.g. fire), land use, or climate (Sokal and 

Oden 1978b, Legendre and Fortin 1989, Legendre 1993). It is difficult to discriminate 

between the relative effects of each of the possible potential causes affecting 

spatially structured variance. Wagner and Fortin (2005) represented the variance of a 

regression analyses in 4 components: (i) purely environmental effects (explained by 

regression models but not spatially structured), (ii) overlap of spatial and 

environmental effects (spatially structured explained variance), (iii) purely spatial 

effects (spatially structured explained variance) and (iv) unexplained variance that is 

not spatially structured. The autocovariate predictor in our autologistic model is able 

to explain the spatially structured variance of components (ii) and (iii). In other words, 

it considers a part of the variance possibly due to landscape covariates. This is one 

of the reasons that explains the low increment of explained variance (less than 5%, 

Table 4) when landscape covariates are added to the autologistic model. 

 The effect of marsh cover proportion (MARSH) was the most important among 

the landscape predictors used in this study. The positive association with MARSH is 

potentially driven by 4 factors: i) wetland vegetation and water pools, may limit the 

negative impacts associated with fertilizer, pesticide, and herbicide applications by 

serving as a sinks for pollutants (Schulz and Peall 2001, Moore et al. 2000, 2002). 

Arable land covers more than 55% of our study area, thus pond contamination due to 
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agriculture practices may be important. ii) MARSH is a clear indicator of wet 

conditions in landscape, which may reduce the chances of desiccation when frogs 

forage away from ponds or hide during the day. iii) It may provide cover from which to 

escape predation. iv) It could indicate better landscape permeability to agile frog 

movement. This increases the probability that ponds will re-colonized after local 

extinctions (Sjogren 1991, Vos and Stumpel 1995). Some authors found the 

importance of hedgerows as potential dispersal corridors (Ficetola and De Bernardi 

2004, Pope et al. 2000) and Vos (1999) demonstrating that displaced tree frogs 

make a preference for hedgerows as movement paths and actively avoid arable land.  

Conclusion 

 Spatial autocorrelation is an important component of ecological systems and 

needs to be used in the spatial analyses of landscapes (Wagner and Fortin 2005). 

Once a spatial structure in regression residuals has been detected, it is imperative to 

remove it in order to avoid inaccurate conclusions about species-habitat relationships 

(Klute et al. 2002, Legendre et al. 2002). Integration of SA into ecological models 

(e.g., autologistic models) is imperative if we are to develop an understanding of the 

influence of environmental variables on species distribution. 

 In our study we found that autologistic regression is an appropriate technique to 

analyse dependent data because (i) its application is simple and well adapted for 

presence/absence data, (ii) these models can effectively avoid SA in regression 

residuals and (iii) autocovariates may represent spatial ecological processes, such as 

dispersion, which can be explicitly represented in the models. Autologistic regression 

analysis is a practical tool to enable the estimation of both the effect of species-

habitat relationship and the effect of spatially structured species distribution. 

 If spatial structure continues to be ignored as an inconvenience, the 

understanding of inter-relationships between patterns of environmental variables and 

species spatial distributions will remain confused (Lennon 2000, Wagner and Fortin 

2005).  
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Abstract 

 Understanding and predicting species distribution is of fundamental importance 

for ecology, conservation and management. Effective and optimal management 

strategies can only be formulated after relationships between species distribution and 

environmental factors have been identified. However, distribution models are usually 

established for only a single region and it is unknown whether the identified 

relationships between the distribution of a species and environmental variables can 

be transferred to another geographic area. We studied the distribution of amphibian 

species in five geographically distinct areas of Switzerland to address the question of 

whether the effect of landscape variables varied among regions. We analyzed the 

effect of 17 variables extracted in concentric disks of varying width (from 100 meters 

to 3 km) describing landscape composition around ponds at different spatial scales. 

We used data on the occurrence of 6 amphibian species in a total of 655 breeding 

sites. We also tested whether spatial proximity to neighboring populations (i.e. 
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connectivity) was an important determinant of species distribution. We used logistic 

regression and information-theoretic model selection to evaluate 585 candidate 

models for each species. We found that the explained deviance of each species' best 

models varied between 5% and 32%. Models that included interactions between a 

region and a landscape variable performed best for three more widely distributed 

species. For two out of three rarer species, the best models did not include 

interactions, but different regions had different probabilities of pond occupancy for the 

same value of the landscape variable. This suggests that caution is needed when 

predictions of species occurrence are made in separate geographic regions. The 

spatial scale at which landscape variables affected species distribution varied from a 

hundred to several km, which was in agreement with several recent studies 

suggesting multi-scale effects of habitats variables. Thus, different species are 

affected by different landscape variables at different spatial scales and these effects 

may vary geographically. We also found that connectivity was generally more 

important (in terms of explained deviance) than landscape variables, the latter having 

only marginal effects. This suggests that metapopulation processes may play a more 

important role in species distribution than habitat characteristics. In conclusion, there 

is probably no single conservation strategy for terrestrial habitats that equally benefits 

all species. 

 

Key words: Bufo bufo, Rana temporaria, Rana esculenta complex, Rana 

dalmatina, Hyla arborea, Triturus alpestris, habitat modeling, conservation, 

connectivity, metapopulation, interactions, presence/absence, model selection. 

Introduction 

 Predictive distribution models play an important role in ecology, conservation and 

management (Guisan and Zimmermann 2000, Lehmann et al. 2002, Guisan and 

Thuiller 2005). These models of the distribution of species can be used to learn 

which factors positively and negatively affect the presence of species at particular 

sites. This is an essential prerequisite for understanding both the general ecology of 

species and their successful management. A large number of studies deal with the 

issue of how biodiversity responds to landscape structure, the importance of amount 

and arrangement of specific habitat types, and isolation of populations (Andren 1994, 
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Turner 1996, Fahrig 2003, Elith et al. 2006). These studies produce statistical 

relationships between predictor variables and the occurrence of species. The 

resulting information is then used to make recommendations about habitat 

management. One desirable feature of such statistical models is their generality. 

Indeed, in the context of predictive distribution models, the important question is 

whether the results of one study on one species in one region can be transferred to 

the same species in a different region. This question has only rarely been addressed 

(Graf et al 2006, Menendez and Thomas 2006, Randin et al. in press). We therefore 

analyzed data on the distribution of amphibians, a highly threatened group of 

vertebrates (Houlahan et al. 2000, Stuart et al. 2004) where species-specific 

knowledge of the effects of landscape structure are urgently needed (Cushman 

2006). We asked whether the effects of predictor variables were homogeneous 

across different regions or whether they varied geographically. 

 The effects of habitat fragmentation and landscape scale predictors on 

amphibian populations has been the subject of a large number of studies (e.g. Fahrig 

et al. 1995, Vos and Chardon 1998, Pope et al. 2000, Joly et al. 2001, Houlahan and 

Findlay 2003, Pellet et al. 2004a,b, Van Buskirk 2005). These studies produced 

varying results depending on the species, region and habitat studied. Predictors did 

or did not affect species and the effects were variable across regions. For example, 

Pellet et al. (2004b) identified a set of land use types that affected the distribution of 

the European tree frog (Hyla arborea) in western Switzerland whereas Van Buskirk 

(2005) noted that the European tree frog was the only species not affected by the 

structure of the landscape surrounding the breeding ponds in eastern Switzerland. 

Similarly, for Bufo americanus, Lehtinen et al. (1999) found a positive effect of forest 

cover on the occurrence of the species in two regions of Minnesota (USA), while a 

negative association was reported by Guerry and Hunter (2002) in Maine (USA). 

Knutson et al (1999) analyzed the effect of landscape factors on anuran abundance 

and found that species-landscape associations were different in two areas. Lehtinen 

et al. (1999) described differences between two Minnesota eco-regions in amphibian 

assemblage response to habitat loss and fragmentation. Johansson et al. (2005) 

showed clear but regionally contrasting effects of habitat structure on the population 

size and genetic diversity of the common frog in Sweden. Such differences among 

studies call into question the utility of predictive distribution models for species 

conservation and management. 



Chapter 5 – Geographic variation of landscape effect 

 74 

 A further line of research into the landscape ecology of amphibians investigated 

the spatial scale at which landscape factors affect the presence of amphibians in 

ponds (e.g. Vos and Stumpel 1995, Pope et al. 2000, Johnson et al. 2002). Again, 

different studies have produced quite different results about the relevant spatial 

scales. For example, Houlahan and Findlay (2003), Gibbs et al. (2005) and Price et 

al. (2005) reported that land-use effects peaked at distances of several kilometers. 

Other reported that far smaller distances were important (less than 1000 m; e.g. 

Pellet et al. 2004b, Porej et al. 2004, Herrmann et al. 2005, Mazerolle et al. 2005). 

Recently, Loman and Lardner (2006), found that in experimental conditions the water 

quality of farmland ponds in Southern Sweden has no effect on the reproductive 

success of two frog species. Their results indicate that other factors (i.e. the 

terrestrial habitat quality and the metapopulation structure) have to be considered in 

order to understand the drivers of distributional patterns. 

 Connectivity may also determine the presence or absence of a species in a pond. 

Suitable ponds may be unoccupied if they cannot be colonized. We expected that 

pond connectivity is an important predictor because it increases the probability that 

an “empty” pond is being colonized (e.g. Laan and Verboom 1990, Vos and Stumpel 

1995, Sjögren 1991). Thus, because the distribution of species may be determined 

by both landscape and connectivity, it is important to include and differentiate their 

relative contribution in distribution models. This aspect has been only rarely 

addressed (Pope et al. 2000, Knapp et al. 2003, Denoel and Lehmann 2006). 

 Our goal was to investigate the following research questions: (1) Is there 

geographic variation in the effects of landscape composition around the ponds on the 

distribution of species? (2) Is there an effect due to pond connectivity? (3) What is 

the spatial scale of the effect of landscape composition? We examined landscape-

level habitat relationships and geographic variations thereof for five anuran and one 

caudate amphibian species by measuring associations with their presence in 655 

ponds in five different regions of Switzerland. The proportion of human-induced or 

natural uninhabitable habitats (e.g. urban and arable lands) and more natural areas 

(e.g. forest) varied widely across the region studied. 
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Materials and Methods 

Study areas and species 

 Five areas were selected in intensively cultivated and densely inhabited regions 

of Switzerland (Zurich, Bern, Vaud, Valais and Ticino), all below 1000 m (Figure 1). 

The areas differ in important aspects of land use. Arable land and pastures are 

predominant in all three regions located in the Swiss Plateau (Zurich, Bern and 

Vaud). Vineyards are one of the predominant forms of agriculture (12%) in Valais 

(VS). Ticino (TI) is, on the other hand, mainly forested (47%) and is the most 

urbanized region (16%). General landscape statistics are presented in Table 1. 

 

 

 

Figure 1. Location of the 5 study areas and the 655 amphibian breeding ponds in 
Switzerland (VD= Vaud, BE=Berne, ZH=Zurich, VS=Valais, TI=Ticino).  
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Table 1. Site occupancy, landscape composition and mean altitude of ponds among 
the five study regions. Total sample size is 655 ponds 

 Regions 

 ZH  
(n=132) 

BE 
(n=215) 

VD 
(n=150) 

TI 
(n=70) 

VS 
(n=88) 

Species (proportion of sites occupied)      
Common Toad (Bufo bufo)! 0.20 0.36 0.31 0.30 0.42 
Common frog (Rana temporaria)! 0.61 0.47 0.52 0.37 0.56 
Water frog (Rana esculenta complex) 0.59 0.29 * 0.51 * 
Alpine newt (Triturus alpestris)! 0.36 0.31 0.23 * * 
Agile Frog (Rana dalmatina) 0.35 * * 0.71 * 
Tree frog (Hyla arborea) 0.33 * 0.32 * * 

Landscape composition (proportion)      

Urban 0.09 0.14 0.10 0.16 0.11 
Forest  0.32 0.28 0.19 0.47 0.36 
Arable lands and pastures 0.55 0.56 0.54 0.24 0.28 
Vineyard 0.01 0.00 0.03 0.03 0.12 

TOTAL 0.97 0.98 0.86 0.90 0.87 

Mean pond altitude (m) 419 564 525 314 530 

! Commoner species in Switzerland (Schmidt and Zumbach 2005) 
* Species absent from region or proportion of sites occupied <15% (see text)  
 

 

 Amphibian distribution has been intensively monitored in 665 ponds in these 

regions in recent years. All sites were visited multiple times such that non-detection 

of species that were present is unlikely to be a problem (Pellet and Schmidt 2005, 

Mazerolle et al. 2005). Species occurrence data were collected by the Swiss 

Amphibian and Reptile Conservation Program (KARCH). Species were considered 

present in ponds if one of the breeding indicators (calling males, tadpoles, juveniles 

or amplexus) was detected at least once between 1997 and 2003. This also ensures 

that year-to-year variability in species presence is buffered.  

 Because we wanted to explore species-habitat relationships with sufficient 

statistical power, we analyzed species distribution only in regions where species 

occupancy was higher than 15%. Rarer species that also occurred were therefore 

excluded. Given this criterion, we selected six species: five anurans (Bufo bufo, Rana 

temporaria, Rana esculenta complex, Rana dalmatina and Hyla arborea) and one 

newt (Triturus alpestris). As a consequence of the threshold for inclusion in the study, 

B. bufo and R. temporaria were studied in all the five regions, R. esculenta complex 

and T. alpestris in three regions and, on the other hand, R. dalmatina and H. arborea 

in two regions only (Table 1). 

 According to the red list of endangered amphibian species in Switzerland 

(Schmidt and Zumbach 2005), B. bufo is vulnerable and R. dalmatina and H. arborea 
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are endangered. Rana esculenta complex is near the threatened category whereas 

Rana temporaria and Triturus alpestris are of least concern. 

Landscape variables 

 Landscape variables were extracted from the VECTOR25 database, which is the 

vector format of the 1:25,000 topographical maps of Switzerland (SWISSTOPO 

2003). Data precision is approximately 3-8 meters in flat areas (SWISSTOPO 2003). 

We selected 17 landscape variables (Table 2) representing different types of land 

cover which have been shown to affect amphibian distribution in Switzerland (Pellet 

et al. 2004b) and which were available for all the studied sites. Landscape variables 

characterize the landscape composition (i.e. the type and amount of landscape 

components (Forman and Godron 1986) in the landscape surrounding the breeding 

ponds. 

 

Table 2. Landscape composition variables (17) extracted in each of 17 circles of radii 
from 100 m to 3000 m from ponds. A total of 289 variables (17 variables x 17 circles) 
describe the landscape around each breeding pond. 

Variable Description Unit 
AGRI Proportion of arable lands and pastures % 
FOREST Proportion of forest % 
LAKE Proportion of lakes % 
URBAN Proportion of urban areas % 
VINE Proportion of vineyards % 
ORCHARD Proportion of orchards % 
MARSH Proportion of marsh % 
BUSH Proportion of bushes and hedgerows % 
MINERAL Proportion of mineral extraction sites (gravel pits) % 
MAINRIVER Proportion of main rivers % 
RIVER Total length of rivers divided by the disk area m/m2 
ROAD1CLASS Total length of 1st class roads divided by the disk area m/m2 
ROAD2CLASS Total length of 2nd class roads divided by the disk area m/m2 
ROAD12CLASS Total length of 1st class roads + 2nd class roads divided by the disk area m/m2 
HIGHWAY Total length of highway divided by the disk area m/m2 
RAILROAD Total length of rail road divided by the disk area m/m2 
HEDGE Total length of hedgerows divided by the disk area m/m2 
 

 

 In order to estimate the distance at which the adjacent landscape affected 

amphibian presence in a breeding pond, we extracted landscape composition 

variables at multiple spatial scales (Pellet et al. 2004b). These variables were 

calculated on the basis of 17 concentric disks of different radius (100, 200, …, 900, 

1000, 1200, 1400, 1600, 1800, 2000, 2500 and 3000 m) centered on each of the 

breeding ponds. Large scales were chosen because recent studies suggest that land 
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use at 2000 m and beyond could affect amphibian species occurrence (e.g. 

Houlahan and Findlay 2003). Variables measured at different scales were labeled by 

adding the radius of circle to the name of the land use (i.e. FOREST100, 

FOREST200, …). Thus a total of 289 landscape variables (17 variables x 17 disks) 

were measured for each breeding pond. Automated variable extraction was 

programmed in Mapbasic 7.5 software (Mapinfo corporation © 1985-2003). 

Connectivity 

 To estimate the effect of connectivity on species occurrence we computed an 

additional variable (CONNECTi, equation 1) measuring the connectivity of each patch 

i, assuming a negative exponential dispersal kernel. The negative exponential 

relationship weights the effect of distance on patch connectivity and is derived from 

metapopulation theory (Hanski 1999). 

 

   
α α− −

≠ ≠
=∑ ∑( ) ( )/ij ijd d

i j
j i j i

CONNECT e y e    (eq. 1) 

 

In equation 1, dij is the distance between patch i and j. yj is a binary variable which 

gives information about the state of occupancy of the patches j (yj=1 if the focal 

species is present and yj=0 if absent). The parameter α scales the effect of distance 

to migration (1/ α is the average migration distance of the species). Because no 

information is available on the dispersal distance of the species in the study area and 

the literature on the distance of species movement is limited and often only 

approximate (e.g. the maximal distance of dispersion of adults, but a maximum does 

not characterize a population well) (Smith and Green 2005), we analyzed the effect 

of different average migration distances (100 m, 500 m, 1000 m and 2000 m). These 

preliminary analyses showed that the strongest association between the occurrence 

of all the species and the variable CONNECTi is obtained when an average migration 

distance of 1 km is used (Zanini et al., unpublished data). 

 Spatial autocorrelation (SA) is often encountered in ecological data (Lichstein et 

al. 2002) and may be source of problems if not properly addressed. Indeed, if the 

presence of species in a breeding pond could be in part predicted by their presence 

in the neighboring ponds (positive SA), then observations are not statistically 

independent and consequently we might encounter statistical errors (incorrect 
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estimation of the degree of freedom). The magnitude of habitat effect tends to be 

overestimated and the relative importance of different habitat variables can shift 

(Borcard et al. 1992, Legendre 1993, Augustin et al. 1998, Lichstein et al. 2002, Klute 

et al. 2002, Legendre et al. 2002). Here, we ensure the correct applicability of 

statistical tests because CONNECTi is an extension of the measure of SA proposed 

by Augustin et al. (1996), which is used to integrate the spatial variance of response 

variables with presence/absence data and species-specific dispersal parameters 

(Zanini et al. submitted). 

Statistical analyses 

 We used binary logistic regression (presence/absence of the focal species being 

the response variable) to investigate the effect of various models on species 

occurrence (Hosmer and Lemeshow 1989). We designed models starting with the 

simplest one (univariate) and finishing with the most complex (Table 3). The first 3 

candidate models included a single factor each: region (R), altitude (A), and 

CONNECT (C). We also considered models that included all pair-wise combinations 

of these variables and a model that included all three variables. Next, we considered 

models with the three basic variables R, A, and C where a landscape variable was 

added. This landscape variable was one land use type at one distance (e.g 

FOREST100: % forest in a buffer of 100 m). Finally, we added the interaction 

landscape variable by region to test whether landscape composition affected species 

in the same way in all regions. We fitted 585 models to each of the 6 amphibian 

species. 

 

Table 3. Summary of the 585 candidate models used for modeling the distribution of 
6 amphibian species in five regions of Switzerland. 

Model predictors # 
REGION 1 
ALTITUDE 1 
CONNECT 1 
REGION+ALTITUDE 1 
REGION+CONNECT 1 
ALTITUDE+CONNECT 1 
REGION+ALTITUDE+CONNECT 1 
REGION+ALTITUDE+CONNECT+Landscape 289 
REGION+ALTITUDE+CONNECT+Landscape+INTERACTION* 289 

Notes: For a description of Landscape variables see Table 2. # indicates the number of models. 
* region-by-landscape interaction 
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 We used an information-theoretic model selection approach to identify the 

models that were best supported by data (Burnham and Anderson 2002). We used 

Akaike’s information criterion (AIC) to rank models according to their strength support 

from the data and the Akaike weight (w) to estimate the relative weight evidence for 

each model (Burnham and Anderson 2002). w can be interpreted as the probability 

that model i is the best model for the observed data, given the candidate set of 

models. The sum of the Akaike weight of all models is 1.  

 We determined the relative importance of spatial scale on species distribution by 

cumulating the Akaike weight of models incorporating landscape variables measured 

in the same circle radius around ponds (e.g. accumulated Akaike weight at 

100m=w(AGRI100)+w(FOREST100)+…+w(HEDGE100)).  

 Statistical procedures were implemented in R 2.1.0 (R Development Core Team 

2005). 

Results 

Landscape variables, geographic variation and connectivity 

 The results of model selection are shown in Table 4. The models best supported 

by the data always included region, altitude, connectivity, a landscape variable and in 

about half of the cases an interaction. The explained deviance of the best models 

ranges between 5% (B. Bufo) to 32% (R. dalmatina) and the Akaike weights ranged 

between 0.07 (R. dalmatina) to 0.45 (R. esculenta complex). The best model 

included interaction between landscape variable and region for the three more widely 

distributed species (B. bufo, R. temporaria and T. alpestris). The landscape variables 

interacting with region were HEDGE1000, VINE2500 and RIVER3000, respectively. 

However, the best models for these three widespread species explained only a small 

proportion of the deviance and had low Akaike weights (Table 4). The effects of 

landscape variables on predicted occupancy and their interaction with region are 

shown in Figure 2. The occupancy probability of a site was associated positively, 

negatively or not affected by landscape variable as a function of the region.  

 For the three rarer species (R. esculenta complex, R. dalmatina and H. arborea), 

the best models did not include interactions, but other top-ranking models with high 

Akaike weights included it (Table 4). The landscape variables retained in the best 
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models were MARSH100, MARSH200 and FOREST100, respectively. Even if there 

were no interactions between the landscape variable and region in the best models, 

different regions had different probabilities of occupancy for the same value of the 

landscape variable (i.e. there is an effect of the region on pond occupancies; Figure 

2). For example, no matter how much marsh was present, the predicted occupancy 

of Rana esculenta complex was always highest in Bern and lowest in Ticino (Figure 

2). For only one species, R. dalmatina, the predicted occupancy with the best model 

is not affected by region. 

 Connectivity alone explained about more than half of the deviance that the best 

model for each species explained (Table 4). For species where the models explained 

a substantial amount of deviance, connectivity alone explained 27%, 18% and 18% 

(for R. dalmatina, R. esculenta complex and H. arborea, respectively). The absolute 

effect of connectivity varied across regions (but note that we did not include 

connectivity-by-region interactions; Figure 3). For some species (e.g. Rana esculenta 

complex), we predicted markedly different probabilities of occupancy at the same 

level of connectivity whereas for other species predicted occupancy at all 

connectivities was the same in all regions (e.g. Rana dalmatina). 

 

Table 4. Model selection results. Models are ranked by their Akaike weight (in 
decreasing order). For clarity, models that include landscape variables with Akaike 
weight <0.05 are not shown.  

Species Model structure† K‡ Regression 
coefficients AIC§ Akaike 

weight D2! 

   Landscape (L)   C L    
Bufo bufo          
 R+A+C+  HEDGE1000 INTERACTION 6 0.55 527.00 803.73 0.11 5% 
           

 C    2 1.73  811.06 0.00 2% 

 A+C    3 1.58  811.30 0.00 2% 
 R+C    3 1.26  812.17 0.00 2% 
 R+A+C    4 1.24  813.76 0.00 3% 
 R    2   816.06 0.00 2% 
 R+A    3   817.42 0.00 2% 
 A    2   819.70 0.00 1% 
           

Rana temporaria          

 R+A+C+  VINE2500 INTERACTION 6 3.63 -0.44 832.98 0.33 13% 
 R+A+C+  VINE3000 INTERACTION 6 3.63 -1.08 834.24 0.17 13% 
 R+A+C+  VINE2000 INTERACTION 6 3.43 -5.52 834.31 0.17 13% 
 R+A+C+  VINE1800 INTERACTION 6 3.43 -2.68 835.52 0.09 12% 
           

 A+C    3 2.79  846.16 0.00 7% 
 C    2 2.85  846.95 0.00 7% 
 R+A+C    4 2.63  850.89 0.00 8% 
 R+C    3 2.73  854.13 0.00 7 % 
 R+A    3   896.18 0.00 3% 
 R    2   904.04 0.00 2% 
 A    2   905.61 0.00 1% 
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Species Model structure† K‡ Regression 
coefficients AIC§ Akaike 

weight D2! 

   Landscape (L)   C L    
           

Extension of Table 4 
           

Rana esculenta complex          

 R+A+C+  MARSH100  5 2.77 6.86 442.99 0.45 24% 
 R+A+C+  MARSH100 INTERACTION 6 2.75 8.37 446.33 0.08 24% 
 R+A+C+  MARSH200  5 2.68 12.81 447.28 0.05 23% 

           

 R+A+C    4 2.80  455.47 0.00 22% 

 A+C    3 3.14  460.09 0.00 20% 

 C    2 3.91  469.62 0.00 18% 
 R+C    3 3.70  472.21 0.00 18% 
 R+A    3   483.96 0.00 16% 
 A    2   504.04 0.00 12% 
 R    2   539.88 0.00 6% 
           

Triturus alpestris          

 R+A+C+  RIVER300 INTERACTION 6 1.80 -478.75 582.00 0.12 7% 
 R+A+C+  RIVER200  5 1.84 -182.75 582.15 0.11 6% 
 R+A+C+  RIVER300  5 1.78 -218.53 582.71 0.08 6% 
 R+A+C+  RIVER200 INTERACTION 6 1.84 -344.03 583.05 0.07 6% 
           
 C    2 2.34  590.62 0.00 3% 
 R+A+C    4 1.90  591.71 0.00 4% 
 A+C    3 2.31  591.76 0.00 3% 
 R+C    3 2.14  592.62 0.00 3% 
 R+A    3   600.33 0.00 2% 
 R    2   604.78 0.00 1% 
 A    2   607.89 0.00 0% 

          

Rana dalmatina          

 R+A+C+  MARSH200  5 4.81 28.12 201.42 0.07 32% 
           
 A+C    3 4.66  207.40 0.00 28% 
 C    2 4.91  207.63 0.00 27% 
 R+C    3 4.73  209.32 0.00 27% 
 R+A+C    4 4.73  209.33 0.00 28% 
 R+A    3   257.34 0.00 10% 
 R    2   258.43 0.00 9% 
 A    2   264.67 0.00 7% 
           
Hyla arborea          
 R+A+C+  FOREST100  5 4.13 -2.04 283.53 0.44 23% 
 R+A+C+  FOREST100 INTERACTION 6 4.11 -2.18 285.42 0.17 23% 
 R+A+C+  MARSH100 INTERACTION 6 4.26 9.70 287.80 0.05 22% 
           
 C    2 4.19  295.52 0.00 18% 
 A+C    3 4.10  296.98 0.00 18% 
 R+C    3 4.21  297.36 0.00 18% 
 R+A+C    4 4.10  298.01 0.00 18% 
 R+A    3   351.49 0.00 3% 
 A    2   352.07 0.00 2% 
 R    2   358.68 0.00 0% 

† Variable abbreviations are R=REGION, A=ALTITUDE, C=CONNECT, L=Landscape composition 
variable (see Table 2), INTERACTION=interaction REGION:Landscape 

‡ Number of parameters (intercept parameters is considered). 
§ Akaike Information Criterion 
! Explained deviance 
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B. bufo (D2=5%) 

 

R. temporaria (D2=13%) 

 

R. esculenta complex (D2=24%) 

 

T. alpestris (D2=7%) 

 

R. dalmatina (D2=32%) 

 

H. arborea (D2=23%) 

 

Figure 2. Prediction of the probability that ponds will be occupied depending on 
landscape variables. Predictions are based on the best model (Table 4) and using 
the mean value of ALTITUDE and CONNECT across regions. Asterisks indicate the 
best model that includes the interaction REGION:Landscape. For R. temporaria only 
three lines are observable because predictions for BE, TI and VS overlapped. 
Regions: ZH=Zurich, BE=Berne, VD=Vaud, TI=Ticino, VS=Valais. D2 is the deviance 
explained by the model. See Table 2 for landscape variable explanation. 
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B. bufo (D2=5%) 

 

R. temporaria (D2=13%) 

 

R. esculenta complex (D2=24%) 

 

T. alpestris (D2=7%) 

 

R. dalmatina (D2=32%) 

 

H. arborea (D2=23%) 

 

Figure 3. Prediction of the probability that ponds will be occupied depending on 
connectivity of sites (CONNECT). Predictions are based on best model (Table 4) and 
using the mean value of ALTITUDE and landscape variable across regions. For R. 
temporaria only three lines are observable because predictions for ZH, TI and VS 
overlapped. Regions: ZH=Zurich, BE=Berne, VD=Vaud, TI=Ticino, VS=Valais. D2 is 
the deviance explained by the model. See Table 2 for landscape variable 
explanation. 
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Spatial scale of landscape composition effect 

 In Figure 4 we illustrated the accumulated Akaike weights of models as a function 

of the circle radius within which we study the landscape effect. The relative effect of 

landscape variables was different between species. It seemed possible to rank 

species according to their sensitivity to the circle size. Thus, from small to large circle 

radii, the species sensitivity to landscape composition follows this order: H. arborea, 

R. esculenta complex, T. alpestris, R. dalmatina, B. bufo and R. temporaria. For H. 

arborea, R. esculenta complex and T. alpestris, the landscape within a circle of 100-

300 m radius around the pond best explains pond occupancy. For R. dalmatina the 

landscape within a circle of 600 m radius better explained pond occupancy, while for 

B. bufo, the radius extent was around 1000 m. Finally, for R. temporaria the 

landscape within a circle of 2500 m around the pond best explained pond occupancy.  
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Figure 4. Accumulated Akaike weights of models by circle radius. Circles are the 
sampling area within which the landscape effect is assessed and they are centered 
on ponds. 
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Discussion 

 Our main finding indicated that predictors of amphibian species occurrence had 

regional specificity. We demonstrated that for the three widely distributed species, 

the models best supported by data incorporate an interaction between region and 

landscape composition predictors. For less common species, models that included 

interactions between region and landscape factors were less supported by the data. 

However, the region had an effect on pond occupancy for two out of three rare 

species. Furthermore, we found that connectivity of ponds was an important predictor 

of species distribution, the effect being most important for the rare species. Finally, 

we noted that the landscape composition seemed to play a more important role at a 

larger distance from the breeding site for species having higher seasonal mobility.  

Geographic variation in the effects of landscape variables  

 We found that the effect of landscape composition on species occurrence varied 

across regions. Hedgerows for example, negatively affected the occurrence of B. 

bufo in the region of Bern, positively in Ticino and had a very weak overall effect in 

Vaud (Figure 2). It is difficult to provide a biological explanation of how such region-

by-landscape variable interactions arise. We believe that landscape variables act in 

concert with other habitat characteristics and this may result in the fact that a 

landscape variable affects species distribution differently in different regions. This is 

not surprising (but see Menendez and Thomas 2006), because one environmental 

factor is unlikely to play a role independently from others and a context-dependent 

effect of environmental variables on species seems to be a more realistic view 

(Blaustein and Kiesecker 2002). 

 Region-by-landscape variable interactions suggest that models are specific to a 

region and cannot be generalized to other regions or that the transfer to other regions 

would require that the biological mechanism creating the interaction is understood 

and its effect can be predicted. Because the mechanisms creating the interaction can 

be related to a large set of factors specific to the region (e.g. spatial arrangement of 

habitats, presence of introduced species, water chemistry, history of experiencing 

particular stressors, diseases, predators … ) it seems difficult and probably time- and 

cost-consuming to detect it. Thus, from a conservation point of view the region-by-
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landscape interaction is bad news. We therefore suggest a cautionary use of 

predictive habitat models in conservation. 

 However, region-by-landscape interactions had a stronger support from the data 

for species where the overall explanatory power (i.e. proportion of deviance 

explained) was low. This was the case for the more widely distributed species (Table 

4). Our models explained more deviance and had weaker evidence for interactions 

for the less widely distributed species (R. esculenta complex, R. dalmatina and H. 

arborea). These species are of conservation concern and there is a greater need to 

quantify habitat-species associations and build valid predictive models of their 

distribution. For these three species, geographic variations in landscape composition 

effects seemed unlikely to be a great nuisance. This is a positive result for these 

endangered species and the people who manage them. 

The role of connectivity  

 Our results showed that connectivity is strongly and positively associated with 

species occurrence. Populations’ connectivity has been showed to be a key to the 

regional viability of amphibian populations (Semlitsch and Bodie 1998, Marsh and 

Trenham 2001), especially because amphibian populations experience relatively 

frequent local extinctions and recolonizations (Edenhamn 1996, Alford and Richards 

1999, Vos et al. 2000, Trenham et al. 2003). The maintenance and improvement of 

inter-population individual exchange is therefore a crucial requisite for regional 

amphibian population persistence. 

 The positive effects of increasing connectivity indicate that amphibians are 

spatially organized in clusters of occupied ponds. Because immigration rates 

increase with proximity to neighboring occupied ponds (e.g. Sjögren 1991, Hanski 

1999), rescue effects may maintain populations in ponds that are reproductive sinks 

most of the time. If there is a source-sink structure, then amphibians may occupy 

suboptimal ponds (Pulliam 2000). In addition, metapopulation theory suggests that 

suitable patches could be unoccupied (Hanski 1999). Consequently, because the 

distribution of species is not only related to habitat quality, some misinterpretation of 

habitat effect may occur. This is especially important for amphibians due to their 

breeding site fidelity (Sinsch 1990). For example, Schmidt and Pellet (2005) showed 

that the distribution of two anuran species was best predicted by the number of 

calling males in previous years rather than habitat variables, supporting the idea that 

population processes are more important determinants of distribution than habitat 
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characteristics. This, in turn, makes it difficult to successfully predict amphibian 

habitat associations and may justify the generally weak effect of landscape variables 

on species occurrence found in this study.  

The effect of landscape composition 

 Although our study areas are all strongly affected by human activities (Table 

1), we did not find evidence for the expected negative effects of anthropogenic 

landscape elements such as urban area or road density (e.g. Vos and Chardon 1998, 

Knutson et al. 1999, Pellet et al. 2004b, Rubbo and Kiesecker 2005). One 

explanation may be that the variability of urban and road density value across ponds 

is too low to induce a detectable effect. An alternative reason could be that these 

predictors have no direct effect on amphibian distribution and that more proximal 

variables (e.g. traffic index rather than road density) should be used in order to define 

more causal relationships (Fahrig et al. 1995, Pellet et al. 2004a). Also, because we 

found that the most important variables represented relatively natural land covers, 

our results suggest as long as there is suitable habitat, the species will persist. In 

other words, the critical elements seem to be the availability of suitable habitats more 

than the amount of anthropogenic stressors. If this is true, then the areas with low 

anthropogenic stressors are not necessarily more favorable for species persistence 

than the areas with higher anthropogenic stressors when they have the same amount 

of suitable habitats. These considerations deserve additional investigation, in order to 

completely understand the contribution of suitable and unsuitable habitats to species 

distribution.  

The spatial scale of the landscape effect 

 Several studies have found that landscape features can be important up to 

several kilometers away from breeding ponds (e.g. Houlahan and Findlay 2003, 

Gibbs et al. 2005, Price et al. 2005). However, in our study, we found better support 

for landscape effects at a relatively small spatial scale. The landscape effect ranges 

between hundred meters to 1 km, except for R. temporaria, for which the effect 

peaked around 2500 m (Figure 4). This agreed with other work which also found a 

landscape effect at less than 1 km (e.g. Porej et al. 2004, Herrmann et al. 2005, 

Mazerolle et al. 2005, Pellet et al. 2004a). 
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 A potential important factor determining the extent of this scale is the mobility of 

the species. Here mobility refers to the distance covered each year between aquatic 

and terrestrial habitats. Species which exhibit greater annual mobility are expected to 

be more sensitive to landscape composition at a greater distance from aquatic 

habitats (Weyrauch and Grubb 2004). Our results partially support this assertion. As 

expected, we found that less mobile species are affected by landscape composition 

at shorter distances (e.g. R. esculenta complex, Holenweg and Reyer 2000). R. 

temporaria (highly mobile species, Blab 1986) are on the contrary affected by 

landscape composition up to larger distances from breeding ponds than other 

species (Figure 4). Nevertheless, we failed to find a large spatial scale for the effect 

of landscape composition on B. bufo occurrence. This toad is known to be a highly 

mobile species, using terrestrial habitat at several km from aquatic site (Heusser 

1968).  

 The species-specific response to the scale of landscape has important 

implications for species conservation and management. First, variables measured at 

only one landscape scale (e.g. within 200 m radius from ponds) did not adequately 

predict occurrences of all species. In the same way, conservation measures at a 

given scale are unlikely to have similar effects on all species. Our results join the 

growing body of evidence that management strategies for amphibian habitats should 

be conducted at multiple scales (Mazerolle and Villard 1999, Johnson et al. 2002, 

Price et al. 2004, Van Buskirk 2005). 

Conclusion 

 The definition of efficient conservation strategies to reverse amphibian declines 

will be a great challenge for the coming years and will largely focus on the restoration 

and creation of suitable breeding habitats. We have shown that pond connectivity is 

an important predictor of many species occurrences. This underlines the necessity of 

preserving a functional network of habitat patches. This is especially true for the rarer 

species.  

 We also found evidence for a strong regional variability of the effect of landscape 

on species occurrence. This is a central but poorly understood issue, which needs 

additional research in order to determine the generalization conditions of predictive 

habitat models (Graf et al. 2006, Menendez and Thomas 2006, Randin et al. in 

press). Finally, we found that landscape composition hundreds of meters away from 

the pond affected species occurrence. This stresses again the importance of 
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incorporating also landscape features at large-scale into the management strategies 

for amphibian species. 
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Abstract 

 Species movement and accessibility to terrestrial habitats are dependent on 

landscape permeability. Corridors, such as river banks or hedgerows, favor 

movement while barriers, such as built areas and road network, are obstacles. 

However, in amphibian autoecology the common practice is to use predictive 

variables extracted from circular buffers around ponds for the development of 

species-habitat models. The main assumption is that species are affected by a 

particular landscape element equally in every direction from a given pond. In 

accordance with previous considerations, this could be erroneous since barriers or 

inhospitable surfaces may reduce movement patterns and reshape the ideal circular 

surface into a non-circular. In this study, we developed a method to determine the 

effect of habitat variables on amphibian species distribution considering physical 

barriers of their movement around ponds. We studied two amphibian species: the 

common toad (Bufo bufo) and the common frog (Rana temporaria) in a highly 

fragmented landscape in the Rhone plain, Switzerland. We computed pond scale and 
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landscape scale variables (up to 3 km) within (i) “circulars buffers” (CB) and (ii) 

“barriers-based buffers” (BBB). BBB were produced by reducing the boundaries of 

CB according to barriers in the study area. Our results show that the BBB approach 

increases the explanatory power for (i) the majority of the predictors and (ii) the 

multiple models representing the effects of landscape variables at various distances 

from the ponds. These results suggest that the proposed BBB approach is 

ecologically more valid than to the traditional CB analyses of species-habitat 

relationship. Our study clearly shows the necessity to consider landscape 

permeability in species distribution models in order to avoid incorrect inferences. 

 

Key words: Rana temporaria, Bufo bufo, movement, landscape permeability, 

barriers, landscape resistance, circular and non-circular buffers, conservation, 

Switzerland 

Introduction 

 Amphibian populations have been declining worldwide for several decades 

(Houlahan et al. 2000) and are more threatened than either birds or mammals (Stuart 

et al. 2004). A series of factors affecting amphibian populations have been identified. 

Amongst these factors, we can list climate change or increased UV-B exposure and, 

at a more local scale, habitat destruction, agrochemicals and chemical pollution, 

(invasive) introduced species, human exploitation and disease (for a review see 

Alford and Richards 1999). Information on the effect of habitat variables on the 

distribution of species may be very useful for conservation and landscape planning, 

for example by assisting managers in identifying suitable sites for new pond creation 

(e.g. Vos and Chardon 1998, Pellet et al. 2004a). 

 Habitats surrounding breeding ponds are indispensable for the survival of ponds-

breeding and dual (aquatic and terrestrial) life-cycle amphibian species. The effect of 

this surrounding landscape on amphibian occurrence in ponds is traditionally 

analyzed within circular buffers (concentric disks) centered on ponds (e.g. Knuston et 

al. 1999, Findlay et al. 2001, Guerry and Hunter 2002, Pellet et al. 2004b, Rubbo and 

Kiesecker 2005, van Buskirk 2005, Denoel and Lehmann in press) and by using 

circular buffers of different radii to estimate the scale-dependency effect (e.g. Findlay 

and Houlahan 1997, Vos and Chardon 1998, Pope et al. 2000, Carr and Fahrig 2001, 
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Joly et al. 2001, Johnson et al. 2002, Houlahan and Findlay 2003, Pellet et al. 2004a, 

Knutson et al. 2004, Herrmann et al. 2005). The use of circular buffers assumes that 

the landscape has an isotropic effect on the species presence, so that species are 

affected by a particular landscape element equally in every direction from a given 

pond. However, it is likely that frictions in the landscape, such as barriers or 

inhospitable surfaces, reduce movement patterns (e.g. Marsh et al. 2005, Gibbs 

1998) and reshape the ideal circular surface into a non-circular form, which would 

better reflect the real use of terrestrial landscapes by amphibians. Accordingly, the 

effect of the terrestrial habitats surrounding the breeding ponds may be better 

described studying non-circular buffer areas around the ponds. Ray et al. (2002) 

found that land-use variables computed in friction-based buffers from breeding 

ponds, improved the prediction of toad presence when compared to circular zones. 

As a consequences, it is likely that not taking landscape permeability (i.e. the quality 

of a heterogeneous land area to provide passage for animals (Singleton et al. 2002)) 

into account may produce distortions (under- or over-estimations) of habitat effect on 

species distribution and consequently errors in conservation planning. 

 Landscape permeability is fundamental for species persistence because it 

determines the possible movement for an individual. Movements can lead to the 

access of resources, genetic exchanges among populations, colonization of new 

habitats and re-colonization after local extinction (Hanski 1999). The effect of 

landscape permeability on movement can be important especially for ground-dwelling 

animals, such as amphibians, which are more sensitive to the physical quality of the 

landscape (Wiens 1997). However, in spite of its importance, estimating landscape 

permeability is difficult task because of the lack of information about the permeability 

of different land-uses and the difficulty of ascribing a permeability coefficient to each 

habitat type (Pither and Taylor 1998). For amphibians, such information is usually 

time- and cost-demanding because it requires intensive fieldwork and expensive 

radio-tracking equipment (Vos 1999). An alternative is the use of expert knowledge to 

appreciate land-use friction to species movement. This approach introduces the 

subjectivity of expert assessment but may be valuable in landscape planning and 

biodiversity conservation (Ray et al. 2002, Vuilleumier and Prelaz-Droux 2002, 

Adriaensen et al. 2003, Chardon et al. 2003, Joly et al. 2003, Verbeylen et al. 2003). 

 The goal of our study is to assess the effect of local scale (ponds) and landscape 

scale variables (terrestrial habitat surrounding the ponds up to 3 km) on the 

occurrence of two widely distributed amphibian species. We test whether species 
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occurrence is predicted better by landscape variables extracted within 1) traditional 

circular buffers or 2) non-circular buffers based on the terrestrial area potentially 

accessible by individuals. We call these buffers “Barrier-based buffers” (BBB) 

because they were computed by removing from circular buffers (CB) the areas non 

accessible due to impassable barriers. Our hypothesis is that landscape variables 

within BBB better explain species distribution than CB. We assume that BBB more 

realistically represents the use of terrestrial habitats by amphibians.  

Methods 

Study area and species 

 The study area is located in southwestern of Switzerland, in the Rhone Plain 

(Valais) below 1000 m a.s.l. (Figure 1). The plain has an average width of 2-3 kms 

and is bordered to the south and to the north by the Swiss Alps. Apart from villages 

and small cities (13.8%), agriculture (essentially orchard and vineyards) is the 

predominant land-use in the plain (76.6%) (Zanini et al. submitted). The canalized 

Rhone river, the highway and the railway divide the study area lengthwise (Figure 1). 

 

 

Figure 1. Study area and 88 visited ponds in the Rhone plain, Central Valais, 
Switzerland. We show, with the example of one pond, the 17 non concentric disks 
(i.e. barrier-based buffers) from which landscape variables are extracted. The radii of 
buffers vary from 100 m up to 3 km. In order to not overload the map, land-uses are 
not shown. (MNT25, © Swisstopo 1995). 

Switzerland 
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 We studied two amphibian species: 1) Bufo bufo (the common toad), which used 

to be well distributed all over Switzerland but is now in decline (Schmidt and 

Zumbach 2005), and 2) the Rana temporaria (the common frog), which is still wide-

spread in Switzerland and currently not threatened (Schmidt and Zumbach 2005). 

Species were considered present in ponds if at least one of the breeding indicators 

(calling males, tadpoles, juveniles or amplexus) was detected at least once between 

1997 and 2003. Data on presence/absence of the species in 88 ponds (Figure 1) was 

provided by the Swiss Amphibian and Reptile Conservation Program (KARCH) and 

by Paul Marchesi (Environmental office DROSERA SA). B. bufo was found breeding 

in 37 of the 88 sites (prevalence of 42%), while R. temporaria was breeding in 49 

(prevalence of 56%).  

Pond scale predictors 

 Pond scale habitat variables were collected during field surveys in July and 

August 2004 (Table 1). Two persons visited each breeding site once. 

 The abiotic factors, fish presence, the vegetation cover and the land-cover in a 

radius of 30 meters around the ponds (Table 1: A, C and D) were estimated by 

eyesight. The presence/absence of fish (Fish) was determined upon whether it 

individuals were seen or not. Temporary breeding site (Dry) were determined if there 

was no water visible in the pond during the visit. 

 Three measures were made to access the chemical characteristics (water 

pollution) of the water for each site (Table 1, B): (i) pH (water acidity), (ii) conductivity 

(dissolved ions) and (iii) nitrate (concentration of nutrients). Measurements of pH and 

water conductivity were made 1 m from the bank in three different locations around 

the pond using a pH-meter (WTW model pH 330) and a conductivity-meter (HACH 

model 44600). The mean values of the pH and conductivity were used for statistical 

purpose. Water samples were taken from each breeding site and analyzed the same 

day using a spectrophotometer in order to assess the nitrate concentrations, (HACH 

model DR/2000, Cadmium reduction method (0-132mg/l N03-), 500nm). 
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Table 1. Pond scale predictors measured on each of 88 ponds during July and 
August 2004. 

Predictor abbreviation Description 

A) Abiotic factors and fish presence 

Typ type of site (swamp, pond, gravel pit, puddle, pool, canal, other) 

Sub type of substratum (gravel, alluvial soil, peat, sand/clay, calcareous, 
concrete, other) 

Surf surface of water body (m2) 
Per perimeter of water body (m) 
Depth depth of the pond (m) 
Sun evaluation of the hours of direct sunshine in hours  
Dry summer draining (binary variable) 
Wbank slope of the bank that is weak (<30°) in % 
Mbank slope of the bank that is medium (30°- 60°) in % 
Abank slope of the bank that is steep (>60°) in % 
Fish presence-absence of fish (binary variable) 
  

B) Water chemistry  
pH mean of three pH measurements (mg/l) 
Cond mean of three conductivity measurements (mS/cm) 
NO3- nitrate concentration (mg/l) 
  

C) Ponds vegetation (%) 

Alg cover of floating algae 
Float cover of floating plants 
Nofloat surface of the pond which is not covered with floating algae or plants 
Up cover of standing plant 
Shrub cover of shrubs 
Tree cover of trees 
Open surface of the pond which is not covered with shrubs or trees 
  

D) Land-cover in a radius of 30 meters around the ponds (%) 

Pal30 cover of aquatic zones 
Marsh30 cover of marsh 
Grav30 cover of gravel 
Rude30 cover of pioneer vegetation 
Agri30 cover of cultivated land 
Grass30 cover of grassland, meadow, pasture or lawn 
Bush30 cover of shrub 
Forest30 cover of forest 
Built30 cover of built land 
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Landscape scale predictors and barrier-based buffers (BBB) 

 Landscape variables in the wider surroundings of the breeding sites, were 

measured using Mapbasic 7.5 and Mapinfo 7.5 GIS software (Mapinfo corporation © 

1985-2003), and based on land-use data derived from the VECTOR25, the vector 

format of the 1:25000 topographical maps of Switzerland. The Swiss Federal Office 

of Topography provides this database and its precision is approximately 3-8 meters 

(SWISSTOPO 2003). Landscape variables (Table 2) were measured in so-called 

“barrier-based buffers” (BBB) around the ponds and for comparison also in classical 

circular buffers (CB).  

 BBB represent an approximation of the potential amphibian movement area 

around the breeding sites. This area depends on how landscape favors or hinders 

amphibian movement. In order to estimate this potential amphibian movement area, 

we first computed 17 CB of different radius centered on each breeding ponds (100, 

200, 300, …, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500 and 3000 m). The 

largest discs were chosen according to potential amphibian mobility and based on 

recent studies suggesting that landscape variables within 2000 m and beyond could 

affect amphibian species occurrence (e.g., Houlahan and Findlay 2003).  

Secondly, we deleted the surfaces in each CB likely to be inaccessible to B. bufo and 

R. temporaria, i.e. surfaces separated from the central breeding site by barriers 

defined as insurmountable for both species. In our study, we considered three linear 

topographical elements as insurmountable barriers: the Rhone River, three additional 

canalized rivers and the highway (Figure 1). 

 Finally, we extracted the landscape variables from each of these BBB (Table 2). 

The 14 variables represent different land-uses that may potentially affect amphibian 

distribution (Pellet et al. 2004a), and which cover together 100% of the surface in the 

buffers. The analysis of land-use at various buffer radii around the breeding sites 

(multi-scale sampling) allowed us to estimate the distance at which landscape 

variables affect the amphibian use of ponds (Pellet et al. 2004a). 

 We acknowledge that the analysis made for the different buffer radii are 

statistically not independent, because larger buffers include the smaller ones. 
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Table 2. Landscape scale predictors (14) representing different land-uses in barriers-
based buffers (BBB) and circular buffers (CB) of radii between 100 and 3000 meters 
around the breeding sites. The surface of BBB is also used as a predictor. 

Predictor abbreviation Description 
Agri surface of arable land and pasture (m2) 
Forest surface of forest (m2) 
Lake surface of lakes (m2) 
Urban surface of urban areas (m2) 
Vine surface of vineyards (m2) 
Orchard surface of orchards (m2) 
Marsh surface of marsh (m2) 
Bush surface of bush (m2) 
Mineral surface of mineral extraction sites (m2) 
River total length of rivers (m) 
Road1class total length of 1st class roads (m) 
Raod2class total length of 2nd class roads (m) 
Railroad total length of rail roads (m) 
Hedge total length of hedgerows (m) 
  

BBB area Surface of barriers-based buffers (m2) 
 

Statistical analysis 

 We computed Moran’s I (Moran 1950, Legendre 1993) for distance classes of 1 

km to ensure that the ponds were independently distributed over our landscape and 

not located in clusters of occupied and empty ponds (i.e. no spatial autocorrelation). 

1000 permutations were calculated to determine if spatial autocorrelation was 

significantly different from zero (p value<0.05) for all distance classes. We used the 

“ncf” package of R 2.1.0 (Bjørnstad 2001-2004) to calculate Moran’s I and the 

associated statistics. 

 We tested associations between amphibian occupancy and habitat variables (at 

pond and landscape scale) with logistic regression models (Sokal and Rohlf 1995). 

We used habitat variables as explanatory variables (predictors) and the presence or 

absence of a species as the binary response.  

 We first analyzed all predictors separately using univariate models. All predictors 

whose explained deviance (D2) and regression coefficient were both significant at the 

5% level were considered relevant (Hosmer and Lemeshow 1989). Then, we used 

multiple logistic regression in order to analyze the effect of buffer radius and the 

simultaneous action of the variables. We built up a model for each one of the 

eighteen spatial scales (pond scale and 17 buffers radii) considering pond scale 

predictors together with landscape predictors from same size buffers. Having one 
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model per buffer radius allowed us to identify the radius around the breeding sites, 

which was best correlated with species occurrence. 

 The multiple logistic regressions analyses followed two methodological steps: 1) 

we used the previous results of the univariate logistic regression and we kept all 

predictors whose regression coefficient was significant at the 0.25 level for further 

analyses (Hosmer and Lemeshow 1989). Secondly, we ranked this variables in the 

multiple logistic model by decreasing p-value and we carried out a “both” stepwise 

regression using the stepAIC function from package MASS of R 2.1.0 (R 

Development Core Team 2004).  

 We used the Akaike Information Criterion (AIC) to rank final models according to 

their strength support from the data and the Akaike weight (w) to estimate the relative 

weight evidence for each model (Burnham and Anderson 2002, Johnson and 

Omland 2004). Best models have min AIC value. w can be interpreted as the 

probability that a model i is the best model for the observed data, given the candidate 

set of models. The sum of all Akaike weights is 1. Explained deviance was adjusted 

taking into account the number of observations and the number of parameters in the 

model (adjusted D2) (Guisan and Zimmermann 2000). The same statistical procedure 

was used for CB and BBB.  

Results 

Characteristics of ponds, landscape predictors and barrier-based buffers  

 Moran’s I statistics indicated that there was no spatial autocorrelation in response 

variables. The observations of species in ponds were independently distributed 

validating the species-habitat statistical tests. 

 General statistics of pond scale variables revealed alkalinity (pH: 8.10±0.058) 

and oligotrophic conditions (Cond: 0.61±0.045 mS/cm; NO3-: 2.42±0.522 mg/l). The 

standard error (SE) of nitrate values was relatively large, which indicated a high 

dispersion around the mean value. The nitrate concentration varied between 0 and 

29.04 mg/l. In 80% of the breeding sites it was lower than 3.3 mg/l. The surface of 

the water body fluctuated between 20 m2 and 80 000 m2 (7613±1622 m2). Fish were 

observed in 30 of the 88 breeding sites. In the surroundings of the breeding sites 

agriculture area were predominant. For example in a radius of 300 m, arable land, 
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pasture, vineyards and orchards together made up 69%, forest 11% and urban area 

10% of the land-cover. 

 As expected, differences in area of BBB and CB raised as the buffer radii 

increased (Figure 2). At 1000 m radii, the mean value of the BBB corresponded to 

62% of the CB area with the same radius. The proportion was lowest at 3000 m 

radius (45%). This confirmed that in our study, selected insurmountable barriers 

considerably reduced potential amphibian accessibility to the terrestrial habitat.  

 

 

 

Figure 2. The mean area of buffers surrounding the ponds at different radii for 
barrier-based buffers (BBB) and circular buffers (CB). BBB correspond to CB 
reshaped according to major amphibian movement barriers (see the text for more 
details). 

 

Single predictors’ effect 

 We observed differences on predictors’ effect between BBB and CB approach 

(Table 3). We first presented the results from the BBB analyses and then the 

differences with respect to the CB analyses. 
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Table 3. Explained deviance (D2) for single variable models at pond scale (A) and at 
landscape scale level (B). Only the variables with regression coefficient and 
explained deviance significant at the 5% level are presented.* 

Bufo bufo

A) Pond scale predictors

Surf 6

Depth 4

B) Landscape scale predictors and buffer radius (m)
100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2500 3000

Agri BBB - - - - - - - - - - - - - - - - -
CB (-) 4 (-) 5 (-) 4 (-) 4 - 3 4 - - - - - - - - - -

Forest BBB - - - - - - - - - - - - - - - - 4
CB - - - - - - - - - - - - - - - - -

Lake BBB 5 5 - - - - - - - - - - - - - 4 5
CB 4 - - - - - - - - - - - - - - - -

Mineral BBB - - - - - - - - - - - - - - - - -
CB - 4 4 4 - - - - - - - - - - - - -

Road1class BBB - - - - - - - - - - - - - - - - -
CB - - - - - - (-) 4 - - - - - - - - - -

Road2class BBB - - - - - - 4 5 4 5 4 4 3 4 3 - -
CB - - - - - - - - 4 4 - - - - - - -

Rana temporaria

A) Pond scale predictors

Built30 (-) 4

B) Landscape scale predictors and buffer radius (m)
100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2500 3000

Agri BBB - - - - - - - - - - - 5 7 9 10 13 12
CB - - - - - - - - - - - - - - - - -

Bush BBB - - - 7 6 6 8 8 9 9 7 10 11 9 7 - -
CB - - - - - - - - - - - - - - - 4 -

Forest BBB 5 7 6 7 9 10 11 12 12 13 13 12 11 10 9 9 9
CB 5 6 4 5 6 6 6 6 6 6 5 4 4 - - - -

Hedge BBB 4 - - - - - - - - - - - - - - 7 7
CB - - - - - - - - - - - - - - 6 - -

Mineral BBB - - - - - 6 8 8 8 8 10 10 10 11 12 11 11
CB - - - - - 4 - - - - - - - - - - -

Orchard BBB - - - - - - - - - - - - - - - - -
CB (-) 4 (-) 5 (-) 7 (-) 8 (-) 7 (-) 7 (-) 6 (-) 6 (-) 6 (-) 5 (-) 6 (-) 6 (-) 5 (-) 4 - -

River BBB - - - - - - - - - - - - - - 4 5 6
CB - - - - - - - - - - - - - - - - -

Road1class BBB - - - - - - - - - - - - - - - - -
CB - - - - - (-) 4 (-) 4 (-) 4 (-) 4 (-) 5 - - - - - - -

Road2class BBB - - - 4 5 7 8 7 7 8 8 7 6 7 6 7 7
CB - - - - - - - - - - - - - - - - -

Urban BBB - - - - - - - - - - - - - - - - 4
CB - - - - - - - - - - - - - - - - -

BBB area 4 5 4 4 - - - - - - - - - - - - -  
* BBB: barrier-based buffers, CB: circular buffers, bold indicates D2>10% and (-) indicates negative 
regression coefficients. 
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 For B. bufo, the area of the ponds (Surf) and their depth (Depth) had a positive 

effect (Table 3). The forest surface had a significant effect only in the largest buffer 

radius, whereas area of lake (Lake) had a significant effect in the smallest and in the 

largest buffer radii. The density of second class roads (Road2class) had a significant 

and positive effect in radii between 700 and 2000 meters (Table 3). Explained 

deviance was always inferior to 6% revealing that any single variable had an 

important explanatory power.  

 We found that, at the pond scale, the occurrence of R. temporaria was negatively 

associated with the surface of urban area within 30 m from the ponds (Built30). In 

addition, eight landscape variables had a positive and significant association in 

various buffers radii (Table 3). The highest explained deviance (13%) was found for 

forest area (Forest) within buffer of 1000 m and 1200 m radii, and for agriculture area 

(Agri) at a radius of 2500 m. The majority of the significant associations explained 

less than 10% of the deviance, but globally the correlations were more important for 

R. temporaria than for B. bufo. There were 1) three types of land-use, which had a 

significant positive influence in several buffer radii (Forest, Bush and Mineral); 2) 

three had a low explained deviance and a not well supported correlation (River, 

Urban and Hedge) and 3) two had a positive and relatively strong effect (Agri and 

Road2class). We also found a positive association with the area of the buffers (BBB 

area) between 100 and 400 m. 

 The most evident differences of CB variables effect compared to BBB are (i) the 

apparition of significant negative effects of some variables (e.g. Road1class and 

Orchard) and (ii) the general reduction of the model explained deviance (e.g. Forest) 

(Table 3). This will be discussed later. 

The spatial scale of the landscape effect 

 Multiple logistic models were computed with variables from identical buffer 

radius. Doing so, it was possible to compare models and determine the distance from 

the ponds where the landscape was most associated with species occurrence. Three 

main results should be emphasized in relation to BBB. 1) We found that using 

multiple regression models (Table 4) allowed us to explain a larger proportion of the 

deviance than using single covariate models (Table 3). The adjusted explained 

deviance was around 40% for the best multiple models and for both species (Table 

4). 2) The models based on the sole pond scale predictors had a limited capacity to 

support data (w=0.001 for B. bufo and w=0.000 for R. temporaria) (Table 4) and the 
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addition of landscape variables considerably increased the weight of the models. 3) 

The best models were found at 700 m buffer radius in the case of B. bufo (w=0.490) 

and at 2000 m for R. temporaria (w=0.242) (Table 4). However, we found substantial 

support (∆AIC<3) as well for others models and for both species. Figure 3 shows the 

distribution of the Akaike weight as a function of buffer radii. 

 

Table 4. Model selection, number of parameters (k), explained and adjusted 
deviance (D2, adj.D2). Models are ranked in an increasing AIC order. w is the Akaike 
weight of the model.* 

Bufo bufo Rana temporaria

Barrier-based buffers Barrier-based buffers
Radius k D2 adj.D2 AIC ∆AIC w Radius k D2 adj.D2 AIC ∆AIC w
700 12 47% 39% 88.004 - 0.490 2000 10 47% 41% 83.631 - 0.242
800 12 46% 38% 89.066 1.062 0.288 2500 10 47% 41% 84.364 0.733 0.168
600 12 44% 36% 90.795 2.791 0.121 3000 10 46% 40% 85.543 1.911 0.093
500 12 42% 34% 93.361 5.357 0.034 900 9 44% 38% 85.681 2.050 0.087
1200 9 35% 28% 96.120 8.116 0.008 1000 12 49% 42% 85.748 2.117 0.084
300 13 41% 32% 96.430 8.426 0.007 1800 10 45% 39% 86.465 2.834 0.059
1600 8 33% 27% 96.450 8.446 0.007 800 10 45% 39% 86.508 2.877 0.058
3000 9 34% 28% 96.516 8.512 0.007 1200 12 48% 40% 86.819 3.187 0.049
1400 9 34% 28% 96.546 8.542 0.007 700 10 44% 38% 87.148 3.517 0.042
2000 9 34% 28% 96.839 8.835 0.006 400 10 44% 38% 87.483 3.851 0.035
1800 8 32% 27% 96.876 8.872 0.006 1400 10 44% 37% 88.058 4.427 0.026
900 11 37% 29% 97.247 9.243 0.005 600 10 44% 37% 88.241 4.610 0.024
1000 11 37% 28% 97.811 9.807 0.004 500 11 44% 37% 89.262 5.631 0.015
2500 8 31% 25% 98.061 10.057 0.003 1600 11 43% 36% 90.439 6.808 0.008
400 11 36% 28% 98.114 10.110 0.003 200 10 40% 34% 91.957 8.326 0.004
100 8 31% 25% 98.921 10.917 0.002 300 11 42% 35% 92.017 8.386 0.004
200 7 28% 22% 100.747 12.743 0.001 100 9 38% 31% 93.264 9.633 0.002
pond 6 26% 21% 100.888 12.884 0.001 pond 7 29% 24% 99.938 16.307 0.000

Circular buffers Circular buffers
Radius k D2 adj.D2 AIC ∆AIC w Radius k D2 adj.D2 AIC ∆AIC w
1000 8 38% 33% 90.149 - 0.621 1000 10 44% 37% 87.918 - 0.278
1200 8 35% 29% 93.658 3.509 0.107 1400 9 42% 36% 88.696 0.778 0.188
900 9 37% 30% 93.789 3.640 0.101 1200 10 42% 35% 89.939 2.021 0.101
1400 8 34% 28% 95.610 5.460 0.040 2000 9 40% 34% 90.705 2.787 0.069
400 11 38% 30% 95.758 5.608 0.038 900 10 41% 35% 90.802 2.884 0.066
800 8 33% 27% 96.204 6.055 0.030 800 11 43% 35% 91.113 3.196 0.056
300 10 35% 28% 97.352 7.203 0.017 2500 8 38% 32% 91.347 3.429 0.050
600 10 34% 27% 98.658 8.508 0.009 1600 9 39% 33% 91.367 3.450 0.050
500 9 32% 25% 99.391 9.241 0.006 700 10 41% 34% 91.813 3.895 0.040
700 9 32% 25% 99.727 9.577 0.005 1800 10 40% 33% 92.399 4.481 0.030
100 7 28% 23% 100.051 9.902 0.004 600 10 39% 32% 93.225 5.307 0.020
200 7 28% 23% 100.057 9.908 0.004 400 10 39% 32% 93.418 5.500 0.018
pond 6 26% 21% 100.888 10.739 0.003 500 10 39% 32% 93.960 6.042 0.014
1600 6 26% 21% 100.888 10.739 0.003 200 10 38% 31% 94.968 7.050 0.008
1800 6 26% 21% 100.888 10.739 0.003 100 9 36% 29% 95.806 7.888 0.005
2000 6 26% 21% 100.888 10.739 0.003 3000 8 34% 28% 95.810 7.892 0.005
2500 6 26% 21% 100.888 10.739 0.003 300 10 36% 29% 97.456 9.539 0.002
3000 6 26% 21% 100.888 10.739 0.003 pond 7 29% 24% 99.938 12.021 0.001  
*adj.D2=1-[(n-1)/(n-k)]*(1-D2), n is the number of observations (88), k is the number of model 
parameters (Guisan and Zimmermann 2000). 
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 When we examined the landscape using CB, then the results are quite different. 

The best model was found at 1000 m buffer radius for both species (w=0.621 for B. 

bufo and w=0.278 for R. temporaria) (Table 4). This suggested that, for B. bufo, CB 

overestimate the scale of the effect of landscape (Figure 3). For R. temporaria, the 

difference between CB and BBB contrasted less. 
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Figure 3. Proportion of adjusted explained deviance (Adjusted D2) and Akaike weight 
for models built up within each buffers radii. Grey color represents the results for 
barrier-based buffers and white colors the ones for the circular buffers. 

 



Chapter 6 – Barriers-based buffers approach 

 109 

 A difference between BBB and CB multiple models was also found for the 

adjusted explained deviance. Generally, the adjusted explained deviance was lower 

in CB than in BBB (Figure 4). The only exceptions were buffers of 400, 900, 1000 

and 1200 m radii for B. bufo. The maximum difference was found between 500 and 

800 m for B. bufo (14.0% at 700 m) and at more than 2000 m for R. temporaria 

(11.3% at 3000 m) (Figure 4). 
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Figure 4. The difference between the adjusted explained deviance of multiple 
regression models computed with barrier-based and circular buffer variables (BBB 
and CB). Difference varies as a function of species and buffers radius. 

Discussion 

 In this study we developed a method to determine the effect of habitat variables 

on amphibian species distribution considering physical barriers (i.e. an approximation 

of real landscape permeability) to their movement around breeding ponds. We 

proposed to reshape the currently used “circular buffers” (CB) centered on each pond 

into “barrier-based buffers” (BBB). Our results showed that the BBB approach 

increases the explanatory power for (i) the majority of the predictors considered 

individually in logistics models and for (ii) the multiple models representing the effect 

of landscape variables at various distances from ponds. These results suggested that 

the BBB approach is ecologically more appropriate than traditional CB analysis of 
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species-habitat relationship. Our results are consistent with the only found study, 

which trying to consider landscape permeability in distribution models for amphibians 

(Ray et al. 2002). In addition, the differences in statistical estimates of habitat 

variables between BBB and CB (Table 3) stress the necessity to consider landscape 

permeability in species-habitat relationship studies in order to avoid potential 

distortions of the results and errors in the definition of conservation strategies. 

Among the most evident likely distortions that we found in our study, there is the 

overestimation of the negative effect of “first-class road” and “orchard area”, and the 

underestimation of the positive effect of the forest area.  

 The fact that the effect of habitat variables in the BBB approach generally better 

explained species occurrence than traditional CB models implies that the species 

distribution is affected by the considered barriers. This was not an obvious result 

because the species response (e.g. population extinction or population size 

reduction) to an environmental stressor (e.g. road construction, water pollution, 

habitat destruction or fragmentation) is unlikely to occur immediately. Rather, species 

responses were expected to be gradual, after the apparition of the environmental 

stressor, and will only be detected sometime later. For example, Findlay and 

Bourdages (2000) found that wetland biodiversity loss in response to road 

construction is better associated with past, rather than present, road densities. The 

effect of roads construction on ponds diversity may not actually become evident for 

decades. Similarly, a time lag between landscape changes and the reaction of 

species was found for beetle distribution by Petit and Burel (1998). The effects of 

barriers in our study were detected because the time already elapsed since their 

construction was sufficiently long to observe ecological response. For our study, time 

lags varied between decades (highway construction and tributaries canalization, 

SRCE 2006) and centuries (Rhone river canalization, Wallis 2000).  

 Pond scale and landscape scale variables were both correlated with the 

presence of B. bufo and R. temporaria. This was confirmed by previous studies on 

amphibians (e.g. Pope et al. 2000, Johnson et al. 2002, Pellet et al. 2004b, van 

Buskirk 2005) and others taxa (Mazerolle and Villard 1999) underlining the multi-

scale effects of habitats on species distribution. In our study, pond scale predictors 

together with landscape scale predictors allowed us to develop more accurate 

models than those using pond scale variables alone. This may be due to the 

relatively high mobility of the species; distances of more than 3 km have been 

observed for B. bufo (Heusser 1968, Moore 1954, in Smith and Green 2005) and 
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Baker and Halliday (1999) showed that R. temporaria and B. bufo were able to 

colonize new ponds at distances up to 950 m from existing ponds. High terrestrial 

mobility implies that individuals can interact with landscape not only in the 

neighborhood of the breeding sites but also at greater distances. 

 The strongest habitat-species association was found between forest area and R. 

temporaria occurrence (Table 3). The positive effect of forests on amphibian 

occurrence, abundance and richness in breeding ponds is one of the most consistent 

landscape-scale habitat relationships reported in the literature. Forests may be 

associated with anuran occurrence because they (i) represent undisturbed habitats 

compared with agricultural or urban areas, (ii) provide dispersal corridors between 

breeding and non breeding habitats, and (iii) ensure terrestrial habitat quality 

essential for hibernation, estivation and foraging ( Kolozsvary and Swihart 1999, 

Knutson et al 1999, Lehtinen et al. 1999, Findlay et al. 2001, Guerry and Hunter 

2002, Houlahan and Findlay 2003)..  

 According to our results, the length of second-class roads around the breeding 

sites seems to have a positive influence on the presence of B.bufo and R.temporaria 

(Table 3). This is quite surprising, as in most studies, road density has been identified 

as having a negative influence on presence, abundance and richness of amphibians 

(Vos and Chardon 1998, Findlay et al. 2001, Houlahan and Findlay 2003, Pellet et al. 

2004). The main causes for this negative correlation were traffic induced road 

mortality (Van Gelder 1973, Fahrig et al. 1995, Carr and Fahrig 2001, Mazerolle 

2004) and constraints to dispersal (deMaynadier and Hunter 2000). However, our 

results can be explained by the fact that habitats associated with second class roads, 

such as ditches, may constitute dispersal corridors. Amphibians may prefer ditches 

for their movements, as they are often humid and provide a hidden passage 

protecting against predation (Mazerolle 2005). This is especially true in the Rhone 

plain where climate is the driest in Switzerland (Encyclopedie Valais 2004). However, 

correlations found in our study were not intended to highlight causality effect. For a 

clearer interpretation, more proxy relationships between roads and species 

occurrence should be computed, such as traffic intensity indexes (e.g. Pellet et al. 

2004a). Unfortunately, this proxy analysis was not feasible in our study because of 

the lack of data.  

 We also found a surprisingly positive association between agricultural land 

(pasture and arable land) and species occurrence. This result was unexpected 

because modern agricultural practices are known as one of the main causes of 
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habitat loss and disturbance for anurans spending time underground (Kolozsvary and 

Swihart 1999, Joly et al. 2001, Dodd and Smith 2003). We believe that distinguishing 

among arable land and pasture area may help to refine the models and perhaps 

obtain more specific results. 

 Data on pond scale characteristics were collected during August and September 

2004, i.e. after the breeding period of B. bufo and R. temporaria (Brodmann 1982). It 

would have been more appropriate to measure these variables in early spring when 

both species can be found in the water. This temporal inconsistency may partly 

explain the limited explained deviance (D2<6%) and the number of significant pond 

scale variables. Nevertheless, we found that depth and ponds size are positively 

associated with the presence of B. bufo. This was consistent with other studies, 

suggesting that B. bufo prefers breeding in deep and permanent water bodies 

(Berthoud and Perret-Gentil 1976, Brodman 1982, Babik and Rafinski 2001). In 

addition, a negative effect of built-up areas within 30 m from the breeding sites was 

found for R. temporaria. Urban areas are inhospitable habitat for anurans. Housing, 

paved and industrial areas have replaced their natural habitats, induced wetland 

contamination and reduced accessibility to water bodies (e.g. Knutson et al. 1999, 

Pellet et al. 2004a, Rubbo and Kiesecker 2005).  

Conclusions 

 Increasing urbanization and habitat alterations make it particularly important to 

find ways to assess the real impact of land-cover changes on the distribution of 

natural populations. In our study, we proposed a relatively simple approach to include 

the effect of barriers to amphibian movement in distribution models. Complex 

simulations of species movement within the area surrounding a breeding site can be 

made (e.g. Ray et al. 2002, Joly et al. 2003) but gaps in knowledge regarding 

permeability of landscape elements to amphibian movement constrain those 

approaches as exploratory tools (Joly et al. 2003). Validation is still difficult, but a 

great deal of interest exists in such studies that are trying to join these least-cost path 

modeling approaches with field observations of terrestrial movements by 

radiotracking (Vos 1999, Schabetsberger et al. 2004) or harmonic direction (Leskovar 

and Sinsch 2005, Pellet et al. 2006).  

 The proposed BBB approach is potentially applicable to any species functioning 

on a spatially defined patch basis (e.g. pond site for reproduction or nesting place). 

Many applications may be found in conservation biology (i) for identifying habitat 
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effect in realistically species accessible areas (ii) for testing hypotheses on the effect 

of barriers on species movement and (iii) for analyzing response time of the 

considered species to environmental stressors at landscape scale. Our results show 

that studies on species distribution modeling should consider landscape permeability 

in order to obtain more accurate results. We suggest that such studies are essential 

for the development of valuable conservation strategies. 
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Abstract 

 Dispersal barriers and corridors between habitat patches can strongly affect 

colonization processes, and therefore patch occupation probability (=occupancy). 

However, most metapopulation dynamic models assume that heterogeneity in the 

landscape between patches can be neglected, basing dispersal on the Euclidean 

(shortest) distance between patches. For heterogeneous landscapes inter-patch 

distance should take into account the resistance of landscape features to movement, 

as with the least-cost algorithms implemented in Geographic Information Systems 

(GIS). In this study, we explore how patch occupancy is sensitive to Euclidean versus 

a landscape-based distance (least-cost algorithm). We illustrate our method with two 

metapopulations of the Yellow-bellied Toad (Bombina variegata) in the Rhone plain, 

                                            
* Manuscript submitted to Landscape Ecology 

See Appendix 5 for details on populations’ size of the Yellow-bellied toad in the Rhone plain. 
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Switzerland. Our results reveal patch occupancy to be highly sensitive to the distance 

algorithm. Obviously, the least-cost-distance produces lower patch occupancy than 

Euclidean distance. However, some patches are more affected than others. This 

allows us to identify which patches are the most sensitive to the inter-patch 

landscape; i.e., from a conservation point of view, those patches where improving 

connectivity (e.g., by building vegetated corridors, removing barriers to dispersal) 

might be a valuable management scenario. Additionally, we show that it is more 

important to measure accurately the species mean dispersal distance than its 

colonization and extinction rates. We offer two main conclusions: (1) from a 

theoretical standpoint, we show that inter-patch landscape affects patch occupancy 

and we identify which patches are the most sensitive; (2) from a conservation 

standpoint, we propose a method to identify which patches should be considered a 

priority for landscape management. 

 

Keywords: Spatially-realistic metapopulation model, dispersal distance, population 

viability analyses, landscape resistance, connectivity, conservation, Bombina 

variegata, Switzerland 

Introduction 

 Species extinction is often caused by habitat fragmentation and destruction 

(Tilman et al. 1994, Pimm and Raven 2000, Stuart et al. 2004). One important 

consequence of fragmentation is that isolation of suitable habitat patches hinders 

dispersal and colonization (Hanski and Simberloff 1997, Hanski 1999). In these 

fragmented landscapes, metapopulation modeling is being increasingly used for the 

design of species conservation strategies (McCullough 1996, Akçakaya and Sjogren-

Gulve 2000, Hanski 2004). Metapopulation models estimate the probability that the 

metapopulation will persist for a given time into the future. Various types of models 

have been devised, each requiring different kinds of data, and addressing different 

questions (Akçakaya and Sjogren-Gulve 2000). Among these, patch-occupancy 

models need only a small number of parameters, which is a great advantage for their 

application (Akçakaya and Sjogren-Gulve 2000, Sjögren-Gulve and Hanski 2000). 

Patch-occupancy models assume that patches are either occupied or empty, without 

explicitly modeling local population dynamics (Sjögren-Gulve and Hanski 2000). Local 
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extinction and colonization depends on patch sizes and spatial configuration. These 

models aim at estimating the probability of each patch to be occupied (=occupancy) 

and the equilibrium proportion of occupied patches. 

 The inter-patch distance (i.e. the distance separating two patches) is a central 

parameter in metapopulation modeling. If the inter-patch distance increases, 

colonization likelihood, and thus patches occupancy, decreases (Hanski 1999). 

However, measuring inter-patch distance is far from obvious because it depends on 

how much the landscape features occurring between patches facilitate or impede the 

movement of organisms (Taylor et al. 1993, Tischendorf and Fahrig 2000, 2001, 

Moilanen and Hanski 2001). Therefore, any realistic measurement of inter-patch 

distance must explicitly take into account the behavioral responses of the focal 

organism to the various landscape features. Accordingly, the interpatch distance is 

not the Euclidean (shortest) distance, but a complex function of the landscape 

resistance to movement (Johnson et al. 1992, Wiens 1993, Ricketts 2001). For 

example, Ricketts (2001) found that butterfly movement through coniferous forest was 

3-12 time less likely than movement through willow thickets. Meadows separated by 

coniferous forest are thus more isolated than meadows separated by willows. 

Mazerolle (2005) showed that ditches constitute dispersal corridors for green frogs. 

Mazerolle and Desrochers (2005) found from a field experiment that 72% of 

translocated individuals from northern green frogs and northern leopard frogs avoided 

disturbed surfaces. In another experimental study, Rothermel and Semlitsch (2002) 

noted the avoidance of open-canopy habitat by juvenile American toads. The 

combining of metapopulation models with landscape ecology is an emerging field 

(Wiens 1997, With 2005) with important implications for the reliability and 

interpretation of patch occupancy. There is a danger of formulating incorrect 

conservation strategies if the landscape structure among patches is neglected and 

the inter-patch distance is measured as the Euclidean distance (Wiens 1997). 

 In spite of the recognized importance of inter-patch landscape structure for 

species movement, from a practical point of view, it is time- and cost-consuming to 

quantify the movement behavior of a species to landscape elements (e.g. Vos 1999, 

Pither and Taylor 1998, Stevens et al. 2004). Thus, several studies have attempted to 

measure landscape-explicit inter-patch distances by means of simulations (e.g. 

Ferreras 2001, Arnaud 2003, Adriaensen et al. 2003, Chardon et al. 2003, Verbeylen 

et al. 2003). These approaches are based on least-cost distance algorithms, which 

assume that each landscape feature category (e.g., forest, roads, agricultural areas, 
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…) has a specific resistance (or suitability) to species movement (Formann 1995). For 

example, Verbeylen et al. (2003) found that the presence of red squirrels in wooded 

patches is better explained by isolation measures when Euclidean distance was 

replaced by a least-cost distance. Similarly, Chardon et al. (2003) found that in 

predicting Speckled wood butterfly occurrence, the connectivity based on the least-

cost distances algorithms had a significantly better predictive power than that based 

on Euclidean distance. 

 Hence, it may be expected that more realistic and valuable results can be 

obtained when the inter-patch distances in metapopulation models are not Euclidean 

but based on the effect of landscape features between patches upon the movement 

of organisms. The inclusion of inter-patch distance measurement into metapopulation 

analyses is of increasing interest but we found no example in the literature (Guisan 

and Thuiller 2005, but see Hirzel 2001).  

 The goals of our study are (i) to compare patch occupancy results as computed 

with Euclidean and least-cost inter-patch distance and (ii) to assess the sensitivity of 

patch occupancy to other crucial parameters in metapopulations analyses: 

colonization rate, extinction rate, and mean dispersal distance. We finally discuss 

implications of our approach for conservation. The method has been applied to two 

metapopulations of yellow-bellied toads (Bombina variegata). 

Methods 

Species and study area 

 The Yellow-bellied Toad (B. variegata Linnaeus, 1758) is a small toad, known to 

use a wide range of different ponds for spawning with a preference for small, 

temporary and sunny ponds (Grossenbacher 1988, Barandun and Reyer 1997). 

Nowadays, these conditions essentially occur in man-made habitats (Nöllert and 

Nöllert 2003). Males and females mostly staying close to breeding ponds but regularly 

move to nearby forests during the dry period and in autumn (Barandun and Reyer 

1998). Colonization of new habitats is rapid (Barandun and Reyer 1997) because 

adults are good dispersers and can move more than 1 km (Plytycz and Bigaj 1984) 

with a maximal distance recorded of 1.5 km in one year (MacCallum et al. 1998). In 
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Switzerland, B. variegata occurs below 1000m a.s.l. (Grossenbacher 1988) and is 

considered as threatened to extinction (Schmidt and Zumbach 2005).  

 In the Rhone plain (Figure 1), B. variegata populations are nowadays isolated 

from the other populations in Switzerland and during last decades they experienced a 

worrying decline (Marchesi 1999). The landscape of the plain is mainly composed of 

agriculture (77%, essentially orchard and vineyard). Urban areas cover 14% of the 

plain and forest areas almost 5% (Zanini et al. submitted). The Rhone river and the 

highway divide the plain longitudinally.  

 We studied separately the metapopulations M1 (western part of the Rhone plain) 

and M2 (central part) (Figure 1), because they are too distant (16.7 km) to exchange 

individuals. Ponds were visited at least three times from 1997 to 2003 during the 

breeding season. Population size is based on the number of calling males 

corresponding to four abundance classes (Grossenbacher 1988, Figure 1). 

 

Figure 1. B. variegata local populations (breeding ponds) in the Rhone plain, 
Switzerland. Metapopulations M1 and M2 are composed of respectively 26 and 10 
populations (black, numbered circles). For clarity only the Lake Geneva (North-West 
of the study area) and the Rhone river are shown. The black line represents the 1000-
m altitudinal limit. (MNT25, © Swisstopo 1995). 

Switzerland 
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Metapopulation dynamics 

 We modeled metapopulation dynamics using Hanski and Ovaskainen (2000) and 

Ovaskainen and Hanski (2001, 2003) patch occupancy models. The deterministic 

model used is a spatially-realistic, finite-patch version of Levins’ metapopulation 

model (Levins 1969). Patch size and location are taken into account in the dynamics 

of the system. The occupancy of patch i at time t+1 is: 

 

     + = + − −, 1 , , ,(1 )i t i t i i t i i tp p c p e p     (eq. 1) 

 

where the patch colonization rate is: 

 

α
≠

= −∑ ,exp( )i ij j j t
j ì

c c d N p      (eq. 2) 

 

and patch extinction rate is: 

 

= 1
i

i
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       (eq. 3) 

 

iN  is the carrying capacity of patch i, ijd  is the distance between patches i and j, e  

and c  are species extinction and colonization rates, respectively. The dispersal 

function is a negative exponential, with a mean dispersal distance of α1/ . The 

expected patch occupancy resulting from a dynamic equilibrium between extinction 

and colonization was computed by means of numerical simulations. 

Metapopulation model parameters 

 We used pond population size classes (middle-range value, see Figure 1) as 

carrying capacity ( iN ) instead of pond area, which is a poor indicator of habitat quality 

(Barandun and Reyer 1997). The mean dispersal distance ( α1/ ) was not available for 

B. variegata in the study area and literature is fragmentary. We assumed a mean 

dispersal distance of 1000 m as a realistic estimation (Plytycz and Bigaj 1984, 

MacCallum et al. 1998). We found no information regarding species specific 
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colonization (c ) and extinction rate (e ). Thus, we used, arbitrary but realistic 

intermediate values of = 0.35c  and = 0.5e . 

 Due to the absence of empirical data supporting these baseline parameter 

estimates, we tested three values of α1/ , c  and e : the baseline estimates times 

75%, 100% and 125%. We ran this sensitivity analyses for both metapopulations M1 

and M2. We reported the patch occupancy computed with all possible combinations 

of parameters values. We also tested previous models with two inter-patch distances 

( ijd ): 1) the Euclidean distance and 2) the least-cost distance (cf. next section). Thus, 

for each patch we obtained 54 occupancies. 

Least-cost distance 

 We used the COSTGROW (Eastman 1999) least-cost algorithm to incorporate 

landscape structure into inter-patch distance estimation (Vuilleumier and Prelaz-

Droux 2002). The algorithm input consists of two grid-maps: (1) a map of habitat 

patches, and (2) a map of landscape features, where every cell has a resistance 

coefficient. The resistance can be thought of as an energy cost or fitness cost paid by 

an individual crossing the cell. Landscape features that favour movement (e.g. forest 

or wetland) are given low resistance values, while features that hinder movement get 

higher values (e.g. building and highway) (see Table 1). The least-cost distance 

between a patch and a focal cell is measured by the minimum amount of resistance 

summed up on a path from the patch to the focal cell. Least-cost distance is 

symmetrical. Movement is possible in 8 directions, diagonal movements being 1.41 

times more costly. Least-cost distance can be interpreted as a species-specific 

distance measure weighted by the intervening landscape structure (Ferreras 2001, 

Adriaensen et al. 2003, Chardon et al 2003, Verbeylen et al. 2003).  

 

Table 1. Landscape feature categories and their resistance coefficients (expert 
estimates) to B. variegata movement.  

Categories of landscape features Resistance coefficients 

Forest, wetland, bush, alluvial area and canals 1 
Arable lands and orchards 5 
Vineyard 10 
Main roads* 20 
Canalized rivers (concrete bank) with high water flow and canalized 
Rhone river 

150 

Railways*, highways*, buildings, Lake Geneva and altitudes > 1000 m Impassable 
* Except bridges and viaducts. 
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 Although resistance coefficients are best measured with empirical data (Stevens 

et al. 2004) no such information was available for B. variegata. Thus, we had to rely 

on expert-based estimates (Table 1). Cells above the altitude of 1000 m a.s.l. are 

absolute barriers for B. variegata in Switzerland (Grossenbacher 1988). The railways, 

building and highways are also assumed to be absolute barriers (except viaducts and 

bridges). The resistance coefficients are relative values expressed as multiples of the 

base resistance (=1) caused by favourable landscape. For instance, a resistance 

coefficient of 5 indicates a cost 5 times higher than the reference landscape. For each 

patch we computed a map of least-cost distances (Figure 2), which were used to 

extract least-cost distances between all pairs of patches. Then, this least-cost inter-

patch distance was multiplied by the size of a grid cell (10m) to make comparison with 

Euclidean distance easier. Indeed, Euclidean and least-cost distances have the same 

value if all landscape features between two patches have a resistance coefficient of 1 

(Table 1). Otherwise, the least-cost distance is always higher than the Euclidean 

distance.  

 

 

Figure 2. Map of least-cost distance from patch 1 in the metapopulation M2. White 
circles indicate patches. The least-cost distance from patch 1 increases with grey 
color intensity. Black color indicates impassable areas. Grid-size is 10 m. 

Patch 
1 

M2 
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Results 

Description of inter-patch distances 

 On average, the least-cost distance was almost two times higher than the 

Euclidean distance in metapopulations M1 (respectively 11.4 km and 20.0 km) and 

three times higher in metapopulation M2 (respectively 7.6 km and 21.2 km). Similarly, 

the average nearest neighborhood distance (NND) with the least-cost algorithm was 

almost three times higher than with the Euclidean algorithm in metapopulation M1 

(respectively 1.1 km and 3.6 km) and four time higher in metapopulation M2 

(respectively 2.1 km and 8.0 km). Thus, landscape structure has a stronger negative 

effect on inter-patch distance in metapopulation M2 than in metapopulation M1. This 

suggests the presence of more frequent barriers hindering B. variegata movement in 

metapopulation M2 than in metapopulation M1. 

 However, when Euclidean and least-cost distances were compared for each 

patch, the ratio was extremely variable. In metapopulation M1 the ratio of the NND 

varied from 1.1 (patch 12) to.10.0 (patch 7) In metapopulation M2 the ratio varied 

from 1.3 (patch 14) to 7.5 (patch 8) (Figure 3). Spearman's rank determination 

coefficients (r2) between Euclidean and least-cost distances were r2=0.77 for M1 and 

r2=0.73 for M2. This indicates that Euclidean distance explains approximately 75% of 

the inter-patch distance, with the remaining 25% being due to inter-patch landscape 

features. 
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A) Metapopulation M1 
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B) Metapopulation M2 
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Figure 3. Euclidean and least-cost nearest neighborhood distance (NND) between 
patches in metapopulation M1 and M2. White: Euclidean distance; grey: least-cost 
distance. Patches are sorted by increasing ratio between least-cost and Euclidean 
distance. 

 



Chapter 7 - Effect of inter-patch distance in metapopulation models 

 127 

Patch occupancy 

 Obviously, in both metapopulations, mean patch occupancy was smaller when 

least-cost distance was substituted to Euclidean distance (Figure 4). However, the 

amplitude of this discrepancy varied among patches. In M1, this discrepancy was the 

smallest for patches 6, 21, 22 and 32, where both Euclidean and least-cost had mean 

patch occupancy >0.95 (Figure 4, A.I). The highest discrepancy in M1 was found for 

patches 7 and 20 where Euclidean distance occupancy was respectively 0.99 and 

1.00, while least cost-distance occupancy respectively 0.01 and 0.02 (Figure 4, A.II). 

Finally, some patches had both Euclidean and least-cost distance <0.95 with in 

addition important mean occupancy discrepancies (Figure 4, A.III). The same 

structure of the results have been found for metapopulation M2, where the smallest 

discrepancy was found for patches 16, 13 and 14 (Figure 4, B.I). Furthermore, we 

noted the smallest discrepancy for patch 2 where both Euclidean and least cost 

distance had patch occupancy near zero (Figure 4, B.III). The highest difference was 

observed for patch 8 where occupancy for Euclidean distance is 0.95 and 0.00 for the 

least-cost distance (Figure 4, B.II).  

 In addition, our results showed that many patches had high mean patch 

occupancies (>0.95) when Euclidean distance was used but low mean patch 

occupancies (<0.95) when least-cost distance was used (Figure 4, A.II and B.II). This 

indicates that patches can be geographically close to surroundings patches 

(potentially well connected) but effectively separated from them by ecological barriers. 

Sensitivity to metapopulation parameters 

 As expected, the species-specific colonization factor (c) and the average 

dispersal distance (1/α) were positively correlated to the mean occupancy of patches 

in both metapopulations (Figure 5), while the species-specific extinction factor (e) was 

negatively correlated to it. However, while these effects were weak for c and e (the 

inter-quartile ranges overlap), the effect was much stronger for the average dispersal 

distance 1/α (Inter-quartile ranges do not overlap, Figure 5). These results did not 

depend on the distance algorithm used. 
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A) Metapopulation M1 

 
B) Metapopulation M2 

 
Figure 4. Mean patch occupancy in metapopulation M1 and M2 over the 27 
combinations of parameters (e, c, 1/α) (standard error expressed by the error bars). 
White dots: Euclidean distance; black dots: least-cost distance. Patches are sorted by 
they Euclidean occupancy and difference between Euclidean and least-cost 
occupancy. Dotted line indicates 0.95 mean patch occupancy. I) Mean patch 
occupancy >0.95 for both distance algorithms; II) Mean patch occupancy >0.95 for 
Euclidean distance only; III) Mean patch occupancy <0.95 for both distance 
algorithms. Region II indicates putative patches for landscape management.  
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A) Metapopulation M1 

 

B) Metapopulation M2 

 

Figure 5. Boxplots of the mean patch occupancy as a function of colonization rate (c), 
extinction rate (e) and mean dispersal distance in meters (1/α) for metapopulation M1 
and M2. White: Euclidean distance; grey: least-cost distance. Only 1/α shows non-
overlapping inter-quartile ranges. Each box represents the median (bold line), the 
inter-quartile range (rectangle) and the most extreme value no more than 1.5 times 
the inter-quartile range (whiskers). 
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Discussion 

Effect of distance measurement on patch occupancy 

 Our results show that patch occupancy is sensitive to the inter-patch distance 

measurement. The Euclidean distance is the shortest distance separating two 

patches, while least-cost distance takes into account the landscape features between 

patches. The patch occupancy computed with the least-cost distance is lower than 

with Euclidean distance, with a difference varying among patches. Some of them are 

very sensitive to the distance algorithm, while other are almost unaffected by it. This 

provides useful clues about the characteristics of the surrounding landscape. Indeed, 

a large difference in occupancy highlights the fact that the landscape surrounding the 

patch is not favorable to species dispersal and that the patch is isolated by some 

important barrier. For instance, patch 7 in metapopulation M1 (Figure 4, A) has an 

“Euclidean” occupancy of 0.99, while its “least-cost” occupancy equals 0.01. Indeed, 

patch 7 is geographically close to seven patches (20, 21, 22, 23, 24, 28 and 32), but 

is separated from six of them by the nearly-impassable Rhone river (Figure 1), which 

explains the high discrepancy between Euclidean and least-cost occupancy. Thus, 

the higher the difference between Euclidean and least-cost occupancies, the more 

the landscape structure separating this patch from the metapopulation is expected to 

hinder species movement. 

 In our study, three of the impassable or nearly-impassable barriers were linear 

landscape features which separate the Rhone plain longitudinally: the highway, the 

railway and the Rhone river (Table 1). Because most patches are distributed along 

the Rhone river, on its right or left side, these barriers separate patches that are often 

geographically close (Figure 1). Therefore, it appeared that Euclidean inter-patch 

distance is an extremely unrealistic measure of the ecologically relevant distance. 

This underlines the need to take landscape structure into account when measuring 

inter-patch distance, especially when the fragmentation of the study area suggests a 

potentially important effect of movement upon. 

 Of course, occupancy depends on the values assigned to the resistance 

coefficients. Here, because no quantitative, empirical information was available for 

B.variegata movement, we had to rely on expert estimates. Although some methods 

have been developed to estimate resistance coefficients from field data (e.g Vos 

1999, Schabetsberger et al. 2004, Leskovar and Sinsch 2005, Pellet et al. 2006) or 
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arena experiments (Stevens et al. 2004) they are time-consuming and difficult to 

applicable to large study areas. Analyzing the sensitivity of our results to the 

resistance coefficients values was not feasible because of the time needed to 

compute the least-cost distances. However, we partly compensated for this by 

performing a sensitivity analysis to mean dispersal distance. In addition, we were not 

taking the patch occupancy rates we found as absolute values (which needed 

accurate parameters validation and sensitivity analyses) but we rather considered the 

discrepancies between the occupancy computed with Euclidean and least-cost 

distance. This makes our results qualitatively robust to parameter changes. Indeed, 

the occupancy patterns (Figure 4) mainly arise from the impassable or nearly-

impassable landscape features (cf. Table 1), which cause some patches to be 

isolated. These resistance estimates cannot be completely wrong and even 

considerable changes would not affect our qualitative results. The landscape features 

with intermediate resistance have a smaller effect on dispersal, and thus, even some 

changes in their coefficients should not drastically alter our conclusions. 

Effect of colonization rate, extinction rate and mean dispersal distance 

 The mean dispersal distance is often recognized as a key component of most 

spatially explicit population models (but see Etienne et al. 2005, p. 130) to predict 

species persistence (Moilanen and Hanski 1998, Hanski 1999, With 2005). For 

example, dispersal distance has been found as the most important factor in 

metapopulation models for the tree frog in western Switzerland (Pellet et al. 

submitted). This study, confirmed these results, showing that mean dispersal distance 

was the principal factor affecting patch occupancy for B. variegata, while extinction (e) 

and colonization rates (c) had only a marginal effect (Figure 5). This is likely due to 

the fact that the average dispersal distance has an exponential effect on the patch 

colonization (equation 2). By contrast, c and e have only a linear effect on the 

occupancy dynamics (equation 2 and 3).  

 The importance of mean dispersal distance for patch occupancy suggests that 

studies improving our knowledge of dispersal capacity should be encouraged, e.g. 

mark-recapture methods (e.g., Vos et al. 2000), radiotracking (Schabetsberger et al. 

2004) or harmonic direction (e.g., Pellet et al. 2006).  
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Conservation and management implications 

 Model parameterization represents the major issue for conservation managers 

and often limits practical application of metapopulation models (Moilanen 1999, 

Etienne et al. 2005). Our method, in spite of having several parameters, provides 

robust results in two ways: 1) Sensitivity analyses of the metapopulation parameters 

provide confidence intervals around the expected patch occupancies. 2) The 

Euclidean and least-cost distances characterize two extremes of the system, with the 

reality bound to lie in between. The point is not to consider the patch occupancy 

values they provide, which are probably inexact, but to look at those patches where 

both estimates agree and those where they disagree. Here we presented practical 

implication of our method for the management and conservation of B. variegata in the 

Rhone plain.  

 In the context of conservation and metapopulation dynamics, it is obvious that 

large and well-connected habitat patches should generally be favored. However, 

decision-making is difficult when comparing small, well-connected patches with large, 

isolated patches, or when dealing with habitat patch networks with an aggregated 

distribution of patches. Metapopulation theory, with recent spatially-explicit models 

(Hanski 1999, Hanski and Ovaskainen 2000), provide methods to answer this central 

question in conservation biology. But an additional and central factor in this context is 

the estimation of the distance among patches: geographically closer patches are not 

necessarily well connected because inter-patch landscape resistance to species 

movement may be important (Petit and Burel 1998, Chardon et al. 2003, Verbeylen et 

al. 2003). 

 Our approach has considerable implications in conservation because it allows us 

to test whether patch occupancy is affected by inter-patch landscape structure. We 

consider that the conservation goal is to obtain the highest patch occupancy possible 

within the time, money and socio-politic constraints (e.g., Cabeza and Moilanen 

2003). Our approach provides a graphical tool (Figure 4) for the manager to identify 

those patches where landscape management would be worth the effort, either by 

improving their connectivity (e.g. building forested corridors or removing barriers to 

dispersal) or by creating new habitat patches (e.g. digging out new ponds). On Figure 

4, we distinguish three sets of patches: (1) The patches where both “Euclidean” and 

“least-cost” occupancy estimates are both high ( 0.95, Figure 4, I) require little 

management as they are already highly viable. (2) The patches where “Euclidean” 
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occupancy is high but the “least-cost” occupancy is lower (<0.95, Figure 4, II) offer the 

highest potential for connectivity improvement. Indeed, in spite of being 

geographically close to other patches, some landscape features are maintaining their 

ecological isolation. (3) For patches where both occupancy estimates are low (<0.95, 

Figure 4, III), geographical distance is the main isolating mechanism. In such cases, 

improving inter-patch landscape connectivity would be worthless, and it would better 

to create new habitat patches to link the isolated patch to the metapopulation core. 

 Of course, this approach only provides demographic criterion. Other criteria, 

based on time and money, must be considered to define the actual feasibility of the 

connectivity improvement. For example, to increase significantly the occupancy of 

patches 7 and 20 would require the creation of a green-bridge over the Rhone river in 

order to link them with the metapopulation core on the opposite side of the river 

(Figure 1). For patch 11, while no major barrier (such as the highway, the railway or 

the Rhone river) isolates it from other patches, improving its connectivity might 

require vegetated corridors through agricultural fields. In both cases the costs would 

probably be high, but the types of interventions are completely different. In such 

cases, public acceptance is another feasibility criterion (Maystre and Bolliger 1999). 

 In conclusion, our study provides the first assessment of the effect of inter-patch 

distance measurement method (Euclidean versus least-cost) on patch-occupancy 

metapopulation analyses. By comparing patch occupancies estimated with least-cost 

and with Euclidean distance, it is possible to identify which patches are the most 

sensitive to inter-patch landscape structure. From a management standpoint, this 

allows decision-makers to determine those patches for which conservation measures 

would be worth considering. Moreover, our method could also be used to test 

scenarios, for example to identify the best location for the creation of a new pond. We 

have applied successfully this practical approach to the case of the threatened 

Yellow-bellied Toad and it can doubtlessly be extended to any species structured as a 

metapopulation and affected by landscape structure during dispersal. 
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Chapter 8 

Synthesis and conclusions 

 

 The effectiveness of conservation actions is strongly dependent on the quality 

and the amount of ecological knowledge regarding the focal species or ecosystem 

under study. This also requires a better understanding of the threats and the most 

effective measures for addressing those threats. Limited knowledge almost certainly 

provides approximate and inefficient conservation measures. Therefore, it is of 

prime importance that ecologists, conservation biologists and landscape 

managers use accurate methodological approaches to collect the information 

required for the design of conservation strategies. In this research we have 

addressed this issue in order to improve various methodological approaches and to 

offer practical ecological knowledge in the context of landscape management and 

amphibian conservation in fragmented landscapes. 

Using historical data in the landscape restoration context 

 In Chapter 3, we used data from past landscape features in order to provide 

recommendations in the context of landscape restoration. We proposed a 

methodological GIS-based approach to determine and locate the rehabilitation 

potential of the landscape. The method enabled a rapid, ecologically relevant and 

spatially complete evaluation of a large and heterogeneous landscape. In addition, it 

could constitute an important tool for communication, decision-making and biological 

conservation management in landscape planning. The approach was based on land 

cover maps digitalized from topographic maps and on experts’ estimates of the 

conservation value of each land cover. Obviously, the results were dependent on the 

subjectivity of the experts’ opinion, but we considered each expert separately and 

analyzed where the results were consensual. This allowed us to (i) respect the 

specificity of the opinion of each expert and (ii) provide a way of finding common 

solutions, which is very important for the communication and acceptance of the 

results. Worldwide, landscapes are becoming more and more different from their 
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pristine state. Therefore, the use of historical data in the constitution of a 

reference state as a target to locate hot-spots for landscape restoration will 

become a useful practice which merits further investigation. 

Methodological improvements of species-habitat models 

 In order to propose useful conservation measures, it is important to understand 

species-habitat relationships. This is especially true since the main cause of decline 

is habitat alteration. Concerning amphibians’ autoecology, several 

methodological approaches exist, but they generally suffer from two 

limitations, which have been analyzed in this research. First of all, the 

autocorrelation in the residuals (errors) of the regression analyses may cause under- 

or over-estimation of the predictor effect (Chapter 4). We found an over-estimation of 

the positive effect of marsh area and the negative effect of road density on the 

distribution of the agile frog in north-eastern Switzerland, when a logistic model (with 

autocorrelation in regression residuals) is used. However, we found that autologistic 

models allowed autocorrelation in regression residuals to be removed. An 

autologistic model is a logistic model including a measure of the spatial arrangement 

of the response variables as a predictor (i.e. autocovariate). Since regression 

residuals of autologistic models are independent, while residuals for logistic models 

are autocorrelated, we conclude that a logistic model was not a statistically valid 

option. We observed that autologistic regression is an appropriate technique for 

analyzing dependent data because (i) its application is simple and well adapted for 

presence/absence data, (ii) these models can effectively avoid spatial autocorrelation 

in regression residuals and (iii) the autocovariates may represent spatial ecological 

processes, such as dispersion, which can be explicitly represented in the models. 

Autologistic regression analysis is a practical tool providing estimation of both the 

effect of species-habitat relationship and the effect of spatially structured species 

distribution. Therefore, we suggest to always testing whether spatial 

autocorrelation occurred in data (e.g. using Moran’s I test) and avoiding it by 

using, for example, the approach presented in Chapter 4 for presence/absence 

data. This is an important prerequisite for a valid species-habitat relationships 

assessment. 

 Secondly, the effect of landscape on amphibian occurrence in ponds is unlikely 

to be equal in every direction (as often assumed) since barriers or inhospitable 

surfaces may reduce movement patterns (Chapter 6). Consequently, the ideal 
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circular surface, where landscape is usually studied, has to be reshaped into a non-

circular form reflecting the actual use of the terrestrial landscape by amphibians. In 

this research, we demonstrated that reducing the boundaries of circular buffers, 

according to barriers of species movement, allowed landscape predictors to be 

computed which better explained species distribution (Chapter 6). These results 

suggest that the proposed approach is ecologically more pertinent than the traditional 

circular buffer analysis. In addition, our approach is potentially applicable for any 

species functioning on a geographically defined patch basis (e.g. pond site for 

reproduction or nesting place). Many applications may be found in conservation 

biology: (i) to identify critical land use in realistically accessible zones, (ii) to test 

hypotheses on the effect of barriers on species movement and (iii) to analyze the 

response time of species to environmental stressors at a landscape scale (Chapter 

6). We suggest that predictive distribution models should consider barriers and 

corridors to species movement in order to obtain more accurate results. 

 The effect of landscape structure on species movement is fundamental for the 

persistence of species. Patch colonization and resource accessibility strongly depend 

on the presence of a favorable habitat for species movement. Accordingly, 

understanding how much a given landscape element (i.e. forest, canals, ditches, 

roads, urban areas, agricultural fields etc.) favors or hinders the movement of 

individuals is very important in the design of valuable conservation measures. We 

suggest that efforts be made to assess landscape resistance of species 

movement using field methods (e.g. radiotracking, harmonic direction), experimental 

designs (e.g. arena) coupled with simulation models based on Geographic 

Information System technologies (e.g. cost-distance surface algorithms: Chapter 7). 

Spatial generalization of species-habitat models 

 An additional and central issue in conservation biology is the spatial 

generalization of species distribution models (Chapter 5). Distribution models are 

usually established for only a single region and it is unknown whether the identified 

relationships between the distribution of a species and environmental variables can 

be transferred to another geographic area. The question is whether the effects of 

predictor variables are homogeneous across different regions or whether they vary 

geographically. In other words, can we use the conclusion from a study in region A to 

suggest management strategies for the same species in region B? To answer the 

question, we studied the distribution of amphibian species in geographically distinct 



Chapter 8 – Synthesis and conclusions 

 142 

areas of Switzerland. For instance, we found that the occurrence of Bufo bufo was 1) 

positively, 2) negatively or 3) not affected by the density of hedgerows in the 

surroundings of ponds, as a function of the region. However, the occurrence of Rana 

dalmatina was positively affected by the proportion of marsh cover within 200 m from 

ponds in all the studied regions. Thus, our results suggest that caution is needed 

when predicting species occurrence in separate geographic regions (Chapter 

5). Spatial generalization of species distribution models is an issue which is 

rarely addressed, and this merits further investigations, not only in amphibian 

distribution studies. 

Spatial scale of the landscape effect on species distribution 

 A further line of research into the landscape ecology of amphibians investigated 

the spatial scale (i.e. the distance from ponds) at which the landscape affects the 

presence of amphibians in ponds. In this study, we found that this spatial scale varied 

from one hundred to several km (Chapter 4, 5 and 6), which was in agreement with 

several recent studies suggesting multi-scale effects of habitat variables. Not only are 

pond-scale variables (e.g. pH, hydroperiod) important, but also landscape-scale 

variables (e.g. road density, forest area, connectivity to surrounding populations) 

have to be measured and assessed in order to improve the effectiveness of 

conservation practices. In addition, we found a species-specific response to 

landscape scale (Chapter 5). This has important implications for species 

conservation and management. Indeed, because variables measured at only one 

landscape scale did not adequately predict occurrences of all species, the 

conservation measures at only one spatial scale are unlikely to affect all species 

similarly. Our results join the growing body of evidence that management 

strategies for amphibian habitats should be conducted at multiple scales. 

 The study of the effect of landscape-scale predictors on species distribution is of 

particular interest in conservation. Such results may permit, for example, locating the 

areas where the landscape is the most suitable for the creation of new ponds. 

Restricting the pond creation effort to these areas would enable conservation 

managers to focus on a limited surface, maximizing the probability of species 

presence.  

 Both aquatic and terrestrial buffer zones have to be preserved. However, the 

location and extent of the upland surfaces used by most pond and stream-breeding 

amphibians remains unknown, due to the difficulties in tracking post-breeding 
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movements in amphibians. Some techniques exist (radiotracking, harmonic direction) 

and have to be more frequently used even if they are time- and cost-consuming 

methods. Such results may be extremely helpful for the identification of crucial 

terrestrial resources and for the design of terrestrial conservation areas. In 

Switzerland, for example, the conservation of amphibians is based on a federal law 

which protects (at national level) 772 breeding ponds and the surrounding terrestrial 

area. Unfortunately, the boundaries of the terrestrial habitat are often based on 

presumption and are not evidence-based. 

Connectivity and metapopulation structure 

 Not only do terrestrial and habitat quality determine species distribution, but also 

the demographic dynamics of local populations (Chapter 5 and 7). We found that the 

spatial proximity to neighboring populations (i.e. connectivity) is often an important 

determinant of species distribution (Chapter 5). In some cases, connectivity seems 

to be more important than habitat quality. This increases the difficulty of accurately 

predicting species distribution with habitat variables only. Our results suggest that 

connectivity between local populations has to be included in distribution 

models.  

 During recent decades, metapopulation theories and models have been carried 

out in order to estimate the probability that the metapopulation will persist in the 

future, considering a number of parameters. Among them, dispersal capacity of the 

species, colonization rate, extinction rate, and the distance separating suitable 

habitat (patches) are factors which may influence the viability of a metapopulation. 

Most metapopulation dynamics models assume that the landscape between patches 

can be neglected, basing dispersal on the Euclidean (shortest) distance between 

patches. However, inter-patch distance should take into account the resistance of 

landscape features to movement, as with the least-cost algorithms implemented in 

Geographic Information Systems (GIS). In this study, we explored how patch 

occupancy was sensitive to Euclidean versus landscape-based distance (least-cost 

algorithm) (Chapter 7). We derived two main conclusions: 1) from a theoretical 

standpoint, we showed that inter-patch landscape affected patch occupancy and we 

identified which patches were the most sensitive; 2) from a conservation standpoint, 

we proposed a method to identify which patches should be considered as the highest 

priority for landscape management. The approach was illustrated in the case of two 

metapopulations of the yellow-bellied toad in the Rhone plain (Switzerland). Our 



Chapter 8 – Synthesis and conclusions 

 144 

results emphasize the importance of considering landscape structure in 

connection with metapopulation models in order to avoid incorrect 

conclusions about population viability analyses. 

Final considerations 

 The definition of efficient conservation strategies to reverse amphibian 

declines will be a great challenge for the coming years and will largely focus on 

the restoration and creation of suitable breeding habitats. The additional 

problem is that human pressure, in terms of land demand for urbanization, 

recreation, agricultural and livestock practice, will probably increase. Conflicts 

between nature conservation and human requirements are expected to become 

more and more important in the coming years. The availability of land for nature will 

be rarer and the design of optimal conservation strategies will clearly be fundamental 

for the persistence of species. In this context, our research provides rigorous 

methodological tools for ecological knowledge acquisition. Our results highlight the 

necessity to move from site-specific to landscape-level analyses in amphibian 

autoecology studies. We also underline the need to base conservation planning on 

the demographic dynamics of local populations, considering the effect of landscape 

structure. We applied successfully the developed practical approach to the case of 

several amphibian species, but it can doubtlessly be extended to any species 

functioning on a spatially defined patch basis (e.g. pond site for reproduction or 

nesting place), structured as a metapopulation and affected by landscape structure 

during dispersal. A vast improvement in our understanding of the factors that 

influence the distribution and persistence of species is necessary in order to 

improve the effectiveness of conservation actions.  
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Appendix 2 
Information-theoretic approach and model selection 

 

An alternative to null hypothesis testing 

 

 As said by Johnson and Omland (2004) “science is a process for learning about 

nature in which competing ideas about how the world works are evaluated against 

observations. These ideas are usually expressed first as verbal hypotheses, and then 

as mathematical equations, or models. Models represent biological processes in 

simplified and general ways that provide insight into factors that are responsible for 

observed patterns. Hence, the degree to which observed data support a model also 

reflects the relative support for the associated hypothesis.” 

 

 To draw biological inferences, the dominant paradigm in literature is to generate 

a null hypothesis and ask whether the hypothesis can be rejected in light of observed 

data (Anderson et al. 2000, 2001). The hypothesis is rejected when a test statistic 

generated from observed data falls beyond an arbitrary probability threshold (usually 

P<0.05), which is interpreted as tacit support for a biologically more meaningful 

alternative hypothesis. Hence, the actual hypothesis of interest (the alternative 

hypothesis) is accepted only in the sense that the null hypothesis is rejected. 

However, there are a number of problems with the application of the null hypothesis 

testing. Anderson et al. (2000) presented a good review of these statistical problems 

and underlined that null hypothesis testing is uninformative in mostly case, and of 

relative little use in model or variable selection: 

 

• The null hypothesis is often almost surely false (“false null hypothesis”). Thus, 

the rejection of this clearly false assumption hardly advances science.  

• The α -level of statistical significance is without theoretical basis and it is 

therefore arbitrary.  

• P-value depends on sample size. One can always reject null hypothesis with a 

large enough sample, even if the true difference is trivially small. This is the 

difference between statistical significance and biological importance. 

• P-value cannot validly be taken as the probability that the null hypothesis is 

true, although this is often the interpretation given.  
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 In this context, a practical alternative to null hypothesis testing is model selection, 

which offers a way to draw inferences from a set of multiple competing hypotheses. 

Johnson and Omland (2004) presented three main advantages. First, practitioners 

are not restricted to evaluating a single model where significance is measured 

against some arbitrary probability threshold. Instead, competing models are 

compared to one another by evaluating the relative support in the observed data for 

each model. Second, models can be ranked and weighted, thereby providing a 

quantitative measure of relative support for each competing hypothesis. Third, in 

cases where models have similar levels of support from the data, model averaging 

can be used to make robust parameter estimates and predictions. 

 

Best model selection and ranking: the AIC 

 

 Conceptually, there is information in the observed data, and we want to express 

this information in a compact form via a “model”. Such model is then the basis for 

making inference about the process or system that generated the data. The goal is to 

achieve a translation such that minimal information is lost in going from the data to a 

model of the information. 

 Models are only approximation and we cannot hope to perfectly achieve this 

idealized goal. However, we can attempt to find a model of the data that is best in the 

sense that the model loses as little information as possible (Burnham and Anderson 

2002). This thinking leads directly to Kullback-Leibler (K-L) information, I(f, g); the 

information lost when model g is used to approximate full reality, f. Thus, the goal is 

to select a model that minimizes K-L information loss. Because we must estimate 

model parameters from the data, the best we can do is to minimize (estimated) K-L 

information loss. This can be done using one of the information-theoretic criteria (e.g. 

AIC). We are not really trying to model the data; instead we are trying to model the 

information in the data (Burnham and Anderson 2002). 

 Akaike information criterion (AIC) (equation 1) is an estimate of the expected 

Kullback–Leibler information lost by using a model to approximate the process that 

generated observed data (full reality). AIC has two components: negative 

loglikelihood ( ( )θ⎡ ⎤−
⎣ ⎦

ˆ2ln L y ), which measures lack of model fit to the observed data 

y , and a bias correction factor ( 2k ), which increases as a function of the number of 
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model parameters (k ). ( )θ̂L y  is the likelihood of the model parameters given the 

data y , θ̂  is the parameters estimation. 

 

  ( )θ⎡ ⎤= − +⎣ ⎦
ˆ2ln L 2AIC y k    (eq. 1) 

 

A modified criterion (AICc) has to be used when K is large relative to sample size n 

(n/k<40, Burnham and Anderson 2004), equation (2): 

 

θ +⎡ ⎤= − + +⎣ ⎦ − −
2 ( 1)ˆ2ln L( ) 2
( 1)c p

k k
AIC y k

n k   (eq. 2) 

 

Some authors suggest to use AICc in any case (Burnham and Anderson 2004). 

Indeed, when n is large, the correction factor (
+

− −
2 ( 1)
( 1)

k k
n k

) tends to zero and the AICc 

converges to AIC. In small samples correction factor for AICc is more severe 

regarding the number of parameters than for AIC. Therefore, in small samples AICc 

tend to select models with low parameters (simpler). AICc retains all of the 

advantages of AIC, while removing many of the disadvantages. 

 At some point, the addition of more parameters will have the opposite from 

desired effect and the relative Kullback–Leibler distance will increase because of 

“noise” in estimated parameters that are not really needed to achieve a good model 

(Burnham and Anderson 2002). In the case of AIC, the first term tends to decrease 

as more parameters are added to the model, while the second term gets larger as 

more parameters are added. This is the tradeoffs between bias and variance or the 

tradeoffs between under-fitting and over-fitting that is fundamental to the principle of 

parsimony (Figure 1). This principle should lead to a model with “ … the smallest 

possible number of parameters for adequate representation of the data” (Box and 

Jenkins 1970). In under fitted models bias in the parameters estimators is often 

important, and the sampling variance is underestimated, both factors resulting in poor 

confidence coverage. Under fitted models tend to miss important effects in 

experimental settings. Over fitted models, as judged against a best approximating 

model, are often free of bias in the parameter estimators, but have sampling variance 
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that are needlessly large (the precision of estimators is poor, relative to what could 

have been accomplished with more parsimonious model) 

 

Figure 1. Relationships between the number of parameters (K), the bias and the 
explained variance. Bias in the parameters estimation decreases and sampling 
variance (a measure of the precision of the estimators) increases as the number of 
parameters increases. According to the principle of parsimony, the best 
approximating model has the lower Akaike Information criterion (AIC) value. Best 
model however not occurs exactly where the two curves intersect. Full truth or reality 
is not attainable with finite sample and usually lies well to the right of the region in 
which the best approximating model lies (the tradeoff region) (modified from 
Burnham and Anderson 2002) 

 

Akaike weight and model averaging 

 

 The model selection approach can also be used to (i) compute the relative weight 

of a model in a set of models and (ii) to compute an average weight of parameter 

estimates. Here we present these statistical approaches accordingly with Johnson 

and Omland (2004), Box 4. 

 

 (i) Generate a confidence set of models: the Akaike weight.  

The goal is to determine which models are well supported by data. This estimation is 

possible using AIC based calculations. We remind that the best model in the set of 

candidates has the minimum AIC value. Thus, once each model has been fitted to 

Amount Sampling variance 

Best Model 

(minAIC) 

Bias 

Number of Parameters (k) 
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the data, the difference in AIC score between each model and the best model yields 

an estimation of the relative model support (equation 3): 

 

  ∆ = − mini AICi AIC     (eq. 3) 

 

Models having ∆ < 2i  have substantial support (evidence), those in which 4  ∆i   7 

have considerably less support, and models having ∆ > 10i  have essentially no 

support (Burnham and Anderson 2004). The support or evidence refers to the 

relative capacity of a model to describe the information present in the data, i.e. how 

much data support the model. The likelihood of a model, gi, given the data, y, is then 

calculated as equation 4, 

 

  = − ∆L( ) exp( 1/ 2 )ig y i    (eq. 4) 

 

From equation 4, it is possible and useful to contrast the likelihood of pairs of models, 

using the evidence ratio (equation 5), 

 

  =
L( )

L( )
best

i

g y
ER

g y      (eq. 5) 

 

Finally, the model likelihood values can also be normalized across all R models 

(equation 6).  

 

  

=

− ∆=
− ∆∑

exp( 1/ 2 )

exp( 1/ 2 )
R

j i

i
Wi

i
    (eq. 6) 

 

This value is termed Akaike weight and provides a relative “weight of evidence” for 

each model. The sum of all the Akaike weight across R models is 1 and thus the 

Akaike weights can be interpreted as “the probability that model i is the best model 

for the observed data, given the candidate set of models” Johnson and Omland 

(2004). The Akaike weights can be summed in order to estimate the relative 

importance of a predictor variable or a hypothesis associated to the models. 
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 (ii) Compute an average weight of parameter estimates: model averaging. 

From the model selection approach, it is also possible to estimate an average weight 

of parameters (θ̂ ) across a set of R candidate models (θi  is the regression 

coefficient in the ith model) (equation 7).  

 

  θ θ
=

=∑
1

ˆ
R

i i
i

w      (eq. 7) 

 

This may be very interesting when the goal is parameter estimation or prediction, and 

no single model is clearly supported by the data (i.e. wbest < 0.9).  

 

Conclusions 

 

 We underlined the advantages and potential applications of model selection 

using the AIC criterion. Other criteria can also be computed (e.g. BIC, Burnham and 

Anderson. 2004). However, this recent and developing statistical field go behind the 

subject of our research which has been limited to the use of AIC criterion. Model 

selection with AIC derived statistics has been recently used with success in some 

studies. Weyrauch and Grubb (2004) and Van Buskirk (2005) are both excellent 

example of the application of these methods in amphibian-habitat association 

analyses. Information-theoretic approach is also used in our research in Chapter 5 

and 6.  
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Appendix 3 
Data and cartographic complements to chapter 3 

 

 

a) Nature conservation value scores estimated by experts for each land cover. 

Nature conservation value ranges from 0 (no conservation value) to 10 (maximum 

conservation value). 

 

 

 

 1900  2003 
 EXP1 EXP2 EXP3 Mean  EXP1 EXP2 EXP3 Mean 
Floodplain, river Rhone 10 10 9 9.67  7 7 9 7.67 
Dune 8 10 10 9.33  - - - - 
Wetland 9 10 8 9.00  7 7 8 7.33 
Hill 8 9 9 8.67  8 5 9 7.33 
Floodplain tributary 7 10 7 8.00  6 5 7 6.00 
Canal 5 10 7 7.33  2 2 5 3.00 
Stagnant water 6 8 8 7.33  5 8 8 7.00 
Forest  8 8 5 7.00  7 8 5 6.67 
Agricultural zone 8 7 4 6.33  3 2 2 2.33 
Tributary 5 6 7 6.00  4 2 7 4.33 
Rhone, canalized 3 5 4 4.00  2 7 4 4.33 
Urban Area 4 4 2 3.33  2 2 1 1.67 
Railways 5 2 2 3.00  4 2 1 2.33 
Roads 2 3 0 1.67  0 1 0 0.33 
Highways - - - -  1 3 1 1.67 
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b) Maps of ecological alteration computed for each expert 

 

 

Ecological alteration EXP1 

 
Ecological alteration EXP2 

 
Ecological alteration EXP3 
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c) Maps of rehabilitation potential computed for each expert 

 

 

Rehabilitation potential EXP1 

 
Rehabilitation potential EXP2 

 
Rehabilitation potential EXP3 
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d) Map of consensus among experts on ecological alteration 

 

 

 

e) Map of consensus among experts on rehabilitation potential 

 

 

 

 



 

Appendix 4 
Three indices for the description of spatial autocorrelation 
 

1) The Moran’s I (Moran 1950) is based on Pearson’s correlation and generally 

varying between [-1; 1]. Positives values correspond to positive correlation:  

 

( )( )

( )
= =

=

⎛ ⎞ − −⎜ ⎟
⎝ ⎠= ≠

−

∑∑

∑
1 1

2

1

1

( ) ,
1

p p

ij i j
i j

p

i
i

w y y y y
W

I D i j
y y

p

 

Where, iy =observations, ijw = distance weight (1 if pairs (i,j) included in distance D 

and 0 if they are outside), p =number of observations, D =classes of distance tested, 

W =Somme ijw  (number of pairs used for the ( )I D  estimation). 

 

2) The Geary c (Geary 1954) is based on distance measures and varies between [0; 

+ ∞ [, but usually <3. the formula is the following (see Moran’s I for parameters 

description): 

 

( )

( )
= =

=

− −
= ≠

−

∑∑

∑

2

1 1

2

1

( 1)
( ) ,

2

p p

ij i j
i j

p

i
i

p w y y
c D i j

W y y
 

 

3) Modified join-count statistics (Sokal and Oden 1978, Mangel and Adler 1994) to 

quantify spatial patterns can also be used in case of presence/absence data. This 

approach is well adapted to appraise at spatial autocorrelation in breeding ponds 

occupancy by amphibian species. The structure function for the probability that a 
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pond j is occupied, given an occupied pond i as a starting point, δ  units away, can 

be defined as follow: 

 

{ }
( ) ( )( )

( )( )
δ

δ
δ

≠

≠

=
∑

∑

, ,
Pr 1|1,

, ,

j i j
j i

j

i j
j i

C x I d x x

I d x x
 

 

Where ( )jC x  indicates the condition of the breeding pond jx  as follow: 

 

( ) ⎧⎪= ⎨
⎪⎩

0 if pond  is unoccupied

1 if pond  is occupied
j

j
j

x
C x

x
 

 

and ( )( )δ, ,i jI d x x  is the indicator function for ponds ix  and jx  which are ( ),i jd x x  

units apart: 

 

( )( ) ( )
( )

δ
δ

δ

⎧ ≠⎪= ⎨
=⎪⎩

0 if ,
, ,

1 if ,

i j

i j

i j

d x x
I d x x

d x x
 

 

Taking the average of this probability across each pond yields an overall probability 

of encountering an occupied pond at a given distance from another occupied pond. 

Note that by changing the conditions of ( )iC x  it is possible to look at the distribution 

of unoccupied ponds of δ  units from one occupied. Randomization tests are used to 

generate distributions for the structure under the null assumption that the 

presence/absence of species is randomly distributed in space and constrained only 

by the locations of ponds. To create the distributions for each distance class, the 

number of species presences at the considered distance was randomly reassigned. 

By repeating this process 1000 times a probability distribution was generated given 

the observed ponds locations. For each random result at δ  distance, the lower and 

the upper value of { }δPr 1|1,j  were kept. If the observed value is outside the range of 

its lower and upper randomized estimation, then the value of the probability is 
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considered statistically significant at the 5% threshold. The { }δPr 1|1,j  can be 

computed for different distance steps to asses the sensibility of the results to the 

distance class δ .  
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Appendix 5 
Bombina variegata populations in the Rhone plain 
 

A) Metapopulation M1 

Population  
number 

Coordinates  
(Swiss reference system) 

Abundance 
classes1 

Carrying 
capacity2 

3 570200 109700 1 3 
5 563430 123790 1 3 
6 563300 121550 1 3 
7 555750 137640 1 3 

10 568770 109320 1 3 
11 564500 121600 2 18 
12 563100 121600 2 18 
17 568700 114500 3 66 
19 561400 122900 4 176 
20 555250 136500 4 176 
21 558000 137750 1 3 
22 557700 137550 1 3 
23 557080 137880 1 3 
24 556450 138240 1 3 
25 561280 134640 1 3 
26 564900 122900 1 3 
27 557630 136000 1 3 
28 557100 137100 1 3 
29 562820 126400 1 3 
30 561900 132550 1 3 
31 561850 131580 1 3 
32 557700 137620 2 18 
33 563000 126000 2 18 
34 564040 125850 2 18 
35 563500 124470 3 66 
36 561350 137540 4 101 

 

B) Metapopulation M2 

Population 
number 

Coordinates  
(Swiss reference system) 

Abundance 
Classes1 

Carrying 
Capacity2 

1 595100 121000 1 3 
2 585720 115840 1 3 
4 594840 122270 1 3 
8 605800 125300 1 3 
9 592200 120200 1 3 

13 600850 123000 2 18 
14 599500 121600 2 18 
15 596360 121570 2 18 
16 600720 122900 2 18 
18 604150 124530 3 66 

                                            
1 Abundance classes: 1=1-5, 2=6-30, 3=31-100, 4=>100 (Grossenbacher K. 1988. Atlas de distribution des 

Amphibiens de Suisse. Documenta faunistica helvetiae 7:1-208) 
2 The carrying capacity used in patch occupancy metapopulation models (Ni, see §7) 
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