The dielectric response of ferroelectric-dielectric composites is theoretically addressed. Dielectric permittivity, tunability (relative change of the permittivity driven by dc electric field), and loss tangent are evaluated for various composite models. The analytical results for small dielectric concentration and relative tunability are obtained in terms of the traditional electrostatic consideration. The results for large tunability are obtained numerically. A method is proposed for the evaluation of the tunability and loss at large concentrations of the dielectric. The basic idea of the method is to reformulate the effective medium approach in terms of electrical energies stored and dissipated in the composite. The important practical conclusion of the paper is that, for random ferroelectric-dielectric composite, the addition of small amounts of a linear dielectric into the tunable ferroelectric results in an increase of the tunability of the mixture. The loss tangent of such composites is shown to be virtually unaffected by the addition of moderate amounts of the low-loss dielectric. The experimental data for (Ba,Sr)TiO3 based composites are analyzed in terms of the theory developed and shown to be in a reasonable agreement with the theoretical results. (c) 2006 American Institute of Physics.