Abstract

Pb(Zr-x, Ti1-x)O-3 (PZT) piezoelectric thin films are of major interest in MEMS technology for their ability to provide electro-mechanical coupling. In this work, the effective transverse piezoelectric coefficient e(31,f) of sol-gel processed films was investigated as a function of composition, film texture and film thickness. Dense, textured and crack-free PZT films have been obtained on silicon substrates up to a thickness of 4 mum. Crystallization anneals have been performed for every 0.25 mum. Nucleation on the previous perovskite layer combined with directional growth leads to a gradient of the compositional parameter x of +/-20% (at x = 0.53 average composition). Best properties have been achieved with {100}-textured film of x = 0.53 composition. Large remanent e(31,f) values of -11 to -12 C/m(2) have been obtained in the whole thickness range of 1-4 mum. These values are superior to values of undoped bulk ceramics, but smaller than in current, optimized (doped) bulk PZT. (C) 2003 Elsevier Science B.V. All rights reserved.

Details

Actions