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Peer Sharing Behaviour in the eDonkey Network, and
Implications for the Design of Server-less File Sharing
Systems

S. B. Handurukande: A.-M. Kermarrec! F. Le Fessant! L. Massoulié® and S. Patarin®

ABSTRACT

In this paper we present an empirical study of a work-
load gathered by crawling the eDonkey network — a
dominant peer-to-peer file sharing system — for over 50
days.

We first confirm the presence of some known features,
in particular the prevalence of free-riding and the Zipf-
like distribution of file popularity. We also analyze the
evolution of document popularity.

We then provide an in-depth analysis of several clus-
tering properties of such workloads. We measure the
geographical clustering of peers offering a given file. We
find that most files are offered mostly by peers of a sin-
gle country, although popular files don’t have such a
clear home country.

We then analyze the overlap between contents offered
by different peers. We find that peer contents are highly
clustered according to several metrics of interest.

We propose to leverage this property by allowing peers
to search for content without server support, by query-
ing suitably identified semantic neighbours. We find via
trace-driven simulations that this approach is generally
effective, and is even more effective for rare files. If we
further allow peers to query both their semantic neigh-
bours, and in turn their neighbours’ neighbours, we at-
tain hit rates as high as over 55% for neighbour lists of
size 20.
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1. INTRODUCTION

File sharing peer-to-peer systems such as Gnutella [9],
Kazaa [15] and eDonkey [6] have significantly gained im-
portance in the last few years to the extent that they
now dominate Internet traffic [22, 24], way ahead of Web
traffic. It has thus become of primary importance to un-
derstand workload properties of these systems, in order
to optimize their performance. Previous measurement
studies of peer-to-peer networks have mainly focused on
free-riding [1], peer connectivity and availability [2, 26],
and peer distribution and locality within the network
[26, 12, 5].

Recent studies of Kazaa [12] show that system perfor-
mance can be greatly enhanced by taking into account
geographic proximity between peers. On the other hand,
several papers [28, 30, 32, 20, 19, 4] suggest that non-
geographic relationships between peers could be lever-
aged as well. Specifically, peers with common interests
may benefit from being peered together. The underly-
ing notion of proximity is no longer geographical, but
rather an interest-based, or semantic proximity metric.

The reason why performance gains should be expected
is intuitively clear: peers with common interests are
likely to request the same documents. They are thus
more likely to succeed when searching documents by
querying one another, rather than by querying arbitrary
peers. Such gains in search performance may be ex-
pected in general, and would be more significant if they
applied to searches for rare documents [28].

The potential of this type of approach depends criti-
cally on the extent to which peers in file sharing systems
are clustered, either in the usual geographical sense, or
according to interest-based metrics. However, previous
studies have not treated these questions.

The main objectives of the present work are to mea-
sure the extent of such clustering in current peer-to-
peer systems, and to propose and evaluate techniques
to leverage the presence of such clustering.

To this end, we collected measures of the eDonkey
peer-to-peer network from December 9, 2003 to Febru-
ary 2, 2004 by crawling part of this network. We made
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2.5 million connections to peers and browsed their cache
contents.

The total volume of shared data thus discovered (with
multiple counting) was over 350 terabytes. Previous
studies of peer-to-peer workloads have typically relied
on traces gathered by observing network traffic from
a single location, usually a university or an ISP. In
contrast, our trace is collected by actively probing the
cache contents of peers distributed over several coun-
tries, mostly in Europe, where eDonkey is the dominant
peer-to-peer network!.

We first report results on peer contributions, mea-
sured in bytes and files shared, and on file popularity.
These are generally consistent with the corresponding
results for the Kazaa workload in [12].

We then analyze geographical and semantic cluster-
ing properties. We measure the latter by means of a
suitable correlation metric between peer cache contents,
which predicts the frequency with which peers that have
shared common documents in the past may share others
in the future.

Finally, we evaluate the effectiveness of submitting file
search queries to semantic neighbours via trace-driven
simulations. We consider several methods for identi-
fying semantic neighbours, and generally observe high
success rates. We also evaluate the extent to which these
positive results are explained by the presence of gener-
ous peers, by performing experiments on suitably mod-
ified traces. We find that semantic clustering is not an
artefact of the presence of generous peers, and can thus
be leveraged without overloading such peers.

The rest of this paper is structured as follows. In Sec-
tion 2, we present the eDonkey network and the tech-
niques we used to gather the measurements. In Sec-
tion 3 we report results on the distributions of peer
contribution and file popularity. We present measures
of semantic and geographic clustering in Section 4. Sec-
tion 5 describes the results on the effectiveness of using
semantic peers for document search. In Section 6, we
review related work on peer-to-peer systems measure-
ments before concluding in Section 7.

2. TRACE COLLECTION

Before describing our experimental settings for data
collection, let us recall some background on eDonkey.

2.1 The eDonkey network

The eDonkey network [6] (also well known for one of
its open-source clients, Emule) was, in October 2005, the
most popular peer-to-peer file sharing networks with 2.9
millions daily users [27]. EDonkey provides advanced
features, such as search based on file meta-data, concur-
rent downloads of a file from different sources, partial
sharing of downloads and corruption detection.

The architecture of the network is hybrid: the first
tier is composed of servers, in charge of indexing files
and the second tier consists in clients downloading and
uploading files. We describe below the interactions be-
tween clients and servers, and between clients them-
selves.

LA fully anonymized version of our trace is available for
research purposes.
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Client-server interactions

The client-server connection serves two main purposes:
(i) searching for new files to download, and (ii) finding
new sources of files while they are being downloaded.
At startup, each client initiates a TCP connection to
at least one server. The client then publishes the list
of files it is willing to share (its cache contents). A list
of available servers is maintained by the servers — it
is the only data communicated between servers — and
propagated to the clients after connection.

Clients send queries to discover new files to download.
Queries can be complex: searches by keywords in fields
(e.g. MP3 tags), range queries on size, bit rates and
availability, and any combination of them with logical
operators (and, or, not). Each file has a unique identifier
(see below) which is used by clients to query for sources
where they can download it. Queries for sources are
retried every twenty minutes in an attempt to discover
new sources. Clients also use UDP messages to prop-
agate their queries to other servers since no broadcast
functionality is available between servers.

Some old servers support the query-users functional-
ity, i.e. searching users by nickname. As will be seen,
we use this feature, which is unfortunately no longer
implemented in the new versions of the servers.

Client-client interactions

Once a source has been discovered, the client establishes
a TCP connection to it. If the source sits behind a
firewall, the client may ask the source server to force the
source to initiate the connection to the client. The client
asks the source whether the requested file is available,
and which blocks of the file are available. Finally, the
client asks for a download session, to fetch all the blocks
of interest.

Files are divided in 9.5 MB blocks, and a MD4 check-
sum [23] is computed for each block. Checksums can be
propagated between clients on demand. The file identi-
fier itself is generated as a MD4 checksum of all the par-
tial checksums of the file. Files are shared (available for
download) as soon as at least one block has been down-
loaded and its checksum verified by the corresponding
client.

Finally, clients can also browse other clients, i.e. ask
another client for the list of files it is currently shar-
ing. This feature, which we use in our crawler, is not
available on all clients, as it can be disabled by the user.
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Figure 1: Evolution of the number of
clients and shared files per day over the
period (extrapolated trace).
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Figure 2: Evolution of the number of files
discovered during the trace (full trace).

2.2 The eDonkey crawler

To gather a trace of eDonkey clients, we modified an
open-source eDonkey client, MLdonkey [7].

Our crawler is initialized with a list of current eDon-
key servers. It concurrently connects to all servers, re-
trieving new lists of servers, and starts asking for clients
that are connected to these servers. For each query, a
server either does not reply (if the query-users feature
is not implemented) or returns a list of users, whose
nicknames match the query.

Current eDonkey servers can handle more than 200,000
connected users (provided they have the necessary band-
width). As server replies are limited to 200 users per
query, our crawler repeatedly submits queries to servers
to build its list of users?.

The resulting list of users is then filtered to keep only
reachable clients (i.e. not firewalled clients). Another
module of the crawler then connects repeatedly to these
clients every day. Once a client is connected, the list and
description of all files in its cache content are retrieved.

We should stress that large scale measurements such
as those reported in this paper can no longer be done
with this crawler architecture, based on the nickname
functionality. Indeed, users are increasingly reluctant to
make available the list of contents they share and now
tend to disable this functionality.

2.3 General trace characteristics

We now discuss some preliminary observations from
the trace that was collected from December 9, 2003 to
February 2, 2004.

Figure 1 depicts the number of clients and files suc-
cessfully scanned daily, over the measurement period. It
shows a decrease of the number of clients traced daily
(from 65,000 at the beginning to 35,000 at the end).
This is an artifact of the measurement process (in par-
ticular, tighter bandwidth constraints on the crawler),
as the number of clients on eDonkey has been increasing
during the measurement period.

Figure 2 shows the total number of files and the num-
ber of new files per day over time. Even after one month,
our crawler discovered 100,000 new files per day. By re-
lating the number of new files discovered to the numbers
of browsed clients reported in Figure 1, one finds that

2Tt tries 26° different queries, starting with -”aaa”- and
ending with -”zzz”-. Not all users are retrieved in this
manner, due to the fact that many users share the same
names.
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Full trace
Duration (days) 56
Number of uniquely identified clients 1,158,976
Number of free-riders 975,116 (84 %
Number of successful snapshots 2,520,090
Number of distinct files 11,014,603
Space used by distinct files 318 TB
Filtered trace
Number of distinct clients 320,190

Number of free-riders 226,570 (70 %

Extrapolated trace

Duration (days) 42

Number of distinct clients 53,476

Number of free-riders 39,445 (74 %,

Table 1: General characteristics of the trace. For
unknown reason, the proportion of free-riders is
lower in the filtered trace, which has no impact
on our analysis since we only focus on common
files between peers.
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Figure 3: After extrapolation, the analy-
sis is done from day 348 to day 389, where
at least 1,000,000 files and 7,000 interest-
ing clients are available.

on average clients share 5 new files per day. The drop at
the beginning was caused by a network failure partially
interrupting the crawler work for two days.

The general characteristics of the trace are presented
in Table 1. We identified over one million distinct peers
(29% in France, 28% in Germany, 16% in Spain and only
5% in the US), and 11 million of distinct files. Clients
sometimes change either their IP address (DHCP) or
unique identifier by reinstalling the software for exam-
ple. To avoid taking such clients several times into ac-
count in the analysis, we removed all clients sharing
either the same IP address or the same unique identifier
(and kept the free riders). We call the resulting trace of
320,190 clients the filtered trace, and all static analysis
results are computed on this trace.

For dynamic analysis, we further filtered this trace to
keep only 53,476 clients in the extrapolated trace, that
were connected at least 5 times over the period, with
at least 10 days between the first and the last connec-
tion. Out of those 53,000 peers, 38,000 were free-riders.
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We then extrapolated peer caches in the following pes-
simistic way: for every day where a peer could not be
connected to, we assumed that its cache contained the
intersection of the files at the previous and at the sub-
sequent connection. This is a pessimistic approach for
inferring clustering properties of peer cache contents, as
this underestimates the actual content.

Figure 3 presents the total number of files crawled per
day, after filtering and extrapolation. Based on these
results, we decided to perform the dynamic analysis on
days 348 to 389 (Dec. 15 - Jan. 25) where at least
one million files per day were available, in at least 7,000
non-empty peer caches per day.

The distribution of clients per country is depicted on
Figure 4, and shows that a large majority of eDonkey
users are in Europe.

Number of clients per country

100000

80000

60000

40000

20000

FR DE ES US IT IL GB TW PL AT NLOthers

Figure 4: Distribution of clients per coun-
try (full trace).

3. PEER CONTRIBUTION AND FILE POP-

ULARITY

In this section, we report on the general peer contribu-
tion and file replication statistics in both static and dy-
namic settings. The corresponding results confirm some
well-known features of peer to peer workloads: free rid-
ers still dominate, and file popularity tends to increase
suddenly and decrease gradually. We capture the latter
property by tracking both file rank, and file spread over
time.

We measure the popularity of a file by the number of
replicas (or sources) per file in the system. Most previ-
ous studies measured file popularity by the number of
requests, which we do not observe. Our measure of pop-
ularity reflects the more classical measure, after removal
of requests by free-riders.

Figure 5 depicts the distribution of file replication per
file rank for all files crawled in a day, for 5 given days.
We observe properties similar to those of the Kazaa
workloads [12] and the 3 days-Edonkey workload [8]:
this distribution, after an initial small flat region, fol-
lows a linear trend on a log-log plot. This pattern is
thus consistent over time in the e-Donkey network, and
consistent over file sharing systems.

Figure 6 depicts the cumulative distribution of file
sizes for distinct levels of popularity. We observe that
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Figure 6: Cumulative distribution of file
sizes (filtered trace).

most files are small: 40% of the files are less than 1MB,
50% are between 1 and 10 MB, the typical range for
MP3 files. Only 10% of the files are larger than 10MB.
However, among files with popularity larger than 5 (re-
spectively, larger than 10), about 45 % (respectively,
55%) of the files are larger than 600MB (these are typ-
ically DIVX movies), less than 20 % are between 1MB
and 10MB, the typical range for MP3 files, and less
than 20 % have sizes between 10 and 600MB, the typ-
ical range for complete MP3 albums, small videos and
programs. This clearly shows the specialization of the
eDonkey network for downloading large files.

Figure 7 presents the number of files and the amount
of data shared per client, with and without free-riders.
We observe that free-riding (approximatively 80% of the
clients) is very common in eDonkey. Most of the remain-
ing clients share a few files, 80% of the non free-riders
share less than 100 files, but these are large files, since
less than 10% of non free-riders share less than 1GB.
This feature is common to most peer-to-peer file sharing
systems, but this phenomenon is even more pronounced
in the eDonkey network, again reflecting its specializa-
tion towards large files.

Figure 8 displays the percentage of replication (frac-
tion of clients holding a copy of the file) over time for
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Figure 8: File spread (fraction of users
sharing the file) for the 6 most popular
files over time (filtered trace).

the 6 most popular files over the measurement period.
For 5 of these 6 files, we observe a sudden increase in
popularity over a few days, followed by a slow decrease.

The maximum number of clients holding a copy of a
given file is 372 out of the 53476 clients (day 361). The
corresponding fraction of users holding the file is under
0.7%. This suggests that, in systems such as Gnutella
where search is based on flooding, a large number of
queries are needed to find the target file: for randomly
selected target peers, an average of 1/.007 ~ 143 peers
must be contacted, for the most popular files.

Figures 9 and 10 show the rank of the 5 most popular
files of day 348, at the beginning of the trace, and day
367, corresponding to the middle of the trace. Note
that these files may differ from the ones evaluated in
Figure 8. These figures show that the ranks of popular
files tend to remain stable over time, even though the
degree of popularity measured by the number of replicas
may decrease. We observe on Figure 10 the early life of
popular files, whereas Figure 9 illustrates a later phase
in the life of popular files with gradual drop in ranking.
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Figure 10: Evolution of the file ranks, for
the top 5 of day 367 (filtered trace).

4. CLUSTERING PATTERNS

In this section, we analyze the clustering character-
istics of the workload along two directions. We first
consider the geographical dispersion of users sharing a
file, both at the country and Autonomous System (AS)
level.

We then focus on the degree of overlap between peer
cache contents. We capture the latter by a suitable cor-
relation measure, and also report on the dynamics of
such overlap. We use an original trace randomization
technique to assess which part of the observed cluster-
ing in cache contents is attributable to the presence of
generous peers or popular files, and which part is at-
tributable to the presence of genuine specific peer inter-
ests.

4.1 Geographical clustering patterns

For each file, we define its home country and home
autonomous system (AS) as the one to which most of
the file sources belong. Figure 11 and Figure 12 show
the cumulative distribution function of the fraction of
sources that belong to the home country and AS respec-
tively. The different curves on the graphs show how the
distribution varies as a function of the average popu-
larity of the files. The average popularity of a given
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Figure 12: Distribution of files according
to the number of sources in the main au-
tonomous system (filtered trace).

file is defined as the number of distinct sources of this
file, divided by the number of days during which the
file was seen in the trace. For example on Figure 11,
we observe that 50% of files with an average popularity
greater than or equal to 20 have all their sources in the
same country, while this is the case for only 10% of the
files with a popularity greater than or equal to 50. In
both figures, there is a clear distinction between popu-
lar and non popular files. The geographical clustering
tends to be more pronounced for non popular files.

Table 2 shows that a large proportion of the clients of
the trace (54%) are connected to one of five autonomous
systems. This leaves a clear opportunity to leverage this
tendency at AS level.

The results displayed above reveal that clients belong-
ing to the same area are more likely to share some inter-
est. Recently some propositions to exploit this property
at the network level have been made. PeerCache [21] is
a cache installed by network operators in order to limit
the impact of peer-to-peer traffic on their bandwidth.
A cache is shared between clients belonging to the same
AS for example and limits the impact of peer-to-peer
traffic on the bandwidth. To avoid the issue of network
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AS Global | National Name
3320 21 % 75 % Deutsche Telekom AG
3215 15 % 51 % France Telecom Transpac
3352 8 % 50 % Telefonica Data Espana
12322 7% 24 % Proxad ISP France
1668 3% 60 % AOL-primehost USA
Table 2: The 5 first autonomous systems in-

volved in the eDonkey network, according to
the number of hosted clients, among all Edon-
key clients (Global) or among clients in the same
country (National).

operators storing potential illegal contents, caches may
contain index rather than content.

4.2 Semantic clustering patterns
4.2.1 Clustering correlation

W
/
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All shared files of day 348 (extrapolated trace) —+—
Audio files, popularity in [1..10] (full trace) —a—
 Audio files, popularity in [30.:40] (full trace) —e—

1 10 100 1000 10000

Number of Files in Common

Figure 13: Probability to find additional
files on neighbours, given number of files
already found, based on data from day
348. Note the higher probabilities for rare
audio files.

Figure 13 displays the clustering correlation between
every pair of peers. The correlation is measured as the
probability that any two clients having at least a given
number of files in common share another one. This is
a meaningful index, as it reflects the probability that
a peer who has been able to answer a certain number
of queries from another peer in the past will be able
to answer another query from the same querier in the
future.

The shape of the curve is similar for all extrapolated
days, so we only plot the curve for day 348. We observe
that this curve increases steeply with the number of files
in common. If some clients have a small number of files
in common, the probability that they will share another
one is very high. For audio files, we observe in particular
that unpopular files are more subject to clustering.

Figure 14 shows the difference between clustering ob-
served on the real trace and on the randomized trace,
derived from the real one. The precise technique used
for randomizing the trace is described in the appendix.
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In short, it amounts to do random file swappings be-
tween peer caches, in a way that preserves peer gen-
erosity and file popularity, while destroying any other
structure in the trace. It thus removes any locality of
interest initially present in the trace. The decrease in
clustering after randomization results thus from the re-
moval of such locality of interest.

In the left graph, we observe that there is almost no
difference in clustering between the two traces. This
is mainly due to the presence of popular files, which
are present on the same clients with a high probability.
Therefore, the effect of genuine interest-based clustering
is almost entirely masked by the presence of popular
files. In order to suppress this effect, we conducted the
same experiments on two low levels of popularity, 3 and
5 respectively, displayed on the middle and right graphs.
We observe a significant difference in the measure of the
clustering metric, indicating that clustering of interest
for these files is indeed present.

4.2.2 Dynamic measurements

T T T
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- K 1 Common Files, 345898 Pairs ——

Common Files Mean
e
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Figure 15: Evolution of overlap between
pairs of clients over time. Each curve cor-
responds to a set of pairs of clients having
a given overlap on the first day (extrapo-
lated trace).

Figures 15, 16 and 17 present the evolution of the
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overlap in cache contents between pairs of clients ini-
tially sharing between respectively 1 and 10 files, 20
and 57 files and over 157 files. For the sake of readabil-
ity, we chose to represent only a few typical values for
the initial cache content overlap in the last two graphs.

In Figure 15, we observe that the overlap tends to
decrease over the 45 days period in a very homoge-
neous fashion for all curves. For such pairs of clients
with initial overlap between 1 and 10, this smooth de-
cay in overlap is explained by the fact that at latter
times the overlap consists essentially of those initially
common files that are still shared by both clients. In
other words, these clients no longer share interests.

In contrast, in Figure 16, we observe long plateaux;
see for example the pairs having 51 files in common,
this level of clustering remains stable for 20 days. Even
if there is a decrease in overlap, we still observe some
stable period (see pairs sharing 57 files for example)
after 15 days. We thus observe that, when the overlap
between caches is higher, it remains at a high level for a
longer period of time. This observation is confirmed by
the results of Figure 17 for even larger initial overlaps.

These observations suggest that high overlap is sus-
tained over durations as long as 45 days.

As mentioned in Section 2, the trace is highly dynamic
(about 5 cache replacements per client per day), and
this indicates that the files in the intersection of two
peers’ caches change over time. Therefore these results
suggest that interest-based proximity between peers is
maintained over time.

51 Common Files, 6 Pairs -------
45 Gommon Files, 6 Pairs --------

25 Common Files, 22 Pairs ~----
20 Common Files, 56 Pairs -

40

Common Files Mean
w
8

0 -
345 350 355 360 365 370 375 380 390
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Figure 16: Evolution of overlap between
pairs of clients over time (extrapolated
trace).

5. EXPLOITING SEMANTIC PROXIM-
ITY

In this section we evaluate the effectiveness of search
mechanisms relying on semantic neighbours, such as
those recently proposed in [28, 30, 13], by means of
trace-driven simulations. We first describe the simu-
lation methodology and the basic search mechanisms,
and then give the resulting evaluations.

We identify to what extent the good results observed
stem from the presence of generous peers and popu-
lar files, or from genuine interest-based (semantic) peer
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Figure 17: Evolution of overlap between
pairs of clients over time (extrapolated
trace).

clustering. We also address load-balancing issues aris-
ing from the use of semantic neighbours for answering
queries.

5.1 Simulation Methodology

The simulations in this section are based on the fil-
tered, static trace. For each peer, we use its cache con-
tent in the trace as the potential set of files it will request
during the simulation.

This is clearly an approximation of the actual requests
made by peers during the trace collection, as this ig-
nores requests made by free-riders, and may assume a
peer requested a document which in fact was initally
contributed to the system by that peer. However, we be-
lieve the approximation to be accurate, especially since
the statistical characteristics of requests, as described
in [12] and of shared contents, as described in the pre-
vious sections and in [8] are very similar.

The precise request generation mechanism we use is
as follows. We successively pick at random a peer p and
a file f in its set of files to be requested. File f is then
removed from the list of requests to be made by peer
p. If no other peer shares f yet, we then assume that p
is the original contributor of f to the system, and add
f to the cache of files shared by p. However, if f is
already shared by other peers in the system, we then
simulate a request for file f by peer p. In particular, we
let p query its semantic neighbours for f, and measure
whether such queries have been successful or not. If
this is a failure, we assume that p would then resort to
a fall-back mechanism for obtaining f (either via server
access, or via flooding as in Gnutella). In any case, we
add f to the cache of peer p. We iterate this procedure,
again selecting a peer and a candidate file request.

5.2 Semantic neighbours selection mecha-
nisms

We tried several algorithms for managing the seman-
tic neighbour lists. We focused particularly on the LRU
(Least Recently Used) strategy, very popular in the con-
text of cache memory management, and already sug-
gested in the present context in [30].

According to LRU, each peer sets the length of its
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list of semantic neighbours. Whenever it retrieves a file
from an uploader, the uploading peer is placed at the
head of the list of semantic neighbours, thus potentially
evicting the last member of the list when the uploader
has been found using a fallback search mechanism. The
only design parameter here is the list length.

We have also considered the so-called History-based
strategy proposed in [30] for maintaining the lists of se-
mantic peers. This is also known in the context of cache
management as the frequency-based policy. It amounts
to maintaining counters of the number of successful up-
loads obtained from peers, and keeping only those with
the highest counts in the list.

Finally, we used as a benchmark randomly selected
lists of peers.

5.3 Experimental results

The objective of these experiments is to measure the
efficiency of semantic neighbours in answering queries.
We also aim to understand which factors account for
this efficiency. We identify three such factors: the pres-
ence of generous peers; the presence of popular files; the
presence of underlying semantic relationships between
peers. Finally, we look at the distribution of the load
generated by semantic neighbour-based queries.

5.3.1 Baseline scenario

Figure 18 shows the hit rate, depending on the num-
ber of semantic neighbours contacted using the LRU
and History algorithms for maintaining semantic neigh-
bour lists. When searching for a given file, if the file
can be fetched using only the semantic neighbours it is
considered as a hit. As seen in the graph we observe a
significant hit ratio: for example by using 20 semantic
neighbours one can achieve hit rates of 41% and 47%
with LRU and History respectively. One could think
that these high ratios are due to the presence of highly
popular files. However, if this were the case the hit rates
for randomly selected queried nodes would be as high,
which is obviously not the case.

100%

90%

Hits (%)

50% T 3
-
o
0%

| ——LRU =- History ~—+Random |

0 2 a0 ) ) 100 120 140 160 180 200
Number of Semantic Neighbors

Figure 18: Performance of semantic
neighbour-based search: LRU, History
and random algorithms.

5.3.2  Impact of peer generosity and file popular-
ity
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We now investigate whether such high hit rates stem
from the presence of generous peers, that would become
semantic neighbours of many peers, and be able to an-
swer many queries, even though there is no underlying
specific common interest between those peers. It is a
well known fact that in peer-to-peer networks a large
fraction of files is offered by few peers. The trace used
in the present simulation is no exception: here, the top
15% peers offer 75% of the files.

To evaluate the impact of such generous peers on ef-
fectiveness of semantic neighbours search, we re-ran the
experiments after removal of the 5, 10 and 15% most
generous uploaders from the non free-riders. Figure 19
shows the results of this simulation, using LRU. For the
purpose of comparison the hit rate with all uploaders is
also included. The hit rate is significantly reduced, by
10% for short neighbour lists to 20% for lists of size 200.

However, even with 15% of the most generous upload-
ers removed, the remaining hit rate is significant (e.g.,
above 30% with 20 semantic neighbours). This again
reflects the presence of underlying semantic clustering
between peers.

100%
90%
80%
70%

60%

50%

%

Hits ( %)

40%

30%

—+—-With All Uploaders
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—&—Without Top 10%
—Without Top 15%

Figure 19: Performance of semantic
neighbour-based search: LRU, without
the 5-15% most generous uploaders.

We now return to the influence of file popularity on
the effectiveness of semantic neighbour search. Figure
20 shows the results of the simulations after removal of
5, 15 and 30% of the most popular files. It should be
noted that the number of simulated requests decreases
significantly as we remove the requests to the most pop-
ular files: for 5%, 15% and 30% of the most popular files
removed, the number of remaining requests is 67%, 48%
and 33% respectively. We observe first that the hit ra-
tio is significantly increased when we remove the most
popular files. Secondly, this increase is larger for shorter
semantic neighbour lists. For example, for lists of length
5, the hit ratio using LRU on all files is a bit less than
30% and increases to almost 50% after removal of 30%
of the most popular files.

From these observations, we conclude that the clus-
tering degree between peers is even more significant for
rare files: this confirms the results obtained in Section 4.
This result is very interesting as rare files are usually the
most difficult ones to locate in a peer to peer file sharing
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Number of Semantic Neighbours | 5 | 10 | 20

LRU (%) 28 | 34 | 41

LRU without top 5% uploaders (%) | 21 [ 26 | 33

LRU without 5% popular files (%) | 36 | 42 | 47

LRU without both 1 and 2 (%) 25 30 | 34

LRU without top 15% uploaders (%) | 19 | 24 | 31

LRU without 15% popular files (%) | 43 | 47 | 52

LRU without both 3 and 4 (%) 28 [ 30 | 31

Table 3: Combined influence of generous upload-
ers and popular files on the hit ratio.

system [18]. Therefore, implementing semantic links is
more relevant for these files and may yield significant
gains in search performance. In this context, a chal-
lenging issue is to identify such rare files so that the
semantic neighbour lists are not contaminated by links
to peers serving requests to popular files. We note that
the popularity algorithm, proposed in [30] to manage se-
mantic lists, solves this issue in the context of flooding-
based systems, by implicitly infering the popularity of
requested files.

Table 3 summarizes the influence of the generous up-
loaders and the popular files: it compares the hit ratio
without the 5% & 15% most generous uploaders and
5% & 15% of popular files against the hit ratio with all
the files (the 2nd row). For example, 3rd and 4th row
show hit ratio without generous uploaders and popular
files with semantic neighbours of 5, 10, 20 (LRU). The
5th row, for example, shows the removal both 5% of
generous uploaders and 5% of popular files.

These results show that popular files and generous
uploaders have opposite effects on the hit ratio.

 Hits (%) _

—¢ With all files

e~ Without 5% of popular files

—=- Without 15% of popular files

& Without 30% of popular files | —

10 20 100
Number of Semantic Neighbours

Figure 20: Performance of semantic
neighbour-based search: LRU, without
the 5-15% most popular files.

To complement the study of which part of the hit ratio
is attributable to the underlying semantic clustering of
peers, and which part results from the combined file
popularity and peer generosity, we proceed as follows.

We re-run the simulation on a “randomized” version
of the original (full) trace, obtained from the algorithm
described in the Appendix. This random file swapping
algorithm destroys semantic clustering, while generous
uploaders and popular files retain their status in the
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Figure 21: Performance of semantic
neighbour-based search: LRU and ran-
domized trace

randomized trace. Figure 21 illustrates how the hit rate
obtained from querying 10 semantic neighbours chosen
according to LRU decreases as the number of swappings
increases, i.e. as we further randomize the trace. Note
that the hit rate of the full trace (non randomized) is
shown when the number of swapping is zero (x=0), and
equals 35%. The hit rate decreases down to 5%, which
is the part of the hit rate that can be explained by
generous uploaders and popular files. The difference of
30% between the two values can be accounted for only
by genuine semantic proximity between peers.

5.3.3 Distribution of query load
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Figure 22: Distribution of load among
peers using LRU, without the 5-15% most
generous uploaders.

Figure 22 depicts the distribution of load, expressed
in number of requests, after removal of 5 to 15% of the
most generous uploaders. In this experiment we used
LRU lists of size 5.

Although the total number of requests decreases from
720k to 387k, 289k and 226k when 5%, 10% and 15% re-
spectively of the top uploaders are removed, we observe
that the load is more evenly distributed, as expected.
For instance, after removal of 10% of the top uploaders,
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while the average number of requests per peer is reduced
from 187 to 81, the heaviest peer load is reduced from
13,433 to 710, a more dramatic reduction. This gives ev-
idence that, even if generous peers chose not to answer
queries above a certain level, enough queries can be an-
swered, and the search performance would not collapse.
Note that the free-riders are not present in semantic
lists as they do not provide any contents.

5.3.4 Transitivity of the semantic relationship
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Figure 23: Performance of semantic

neighbour-based search: LRU, two-hop
search, with and without most generous
uploaders.

Finally, we test the transitivity of the semantic re-
lationship between peers. In other words, we investi-
gate whether the semantic neighbours of my seman-
tic neighbours are my semantic neighbours, and there-
fore can help when searching for files. That is, a peer
first queries its semantic neighbours, and upon failure,
queries in turn its two hop-distant semantic neighbours.
This can be viewed as forming a semantic overlay on top
of the peer-to-peer overlay, and searching files at the se-
mantic neighbours that are two hops away. Figure 23
displays the resulting hit ratio as a function of the size of
individual semantic neighbour lists. It appears clearly
that semantic relationships between peers that are two
hops away exist, as two hop-remote peers can answer a
significant fraction of queries.

We conducted the same experiments after removing
from 5 to 30% of the most replicated files and observed
similar trends as for 1 hop semantic search. The hit
ratio for the two hop semantic search is increased from
32% when semantic lists are composed of 5 semantic
neighbours and all files are taken into account to 40%,
45% and over 50% when respectively 5%, 15% and 30%
of the most popular files are ignored. As the number
of semantic neighbours increases, the discrepancy de-
creases.

This again confirms that rare files are more subject
to clustering.
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6. RELATED WORK

There are mainly four different ways to collect infor-
mation on peer-to-peer file-sharing systems: (1) spying
a group of users [12], (2) getting the logs of a real server
[11], (3) using an instrumented client [8] and (4) using
an instrumented server. The first approach gives lim-
ited results, first because network sniffing cannot collect
encrypted information, and second because the results
are biased, as the group of users is often homogeneous
and geographically limited — students in a university
for example. The second approach is mainly limited by
what servers can collect — they have no direct access
to inter-clients communications, and must trust them
if such information is collected — and by what admin-
istrators accept to release — no file names, completely
anonymous data, etc... In the third approach, the infor-
mation is mainly limited by what clients accept to com-
municate to other clients. In particular, in our case, we
took advantage of a feature which has now disappeared
on most file-sharing clients, making the collection of a
similar trace almost impossible now. Finally, the fourth
approach seems promising, and we are currently inves-
tigating such an approach on the Fasttrack network.

A number of studies have recently been conducted
to analyze the behavior of peers and the characteristics
of existing file sharing system networks. Saroiu et al.
[25] studied the peer characteristics of both the Nap-
ster and Gnutella networks. They concluded that there
are significant disparities between peers in terms of ca-
pacities and behavior. More recently, Gummadi et al.
[12] conducted a 200 day analysis of the Kazaa net-
work at the University of Washington. This analysis
extracted a number of general patterns of sharing prop-
erties, and was used as a basis to model peer-to-peer
systems. The Kazaa and Gnutella networks were also
evaluated in the context of content delivery networks
[24], in which authors analyzed the caching potential of
such networks. Another measurement-based evaluation
of the Fasttrack protocol (Kazaa) [16] focuses on the po-
tential of caching mechanisms in peer-to-peer systems.
The results of a seven day crawl of the Overnet peer-to-
peer file sharing system [2], focusing on peer availability,
demonstrate that there is a significant turnover and a
non negligible impact of IP aliasing that should be taken
into account in the design of peer-to-peer systems. A
theoretical analysis of a peer-to-peer network [17] was
also proposed along the recurrent concern of frequent
node arrivals and departures.

Peer availability, sharing patterns and Internet band-
width usage have been major concerns in previous works;
the main objectives were to study the impact of peer fre-
quent arrivals and departures in the design of peer-to-
peer systems as well as the potential of caching on peer-
to-peer workloads. We instead focused on the emergent
clustering properties of such workloads, and how they
might be leveraged for improving search performance.

Recently eDonkey has been identified as the main
competitor of Kazaa, and is ahead of Kazaa in Europe.
As a consequence, eDonkey has generated a lot of inter-
est and some important results have been obtained. An
analysis [29] of the eDonkey traffic observed outside the
University of Wurzburg during 12 days focuses on the
network-level properties of the traffic, i.e. the amount
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of administrated bandwidth used compared to down-
loads, and the “mice and elephants” effect on the net-
work. Besides, analyses of two logs of an eDonkey server
have been proposed [11, 10]. Those papers mainly focus
on short-term dynamic behavior of clients (request fre-
quency, etc.) and on the graph of clients related through
the server. From the clustering point of view, interest-
ing results report that around 20% of the edges of the
exchange graph are bidirectional, and that cliques —
subsets of clients all connected to each other — of size
100 and higher exist among the server clients. Another
recent work [8] analyzes a three day crawl of eDonkey
clients, and demonstrates the presence of semantic clus-
tering.

The smart downloading algorithm of the Bittorrent
network has also seduced a large number of clients re-
cently. An analysis of a 5-months logs of the Bittorrent
tracker [3] used during the diffusion of Linux Redhat 9
has been provided [14]. The Bittorrent protocol can be
seen as a subset of eDonkey, where all clients interested
in a file are connected to the same server: the tracker.
Consequently, the analysis mainly focuses on the down-
load properties (number of uploaders and downloaders,
download and upload rates, session times) and is or-
thogonal to our work.

The use of semantic neighbours for increasing search
performance has been first evaluated on a real trace
by Sripanidkulchai et al. [28]. Although better results
were obtained on a Web trace, they also evaluated their
scheme on a peer-to-peer workload. Their experimental
results suggest that simple, light-weight techniques ex-
ploiting semantic structure in an implicit manner may
yield to significant gains in search performance. Al-
though this was not the purpose of the paper, these
results also attest of semantic clustering in peer-to-peer
file sharing systems. Similar results have been obtained
on a synthetic trace [30].

More recently, an epidemic-based approach has been
proposed in [31] relying on a two-tier architecture. A
bottom epidemic-based protocol ensures connectivity in
the unstructured overlay network. On top of it, a sec-
ond epidemic-based protocol clusters peers according to
their semantic interest. The results were obtained using
our first eDonkey trace [8] and demonstrate the interest
of exploiting clustering properties in such systems.

7. CONCLUSION

Peer-to-peer file sharing is now the main source of
Internet traffic, and as such offers important challenges.
In particular, a good understanding of the generated
workloads is needed, but remains elusive, partly because
of the gigantic scale of such systems.

In this paper, we analyzed a two-month trace of the
eDonkey network, collected from 2.5 millions connec-
tions to clients scattered around the world. In addi-
tion to the extraction of general sharing patterns, which
corroborate the results obtained in other measurement
studies on various networks and different settings (see
Section 6), we considered dynamic properties of the
trace. We analyzed the evolution of cache contents,
thereby gaining some understanding in the dynamics
of file popularity. We observed that the sharing distri-
bution is skewed: a few clients share most of the files,



370

both in terms of size and number of files. The popu-
larity of very popular items tends to remain stable over
the trace. We observed that the workload is highly dy-
namic: clients share a roughly constant number of files
over time, but the turnover is high.

We demonstrated the presence of clustering, both ge-
ographical and semantic, between clients in peer-to-peer
file sharing workloads. We based our analysis on a suit-
able correlation metric between clients, based on the
overlap between cache contents. This analysis demon-
strated that semantic clustering is even stronger for rare
files. We also evaluated some simple strategies for ex-
ploiting the semantic relationships between peers to pro-
vide alternative, server-less search mechanisms. The ob-
served efficiency indirectly indicates the presence of se-
mantic clustering between peers, but is of interest in
itself. We ran modified experiments to isolate different
potential factors responsible for the good performance
of these simple search heuristics.

We conclude that clustering is definitely present, be
it geographical or semantic, and is worth exploiting in
a number of applications.

We have now started an implementation of semantic
links in an eDonkey client, MLdonkey, and will soon
report results on their efficiency.
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Appendix: Trace randomization algorithm

The goal of the randomization procedure is to modify a
collection of peer cache contents so that the peer gen-
erosity (number of files cached per peer) and the file
popularity (number of replicas per file) are maintained,
while any other structure —in particular, interest-based
clustering between peers— is destroyed.
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The original trace consists of a list of peers, together
with the list of their cache contents.

To this end, we use the following randomization algo-
rithm, based on swappings.

1. Pick a peer u with a probability |Cul/(3_,11pcersw |Cul);
where |Cy| is the size of the file collection C\ of
peer w.

2. Pick a file f, uniformly from C, (i.e. each with
probability 1/|Ch]).

3. Iterate on steps 1) and 2) to obtain another random
peer v, and a random file f’ from C,.

4. Update the two collections C,, C,, by swapping
documents f and f’: C, is now C, — f + f’, and
Cy, = Cy — f' + f. This is done only if f’ is not in
C,, originally, and f is not in C, either.

It can be shown that after a sufficient number of iter-
ations, this algorithm effectively returns a randomized
trace meeting our requirements. More precisely, it is a
random trace which is uniformly distributed among all
traces with the required peer generosity and file popu-
larity characteristics.

It can also be shown that it is enough to iterate only
(1/2) * N x In(N) many times, where N := )" |C.y| is
the total number of file replicas in the trace.
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