
Compiler-Driven Leakage Energy Reduction in
Banked Register Files

David Atienza1,2, Praveen Raghavan3,4, José L. Ayala5, Giovanni De Micheli1,
Francky Catthoor3,4, Diederik Verkest3,6, and Marisa Lopez-Vallejo5

1 Laboratoire des Systemes Integres (LSI)/Ecole Polytechnique Federale de Lausanne
(EPFL), Switzerland

{david.atienza, giovanni.demicheli}@epfl.ch.
2 Computer Architecture and Automation Department (DACYA)/Universidad

Complutense de Madrid (UCM), Spain
datienza@dacya.ucm.es.

3 Digital Design Technology Group (DDT)/Inter-University Micro-Electronics Center
(IMEC) vzw, Heverlee, Belgium

{ragha, catthoor, verkest}@imec.be.
4 ESAT/Katholic University of Leuven (KUL), Heverlee, Belgium

5 Depto. de Ingenieria Electronica (DIE)/Universidad Politecnica de Madrid
(UPM), Spain

{jayala, marisa}@die.upm.es.
6 Electrical Engineering/Vrije Universiteit, Brussels, Belgium

Abstract. Tomorrow’s embedded devices need to run high-resolution
multimedia applications which need an enormous computational com-
plexity with a very low energy consumption constraint. In this context,
the register file is one of the key sources of power consumption and its in-
appropriate design and management can severely affect the performance
of the system. In this paper, we present a new approach to reduce the
energy of the shared register file in upcoming embedded VLIW architec-
tures with several processing units. Energy savings up to a 60% can be
obtained in the register file without any performance penalty. It is based
on a set of hardware extensions and a compiler-based energy-aware reg-
ister assignment algorithm that enable the de/activation of parts of the
register file (i.e. sub-banks) in an independent way at run-time, which
can be easily included in these embedded architectures.

1 Introduction

Current trends on communications, multimedia, networking, and other areas en-
courage the development of high-performance platforms that include structures
to hold complex algorithms that cannot be supported by simple hardware. In
this sense VLIW-like processors are the only solution that can provide a suitable
performance-power trade-off for this kind of applications. Moreover, product
complexity continues to increase making scalability a must of these complex
architectures. Also, the time-to-market pressure provokes that a design group
can no longer start from scratch. These assumptions make the use of heteroge-
neous multi-processor architectures the only solution to meet design goals in the

J. Vounckx, N. Azemard, and P. Maurine (Eds.): PATMOS 2006, LNCS 4148, pp. 107–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



108 D. Atienza et al.

required time to market [1]. Several platforms have recently appeared from im-
portant semiconductor companies that confirm this tendency to multi-processor
systems, e.g. ST Nomadik [2], Philips Nexperia [3] or TI OMAP [4].

On the other hand, most current systems require battery operation, which
puts intense pressure on energy consumption. Given the impact that static power
causes in current sub-micron technologies, as indicated by [5], energy consump-
tion becomes a critical design metric. New embedded applications require an
enormous computational performance (2 - 30GOPS) that need to be executed
with low energy consumption demands (0.3 - 2W ) for battery duration con-
straints [6]. Although new processors with multiple processing units can fulfill
these performance figures, they consume too much power (10-100W ) as outlined
by [7]. Therefore, while keeping the performance results, the power consump-
tion needs to be at least two or three orders of magnitude lower to be used
in embedded environments. Within this context, methods to reduce the power
consumption of the new multi-processor embedded platforms are needed.

One of the main factors that affect performance and power consumption of
the new embedded platforms is the memory hierarchy. As a matter of fact, an
inappropriate design of the memory subsystem and the management of the data
transfers between its levels can attain up to 70% of the total power consumed
in the system and up to two orders of magnitude in performance for dynamic
multimedia systems [6]. Moreover, very recently it has been found that in new
proposed embedded platforms with several processing elements, the shared reg-
ister file plays a very important role as part of the memory subsystem and it
can heavily affect the cycle time and consumes a very significant portion of the
aforementioned percentage of the total energy consumed by the memory hier-
archy [4]. Furthermore, it has become one of the critical processor hot-spots,
specially for VLIW architectures, as [8] have shown. The main reasons are simi-
lar to those found in other layers of the memory subsystem. The register file has
to support concurrent access of the several present processors and continuous
exchanges of information with the L1 memory caches, therefore it is large and
multi-ported. These characteristics, as occurs with memory layers on top, lead
to a large increase in the power dissipation (and indirectly temperature too) of
the whole system [9]. Hence, it is crucial to reduce the energy spent on it.

In this paper we introduce a new hardware approach to reduce the energy of
the shared register file in upcoming embedded architectures with several VLIW
processors. This work relies on a set of special hardware extensions that are
controlled by the compilers of these new embedded platforms. This complete
hardware/software approach enables reducing the energy consumed in the reg-
ister file of forthcoming embedded architectures with multiple processing ele-
ments without incurring in performance penalties. The experimental setup is
built over the CRISP (Coarse-grained Reconfigurable Instruction Set Processor)
framework [10], which provides the compilation and simulation capabilities.

The remainder of the paper is organized as follows. In Section 2 we de-
scribe some related work. In Section 3 we explain the proposed architectural
extensions for these new embedded platforms, while the compiler modifications



Compiler-Driven Leakage Energy Reduction in Banked Register Files 109

Processor core

Unified L2 cache

Slice 1

Slice 2

Slice 3

Data

L1

cache

Inst.
L1

cache

external memory

RFU

Fig. 1. CRISP: Overall emulated architecture

are explained in Section 4. Then, in Section 5, we shortly introduce the case
studies and present the experimental results obtained with our proposed hard-
ware/software approach. Finally, in Section 6 we draw our conclusions.

2 Related Work

Nowadays two major types of processing architectures have been proposed to
achieve low power processing of multimedia and consumer applications. First,
most forthcoming low power embedded architectures are typically customized to
handle signal processing operations efficiently. Interesting domain-specific com-
mercial DSP processors is the Coolflux Philips-PDSL [11]. Second, Application-
Specific Instruction set Processors (ASIPs) have been presented as an alternative
for low power embedded processing [12]. Good examples of commercially avail-
able ASIPs are Altera’s NIOS [13] and Tensilica’s Xtensa [14]. The academic
research performed by [15] and [16] in the design of ASIPs has focused at the
problem of identification and implementation of an efficient set of instruction
set extensions. Although most of the work has focused on improving perfor-
mance, not much work has been done specifically in the area of reducing energy



110 D. Atienza et al.

consumption. [17] presents a way to extend the instruction set based on the
energy-efficiency figures of the new instructions. Even though these two types of
architectures provide reduced power consumption compared to general-purpose
processors, since these are both largely based on the Very Long Instruction Word
(VLIW) paradigm [18], the register files are usually quite large and have several
of ports (although they tend to be distributed). This leads to an energy/power
wastage that is the aim of our research in this paper.

However, even though the memory hierarchy has been already largely studied,
work related to the register file has started only recently. In high performance
processors it can be found research devoted to defining mechanisms that decrease
the energy of multi-ported register files. Regarding the hardware approaches to
the problem, [19] has studied the complexity of shared register files and [20]
and [21] have proposed distributed schemes and techniques to split the global
microarchitecture into distributed clusters with subsets of the register file and
functional units. Conversely, [22] presents other techniques that retain the idea
of a centralized architecture, but the register file is split into interleaved banks,
which reduces the total number of ports in each bank. In a more general con-
text, [23] have proposed efficient voltage scaling techniques according to the ap-
plication’s behavior, which can efficiently reduce the overall power consumption
of the system. However, in all these previous approaches it has not been studied
how to apply similar techniques to multi-processor systems with shared register
files by including a set of hardware extensions and power-aware compilation to
control them, as we propose in this paper.

In addition, from the software viewpoint, several approaches have been pro-
posed to alleviate the problem of the register file. In the last years, several soft-
ware pipelining strategies to distribute the use of the register file, targeted at
reducing memory pressure in VLIW systems, have been outlined [24]. Also, [25]
and [26] have recently presented different compiler techniques, including com-
plex register renaming, to reduce the energy spent in the register file of in-order
processors. Nevertheless, such techniques were not aimed to enable the use of
voltage scaling mechanisms in multi-processor environments as we introduce in
the present approach.

3 Proposed Architectural Extensions

In this work we have used the compilation and simulation capabilities provided
by the cycle-accurate CRISP framework [10]. It is a re-targetable compiler and
simulator framework based on Trimaran [27]. The baseline architecture described
by CRISP in shown in Figure 1 and consists of a selectable number of processing
elements (i.e. slices) as in VLIW processors , where the compiler and architec-
ture can be adapted to each desired DSP instruction set to be simulated. To
this end, the slices of the configurable VLIW processing part are mapped onto
the CRISP’s Reconfigurable Functional Unit (RFU) part [10]. The RFU allows
extensive customization of the VLIW processing units for a certain instruction
set and an operation can be issued every clock cycle. Thus, in order to provide



Compiler-Driven Leakage Energy Reduction in Banked Register Files 111

enough bandwidth for the potential concurrent accesses of multiple operations,
our baseline architecture includes two read and one write port of the register file,
which are allocated to each slot of the VLIW processor. All functional units in
one slot are connected to these three ports via a full crossbar. Regarding inter-
connections, the RFU part reads/writes data from/to the main shared register
file. Also, CRISP includes a main processor core, which can be any type of pro-
cessor, and which is used to schedule instructions that real-life VLIW systems
cannot execute efficiently (e.g. control and non-parallel operations). In our exper-
imental results (Section 5), all the real-life applications used are data-dominated
and the main processor executes a very insignificant proportion of operations
compared to DSP-like or loop operations (less than 5%). Thus, these figures are
not considered in our reported results.

The baseline architecture described by CRISP has been extended and modified
in several ways to support the power reduction mechanisms proposed in this
paper. They are described in the following paragraphs of this section.

First, the register file shared among all processing elements has been split into
several banks, which can be independently accessed by the processors. Then, a
Dynamic Voltage Scaling (DVS) technique is applied to turn the unused banks
into a low power state and thus save as much energy as possible in the system.

The register file architecture is split into independent banks and each sub-
bank counts with the additional logic required to implement the DVS state.
Since the low power consumption state is selected for the whole bank instead of
a specific register, the overhead of the control logic is greatly minimized.

This hardware support is exploited by the compiler to power up banks of regis-
ters in the shared register file when they are needed by the several processing ele-
ments. In normal execution of the system, most banks of the shared register file are
kept in a low power state thanks to our modified register assignment implemented
in the compiler. In fact, only when needed, the register file banks are powered up
to fulfill the register demands of the code, without performance degradation.

4 Compiler Optimizations

The complete hardware architecture depicted in the previous section has also
been extended with the design of a specific compiler. The register allocation
phase in the compiler of the CRISP framework was modified to exploit the new
architectural feature.

The register assignment is the phase of any compiler that determines which
register(s) to use for each program value selected during register allocation, while
the register allocation is the phase that determines which values will be placed in
registers. As a matter of fact, computer architectures (out-of-order processors)
can destroy this first assignment by means of a hardware mechanism designed
to avoid hazards, namely using register renaming, as was studied by [25].

Traditionally, the register assignment algorithm has been designed to choose
registers from the whole pool of free registers without any other constraint. In the
case of Trimaran, as many other compilers, when it tries to assign an architectural



112 D. Atienza et al.

select
register from

FIFO

available
while not

compare

operands
with previous

register
mark

instruction?
next

start

different 
bank

same bank

Fig. 2. Register assignment algorithm

register to the instruction operands, it retrieves the first available register from
a First Input First Output (FIFO) list of free registers. In fact, the order of the
registers inside the list is not representative and depends on the specific hardware
architecture. Moreover, since Trimaran does not consider any restriction on as-
signing the registers, they are selected from the FIFO without a particular order.
Therefore, the assigned registers can easily come from different register file banks
if no modification to the register assignment algorithm is accomplished.

The register assignment policy we have implemented in the compiler modi-
fies the aforementioned traditional assignment of Trimaran by promoting every
operand in the instruction to the same register file bank. With this modifica-
tion, most of the registers are selected from the first bank in the register file
and the other banks can be kept in the low power state by turning down the
voltage power supply. Instructions required for turning off the unused banks in
each Basic Block was inserted by the compiler before the Basic Block.

The structure of the algorithm followed by the compiler to assign the ar-
chitectural registers is shown in Figure 2. First, the first available register in
the list of free registers is selected. This register is double-checked to be free
and not system-reserved. Then, it is compared to the registers assigned to the
other operands of the instruction. If the register file bank for the operand under
assignment does not match any of the other operands of the instruction, this
register is discarded and the procedure is repeated until a register belonging to
the same bank is found. When the register is selected, the liveness of the register
is calculated and the annotation is generated. It is important to remark that the
compiler has been designed with enough flexibility to perform the register assign-
ment algorithm with varying sizes of the register file bank, as the experimental
results in Section 5 show.



Compiler-Driven Leakage Energy Reduction in Banked Register Files 113

0,00E+00

1,00E-01

2,00E-01

3,00E-01

4,00E-01

5,00E-01

6,00E-01

7,00E-01

8,00E-01

9,00E-01

1,00E+00

ad
pc

m
_d

ec
od

e

g7
21

_d
ec

od
e

m
es

a_
te

xg
en ae

s

bl
ow

fis
he

nc
od

e
ep

ic
sh

a

m
pe

g2
de

co
de

Ave
ra

ge

L
e
a
k
a
g

e
E

n
e
rg

y
(N

o
rm

a
li
z
e
d

)

2 banks 4 banks 8 banks

Fig. 3. Leakage Energy savings for the three configurations (normalized to non-banked
register file)

Finally, when the register assignment is performed with our proposed algo-
rithm, we can observe that in most of studied multimedia and encryption real-life
applications, the registers can belong to the same bank and just few need to be
selected from another register file bank (see Section 5 for more details).

5 Experimental Results

The CRISP framework detailed in Section 3 was used to simulate a VLIW pro-
cessor. The processor chosen for our simulations was a 32-bit, 4-issue VLIW
processor, trying to represent the forthcoming tendencies in commercial VLIW
platforms for embedded multimedia applications. The register file was considered
to have 12 ports (8 read and 4 write), 128 entries deep. Three cases were chosen
for banking strategies: 8, 4 and 2 banks. However, the proposed architectural
and compiler extensions are independent of the size of the VLIW, the ports of
the register file or the number of banks. The 90nm leakage model proposed by
[28] has been used for the different register file architectures considered.

The simulator provides a trace from which the activation of each of the reg-
isters and the banks of the register file is computed. Based on the number of
cycles each basic block was active and the leakage energy consumption of the
bank, the net leakage energy that is consumed can be computed. The results
are compared with respect to a case where no compiler modification was done.
Hence, the base line case for the 4-banked register file experiment, would be a
case where the compiler was not aware of such a banking.

During our first set of experiments we considered the simplest possible parti-
tion with respect to extra hardware overhead and its complexity for the



114 D. Atienza et al.

management of the register file, namely, it was divided only in 2 banks. The
results obtained regarding leakage energy are depicted in Figure 3. The results
shown for each benchmark using our proposed hardware/software approach have
been normalized to the baseline architecture considered where all the banks of the
register file are switched on during the complete execution of the program. First
of all, we can observe that even with such a simple two-banked register file, we
can actually reduce the leakage energy in all benchmarks (except mpeg2decode)
by 50% as one bank can be turned to low power mode roughly during the whole
execution. In the case of mpeg2decode, after a careful analysis of the compilation
and simulation results, we could verify that this particular application puts an
extremely high register pressure. Hence, all the registers are used all the time
during its execution and no bank can be turned off.

Then, during the second set of experiments we explored the effect of using a
more complex partitioning of the register file by considering the options of 4-
banked and 8-banked register files. The results obtained for our case studies are
shown in Figure 3 and Figure 3 respectively. It can be seen that, as the number
of banks defined for the register file increases, the gains improve as well in most
of the studied embedded applications, since they do not use a large number of
simultaneous registers. Thus, more banks can be turned into low power mode.
In addition, after a careful study of the results, we can observe that the type of
benchmarks that benefit more from the 8-banked partitioning of the register file
are the embedded multimedia applications (e.g. mesa texgen, g721 decode, etc.).
Moreover, adpcm decode shows that even though it requires a significant amount
of main memory to process the incoming audio (in our experiments up to 1MB),
it puts very little register pressure. Hence, it enormously benefits from the in-
crease in the number of banks considered for the register file. Conversely, the
benchmarks from the cryptography domain (e.g. blowfishencode, sha, etc.) utilize
more registers concurrently and do not show any improvement beyond partition-
ing the register file in 4 banks (see Figure 3). In the case of the mpeg2decode
benchmark, the pressure it generates in the register file does not enable any
benefit of partitioning the register file in any number of banks. Thus, there is no
gain in leakage energy for any of the studied configurations.

In addition, these trends in energy improvements achieved by bank-partitioning
of the register file for both types of application domains are illustrated in Figure 3.
It outlines that in most of the cases the 8-banked configuration saves more energy
than 2-bankedand 4-banked options since it keeps a larger area of the register file in
the low-power state. On the other hand, this configuration presents more overhead
of extra logic needed to turn the banks into the lowpower state. However, this extra
logic has been found to be quite simple. As a result, the gains achieved at run-time
due to the low-power state of a very significant part of the register file overcome the
energy overheads of the extra logic. Therefore,most of the studied benchmarks still
benefit from partitioning the register file in 8 banks.

Finally, we have calculated the area overhead in the register file needed to
provide the architectural extensions presented, namely, the banked-registers and
the DVS technique. Our results indicate that the area overhead is only 2.16% of



Compiler-Driven Leakage Energy Reduction in Banked Register Files 115

the total area of the original register file respectively, which illustrates that the
proposed HW/SW approach is not costly. Also, the cost of inserting the extra
instructions required for the DVS was negligible, as it has to be done only for
basic blocks where the execution count can be large (i.e. nested loops).

6 Conclusions

New consumer applications have recently increased in complexity and demand
a very high level of performance in the next generation of low-power embedded
devices. Therefore, new techniques and mechanisms that can provide solutions
for an efficient mapping of these complex applications in such platforms are in
great need. One of the most important factors of power consumption and per-
formance penalty is the shared register file between all processing units. In this
paper we have presented and shown in realistic examples the applicability of a
new set of architectural extensions to enable the use of sub-banks in the register
file, which achieves important reductions in the energy of the shared register file
in upcoming embedded architectures with several VLIW processors. Our results
indicate that this new integral approach enables on average a 60% reduction
of the energy consumed in the register file of such forthcoming embedded ar-
chitectures when they run real-life embedded multimedia, wireless network and
cryptography applications without introducing performance penalties.

Acknowledgements

This work is partially supported by the Swiss FNS Research Grant 20021-
109450/1, and the Spanish Government Research Grants TIN2005-05619 and
TIC2003-07036. Also, this research is partially sponsored by the contract num-
ber 910467 of the Funding Program for Research of UCM-Region of Madrid.

References

1. Wayne Wolf. The Future of Multiprocessor Systems-on-Chips. In Proceedings of
DAC, 2004.

2. ST Nomadik Multimedia Processor, 2004. http://www.st.com.
3. Philips Nexperia - highly integrated programmable system-on-chip (mpsoc), 2004.

http://www.semiconductors.philips.com/products/nexperia.
4. TI’s Omap platform, 2004. http://focus.ti.com/omap/docs/.
5. Nam Sung Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,

M. Kandemir, and N. Vijaykrishnan. Leakage current: Moore’s law meets static
power. Computer, volume 36(12), December 2003.

6. M. Viredaz and D. Wallacha. Power evaluation of a handheld computer. IEEE
Micro, volume 23(1), January 2003.

7. P. Bose, D. Brooks, A. uktosuno, et al., V. Zyuban, D. Albonesi, and S. Dwarkadas.
Early-stage definition of LPX: A low power issue-execute processor. In Proceedings
of PACS, November 2002.



116 D. Atienza et al.

8. A. Lambrechts, P. Raghavan, A. Leroy, M. Jayapala, T. Vander Aa, and
F. Catthoor et. al. Power breakdown analysis for a heterogeneous noc platform
running a video application. In Proceedings of ASAP, June 2005.

9. J. Abella and A. Gonzalez. On reducing register file pressure and energy in
multiple-banked register files. In Proceedings of ICCD, 2003.

10. Pieter Op de Beeck, Francisco Barat, Murali Jayapala, and Rudy Lauwereins.
Crisp: A template for reconfigurable instruction set processors. In Proceedings of
FPL, 2001.

11. Philips PDSL. Coolflux dsp, 2005.
12. Tilman Glokler and Heinrich Meyr. Design of Energy-Efficient Application-Specific

Instruction Set Processors. Kluwer Academic Publishers, AH Dordrecht, The
Netherlands, 2002.

13. Altera. Nios embedded processor system developement, 2001.
14. R.E. Gonzalez. Xtensa: A configurable and extensible processor. In IEEE Micro,

volume 20(2), 2002.
15. P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne, and N. Dutt. Introduction

of local memory elements in instruction set extensions. In Proceedings of DAC,
June 2004.

16. P. Yu and T. Mitra. Characterizing embedded applications for instruction set
extensible processors. In Proceedings of DAC, June 2004.

17. Kubilay Atasu, Laura Pozzi, and Paolo Ienne. Automatic application-specific
instruction-set extensions under microarchitectural constraints. In Proceedings of
DAC, 2003.

18. L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, and R. Zafalon. A
power modeling and estimation framework for vliw-based embedded systems. In
Proceedings of PATMOS, Yverdon Les Bains, Switzerland, September 2001.

19. V. V. Zyuban and P. M. Kogge. The energy complexity of register files. In Pro-
ceedings of ISLPED, 1998.

20. A. Seznec, E. Toullec, and O. Rochecouste. Reducing register ports for higher
speed and lower energy. In Proceedings of MICRO, 2002.

21. V. V. Zyuban and P. M. Kogge. Inherently lower-power high-performance su-
perscalar architectures. IEEE Transactions on Computers, volume 50(3), March
2001.

22. I. Park, M. D. Powell, and T. N. Vijaykumar. Reducing register ports for higher
speed and lower energy. In Proceedings of MICRO, 2002.

23. Johan Pouwelse Koen, K. Langendoen, and H. J. Sips. Application-directed voltage
scaling. IEEE Transactions on Very Large Scale Integration (TVLSI), volume
11(5), October 2003.

24. Cagdas Akturan and Margarida F. Jacome. Caliber: A software pipelining algo-
rithm for clustered embedded VLIW processors. In Proceedings of ICCAD, 2001.

25. J. L. Ayala, M. López-Vallejo, and A. Veidenbaum. Energy-efficient register re-
naming in high-performance processors. In Proceedings of WASP, 2003.

26. J. L. Ayala and M. López-Vallejo. Improving register file banking with a power-
aware unroller. In Proceedings of PARC, 2004.

27. Trimedia Technologies Inc. Trimaran: An infrastructure for research in instruction-
level parallelism, 1999. http://www.trimaran.org.

28. P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, and D.Verkest. Empirical
power model for register files. In Workshop on Media and Streaming Processors
(with MICRO-38), 2005.


