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Abstract — The development of a conceptual framework to test different viscoelastic constitutive laws is presented. This framework has the advantage
of satisfying a priori the thermodynamic restrictions and is valid for large deformations. In addition, the different mechanical contribigepes @exl
according to the time scale of their effects. As an illustration of its ability to model the immediate, short time memory and long time memory
contributions, the framework is used to identify mechanical tests performed on human patellar tendons. The resulting viscoelastic law is#ten propo

to model the soft biological tissues as these tissues present an important viscoelastic béh@@60rEditions scientifiques et médicales Elsevier SAS
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1. Introduction

The soft biological tissues (skin, tendon, ligament) play an important role in the mechanical integrity of
the body. Indeed, these tissues have the following functions: to protect the body for the skin, to transfer loads
between bones for the ligaments, or between muscles and bones for the tendons. The soft biological tissues
are mainly made of collagen and elastin proteins, which bring special mechanical properties. The tissues can
be stretched 15% without damage. They also have an important viscous component in their behaviours (Fung,
1993). From an experimental point of view, mechanical tests performed on soft biological tissues illustrate that
the stress depends on the strain rate (Danto and Woo, 1993; Haut, 1983; Pioletti et al., 1999) and that the stress
decreases when specimens are subjected to a constant strain (Fung, 1993; Lyon et al., 1988; Pioletti, 1997).

The two experimental facts, strain rate effect and stress relaxation, can be discriminated according to the
time scale of their effects. Indeed, any internal process within the tissue has in principle a natural time which
is defined as the measure of the time needed for the internal process to move to a new equilibrium after a
change of the macroscopic external loading. The different mechanical behaviours can then be classified as a
function of their natural time scale. The tissue is said to be elastic if the time scale of the observer, defined
as the interval between two macroscopic typical observations, is infinitely smaller than any natural time of all
internal processes in the tissue. An elastic tissue remembers entirely its previous state. The tissue has a short
time memory (sometimes called anelastic, or more correctly finite time memory), if the observer perceives the
tissue to return to the equilibrium state with a time delay. The time scale of the observer is of the same order
of any natural time of all internal processes. The tissue has a long time memory (sometimes called viscous) if
it never returns to its original reference configuration meaning that the time scale of the observer is infinitely
greater than any time scale of all internal processes.
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The classification of a constitutive law can therefore be defined by the comparison of the time scale of
the macroscopic observation and the set of the natural times of all internal processes within the tissue. The
present work utilizes the basic concept of the time scale for elaborating constitutive laws of biological tissues.

In the classification presented, the strain rate dependence corresponds to the short time memory while the stress
relaxation corresponds to the long time memory.

The short and long time memories of biological tissues have been generally considered separately. The short
time memory has been described either by extending elastic models (Chiba and Komatsu, 1993; Danto and
Woo, 1993) or by superposing spring and dashpot elements (Jamison et al., 1968; Sanjeevi, 1982). With the
extension of elastic models, the interpretation of the short time memory depends on the elastic model used,
while the addition of spring and dashpot elements is difficult to generalize for large deformations. Recently, we
proposed an alternative solution using elastic and viscous potentials that describes the short time memory in
large deformations and satisfies the principles of thermodynamics (Pioletti et al., 1998). The long time memory
has been well described with the linear viscoelasticity theory developed by Coleman and Noll (1961) or the
quasi-linear viscoelastic theory of Fung (1993). Incorporation of the strain rate effect (short time memory)
in Fung’s theory gave good results at low strain rate®8§00.75%/s) (Haut and Little, 1972) but imprecise
results for higher strain rates (up to 108 (Woo et al., 1981).

Ideally, the short and the long time memories of a soft biological tissue should be described in the
same constitutive law to facilitate either the comparison of viscoelastic properties between tissues or the
implementation of the constitutive law in a numerical model. Moreover, the resulting constitutive law should
be valid for large deformations (e.g. Pioletti et al., 1995) and should satisfy the principles of thermodynamics.
The satisfaction of these requirements represents the goal of this study.

We present here the development of a general constitutive law describing, in the same conceptual framework,
the elastic, the short and long time memory contributions. The constitutive law will be based on the basic
concept of time scale presented above. As an illustration of its ability to describe the mechanical behaviour of
soft biological tissues, the viscoelastic law will be identified to mechanical tests performed on human patellar
tendons of knee joints.

2. Viscoelastic constitutive laws

Three general principles govern the constitutive laws of materials. The principle of determinism, the principle
of local action, which asserts that the present stress at a particle is determined by the history of an arbitrarily
small neighborhood of that particle, and the principle of material frame-indifference (objectivity), which asserts
that the response of a material is the same for all observers (Noll, 1958). For the biological tissues, we suppose
that the stress at a given material point depends on the deformation at that point, not only at the actual time
¢t considered, but also at all previous times. A general constitutive law for such tissue is expressed by the
well-known functional (Truesdell and Noll, 1992):

S(t)=Se(C(1)) +I2{G (1t —5); C(1)}, (1)

wheresS is the second Piola—Kirchhoff stress tengois the right Cauchy—Green strain tensois a functional
representing the history @v(r — s) = C(t — s5) — C(¢t) and Se(C(¢)) is an ‘equilibrium term’. The stresS
and strainC are two symmetric second-order tensors. The notation in (1) means thats) is a variable and
C(t) is a parameter.
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2.1. Combination of elastic, short and long time memory contributions

We propose to rearrange the general constitutive law (1) into three parts according to the time scale:
S=2S8e(C(1) +T_o{G(t —5); C(O)} + T2, {G (1 —5); C(1) }, (2)

where§ ~ 0. Relation (2) is valid only for a linear functiondl, but it does not necessarily mean a linear
response of the material. The constitutive law (2) enables us to consider the different mechanical behaviours
based on the time scale of their effects. The first term of the right-hand side of (2) is the immediate contribution
(elastic behaviour) as it supports the contribution of the deformation at the actuat.tifille second term

of (2) represents the almost immediate contribution, i.e. the short time memory and can be approximated by a
differential type material asis close to zero (Truesdell and Noll, 1992):

S=S8e(C1)) + Sy(C(1); C(1)) + T2, {G(t —5); C(1)} (3)

with S, the second Piola—Kirchhoff viscous stress tensor@rbe strain rate tensor.

Finally, the third term of (2) represents the delayed contribution, i.e. the long time memory. The long time
memory contribution requires the history of the strain terGat all the past times to calculate the str&s3o
be consistent with the observation that memories are imperfect, the principle of fading memory is introduced:
“deformations which occurred in the distant past have a smaller effect on the present forces than have recent
deformations” (Coleman and Noll, 1961). Mathematical interpretation of the fading memaory principle asserts
that constitutive functionals, such @shave continuous Fréchet derivatives relative to a particular norm on a
space of historie& (+ — s). This leads to an integral relation between the stress and the strain in a first order
theory, e.g. (Truesdell and Noll, 1992). The third term of (2) then takes the form:

SQS{G(Z—S);C(Z)}z/ Z(G(r —s),s; C(1)) ds. 4)
)
We propose then the following general viscoelastic description for soft biological tissues:
S =S8e(C1)) + 8y (C(1); C(1)) + / (Gt —s),s;C(1))ds, (5)
)

where the successive terms of the right-hand side of (5) are the different contributions based on the time scale
of their effects. This original description has the advantage of separating the different mechanical behaviours
which facilitates the identification process, as will be shown below.

2.2. Thermodynamic restrictions

Equation (5) is a general constitutive law which takes into account elastic, short and long time memory
contributions. In order to satisfy the general principles of physics, this law is further restricted by
thermodynamic principles.

If there is no dissipation (elastic process), satisfaction of the thermodynamic principles reduces to:
dWe

= 2p00——
Se £0 5C "’ (6)
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wherepyg is the density expressed in the reference statelénid an elastic strain energy potential. In classical
thermodynamics, the elastic potential is a function of strain and position, e.g. (Coleman, 1964) (in an isothermal
process, temperature is a parameter).

In case of short time memory, a similar framework is applied with the use of a dissipative po&rtalC)
(or equally called pseudo-potential) from which the viscous stress is derived, e.g. (Germain, 1986). Satisfaction
of the thermodynamical principles becomes:

Wy . .
~:C>0 VC. (7)
aC

This inequality holds true when the potentld|, is convex and the value d¥, is zero when the strain rate is
equal to zero, e.g. (Coussy, 1995; Rakotomanana, 1998).

For the materials with long time memory, thermodynamic variables depend on the history of the strain
(temperature is not considered in the present case due to the isothermal process). A complete derivation
of thermodynamics theory applied to long time memory effects is found in a fundamental paper of
Coleman (1964). A general thermodynamic formulation for the long time memory is beyond the scope of the
present study. In the particular case where exponential relaxation functions are used, it can be demonstrated that
the thermodynamic principles are satisfied, e.g. (Fabrizio and Morro, 1985; Rabotnov, 1977). Moreover, use of
exponential for the relaxation function is in agreement with the principle of fading memory as exponential is
an influence function of arbitrary order (Coleman and Noll, 1961).

2.3. Isotropy and homogeneity

In order to get a tractable identification process, the material is considered to be homogeneous and isotropic.
In that case, the elastic potenti&l can be expressed as a function of three invariants of the deformation tensor,
e.g. (Boehler, 1987):

We = We(ly, I, 13) (8)
with:
1
L=trC, L= E((tr C)>—trC?),  Iz=detC. 9)
The general isotropic representation of the viscous potewtjahvolves 10 invariants, e.g. (Boehler, 1987):

Wy = Wy(Iq, I, I3, J1, J2, J3, Ja, Js, J6, J7) (10)

with:
Lh=tr€, L=t  L=t¢’ L =tn(CC),

N s - 1)
J5=tr(C C), 16=tr(CC ), J7=tr(C C )

A representation with less invariants can be obtained during the identification process. In the isotropic
case, the tensorial representation of the funciti@G (r — s), s; C(¢)) can be formulated, e.g. (Pipkin and

Rivlin, 1961) but they are too cumbersome to be stated in general. As for the viscous potential, particular
experimentally accessible representations can be obtained during the identification process. Consequently, the
general constitutive law (5) expressed for the case of isotropy may be re-written in term of elastic potential,
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dissipative potential, and history of strain (wid#. given by unit of volume):

0
S = 2% We(la, Iz, I3) + EWV(IL I3, I3, J1, J2, J3, Ja, Js, J6, J7) +/ (G(t—s),5:C(1))ds. (12)

The constitutive law (12), with satisfaction of inequality (7) #@; and exponential relaxation functions, is an
isotropic viscoelastic description compatible with the basic physical requirements.

2.4. Incompressibility

Incompressibility is a kinematic constraint. To satisfy this constraint, an arbitrary hydrostatic pressure
—pC~! must be added to the general constitutive law. Geometrically, the incompressibility assumption
implicates conservation of volume during deformation of the body. Mathematically, this constraint is expressed
by the relation/; = 1. In the case of incompressibility, the general constitutive law (12) reduces to:

AW, AW, AW, aw
S=—pC1+2 Sy ‘*)1—2 °c v / (G(t — C(t 13
P2 g )1 -2 v [TBGu-nscoyd @3

The constitutive law (13), with verification of inequality (7) féf, and exponential relaxation functions, is an
isotropic incompressible viscoelastic description compatible with the basic physical requirements.

3. Experimental set-up
3.1. Mechanical tests

A custom made device has been elaborated to perform uniaxial static and dynamic tests on isolated ligaments
and tendons at controlled temperature (€% and humidity (100%) (Pioletti, 1997; Pioletti et al., 1996; Pioletti
et al., 1999). The experimental situation corresponded to the isothermal situation assumed in the theory.

3.1.1. Elastic and short time memory

Traction tests were performed on each specimen at four strain ree$1017 and 24%s. To assess that the
order of the tests did not affect the results, at the end of the tests the specimens were reloaded 8ty the O
strain rate. When plotted together, the initial and re-loaded stress—strain curves were identical.

3.1.2. Long time memory

The specimens were loaded till 5% of strain and the strain was maintained constant. The stress relaxation
was measured for 1800 s. The stress relaxation was normalized with the relation: (stress relaxg(gireas
relaxation at = 0).

3.2. Specimens

The patellar tendons were collected with their proximal and distal bone attachments from fresh frozen
Caucasian knees (4 males, meanagE: 734+ 2.2 years). The bone insertions were embedded in a synthetic
resin and were fixed upon the supporting structure of the experimental set-up. The fibres were aligned along
the loading direction.
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4. |dentification

The identification process consists first to propose mathematical functions for the potéqtigits and for
the tensor-valued functio@ and then to determine, with the mechanical tests, the value of the parameters
appearing in these mathematical functions. The form of the mathematical functions is restricted by the fact that
the identification process must satisfy four conditions to obtain an admissible constitutive law:

(@) S(C=1)=0,

(b) S22=0,

(C) Cin>1=Cop<1,

(d) correct stress—strain curve fit.
Condition (a) reflects the fact that the reference geometry is stress free. Condition (b) means that the traction
tests were performed without lateral forces applied on the specimens (tractions were performes} glong
Condition (c) is an obvious requirement for a normal material, but could not be verified by a particular
constitutive law. Point (d) is a qualitative requirement.

The form of the compressible (12) or incompressible constitutive law (13), based on the time scale of the
different contributions, allowed us to identify each part individually. The identification process starts with the
elastic contribution.

4.1. Elastic behaviour (immediate contribution)

A supplemental condition applies for the elastic poteritial

(e) convexity ofWe.

Condition (e) is fundamental for the existence and uniqueness of the solution in a boundary-value problem,
e.g. (Chen and Han, 1988; Curnier, 1994). The stress—strain curves are dependent of the strain rate.
Consequently, the elastic stress—strain curve is a matter of definition. In this study, the elastic stress—strain
curve was defined by the curve obtained at the lowest strain r&d&o(6), where the strain rate effect was
verified to be minimal (Pioletti, 1997).

During the identification process, it was impossible to find an elastic potential that fulfilled the five conditions
(a) to (e). Inthe Appendix, we present the tested elastic potentials in case of compressibility with the conditions
satisfied and not satisfied. The incompressibility hypothesis given by the constitutive law (13) was then used.
In this case, the elastic potentiak proposed by Veronda and Westmann (1970):

We=5 explp(— 3] ~ 21~ 3, (14

wherexa andg are two elastic parameters, fulfilled the five conditions of the identification and closely fitted the
non-linear elastic stress—strain curve obtained with the lowest strairficate (J).

4.2. Short time memory

For the short time memory, the condition (a) is slightly modified to incorporate the strain rate:
(@ S(C=0;C=1)=0.

The condition (e) is also modified:
(e) convexity of the viscous potenti#if, in C and W, (C = 0; C) = 0.



Non-linear viscoelastic laws for soft biological tissues 755

S —

Stress [MPa]
[\

Strain

Figure 1. Estimation of the elastic parametersand 8 and of the viscous parameter using a least square fit of the experimental stress—strain curves
obtained at four strain rates for one human patellar tendon specimen. The stress is in the second Piola—Kirchhoff formulation and the straghtis in the r
Cauchy-Green formulatior exp. 24%'s; — — theor. 24%s; ] exp. 17%'s; - —— - theor. 17%s; & exp. 119%s; - - - - - theor. 11%s; o exp. 06%y/s;

theor. 06%/s.

This condition insured that the viscous potential was thermodynamically acceptable. We have recently proposed
the following viscous potential which fulfills the five conditions of the identification (Pioletti et al., 1998):

W, = %tr(C)z(Il ~3). (15)
This potential allowed, with only one parametgyto take into account the short time memdiigyre 1).
4.3. Long time memory

The tensor-valued functiol (equation (13)) is a function of time and strain. For the identification process,
the function ¥ was transformed in two functions of strain and time¢ only (hypothesis of variables
separation):

(Gt —5),5:C1t)) =k(G(t —5); C(1))p(s). (16)

The hypothesis of variables separation was recently experimentally verified (Pioletti and Rakotomanana, 2000).
In a relaxation stress identification, the integral part of equation (13) can be written as:

/OOE(G(Z—S),S;C(I)) ds =« (Go; Cp) /Oo(b(s)ds, 17)
5 5

whereGq and Cq are constant with respect to the time as the strain is maintained constant. The identification
is then performed on the time function:

M(S):/s ¢ (s) ds. (18)
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Figure 2. Experimental (dot) and Prony series (plain line) of the normalized relaxation stress in function of time for one human patellar tendon specimen.

The thermodynamic principles are satisfied with the use of a normalized exponential Prony series:

M(s) = (gakexp<—%)>/<§lak>. (19)

Three exponentials were sufficient to precisely describe the time—relaxation behaviour of the specimens
(figure 2.

To take into account the non-linear relationship between the strain and the stress, it has been proposed,
e.g. (Findley et al., 1976; Fung, 1993; Lockett, 1972) to use the elastic stress for the function of strain in
equation (16):

k(G(t —s5); C(1)) =Se(C(t —9)). (20)

The integral part of the constitutive law (13) takes then form:

/ ' Se(C(t = 5)) M (s) ds. 21)
)

In summary, the general incompressible constitutive law (13) has the following form after the identification
process:

Se=—pC ' +ap(2exp(l1—3)] — 1)1 +apC,
Sy=n'(lL—3C, (22)

/OOE(G(t—s),s;C(t))ds=/r Se(C(t —5))M(s) ds,
8 8

where M (s) is given by (19). The mean values of the viscoelastic parameters appearing in (22) were
experimentally obtained and are reportedaible |.

The originality of the present description is given by the fact that the elasticity, the short and long time
memory are described in one framework which satisfies all of the basic physical requirements. Moreover, it is
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Table I. Mean values ane-SE of the elastico and8), short ;') and long ¢; andz;) time memory effect parameters (five specimens).

o B " ag az as 71 8] 72 [s] 73 [s]
[MPa] [MPag
0.09 66.96 438.13 0.064 0.079 0.106 7.8 156.2 1962.3
+ + + + + + + + +
0.02 12.99 232.20 0.005 0.008 0.017 1.8 24.0 187.9

possible to consider only one behaviour (for example elasticity) independently of the others. This makes the
identification process very convenient and facilitates the interpretation of the different mechanical behaviours.

5. Discussion

The identification process allowed the mechanical behaviour of the specimens tested to be completely
characterized. It was shown that the identification process can not only be reduced to a curve fitting of
the experimental data. The five conditions required to obtain a correct identification process reduced the
mathematical form of the admissible constitutive laws. In the framework proposed, the resulting constitutive
law satisfied the basic physical laws of conservation.

The hypothesis of variables separation in long time memory has been widely used for soft tissues
biomechanic, e.g. (Fung, 1993; Johnson et al., 1994; Sauren and Rousseau, 1983; Woo et al., 1981). It has been
shown that the relaxation modes showed only slight strain dependences for soft tissues (Soden and Kershaw,
1974). We confirmed this trend for the human patellar tendon specimens (Pioletti and Rakotomanana, 2000).

Use of a Prony series of three exponentials accurately described the time behaviour of the stress relaxation.
Identification of exponential functions for the relaxation function is in agreement with the principle of fading
memory, e.g. (Coleman and Noll, 1961). Moreover, exponential for the relaxation function is compatible with
the principles of thermodynamics.

The compressible identification gave unsatisfactory results during the identification process. Some elastic
potentials satisfied the first four conditions but were not convex. These potentials were numerically
implemented anyway in a finite element model but furnished no physical results. Therefore, the incompressible
hypothesis had to be considered. The incompressible hypothesis has been widely used in soft tissue
biomechanics, e.g. (DeHoff et al., 1966; Demiray, 1972; Veronda and Westmann, 1970; Weiss, 1994). The
physical motivation behind this assumption is that soft tissues such as ligaments and tendons are mainly
composed of water which is nearly incompressible. There is a possibility that some water is expelled from the
tissue during the loading procedure, e.g. (Hannafin and Arnoczky, 1994). However, there is actually no clear
experimental evidence that the amount of expelled water during traction test is important enough to jeopardize
the incompressibility hypothesis.

The implementation of an isotropic constitutive law to model soft tissues which have rather a transverse
isotropic behaviour should be performed with caution in numerical simulation. Misleading numerical results
could be obtained in situations were multi-axial stresses are present. Indeed, the development of an isotropic
constitutive law was imposed by experimental limitations. In view of the lateral specimen size (10 mm) and
the difficulty to have effective clamps on soft tissues, lateral tractions (necessary for determining the extra
parameters of a transverse isotropic law) would induce important artefacts rendering the identification process
imprecise. The development of transverse isotropic constitutive law would be possible in the theoretical
framework proposed. For the elastic potential, five parameters (at least for the linear case) would be
needed (Boehler, 1987). For the short and long time memory, a transverse isotropic description would be
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too cumbersome to be generally postulated and the number of parameters to be identified would probably
necessitate too many experiments to be feasible.

Formulation of invariant tensor constitutive laws in the presence of irreversible processes such as viscosity or
plasticity, is a convenient and powerful method of describing biological tissues properties, e.g. (Cowin, 1995;
Rakotomanana et al., 1992). The proposed framework has the ability to describe the short and the long time
memory for other soft or hard tissues. The short or the long time memory could be described by identifying
different mathematical forms or by using supplementary strain rate invariants in the viscous potential for
example. The resulting viscoelastic law will then automatically satisfy the thermodynamic requirements and
will be meaningful in large deformations.

Appendix

Table II. Tested elastic potentials in case of compressibility with the conditions satisfied and not satisfied.

Type Elastic potential Satisfied Not
satisfied
Poly. We=0a(l1—3)+ B2 —23) a,b,ce d
We=%(I1—3) + 51— 3) — (@ +28)(I3— 1) ab,cd e
We=$%(1-3+5U1-32+ 5 -3+ 53— D) ab d
We=%(1—3+5U1-32—%(2—3) ab d
We=$%(1—3+ 51 -32+%U2—3) ab d
Loga. We=%(I3—log I3) + & (1, - 3)2 ab d
Expo. We= f—ﬂ{Exmﬂ(ll—3)(13—1)]—1} a,b,cd e
We= s (ExplB((I1—3) — (13— 1)1 -1} a,b,cd e
We = a{EXplB((I11 — 3) — 2(Ip — 3))] — 1} a,b,c,d e
We = %{EXH5(11—3)(12—3)]—1} a,b de
We=${EXpA(L—3) +y(2—3) — (B+2y)(I3— D] -1 a,b,d e
We=a Exp[B(I1 —3)](/2—3) a
We = a EXpl(I1 — 3)1(13 — 1) a
We = % ExplB(I1 — 3)1{(I1 — 3) — 0.5(I2 — 3)} ab,cd e
We =5 Expl(I1 — 31 —3) — (13— 1)} a,b,cd e
E')—('SO We = a{EXpIB(L — 3] - 1) — L (12— 3) a,b.de c
We=a(EXp[B(IL— 3] -1 — L (13- 1) a,b,d c
We =o(EXp[B(I1 —3)] — 1} —eB((I2—3) — (I3— 1)) a,bcd e

The notatiorExp means that the exponential function is replaced by its third-order limited development (LD).
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